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Abstract

Approximation algorithms can sometimes provide efficient solutions when no efficient exact compu-
tation is known. In particular, approximations are often useful in a distributed setting where the inputs
are held by different parties and may be extremely large. Furthermore, for some applications, the parties
want to compute a function of their inputs securely, without revealing more information than necessary.
In this work we study the question of simultaneously addressing the above efficiency and security concerns
via what we call secure approximations.

We start by extending standard definitions of secure (exact) computation to the setting of secure ap-
proximations. Our definitions guarantee that no additional information is revealed by the approximation
beyond what follows from the output of the function being approximated. We then study the com-
plexity of specific secure approximation problems. In particular, we obtain a sublinear-communication
protocol for securely approximating the Hamming distance and a polynomial-time protocol for securely
approximating the permanent and related #P-hard problems.

1 Introduction

There are an increasing number and variety of real-world applications that collect a massive amount of data
and wish to make use of it. For example, massive data sets arise in physical sciences such as biology and
astronomy, in marketing, in network operations, and in Web searches. The search for efficient and effective
data mining algorithms is an important emerging area of research. (For example, see [18] and the many
activities described therein.)

Unfortunately, many useful functions are expensive to compute. Even functions that are efficiently
computable for moderately sized data sets are often not efficiently computable for massive data sets. For
example, even a quadratic algorithm cannot generally be considered practical on inputs consisting of a
terabyte of data; such data sets are now routinely generated daily.

In addition to the efficiency of a computation, an important concern is its security. In a distributed
setting, the pieces of a distributed data set may be controlled by different parties who wish to collaborate
in order to compute some function of their data without fully revealing their piece of the data to the other
parties. To that end, the parties may want to compute a function of their inputs securely—i.e., so that no
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party learns anything about the others’ inputs except what is implied by her own output. For example, rival
Internet service providers often strike “peering agreements,” in which each carries the other’s Internet traffic
at no cost, as long as the characteristics of the traffic carried by each peer for the other are comparable.
The prospective peers each have data sets describing the characteristics of their own traffic, and they would
like to verify the similarity of these data sets without revealing more than they have to. Several recent
papers have considered the problem of privacy-preserving data mining [1, 44, 14], recognizing that it is often
desirable to perform data mining without revealing unnecessary information about the data.

Separately, each of the above two concerns has been previously addressed. On one hand, when the cost
of an exact computation of a function f is too high, the parties may use an approximation f̂ to f . In some
cases, the communication of only a small random sample from each part of a data set stored in remote
pieces suffices for an approximation. In other cases, the communication of the result of a local computation
depending on the entire local data set is sufficient. In both situations, the approximate computation typically
requires less communication and less computation than an exact computation on the original data set. On
the other hand, secure multiparty computation (initiated by [55, 29, 9, 15]) allows a group of parties to
compute a function f without revealing unnecessary information.

We address both concerns simultaneously. We construct approximation algorithms that are more efficient
than exact computation and that maintain the privacy of the data. Note that the straightforward approach
of simply computing an approximation f̂ via a secure multiparty computation, does not work, because even
a secure computation of f̂ may leak information through its output. That is, there could be information
about players’ inputs that is deducible from the output of f̂ that is not deducible from the output of f . To
illustrate this, consider an integer-valued function f and an approximation f̂ to f that outputs f(x1, . . . , xn)
with the last bit possibly flipped so that last bit is 0 if x1 is even and 1 if x1 is odd. Then f̂(x1, . . . , xn) is a
good approximation but unnecessarily reveals the parity of x1.

Our work. In this paper, we provide definitions of secure approximate multiparty computation that
disallow the problems of information leakage discussed above, and we present secure approximation protocols
for several natural functions.

For massive data sets, distance functions are important because they give a measure of similarity be-
tween two data sets. For example, telephone companies may want to compute joint statistics on their
calling data, ISPs may want to verify similar peering traffic characteristics, and Web search companies may
want to compare their images of the Web. Because the exact distributed computation of the Hamming
distance and similar distance functions requires linear communication, there has been much recent work on
sublinear-communication distance approximations (while maintaining polynomial computation, low storage,
and ideally only a single pass over the raw data). For example, several recent papers [3, 23, 32] present
algorithms for efficiently approximating Lp distances between two massive data sets. These approximations,
however, suffer the kind of information leakage described above. One of the main technical contributions
of this paper is a secure two-party protocol for approximating the Hamming distance between two n-bit
strings, requiring Õ(n1/2) communication bits. In a relaxed model allowing offline interaction before the
parties know their inputs, we also give a secure approximation for the L2 norm and the Hamming distance,
with online communication at most polynomial in log(n) log(1/δ)k/ε, where δ is the failure probability, ε is
a distortion parameter, and k is a security parameter.1

The techniques we use for the Hamming distance protocol have some independently interesting applica-
tions to communication complexity. In particular, they allow two parties to decide whether the Hamming
distance between their inputs is at most d by each sending a randomized message of length O(d · polylog d)
to a referee. This solves an open problem of Yao [56] asking whether communication complexity better than
O(d2) is possible.2

Approximation algorithms are also useful in the setting where the data involved is only moderate in size,
but the function to be computed is computationally hard. We also consider this case and provide a secure
approximation to a natural and important #P-complete problem, the permanent. We further show how our
techniques can be applied to a more general class of problems that have known (non-secure) Monte Carlo
Markov chain-based approximations.

1All logarithms in this paper are base 2, unless otherwise specified.
2This application of our techniques was brought to our attention by Ziv Bar-Yossef [5], who, in joint work with T. S. Jayram

and Ravi Kumar, has independently obtained a similar solution to Yao’s problem.

2



To summarize, the main contributions of this paper are as follows:

• definitions of secure multiparty approximations;

• a sublinear-communication solution for the Hamming distance;

• polynomial-time solutions to natural #P-hard problems including the permanent.

Related work. There are several very communication-efficient algorithms for approximating the Lp

or Hamming distance (e.g., [42, 2, 23, 32]). These results, however, do not translate into efficient secure
approximation protocols, as is discussed further in Section 5.

The approach of constructing secure sublinear-communication protocols was initiated in the context of
private information retrieval [16] and further studied both in other specific contexts (e.g., [44]) and in more
general contexts [50, 14]. In [50], Naor and Nissim present a general methodology for transforming protocols
in the communication complexity model into secure protocols with a low communication overhead. However,
the secure protocols obtained by applying their methodology to existing (non-secure) low-communication
protocols for approximate Hamming distance yield solutions requiring super-polynomial computation.

Following the publication of a preliminary version of our work [22], Halevi et al. [31] consider secure
approximations of NP-hard functions and show some negative results. Specifically, there exist natural NP-
hard functions, such as the size of the minimum vertex cover in a graph, which do not admit non-trivial private
approximation, although they do admit good approximation algorithms without the security restriction.
They also present a relaxation of our private approximation definition, that allows the leakage of very
little information. Under this definition, they demonstrate that every function admitting a deterministic
approximation also admits an “almost private” approximation of related quality. In particular, the size of
the minimum vertex cover may be approximated within factor 4 leaking a single bit of information.

Freedman, Nissim, and Pinkas gave an efficient private approximation protocol for computing the inter-
section size of two databases [24]. One of their protocols uses a generalized version of our Private-Sample-XOR
protocol (Section 5).

Indyk and Woodruff recently obtained an elegant private protocol for approximating the L2 distance
between two vectors, requiring only a polylogarithmic amount of communication [33]. Their protocol gener-
alizes and improves our Õ(n1/2)-communication protocol for the Hamming distance (Section 5).

Beimel et al. formalized a more general notion of private approximations that applies to search problems,
such as finding an approximate vertex cover in a graph [8]. Their privacy requirement is, roughly, that the
approximation algorithm should not enable distinguishing two instances that have (exactly) the same set of
optimal solution. Their main result is that even under this seemingly weak requirement, vertex cover and
max-3-sat do not admit private approximation.

Another approach to privacy has received increasing attention since the work of Agrawal and Srikant [1].
Here, the input to, or outcome of, a computation is perturbed with the goal of hiding sensitive personal
data while allowing some utility. Although perturbation may be a tool in achieving private approximations
(according to our definitions), that approach is very different from ours. In Section 4, we discuss the
limitations of some types of perturbation—rounding and adding random noise—with respect to our notion
of privacy.

Organization. We provide background definitions for approximations and secure multiparty computation
in Section 2. We give our definitions of secure multiparty approximations in Section 3, with additional
discussion in Appendices A and B. In Section 4, we discuss rounding and when it is and is not useful
for providing private approximations. We present our main private approximation protocols in Section 5
(Hamming distance and L2 distance) and Section 6 (#P-hard problems).

2 Background

In this section, we present background and notation for approximation and secure multiparty computation.
Throughout this paper, n serves as an input length parameter. We measure the complexity of our protocols,
their quality of approximation, and the success of an adversary attacking them as functions of n.
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A function f : N → [0, 1] is negligible if it is asymptotically smaller than any inverse polynomial, i.e.,
f(n) ∈ n−ω(1). The function f is overwhelming if 1 − f is negligible. We use the standard asymptotic
notation Õ(·) in a slightly nonstandard way. By default, an assertion of the form C(n) ∈ Õ(c(n)) should be
read as: “C(n) ∈ O(c(n) · nγ) for an arbitrarily small constant γ > 0”. However, it is often the case that
the stronger, more standard, assertion C(n) ∈ O(c(n) · logO(1) n) holds. In fact, if our default cryptographic
assumptions are replaced by stronger ones, then all of the occurrences of Õ(c(n)) in this paper can be
replaced by O(c(n) logO(1) n). See the discussion after Theorem 2.4 for a more concrete discussion of these
assumptions.

A distribution ensemble D = {Dx}x∈X is a family of probability distributions indexed by some infinite
set X of binary strings. We sometimes take X = {1n : n ∈ N}, in which case the indices in X are viewed
as natural numbers.

Definition 1 Two distribution ensembles D = {Dx}x∈X and D′ = {D′
x}x∈X are statistically indistinguish-

able, (written D
s≡ D′), if there is a negligible function µ(·) such that, for every x ∈ X,

SD(Dx, D
′
x) < µ(|x|),

where SD denotes statistical distance defined by SD(Z,Z ′) = 1
2

∑
a |Pr(Z = a)− Pr(Z ′ = a)|.

Ensembles D and D′ are computationally indistinguishable, (written D
c≡ D′), if for every family {Cn}

of polynomial-size circuits there exists a negligible function µ(·) such that for every x ∈ X of length n,

|Pr(Cn(Dx) = 1)− Pr(Cn(D′
x) = 1)| < µ(n).

2.1 Approximations

An approximation requirement is any binary relation P between a deterministic real-valued function f , called
the target function, and a possibly randomized real-valued function f̂ , called the approximation function. The
relation P defines which functions are considered good approximations. We say that f̂ is a P-approximation
to f if P(f, f̂) holds. We say that an algorithm or a protocol P-approximates f if it outputs some P-
approximation of f . A standard requirement, referred to as 〈ε, δ〉-approximation, is defined as follows.

Definition 2 We say that f̂ is an 〈ε, δ〉-approximation of f if for all inputs x,

Pr[(1− ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] ≥ 1− δ,

where the probability is over the randomness of f̂ .

In this paper, we primarily refer to 〈ε, δ〉-approximations. In an 〈ε, δ〉-approximation, both ε and δ may
be functions of the input length parameter n. We often omit the failure probability δ, in which case it should
be understood to be negligible.

The following folklore lemma, based on a Chernoff-bound argument, is used in several of our proofs.
Informally, it says that if a random variable X has variance small enough compared with its mean, then the
mean of X can be estimated efficiently through multiple samples of X. We give the proof for completeness,
as we were not able to find a proof of this exact result in the literature.

Lemma 2.1 Let X be a real-valued random variable and suppose that, for some c, E[X2] ≤ cE2[X]. Then,
for any ε, δ > 0, there exists a random variable Z such that Pr(|Z−E[X]| ≥ εE[X]) ≤ δ, and Z is a function
of O(c · log(1/δ)/ε2) independent samples of X.

Proof: Let Y be the average of 8c/ε2 independent copies of X. Then E[Y ] = E[X] and

var[Y ] = ε2/(8c)var[X]
≤ ε2/(8c)E[X2]
≤ ε2E2[X]/8.
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By the Chebychev inequality, Pr(|Y − E[X]| > εE[X]) ≤ var(Y )/ε2E2[X] ≤ 1/8. Let Z be the median of
m = 3 log(1/δ) independent copies of Y . Then |Z−E[X]| ≥ εE[X] iff for at least half the Yi’s, |Yi−E[X]| ≥
εE[X]. Let Ai = 1 if |Yi − E[X]| ≥ εE[X] and Ai = 0 otherwise; let A =

∑
Ai. For each i, E[Ai] ≤ 1/8, so

E[A] = m/8, and it follows that

Pr(|Z − E[X]| ≥ εE[X]) = Pr
(
A >

m

2

)
= Pr

(
A > (1 + 3)

m

8

)
≤

[
e3

(1 + 3)(1+3)

]m
8

(1)

≈ 1.374−m

≤ 2−m/3

= δ,

where (1) follows from a version of the Chernoff bound (e.g., see [4]).

2.2 Secure Multiparty Computation

Secure multiparty computation allows two or more parties to evaluate a specified function of their inputs
while hiding their inputs from each other. When formally defining security, it is convenient to think of an
adversary that tries to gain as much advantage as it can by corrupting at most t parties during the execution
of the protocol. Security is then defined by requiring that whatever the adversary achieves in a real-life
execution of the protocol it can efficiently simulate in an ideal process, in which a trusted party is being used
to evaluate the function. Thus, the protocol prevents the adversary from gaining an extra advantage over
what it could have gained in an ideal solution.

There are several notions of security with various degrees of strength (e.g., [28, 12, 6, 47]). In this work,
we mostly deal with the special case of private computation, which assumes that the adversary is passive
(also called semi-honest or honest-but-curious) and cannot modify the behavior of corrupted parties. In
particular, private computation is only concerned with the information learned by the adversary, and not
with the effect misbehavior may have on the protocol’s correctness. However, both our general definitions
and our results apply also to the case of an active (or malicious) adversary, who can modify the corrupted
parties’ behavior arbitrarily. (See some further discussion about this at the end of this section.) In the
sequel, we use the term “secure” when the discussion applies to both the active and the passive case, and
the term “private” for the passive case only.

Another distinction between different notions of security is the extent to which the transcript produced
by the ideal-process adversary should resemble the one produced by the real-life execution of the protocol.
The three standard variants are perfect, statistical, and computational indistinguishability. These naturally
define corresponding notions of perfect, statistical, and computational security. (In the former two cases,
the adversary is assumed to be computationally unbounded, whereas in the latter case it is bounded to
polynomial time.) In this work we focus mainly on the two-party case, in which only computational security
can be achieved. However, our definitions and some of our results apply to the other variants as well.

We next define private two-party computation, closely following the definition of Goldreich [28]. An
extension of this definition to the multiparty case and to the case of security against malicious parties is
sketched in Appendix A.

Functionality. A two-party computation task is specified by a (possibly randomized) mapping g from
a pair of inputs (a, b) ∈ {0, 1}∗ × {0, 1}∗ to a pair of outputs (c, d) ∈ {0, 1}∗ × {0, 1}∗. We refer to such
a mapping as a functionality (or sometimes simply as a function). Without loss of generality, we assume
that the inputs a, b are both of the same length n; if this is not the case, padding may be applied. (This
convention allows us to use the input length as a security parameter.) We sometimes refer to single-output
functionalities, in which case the two outputs of the corresponding two-output functionality g are assumed
to be identical.
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Protocol. A two-party protocol is defined by a pair of probabilistic polynomial-time interactive algorithms
π = (πA, πB). The protocol π is executed as follows. Initially, Alice, who operates according to πA, receives
an input a and a random input rA, and Bob, who operates according to πB , receives an input b and a random
input rB . We assume that |a| = |b| = n. The execution then proceeds by synchronous rounds, where, at each
round, each party may send to the other party a message as specified by π, based on her input, her random
input, and messages received in previous rounds. At each round, each party may decide to terminate and
output some value based on her entire view (consisting of her input, random input, and received messages).

Private computation. For defining the privacy of π with respect to a functionality g, it is convenient to
use the following notation. Consider the probability space induced by the execution of π on input x = (a, b)
(induced by the independent choices of the random inputs rA, rB). Let viewπ

A(x) (resp., viewπ
B(x)) denote

the entire view of Alice (resp., Bob) in this execution, including her input, random input, and all messages
she has received. Let outputπA(x) (resp., outputπB(x)) denote Alice’s (resp., Bob’s) output. Note that the
above four random variables are defined over the same probability space.

Definition 3 Let X be the set of all valid inputs x = (a, b) (i.e., pairs of equal-length binary strings). A
protocol π is a private protocol computing g if the following properties hold:

Correctness. The joint outputs of the protocol are distributed according to g(a, b). Formally,

{(outputπA(x), outputπB(x))}x∈X ≡ {(gA(x), gB(x))}x∈X ,

where (gA(x), gB(x)) is the joint distribution of the outputs of g(x).

Privacy. There exist probabilistic polynomial-time algorithms SA,SB, called simulators, such that:

{(SA(a, gA(x)), gB(x))}x=(a,b)∈X
c≡ {(viewπ

A(x), outputπB(x))}x∈X

{(gA(x),SB(b, gB(x))}x=(a,b)∈X
c≡ {(outputπA(x), viewπ

B(x))}x∈X

The above privacy requirement asserts that whatever the real-life adversary learns by (passively) corrupting
a party, an ideal-process adversary can simulate by only learning the input and output of that party. Note
that the definition does not consider the view of the corrupted party alone, but rather concatenates this view
to the output of the uncorrupted party. When the functionality g is randomized, this serves to ensure that
the adversary does not learn additional information about the output of the other party; e.g., via correlations
present in the real-life process but absent in the ideal process.

Protocol composition. In order to design and analyze private protocols in a modular way, it is convenient
to rely the following composition paradigm. First, design a high-level oracle-aided protocol πf |g, which is a
private protocol for f in which the parties may call a trusted party (oracle) that computes a (presumably
simpler) functionality g. Then, substitute each oracle call in πf |g by an invocation of a private protocol πg

computing g. This approach is justified by the following composition theorem:

Theorem 2.2 [12, 28] Let f, g be (deterministic or randomized) two-party functionalities. Let πf |g be a
private oracle-aided protocol for f which uses oracle calls to g, and let πg be a private protocol for g. Let
πf be the protocol obtained from πf |g by independently invoking πg for implementing each oracle call to g.
Then πf is a private protocol for f .

Feasibility results. The first general feasibility results for secure computation were obtained by Yao [55]
and by Goldreich, Micali, and Wigderson [29]. The following theorem relates the complexity of privately
computing a functionality g to the circuit size of g.

Theorem 2.3 [55] Let C = {Cn} be a uniform family of (deterministic or probabilistic)3 Boolean circuits
of size s(n), s(n) ≥ n, where the input to Cn is viewed as a pair of n-bit strings and its output as a pair of
strings. Let g denote the functionality computed by the family C. Then, assuming the existence of enhanced

3A probabilistic circuit includes, in addition to the standard inputs, a polynomial number of random inputs.
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trapdoor permutations4 (resp., homomorphic encryption schemes5), g can be privately computed in three
(resp., two) rounds with Õ(s(n)) bits of communication.

Theorem 2.3 can be generalized (with a larger, but still constant, number of rounds) also to the case
where the adversary is active [43] and to computations involving more than two parties [7, 39, 52]. In the
case of constant-round multiparty computation with no honest majority, one needs to additionally assume
the existence of collision-resistant hash functions.

A particularly useful private computation task is that of oblivious transfer [53, 20], defined below.

Definition 4 (Oblivious Transfer) An n-choose-1 oblivious transfer protocol (with security against a pas-
sive adversary), abbreviated as

(
n
1

)
-OT, is a private protocol for the following deterministic functionality

between two parties: a sender and a receiver. The sender’s input is an n-bit string x and the receiver’s input
is an index i ∈ [n]. The receiver outputs the bit xi, and the sender has no output.

By Theorem 2.3,
(
n
1

)
-OT can be implemented with nearly linear communication. However, the

(
n
1

)
-OT

functionality also admits much more efficient solutions:

Theorem 2.4 [41, 27, 54, 46, 51] Assuming the existence of a homomorphic encryption scheme, there is a
2-round

(
n
1

)
-OT protocol with Õ(1) bits of communication.

On complexity vs. assumptions. As noted at the start of this section, the asymptotic complexity
notation Õ(c(n)) should be read by default as O(c(n) · nγ) for an arbitrarily small constant γ > 0. In
both Theorem 2.3 and Theorem 2.4, Õ(c(n)) can be read as O(c(n) · logO(1) n) if stronger cryptographic
assumptions are made. Specifically, in Theorem 2.3 it suffices to assume enhanced trapdoor permutations
(or homomorphic encryption) secure against sub-exponential adversaries, and in Theorem 2.4 it suffices to
assume specific number-theoretic assumptions from [11, 26] or [45]. (The latter assumptions are required for
implementing

(
n
1

)
-OT with polylogarithmic communication.) Because the efficiency improvement resulting

from the stronger assumptions would not be very significant for our purposes, we use the more conservative
assumptions by default.

On passive vs. active adversaries. For simplicity, we mainly focus in this paper on the case of security
against a passive adversary. Using a theorem from [50], this does not compromise generality: any protocol
with security against a passive adversary can be upgraded into a protocol with security against an active (or
“malicious”) adversary with only a small overhead to the communication complexity. Thus, our results are
quite insensitive to the distinction between the two types of adversaries.

3 Secure Approximations

In this section, we present our definition of secure approximations. To preclude the computation of an
approximation from leaking unnecessary information, our definitions require not only that the computation of
the approximate output does not reveal more about other parties’ inputs and outputs than that approximate
output, but also that the approximate output itself does not reveal more about other parties’ inputs and
outputs than the exact output does. We restrict our attention to an approximation of a deterministic function
f , mapping an input x = (x1, . . . , xm) ∈ X to a non-negative number y. Each string xi is the input held by
the ith party. As before, all inputs xi are assumed to have the same length.

We start by defining a notion of functional privacy on which our main definition relies. Informally, we
say that a (possibly randomized) approximation function f̂ is functionally private with respect to the target
function f , if the output of f̂ reveals no more information about its input than f does. Note that this is
an inherent property of the function f̂ rather than of a particular protocol computing f̂ . The notion of
functional privacy is formally defined as follows.

4See Appendix C.1 of [28] for a definition of enhanced trapdoor permutations.
5Loosely speaking, a semantically secure encryption scheme [30] is said to be homomorphic if: (1) The plaintexts are taken

from some group (H, +); (2) From encryptions of group elements h1, h2 it is possible to efficiently compute a random encryption
of h1+h2. Homomorphic encryption can be based on a variety of intractability assumptions, including the Quadratic Residuosity
Assumption and the Decisional Diffie-Hellman assumption.
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Definition 5 (functional privacy) Let f(x) be as above, and let f̂(x) be a possibly randomized function.
We say that f̂ is perfectly (resp., statistically, computationally) functionally private with respect to f if
there exists a probabilistic sampling algorithm S, running in expected polynomial time, such that for every
input x ∈ X, the distribution S(f(x)) is perfectly (resp., statistically, computationally) indistinguishable from
f̂(x). In the statistical and computational cases, the sampling algorithm S is additionally given a security
parameter n and the indistinguishability is defined with respect to this n.

Our definition for secure approximation requires that the protocol securely compute some functionally
private approximation f̂ of f . Because we defined f̂ to be a single-output function, we must fix some
convention for extending it to a multi-output function. As in the two-party case, our default interpretation
of a single-output function f̂ in a multi-party setting assumes that a single value y is sampled from f̂(x)
and is output by all parties. We stress that other conventions are possible and a more general treatment
would allow specifying an admissible collection of multi-output approximations. Here, we prefer simplicity
over generality.6 The above discussion is formalized by the following definition, which may be instantiated
with any notion of security (e.g., active or passive adversary, and computational, statistical, or perfect
indistinguishability).

Definition 6 (secure approximation) Let f be as above. The protocol π is a secure P-approximation
protocol for f if it securely computes some (possibly randomized) function f̂ , such that f̂ is both functionally
private with respect to f and a P-approximation of f . The type of functional privacy (perfect, statistical, or
computational) should match the required type of security.

Intuitively, the functional privacy of f̂ with respect to f says that the input/output relation of the protocol
does not reveal anything except what would have been revealed by learning f , while the secure computation
of f̂ ensures that nothing additional is revealed during the computation. Secure approximations are useful
both for settings in which the inputs are small but the target function is intractable and for settings in which
the inputs are massive. For the former setting, the following simple corollary of Theorem 2.3 and Definition 6
is useful:

Theorem 3.1 Suppose that f admits a functionally private P-approximation f̂ that can be computed in
probabilistic polynomial time. Then f admits an efficient private P-approximation protocol (i.e., a protocol
with poly(n) communication and computation).

We stress again that Theorem 3.1 only addresses the feasibility of secure approximations and does not
deal with more refined efficiency goals such as achieving sublinear communication complexity. Thus, given
Theorem 3.1, the design of secure approximation protocols can involve two distinct types of challenges:

• For polynomial-time computable functions f , the challenge is to design special-purpose protocols that
outperform the efficiency of the generic approach. This is the focus of Section 5.

• For intractable functions f , the challenge is to find an efficiently computable and functionally private
approximation f̂ that can be used for applying Theorem 3.1. This algorithmic question is the focus of
Section 6.

3.1 An Alternative Definition

We now describe a more liberal alternative to the above definition, which is useful for some of our protocols.
To motivate the alternative definition, consider an artificial protocol π which first invokes some secure proto-
col for exactly computing f , and then instructs each party to output some functionally private approximation
f̂ which is computed from the output of f . Should π be considered a secure approximation protocol for f?

6Other natural alternatives include all players getting independent outputs from the same distribution, or a single distin-
guished player getting the output and all other players getting nothing. We note that any private approximation protocol for
f under the latter convention (single output) can be easily turned into a private approximation protocol for f under the other
two conventions: in the case of identical outputs it suffices for the distinguished player to send its output to other players, and
in the case of independent outputs it suffices to run the protocol multiple times, alternating the role of the distinguished player
between the players.
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According to Definition 6, π generally cannot be considered secure, as the value of f learned by the parties
may reveal strictly more information than the value of f̂ computed by π. However, it seems reasonable to
allow the protocol messages in a secure approximation of f to tolerate the privacy loss implied by an exact
computation of f , as the functional privacy bound already allows that much leakage. The fact that a higher
level of privacy can sometimes be achieved for the protocol’s messages than for its output when settling for
an approximate computation of f should not necessarily be turned into a requirement.

The above discussion gives rise to the following definition. For simplicity, we first formulate the definition
for the case of private 2-party computation, modifying Definition 3, and then discuss the general case.

Definition 7 (private approximation: liberal definition) Let f be a deterministic functionality map-
ping two inputs to a single output. A 2-party protocol π is a private P-approximation protocol for f in the
liberal sense if there exists a functionally private P-approximation f̂ such that the following requirements
hold:

Correctness. The joint outputs of the protocol are distributed according to (f̂(x), f̂(x)) (where the two
outputs of f̂ are identical rather than independent).

Privacy. There exist probabilistic polynomial-time algorithms SA,SB, such that:

{(SA(a, f(x), f̂(x)), f̂(x))}x=(a,b)∈X
c≡ {(viewπ

A(x), outputπB(x))}x∈X

{(f̂(x),SB(b, f(x), f̂(x))}x=(a,b)∈X
c≡ {(outputπA(x), viewπ

B(x))}x∈X .

Again, distinct occurrences of f̂ in each of the above expressions are assumed to take the same value.

Note that in the above definition, f̂(x) is given as an additional input to SA and SB . This is not needed
when f̂ is deterministic, because in this case f̂(x) can be computed based on f(x). However, in the typical
case where f̂ is randomized, this is needed in order to properly correlate the simulator’s output with that of
the uncorrupted party.

The above definition addresses the special case of secure two-party computation in the presence of a
passive adversary. We now turn to the more general case. Our general formulation of the liberal definition
can be viewed as a natural relaxation of the standard simulation-based framework for defining secure (exact)
computation, as described in Appendix A. Similar to the standard case, we compare the interaction of the
real-life adversary with the real protocol to the interaction of an ideal-process adversary with an ideal function
evaluation process involving a trusted party. In the standard definition (Definition 10 in Appendix A), the
trusted party receives an input from each party and sends the value f(x) to all parties. In the liberal definition
of secure approximations, the trusted party also computes and sends the value of some functionally private
P-approximation f̂(x). All uncorrupted parties output the approximate value f̂(x), whereas the exact
value f(x) is only used by the ideal-process adversary to produce a simulated transcript. (This should be
contrasted with our default definition of secure approximations, in which the adversary is only given f̂(x)
and not f(x).) See Appendix B for a more formal treatment of the liberal definition in a general setting for
secure computation.

Comparing the Two Definitions. While the results of this paper are quite insensitive to the distinction
between the two definitions presented above, it is still instructive to compare the two and justify our choice
of the stricter definition as the default one.

The main advantage of the default definition is that it uses the standard notion of exact secure com-
putation as a black box, and can thus be applied in conjunction with any possible definition of security.
A second advantage is more subtle and applies only to the case where the function f is intractable. The
liberal definition, in its general form, allows the ideal-process adversary to interact with a trusted party
which computes the exact value of f . Moreover, in the case of security against an active adversary, the ideal-
process adversary may choose its inputs to the computation of f based on its view of the original inputs x.
Thus, it effectively gains (a restricted) oracle access to an intractable function f . In contrast, the default
definition only allows the ideal-process adversary to learn the value of an efficiently computable function f̂ .
This distinction appears to be blurred by the fact that in defining the functional privacy requirement for
f̂ , the sampling algorithm S is given access to the exact value of f . However, towards producing f̂(x), the
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sampling algorithm S is only allowed to learn the value of f on the same input x, rather than on an input
x′ which it can control.

The latter disadvantage of the liberal definition is not very significant. First, it only applies in the case of
an intractable function f . Second, even if the simulator is given some extra computational power, one still
gets a meaningful security guarantee. This is particularly true in our case, where the outputs of the functions
being computed are real numbers rather than cryptographic or other “computational” objects. Finally, it is
possible to avoid this disadvantage altogether by applying the following restriction to the liberal definition.
Instead of allowing the simulator learn (via the trusted party) the output of f , one could only allow it to
learn the output of some function f ′ which is both functionally private with respect to f and polynomial-time
computable. (As before, the simulator also learns the output of f̂ .) In this variant of the liberal definition,
the simulator is not given a significant computational advantage even when f is intractable.

We note that our default definition is strictly stronger than the liberal definition: if π securely P-
approximates f then it also does so in the liberal sense, while the converse of this statement is not true in
general. Except where indicated, the positive results obtained in the remainder of this paper all apply to the
default definition, and hence also to the liberal definition. However, our main protocol of Section 5 takes a
simpler and more natural form under the liberal definition.

4 Rounding and Precision

In this section, we note that the obvious approach of taking an insecure approximation and making it secure
by adding in random noise or masking the low-order bits does not work in general. There are, however, some
cases in which it can be useful. We first show that rounding does not generally provide functional privacy.
Next, we show that adding random noise can provide functional privacy, but is not generally efficient. We
then show that finite-precision approximations to real-valued functions can be done in a way that provides
functional privacy. This is important because many common functions are naturally described as symbolic,
real-valued functions but are implemented in finite precision—an inherent approximation. We give a general
theorem showing that if such a function can be implemented efficiently in finite precision, then it can be
implemented efficiently and privately in finite precision.

Rounding. Consider taking an approximation f̂ for f that is good to within (1±ε/3) with high probability
and rounding it down to a power of (1 + ε/3), obtaining a modified approximation ĝ. Then ĝ is in the range
(1±ε)f with high probability, so ĝ is also a good approximation to f . Intuitively, much of the information in
the least significant bits of f have been lost in the rounding process, so one might hope that ĝ is functionally
private with respect to f . We now show that is not the case.

Consider a function f whose approximation takes on all real values within a large range, with high
precision, as both the inputs and the source of randomness vary. Suppose there are two sets of inputs to f ,
x and x′, such that f(x) = f(x′) and x1 = x′1. Because (x1, f(x)) = (x′1, f(x′)), if ĥ is to be functionally
private with respect to f , it is necessary that ĥ(x) and ĥ(x′) have indistinguishable distributions. In general,
however, the approximations f̂(x) and f̂(x′) may have distinguishable distributions. That is, for one or
more t, Pr(f̂(x) < t) 6= Pr(f̂(x′) < t). Furthermore, if we are unlucky in the value(s) of t, which is likely
to happen if f and f̂ take on all values in a large range, then Pr

(
(1 + ε/3)i ≤ f̂(x) < (1 + ε/3)i+1

)
6=

Pr
(
(1 + ε/3)i ≤ f̂(x′) < (1 + ε/3)i+1

)
. It follows that ĝ, which is f̂ rounded down to a power of (1 + ε/3),

is not functionally private with respect to f . Thus, in general, rounding does not provide functional privacy.

Adding random noise. Suppose we are given an approximation scheme for f—i.e., for any ε, δ > 0, we can
output a number that is within the factor (1±ε) of f with probability 1−δ. We can then construct a private
approximation as follows. Given security parameter k such that two distributions are considered statistically
indistinguishable if their statistical difference is no more than 2−k, first construct an approximation z′ to an
output z of f that is good to within the factor (1± 2−kε/2). Next, let ẑ = z′(1 +X), where X is uniformly
random on the interval [−ε/2, ε/2]. One can readily check that this procedure yields an approximation
scheme for f that is statistically functionally private with respect to f .

Unfortunately, this procedure is not efficient unless the approximation z′ is so good as to be usable to
obtain an essentially exact solution, or unless k is very small. By definition, if f is hard to compute then
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an approximation good to within the factor (1 ± ε) requires time more than polylog in 1/ε to compute, so
the above procedure requires time more than polynomial in k. Nevertheless, if k can be taken small enough
or if f is easy to compute, this procedure is a simple and straightforward solution. In the remainder of this
section, we exploit this solution when we consider an f that is intuitively easy to compute (in the appropriate
model).

Finite-Precision Approximations to Real-Valued Outputs. If f is a discrete-valued function, then
f has exact finite-precision implementations and all such implementations are functionally private with
respect to f . We now consider the case of real-valued symbolic functions, for which the situation is a bit
more complicated.

Some approximation algorithms are most naturally described using real-valued functions for intermediate
values or outputs. For example, in the approximation of Section 5.4, the output is a median of means
of numbers of the form (

∑
i si(ai − bi))2, where 〈ai〉 and 〈bi〉 are inputs and each si is a unit Gaussian-

distributed random variable. The functional privacy of that approximation depends on the fact that D1 =∑
i aisi and D2 =

√∑
i a

2
i s0 are identically distributed, where s0 is also a unit Gaussian random variable.

To the extent that the si’s are not true Gaussians (due to rounding), the distributions of D1 and D2 are not
identical—not even computationally indistinguishable, in general. One might worry that functional privacy
is thereby destroyed. More generally, one might worry that, given a simple symbolic mathematical function
f , the straightforward finite-precision implementations of f are not functionally private with respect to f ,
or, worse, that f may not have any computable functionally private implementation at all, even allowing
high cost. We now show that the approximation relation resulting from finite-precision approximations to
efficiently computable mathematical functions can always be made private by adding noise. This means
that, when designing protocols, one can continue to work with functions symbolically, if desired; the finite-
precision implementation can be made private automatically. We give a self-contained example and state
a theorem for a simple function in the additive approximation model; the techniques generalize to other
functions and other models.

Consider the function f(x, y) = log(xy), where, in this section, the logarithm is to the base 10. Then, as
a symbolic statement, f(1, 10) = f(2, 5) = 1. Now consider the following protocol: Alice computes a finite-
precision approximation L(x) to log(x), Bob computes a finite-precision approximation L(y) to log(y), and
they output g(x, y) = L(x) + L(y). In many straightforward real-world implementations, g(2, 5) 6= g(1, 10)
even though f(2, 5) = f(1, 10), so the function computed by g is not functionally private with respect
to f ; in practical terms, an adversary can undesirably distinguish between the inputs (1, 10) and (2, 5)
because g(1, 10) is always exactly 1 whereas g(2, 5) often has roundoff error. That is, a straightforward
finite-precision computation of f (an “exact computation” in the finite-precision sense) is not functionally
private with respect to f as a symbolic function.

To remedy this, as above, we exploit the real-valued exact computability of f , meaning, for any ε, one can
compute log(x) ± ε in time (|x| + log(1/ε))O(1). Then, to compute a private finite-precision approximation
to f(x, y), proceed as follows. Given security parameter k, compute f(x, y)± (ε/3)2−k, then add uniformly
random noise in the range ±ε/3. As in the previous discussion on adding random noise, this gives statis-
tically indistinguishability output on inputs (1, 10) and (2, 5). In this situation, because the log is “exactly
computable,” the cost to compute the output is just polynomial in k, as desired.

A final consideration is that Definition 5 technically does not apply to real-valued functions, as it does
not make sense to say that a discrete-input simulator S takes, as input, the output of a real-valued function
f . In general, we have the following theorem, whose proof follows from the forgoing discussion.

Theorem 4.1 Let f be a multivariate function from integers to the reals with short symbolic description.
Suppose, for any integer k and any x, one can compute a value f̂(x) = f(x) ± 2−k in time (|x| + k)O(1).
Then there exists a function g, from integers to finite-precision reals (i.e., integer multiples of fixed small
unit), such that the following properties hold.

1. (Good approximation.) For all x, g(x) = f(x)± 2−k.

2. (Efficiency.) g(x) is computable in time (|x|+ k)O(1).
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3. (Functional privacy, in a modified sense.) There is a simulator, S, such that, for any family {ρj}
rounding functions that take real values to finite-precision real values satisfying |ρj(x)− x| ≤ 2−j, we
have S(ρ(f(x)))

s≡ g(x).

Thus any real-valued exact computation can be made statistically functionally private. This parallels
the discrete situation in which any discrete-valued exact computation is trivially automatically perfectly
functionally private.

5 Sublinear Private Approximation for the Hamming Distance

In this section, we present a private two-party protocol for computing approximate Hamming distance. We
also give sublinear-communication protocols for related problems. The Hamming distance protocol allows
Alice, holding an input a ∈ {0, 1}n, and Bob, holding b ∈ {0, 1}n, to learn an ε-approximation of the Hamming
distance between a, b (with a negligible failure probability δ), without learning additional information about
the other party’s input beyond what follows from the Hamming distance. Our protocol requires roughly
O(n1/2) bits of communication and three rounds of interaction. Throughout this section, we let dh(a, b)
denote the Hamming distance between a, b, and wh(x) denote the Hamming weight of an n-bit string x.

Before we describe our private protocol, it is instructive to consider the non-private variant of the problem.
We first briefly survey known communication-efficient solutions, and then explain why a naive attempt to
make those solutions private fails. There are several known methods for approximating the Hamming distance
using polylogarithmic communication [3, 42, 17, 40]. More specifically, the best 〈ε, δ〉-approximations require
O(log n log(1/δ)/ε2) communication. These methods can all be viewed as based on the following “sketching”
approach.

Definition 8 A sketching protocol for a 2-argument function f : {0, 1}∗ × {0, 1}∗→N is defined by:

• A sketching function, S : {0, 1}∗×{0, 1}∗→{0, 1}∗ mapping one input and a random string to a sketch
consisting of a (typically short) string.

• A (deterministic) reconstruction function G : {0, 1}∗ × {0, 1}∗→R, mapping a pair of sketches to an
approximate output.

On inputs a, b ∈ {0, 1}n, the protocol proceeds as follows. First, Alice and Bob locally compute a sketch
sA = S(a, r) and sB = S(b, r) respectively, where r is a common random input. Then, the parties exchange
sketches, and both locally output g = G(sA, sB). We denote by g(a, b) the randomized function defined as
the output of the protocol on inputs a, b. A sketching protocol as above is said to 〈ε, δ〉-approximate f if g
〈ε, δ〉-approximates f .

Clearly, the communication complexity of a sketching protocol is proportional to the sketch size.

Remark. In the above definition and in the following, it is convenient to assume that the parties share a
polynomially long common random input string. This assumption can be dispensed with at a low cost using
pseudorandomness, as is done in our protocols.

In this paper, we only consider linear sketching functions, i.e., such that S(ax + by) = aS(x) + bS(y),
where x and y are vectors and a and b are scalars, and arithmetic is performed over a finite field or the reals.
As a special case, S(x) may select a sample of the positions in x (where the selected positions are independent
of x). Furthermore, in this paper, G(S1, S2) always takes the form G′(aS1 + bS2), and we sometimes refer
to the single-input function G′ as the reconstruction function.

We briefly review an efficient sketching protocol for the Hamming distance [42, 17].

Example 1 (Sketching protocol for the Hamming distance) Let the common random input define a
0/1-valued matrix R, with O(log n) rows and n columns, in which each entry of the ith row (independently)
takes the value 1 with probability pi = βi for some constant β depending on ε. The sketching function is
defined by S(x,R) = Rx, where R and x are viewed as a matrix and a vector over GF(2), respectively. From
the sketches Ra and Rb, the distance dh(a, b) can be approximated. (The main observation is that (Ra)i =
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(Rb)i with probability close to 1/2 if dh(a, b) � 1/pi and with probability close to 1 if dh(a, b) << 1/pi.)
More generally, an 〈ε, δ〉-approximation can be obtained using a matrix R with O(log n log(1/δ)/ε2) rows.
The communication complexity of this sketching protocol is O(log n log(1/δ)/ε2) assuming a common random
input is available.

Our goal is to obtain a sublinear-communication private approximation protocol for the Hamming dis-
tance. A natural approach is to seek a general method for converting an efficient sketching protocol approx-
imating a function f into a private protocol approximating f .

Suppose that the randomized function g induced by the sketching protocol is functionally private with
respect to f . This is indeed the case for the sketching protocol from Example 1 as well as for other sketching
protocols for the Hamming distance proposed in the literature. To approximate f privately, it suffices to
let the parties privately compute the randomized function g. By Theorem 2.3, a general-purpose private
computation protocol can be used to evaluate g. (Note that the randomness used for sketching is considered
here as part of the input to g.) However, the communication complexity of this protocol is at least linear in
n, while we would like to obtain a sublinear-communication private protocol for g.

At first glance, the following straightforward protocol seems to work. The parties locally compute a
sketch based on individual inputs and their common random input r, and then apply a general-purpose
private computation protocol to evaluate g = G(sA, sB) from the sketches sA, sB . By Theorem 2.3, if the
sketches are short and G is not too complex, then the entire protocol can be implemented with sublinear
communication. This protocol, however, generally fails to be private. This is due to the fact that although g
is functionally private with respect to f , the pair (g, r) (where r is the random input for g) is not functionally
private with respect to f .

We illustrate this difficulty for the case of privately approximating the Hamming distance using the
specific sketching method from Example 1. Consider a protocol that first computes R(a− b) securely, then
computes g from R(a − b) in the clear. Note that the function h : (a, b) 7→ R(a − b) is functionally private
with respect to (a, b) 7→ dh(a, b), but knowing the output of h together with the random input R (which was
used to generate this output) can reveal additional information about the inputs. For instance, in the above
protocol for computing h, Alice can deduce Rb from her input a, the output R(a − b), and the common
random input R. It is not hard to see that based on a and dh(a, b) alone, it is impossible to generate R, y
such that R is distributed as in Example 1 and Rb = y holds with overwhelming probability. (For instance,
given that a = 0, b = ei, and dh(a, b) = 1, y should be equal to the ith column of R, which is impossible to
guess with high probability from a and dh(a, b) alone.) Thus, the view of Alice cannot be simulated in the
ideal process, and thus the naive solution fails.7

We do not know whether the sketching method of Example 1 can be made private with sublinear commu-
nication, nor were we able to obtain a private protocol from any other efficient protocol for approximating the
Hamming distance appearing in the literature. Instead, we design a new sketching protocol, whose induced
randomized approximation g can be privately computed with sublinear communication.

Our solution is based on a combination of two different sketching protocols, also referred to as estimators.
The first estimator is based on sampling, and gives a good approximation only when the distance is high. We
provide a special-purpose low-communication private protocol for computing this estimator. At its heart is a
special-purpose private protocol for comparing the bits in a random location, which may be of independent
interest. The second estimator gives a good approximation only when the distance is low, and, in fact,
produces an exact result in this case. We provide two alternative implementations for this estimator, one
based on two-level hashing and one based on Reed-Solomon codes. In either case, the output of the low
distance estimator is such that even when taken together with the randomness r, no information is revealed
except what follows from the Hamming distance. Thus, in this case, we can use general purpose private
computation, as in the naive approach described above, without loss of privacy.

In Sections 5.1 and 5.2, we describe each of the two private estimators separately; we combine them to
obtain the final protocol in Section 5.3. We consider the L2 distance in a relaxed model in Section 5.4.

7It turns out that, similarly, even if the parties use general-purpose secure computation to evaluate g = G(sA, sB) from
sA, sB without revealing R(a − b), it is generally impossible, knowing only a and dh(a, b), to generate R, g with R distributed
as above and g = G(sA, sB). Intuitively, some information about Rb leaks into g = g(R(a − b)) = g(Rb), and, because Rb is
sensitive, so is g in general.
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5.1 The High Distance Estimator

Suppose that d = dh(a, b) is guaranteed to be larger than some threshold dmin. (We will specify later the
value we use for dmin). If dmin is large, then Alice and Bob can efficiently approximate d by randomly
sampling a small number of bits in matching positions from their inputs. Viewed as a simple sketching
protocol, the common random input includes several random indices, the sketch contains the bits indexed
by the random input, and the output is obtained by scaling the relative distance between the sketches.
Specifically, Alice and Bob count the number ∆ of differences in s = O((n/dmin) · log(1/δ)/ε2) randomly
selected matching bits of their inputs and compute the estimate g = ∆·n

s . By the Chernoff bound, g is an
〈ε, δ〉-approximation of d.

Note that the randomized function g(a, b) induced by the above sketching protocol is functionally private
with respect to dh(a, b). We now show how to privately compute g with a small communication complexity.
Our main tool is a private protocol for comparing a randomly sampled pair of bits. Formally, the protocol
computes the randomized function Sample-XOR, defined as

Sample-XOR(a, b) = ar ⊕ br,where r R← [n].

Note that a private protocol for Sample-XOR must keep the choice of r secret from each party.
Figure 1 describes a private protocol, Private-Sample-XOR, for the function Sample-XOR that uses

(
n
1

)
-OT

as a subprotocol. In it, for any x ∈ {0, 1}n, r ∈ [n] and m ∈ {0, 1}, we denote by x << r a cyclic shift of x
by r bits to the left, and by x⊕m the string whose ith bit is xi ⊕m.

Private-Sample-XOR

1. Alice picks a random mask mA
R← {0, 1} and a random shift amount rA

R← [n].

She computes the n-bit string a′
def
= (a << rA)⊕mA.

Symmetrically, Bob picks mB
R← {0, 1} and rB

R← [n], and computes b′
def
= (b << rB)⊕mB .

2. Alice and Bob invoke, in parallel, two
`

n
1

´
-OT protocols:

• Alice retrieves zA
def
= b′rA

from Bob;

• Bob retrieves zB
def
= a′rB

from Alice.

3. Alice sends z′A
def
= zA ⊕mA to Bob. Bob sends z′B

def
= zB ⊕mB to Alice.

Both parties locally output z′A ⊕ z′B .

Figure 1: A private protocol for the function Sample-XOR

Lemma 5.1 Private-Sample-XOR is a private protocol computing the randomized function Sample-XOR.

Proof: The correctness of the protocol follows by observing that zA = (b << rB)rA
⊕mB = b(rA+rB)⊕mB

and, symmetrically, zB = a(rA+rB)⊕mA (where addition of indices is taken modulo n). Hence, both parties
output

z′A ⊕ z′B = zA ⊕ zB ⊕mA ⊕mB = a(rA+rB) ⊕ b(rA+rB)

where r = rA + rB is a uniformly distributed index.
Intuitively, the privacy of the protocol follows from the fact that in the process of obtaining the output

a(rA+rB) ⊕ b(rA+rB), no party learns rA + rB , a(rA+rB), or b(rA+rB). The privacy can be formally argued by
describing a simulator for each party. In fact, given the composition theorem (Theorem 2.2), it suffices to
prove the privacy of an oracle-aided version of the protocol in which each of the two invocations of the

(
n
1

)
-OT

protocol is replaced by a call to an oracle computing the corresponding function. A simulator for Alice’s
view in this oracle-aided protocol proceeds as follows. On input a ∈ {0, 1}n and output value z ∈ {0, 1}:

1. Pick at random mA
R← {0, 1}, rA R← [n], and zA

R← {0, 1}.
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2. Output (mA, rA) as Alice’s random input, zA as the output Alice receives from the first call to the(
n
1

)
-OT oracle in Step 2, and z′B

def= z ⊕ zA ⊕mA as the message received from Bob in Step 3. (The
remainder of Alice’s view follows deterministically from her input and this simulated information.)

A simulator for Bob’s view may be obtained similarly.
We argue that the view produced by the above simulator, conditioned on the inputs (a, b) and the output

z, is distributed exactly as in the real (oracle-aided) protocol. This follows from the facts that: (1) Alice’s
random inputs mA, rA in the real protocol are independent of the inputs (a, b) and the output z, and are
thus distributed in the simulated view as they should; (2) the output zA received from the

(
n
1

)
-OT oracle in

the real protocol is independent of a, b,mA, rA, z, as in the simulated view.

Given approximation parameters ε and δ, our private sampling estimator for the high distance case is
implemented using s = O((n/dmin) · log(1/δ)/ε2) parallel invocations of Private-Sample-XOR. Its properties
are summarized by the following lemma.

Lemma 5.2 (Private approximation for the high distance case.) Let OT be an arbitrary
(
n
1

)
-OT

protocol (with security against a passive adversary). Then there exists a protocol πhigh for approximating
dh(a, b) whose communication complexity is Õ((n/dmin) log(1/δ)/ε2) times that of OT , and whose round
complexity is 1 plus that of OT , such that:

• If d = dh(a, b) ≥ dmin, the protocol πhigh outputs an ε-approximation of d with overwhelming probability.

• The output g of πhigh is functionally private with respect to dh.

• πhigh privately computes its output. Specifically, Alice (resp., Bob) can simulate her view on input
(a, b), conditioned on an output g, based on g and her input a (resp., g and his input b) alone.

Proof: The protocol πhigh proceeds as described above: the parties invoke Private-Sample-XOR s =
O((n/dmin) · log(1/δ)/ε2) times in parallel, let ∆ be the sum of the s outputs, and output g = ∆ · n/s.
The approximation quality of the output g follows from a Chernoff bound, and its functional privacy follows
from its symmetry.

Viewing the above protocol as an oracle-aided protocol (making oracle calls to the randomized Sample-XOR
function), a simulator for Alice or Bob may proceed as follows: (1) let ∆ = gs/n; (2) pick a random s-tuple
(z1, . . . , zs) ∈ {0, 1}s such that

∑
zi = ∆; (3) output (z1, . . . , zs) as the outputs of the s invocations of the

Sample-XOR oracle. Again, this simulator perfectly emulates the oracle-aided protocol. This follows from
the fact that the outputs of the Sample-XOR invocations in the real protocol, conditioned on the value of ∆,
are uniformly distributed subject to the restriction that their sum is ∆.

Note that the sampling estimator does not give a reliable estimate when the distance d is significantly
smaller than dmin because its variance is too high. (That is, it is likely that no differences will be detected.)

5.2 The Low Distance Estimator

We next consider the low distance case, where d ≤ dmax for some threshold dmax to be later specified. We
design two alternative private protocols for this case, each of which is based on a sketching protocol with
the following properties:

(1) The induced function g is essentially determined by dh. That is, except with negligible probability,
g(a, b) takes a specific value determined by dh(a, b).

(2) The above value is equal to dh(a, b) if dh(a, b) ≤ dmax and equal to “fail” otherwise.

Property (1) is used to implement a private computation of the low distance estimator. Property (2)
guarantees functional privacy of the output over the entire range of inputs. It also guarantees correctness in
case the distance is low. Indeed, for any sketching protocol satisfying property (1), a private computation
of g (the randomized function induced by the sketching protocol) may proceed according to the naive
approach described above. That is, the parties may locally compute the sketches based on their inputs and
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a common random input, and then apply a general-purpose private computation protocol for evaluating the
reconstruction function G on their sketches. Intuitively, in this case, the common random input r gives
almost no information about the inputs except what follows from g. More formally, a simulator can pick r
independently of the input and output, and then simulate the private protocol for G on the sketch induced
by r and the original output. This simulation is correct because r is statistically close to uniform when
conditioned on the input and output of g. Note, however, that for such a protocol to be communication-
efficient, it is important that G can be computed by a small circuit, preferably linear or nearly linear in the
sketch size.

We describe two different sketching protocols. The first is based on hashing, has a self-contained de-
scription, and only requires the private computation of a very simple reconstruction function.8 We then give
an alternate protocol based on Reed-Solomon codes. Its reconstruction function G is more complex, which
makes the communication complexity of privately computing it higher.

5.2.1 A protocol based on hashing

Let the common random input define several independent (2-universal) hash functions. Given a correctness
parameter k (where k = O(log(1/δ) log dmax) is sufficient to guarantee an error bound δ), the sketch of an
input x ∈ {0, 1}n is computed as follows:

1. Randomly partition the n bits of x into dmax buckets of equal size. With probability 1 − 2−Ω(k), no
bucket gets more than k log dmax bits in which a and b differ.

2. For each of the dmax buckets, further partition its bits into (k log dmax)2 sub-buckets. Now, if a
given bucket contains at most k log dmax differences, then each of its sub-buckets contains at most
one difference with constant probability. Repeat this procedure k independent times, and let Bijh

denote the contents of the jth sub-bucket of the ith bucket in the hth invocation (where 1 ≤ i ≤ dmax,
1 ≤ j ≤ (k log dmax)2, 1 ≤ h ≤ k).

3. Hash the contents of each sub-bucket Bijh to a k-bit string βijh.

The sketch of a string x consists of all dmax · k3 log2 dmax strings βijh obtained via the above process.
Let (βijh(a), βijh(b)) denote the correlated values of βijh when the above process is applied on inputs a, b

using the same random input.

Lemma 5.3 Suppose that dh(a, b) ≤ dmax. Then, with probability 1− 2−Ω(k) · dmax,

dh(a, b) =
dmax∑
i=1

max
1≤h≤k

∣∣{1 ≤ j ≤ (k log dmax)2 : βijh(a) 6= βijh(b)
}∣∣ . (2)

Proof: As noted in the description of the sketching function, each of the k attempts of secondary hashing
succeeds with a constant probability to isolate all of the bit differences mapped to its bucket. Hence, with
probability 1− 2−Ω(k) at least one of them succeeds. Moreover, for any instance i, j, h, the probability of the
third-level hashing mapping distinct values Bijh(a), Bijh(b) to the same k-bit string is 2−Ω(k). The claim
follows by a union-bound argument.

Suppose that the reconstruction function of the sketching protocol is defined by the right hand side of Eq. (2).
By symmetry, the output g is already functionally private. But, because g fails to be almost determined by
dh over the entire range of inputs, the naive private implementation cannot be used. In this case, however,
a very simple modification to the reconstruction function can fix this situation. The modified reconstruction
first computes an estimate d̃ by applying the right hand side of Eq. (2) to the sketches, and then it outputs
d̃ if d̃ ≤ dmax and outputs “fail” otherwise.

The properties of the modified sketching protocol, denoted (Shash, Ghash), are summarized in the following
lemma.

8We note that this is hashing in the basic algorithmic sense; we do not require a cryptographic hash function.
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Lemma 5.4 Letting k = Õ(1), the sketching protocol (Shash, Ghash) and the induced randomized function
ghash satisfy the following properties:

• The output length of Shash is Õ(dmax), and so is the circuit size of the reconstruction function Ghash.

• if d = dh(a, b) ≤ dmax, then ghash(a, b) = d with overwhelming probability.

• if d > dmax then ghash(a, b) outputs “fail” with overwhelming probability.

Proof: The specified complexity bounds follow easily from the description of (Ghash, Shash). In particular,
the circuit size required for computing the right hand side of Eq. (2) is linear in the length of the sketch.

The first correctness property follows from Lemma 5.3. The second follows from the fact that when
d > dmax, the right-hand size of Eq. (2) is bigger than dmax with overwhelming probability. This can be
shown similarly to the proof of Lemma 5.3.

5.2.2 A protocol based on Reed-Solomon Codes

We now describe an alternative to the sketching protocol (Shash, Ghash) of Section 5.2. This protocol satisfies
all the properties of (Shash, Ghash) guaranteed by Lemma 5.4, except that the circuit size of its reconstruction
function G is Õ(dmax

2) instead of Õ(dmax).
We start by describing a simpler variant of this protocol which does not give a reliable indication for

its failure in the case where the distance is high. This variant relies on error-correcting codes for finding
the locations in which two strings differ. A similar use of error-correcting codes in a related context was
previously made in the communication complexity literature (see [21] and references therein).

Let F be a finite field with |F | > n. We view the inputs a, b as vectors in Fn. Let H be the parity-check
matrix of a Reed-Solomon code over F with distance 2dmax + 1, dimension n, and length n + 2dmax. The
matrix H has 2dmax rows and n columns. For any x ∈ Fn such that wh(x) ≤ dmax, x can be uniquely
recovered from the syndrome Hx (as x can be viewed as a corrupted encoding of 0). The above facts imply
the following (non-private) sketching protocol for the Hamming distance, given the promise that it is smaller
than dmax. The sketching function is deterministic and is defined by S(x) = Hx. Reconstruction proceeds
as follows. From the syndromes Ha and Hb, one can compute the syndrome H(a− b). The output dh(a, b)
is computed by recovering a− b from its syndrome and outputting its weight. By choosing a field F of size
O(n), the sketch size is O(dmax log n). The circuit complexity of recovering the “errors” from the syndrome
can be made as low as Õ(dmax

2) (see [19] and references therein) or even slightly sub-quadratic (using the
polynomial factorization algorithm from [38]).

The output function g induced by the above sketching protocol does not reliably indicate failure when the
distance is larger than dmax. This follows from the fact that there exist x, x′ such that wh(x) = wh(x′) > dmax

and yet applying the decoding procedure to Hx and Hx′ yields a different number of errors. We now modify
the above construction such that if d > dmax it outputs “fail” with overwhelming probability.

The modified sketching protocol uses a k-bit random input r, where r is interpreted as a key to a
pseudorandom function hr : [n]→GF(2)k, and where k = Õ(1). The n possible outputs of hr define a
pseudorandom k × n matrix R over GF(2), satisfying the following properties: (1) the ith column of R can
be computed from r by a circuit of size Õ(k) = Õ(1); (2) for any nonzero x ∈ GF(2)n, the probability that
Rx = 0 is negligible in k, where the probability is over the uniform choice of r from {0, 1}k. (We use general
pseudorandom functions for simplicity; more efficient constructions can be based on small-bias probability
spaces [49].) The sketching function is defined by S(x, r) = (Hx,Rx, r), where R is the k×n matrix defined
by hr. Reconstruction proceeds as follows. First, Ha and Hb are used as before to “decode” H(a − b).
However, instead of only counting the number of errors, this time we also use their locations to test reliably
whether a, b differ exactly in the specified places. Let ve denote the error vector produced by the decoding
algorithm from H(a − b). Note that wh(ve) ≤ dmax, and that ve = (a − b) if and only if dh(a, b) ≤ dmax.
The reconstruction procedure tests whether Ra − Rb − Rve = 0. If the test succeeds, the reconstruction
function outputs the number of errors, and otherwise it outputs “fail”. From the above properties of hr

we may conclude: (1) reconstruction can be implemented by a circuit of size Õ(kO(1) · dmax
2) = Õ(dmax

2);
(2) if d = dh(a, b) ≤ dmax, g(a, b) = d with probability 1; (3) if d > dmax, then g(a, b) outputs “fail” with
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overwhelming probability. Our final sketching protocol thus satisfies all the desired properties guaranteed
by Lemma 5.4, up to a quadratic blowup in the cost of reconstruction.

Remark: (Application to communication complexity). Our sketching methods for the low distance
case can be applied to solve the following communication complexity problem posed by Yao [56]. Suppose
that Alice and Bob each hold an input string of length n as well as a common random input. They wish
to determine whether the Hamming distance between their inputs is bounded by d. To this end, they each
send a message to a referee, who should output the correct answer with high probability (say greater than
2/3). Our sketching methods for the low distance case directly yield solutions to this problem. The first
method gives a protocol whose communication complexity is O(d · polylog d), whereas the method based
on Reed-Solomon codes gives a protocol whose communication complexity is O(d log n).9 We note that the
dependence of the latter bound on log n is inherent to the coding-based approach, as the sketch reveals not
only the number of places where the two inputs differ but also their locations. In contrast, the hashing-based
approach reveals only the Hamming distance between the inputs. Finally, a similar complexity can also be
obtained in the standard two-party communication complexity model via a suitable derandomization of the
common random string, either under cryptographic assumptions (using a general-purpose pseudorandom
generator) or unconditionally (using limited independence).

5.2.3 Using the protocols

Based either on the hashing-based sketching protocol or the Reed-Solomon-based sketching protocol, a
private protocol for the low distance case may be constructed as outlined in the beginning of this section.
In the following, we restrict our attention to the hashing-based variant because of its better efficiency and
simplicity.

Lemma 5.5 (Private approximation for the low distance case.) Suppose any of the assumptions of
Theorem 2.3 holds. Then, for any 1 ≤ dmax(n) ≤ n, there exists a three-round protocol πlow with Õ(dmax)
communication, such that:

• If d = dh(a, b) ≤ dmax, the protocol πlow outputs the exact value of d with overwhelming probability;

• If d = dh(a, b) > dmax, the protocol πlow outputs “fail” with overwhelming probability.

• The output g of πlow is statistically indistinguishable from some function g′ that is functionally private
with respect to dh.

• πlow privately computes its output.

Proof: Let (S,G) be any sketching protocol satisfying the properties of Lemma 5.4. The required protocol
πlow proceeds as follows. In the first round, Alice sends to Bob a seed (of length Õ(1)) to a pseudorandom
generator which is used to produce a sufficiently long common random input. Then, each party locally
applies the sketching function S to its input and the common random input, and together they invoke a
protocol for privately evaluating the reconstruction function G on their sketches. Using Theorem 2.3, this
requires Õ(dmax) communication and either two additional rounds, assuming homomorphic encryption, or
three rounds, assuming trapdoor permutations. (In the variant based on trapdoor permutations, the first
round does not depend on the inputs and can thus be done in parallel to the first message from Alice to
Bob. Thus, the main protocol can be implemented in three rounds under either type of assumption.)

We now argue that πlow satisfies the four required properties. The first two follow immediately from
the assumptions on (S,G) and from the properties of a pseudorandom generator. The functional privacy
property follows by defining g′(a, b) as dh(a, b) if this distance is at most dmax and “fail” otherwise. Finally,
the following simulator shows the privacy of πlow. As before, we describe Alice’s simulator of the oracle-aided
version of the protocol having oracle access to G; Bob’s simulator is similar. On input a and g:

• Pick a random seed α to the pseudorandom generator.
9The method based on Reed-Solomon codes was independently used in a similar context by Gavinsky et al. [25].
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• Output α as Alice’s random input and g as the output of the G-oracle. (The message sent by Alice to
the G-oracle is determined by a and α.)

The correctness of the above simulator follows from the fact that all but a negligible fraction of the possible
seeds α would lead to the same output g. Thus, in the real-life execution of πlow, the distribution of the seed
α conditioned on the inputs (a, b) and the output g is statistically close to uniform.

5.3 The Combined Protocol

Using the protocols πlow and πhigh of Lemma 5.2 and Lemma 5.5 as subprotocols, our full protocol πh

proceeds as follows. Given the desired approximation quality ε:

• Invoke protocol πhigh of Lemma 5.2 with parameters ε and dmin = n1/2/ε. Let d1 denote its output.

• In parallel, invoke protocol πlow of Lemma 5.5 with parameter dmax = n1/2/ε. Let d2 denote its output.

• If d2 =“fail”, output d1; else output d2.

Lemma 5.6 The above protocol πh is a private ε-approximation protocol for dh in the liberal sense.10

Proof: The randomized function d̂ computed by πh is obtained from the outputs d1 and d2 of πhigh and
πlow, respectively. By the functional privacy properties of d1 and d2 with respect to dh (see Lemmas 5.2
and 5.5), the final output d̂ is also (indistinguishable from being) functionally private with respect to dh.

The ε-approximation property of d̂ follows from the facts that: (1) if d > dmax then (with overwhelming
probability) the final output d̂ is produced by πhigh, and, because d > dmax ≥ dmin, this output is ε-correct;
(2) if d ≤ dmax, then the low distance subprotocol produces d̂, which is guaranteed in this case to be correct
with overwhelming probability.

It remains to show that πh satisfies the liberal privacy requirement of Definition 7. As usual, we describe
a simulator for Alice, replacing πhigh and πlow by oracle calls to the functions computed by these protocols.
This is justified by Lemmas 5.2 and 5.5 and Theorem 2.2.

On inputs a, d = dh(a, b), and d̂, the simulator proceeds as follows:

• Sample d1 conditioned on d and d̂. That is, if d > dmax, let d1 = d̂; otherwise, sample d1 from a
binomial distribution with parameters s and d/n (where the number of trials s is as in πhigh), then
multiply by n/s.

• Compute d2 from d. That is, let d2 = d if d ≤ dmax and d2 =“fail” otherwise.

• Output d1 as the output of the oracle corresponding to πhigh and d2 as the output of the oracle
corresponding to πlow.

The correctness of the above simulator follows from the fact that the joint distribution of (d̂, d1, d2) induced
by the simulator is statistically indistinguishable from that of the real-life protocol.

Remark: (On strict vs. relaxed privacy). As described, πh does not satisfy the stricter notion of
private approximation defined in Definition 6. Indeed, the intermediate outputs d1 and d2 may give more
information than is implied by the protocol’s final output d̂. Specifically, when the output d̂ is slightly lower
than the threshold dmax, the output alone does not determine whether d > dmax, whereas the output d2 of
πlow does. Thus, πh does not privately compute its output d̂. However, πh can be easily modified to satisfy
the stricter privacy requirement. One way of achieving this is by hiding all intermediate results except the
final outcome. This can be done by modifying πhigh and πlow so that their outputs are “secret-shared”
between the parties and applying another private protocol to compute d̂ from the shared outputs of the
subprotocols. A more efficient alternative is to incorporate the additional information revealed by πh into

10This refers to the relaxed notion of private approximation defined in Definition 7. Modifications of πh that satisfy the strict
definition are discussed in the remark following the proof of this lemma.
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its output d̂. This can be achieved by slightly perturbing the output, so that its value encodes d1, d2 without
significantly changing the approximation quality.

Substituting the complexity parameters of the two subprotocols and the
(
n
1

)
-OT protocol of Theorem 2.4

yields the main result of this section:

Theorem 5.7 Assuming the existence of homomorphic encryption, the Hamming distance function can be
privately ε-approximated with communication complexity Õ(n1/2/ε) and three rounds of interaction.

In Section 5.4, we show that it is possible to obtain improved efficiency in a relaxed model with offline
communication.

Remark: (On computational complexity). A naive implementation of the combined protocol πh

(corresponding to Theorem 5.7) has computational complexity of Õ(n3/2/ε). This complexity is dominated
by Õ(n1/2/ε) invocations of the

(
n
1

)
-OT primitive, each requiring Õ(n) time. However, the cost of these

invocations can be amortized [34], yielding a protocol with the same asymptotic communication complexity
and (an essentially optimal) computational complexity of Õ(n/ε).

Remark: (On using Reed-Solomon codes). Recall that the reconstruction function of our sketching
protocol based on Reed-Solomon codes is less efficient than that of our hashing-based sketching protocol.
Nonetheless, it can still be used to give a private approximation protocol for the Hamming distance with
sublinear communication complexity. Specifically, setting dmin and dmax in the combined protocol πh to
Õ(n1/3) and using Reed-Solomon-based sketching in πlow, the resulting communication complexity is Õ(n2/3).

5.4 Polylogarithmic L2 Protocol with Offline Communication

In this section, we obtain efficient private approximation protocols for the following scenario. Suppose that
Alice and Bob are allowed to communicate Õ(n) bits at zero cost before they receive their inputs. We
charge them only for “online” communication, performed after they learn their inputs. In this model, we
give private protocols with only Õ(1) communication cost.

We consider the L2 distance
(∑
|ai − bi|2

)1/2, where 〈ai〉 and 〈bi〉 are sequences of integers.11 A solution
for the Hamming distance follows as a special case. Essentially, we verify that the protocol from [32] is
functionally private and can be efficiently implemented by a private protocol in this model.

Alice and Bob share a vector 〈si〉 of n samples from a Gaussian distribution.12 These samples are
encrypted using homomorphic public-key encryption13—i.e., anyone can form an encryption E(α, κ) of α
that can be decrypted only by knowing the secret key κ, and, from encryptions E(α, κ) and E(β, κ) of α and
β for the same secret key κ, anyone can form an encryption E(α + β, κ) of α + β for κ. Using a threshold
homomorphic encryption scheme, Alice and Bob split κ so that neither can decrypt alone but together they
can decrypt.

As prescribed in [32], Alice should form
∑

i aisi. In our context, she forms E (
∑

i aisi, κ), as follows.
She forms E(aisi, κ) from E(si, κ) and ai, in time kO(1) log ai, using the homomorphic properties of the
encryption and repeated doubling. She then forms E (

∑
i aisi, κ), using the homomorphic properties of

the encryption. Alice and Bob then form E (
∑

i si(ai − bi), κ), again using the homomorphic properties of
the encryption. The insecure protocol prescribes that they compute (

∑
i si(ai − bi))2, repeat, and take the

median of means, using Lemma 2.1. In our setting, Alice and Bob perform the median of means of squares
of decryptions of E (

∑
i si(ai − bi), κ)-values using a secure multiparty computation. (This can be described

with a small circuit). Correctness is easy to verify, using the fact that the expected value of sisj is 1 if i = j
and 0 otherwise. Privacy of the messages is immediate by construction.

11The square of the L2 distance,
P

|ai − bi|2, is equivalent to the L2 distance from the perspective of computation and
privacy. Henceforth, we consider the easier-to-read square of the L2 distance.

12Actually, the samples are indistinguishable from finite-precision approximations to real-valued Gaussian samples. This
suffices; see Section 4.

13As is the case throughout this paper, we assume that an adversary with resources polynomial in n cannot break the
encryption. In this section, however, we need to assume that cryptographic operations such as decryption (with the key)
and homomorphic transformation can be done in time polylogarithmic in n, i.e., in time comparable to the time needed for
other operations. Similarly, we assume that a ciphertext is longer than a cleartext by at most a factor polylogarithmic in n.
That is, we assume exponential-strength cryptographic operations. If only weaker cryptographic operations are available, the
cryptographic operations become the efficiency bottleneck.
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As for functional privacy, first observe that the result depends on 〈(a − b)i〉, but not otherwise on 〈ai〉
or on 〈bi〉. Also, Alice and Bob are allowed to learn ‖〈ai〉 − 〈bi〉‖2—i.e., the Euclidean distance between
their inputs. It is a well known property of the Gaussian distribution that the product 〈si〉 of Gaussians is
a spherically symmetrical distribution. Functional privacy follows immediately.

6 Secure Approximations of #P-hard Functions

We now turn our attention to securely approximating natural #P-hard problems, where the goal is to achieve
polynomial-time secure approximations. This is in contrast to problems on massive data sets that we have
been focusing on thus far, where polynomial time exact computation is possible, and the goal is to achieve
lower complexity (sublinear in the Hamming distance case). Thus, throughout this section, “efficient” should
be interpreted as “probabilistic polynomial time”. By Theorem 3.1, in the current setting, it is sufficient to
design any efficiently computable private approximation for the problem at hand.

We start by observing that artificially constructing #P-hard problems which satisfy the above property
is straightforward. For example, consider any #P-hard problem f(x) with output in the range [0, 2n]. Then
g(x) = f(x)+22n is computationally equivalent to f(x), and, in particular, is computationally “interesting” iff
f is. Although, for many values of ε, 22n is a (1±ε)-factor private approximation to g(x), this approximation
does not approximate any interesting quantity. Thus, in general, while some exact #P-hard problem may
be interesting, their approximate versions may not be.

In this section, we give private approximations to natural #P-hard problems, most notably the perma-
nent, the most well known #P-complete problem (Section 6.1). We also discuss extensions of our methods
to other #P hard problems (Section 6.2).

6.1 Secure Approximation of the Permanent

The permanent of a matrix M is defined as per(M) =
∑

π

∏n
i=1M(i, π(i)), where all permutations π on

{1, . . . , n} contribute to the sum. For a 0/1-valued matrixM , per(M) counts the number of perfect matchings
in the corresponding bipartite graph (defined by the adjacency matrix M).

Counting the number of perfect matchings is a #P-hard problem. As one might expect of #P-hard
problems, the permanent has applications to a wide variety of counting problems, including some that
arise naturally in physics. Less obvious (but true nevertheless) is that many natural problems reduce to
the permanent in an approximation-preserving way—namely, any approximation to the permanent yields
(a polynomially related) approximation to these problems. Clearly, a private approximation to the per-
manent immediately yields a private approximation to any problem that reduces to the permanent in an
approximation-preserving way. For example, the number of tilings of certain lattices can easily be expressed
as a permanent, so that an approximation to the permanent gives an approximate count of the number
of tilings. As another example, the Pauling bond order of an edge, in a certain graph representation of a
molecule, reduces to a permanent computation in an approximation-preserving way. We omit the definition
of the Pauling bond order here, but note that it serves as a useful theoretical prediction of the physical
strength of a molecular bond.

In this section, we show how to privately compute an approximation of the permanent of a shared matrix
in polynomial time. Specifically, let f(M1,M2) = per(M1 +M2), where M1 and M2 are n×n matrices with
n-bit non-negative entries.14 By Theorem 3.1, it is sufficient to obtain an efficiently computable functionally
private approximation for the permanent.

Non-Secure FPTAS for the Permanent

A string of results [37, 10, 35], culminating in the recent result of Jerrum, Sinclair, and Vigoda [36], pro-
vides efficient approximation algorithms for the permanent of an arbitrary matrix with non-negative entries.
We build on their techniques to construct our functionally private approximation. For our purposes, the
algorithm of [36] may be viewed as consisting of the following stages:

14We are slightly deviating from our previous notation in which n is the total length of each input.

21



1. Design an efficient randomized algorithm A satisfying the following requirement. For any n×n matrix
M and 1 ≤ i ≤ n, the output of A(M, i) is Bernoulli random variable with success probability negligibly
far from pi such that:

•
∏

i 1/pi = per(M);

• for all i, pi ≥ 1/ poly(n).

2. Use sampling to approximate each pi efficiently.

3. Multiply these approximations to obtain an approximation of the product (and thus of 1/per(M)).

4. Invert to get an approximation of per(M).

We note that the central technical component of [36] (and its predecessors) is the construction of the random
variables in stage 1, which uses a Monte Carlo Markov chain method to sample from the set of all perfect
matchings on a graph with a distribution that is statistically indistinguishable from uniform.

Achieving Functional Privacy

Our goal is to obtain a functionally private approximation to the permanent. Considering the algorithm
of [36] outlined above, we first observe that the sampling-based approximation of each pi given by stage 2
is already functionally private with respect to pi. However, the product of approximations does potentially
leak information about its factors (e.g., the standard deviation depends on the factors), and, thus, stage 4
results in a non-private output.

To avoid this leakage, one might be tempted to estimate the product at once; that is, if Xi is a Bernoulli
random variable with success probability pi, one might be tempted to estimate the expectation of Y =

∏
Xi

by sampling Y . This indeed results in an estimator with the right distribution perfectly simulatable from
the product

∏
pi. However, approximating the product in this way is not efficient, as the product may

be exponentially small (thus using only a polynomial number of samples, the produced “approximation” is
likely to be zero).

Our goal then, reduces to designing an efficient, functionally private approximation for the product∏
1/pi, given coins with biases pi as above. The bulk of the technical work involves designing, for each i, a

coin with bias negligibly far from p
1/n
i . This is done by manipulating biases of coins to produce coins with

new biases. We first describe some elementary manipulations and then combine them to construct the nth
root. Finally, in Theorem 6.1, we show how to use the nth root construction.

Given success probabilities q0, q1 and q2, let Ai denote an event with probability qi for i = 0, 1, 2. One
can form an event with success probability q0q1 by taking the joint event A0A1 = A0 ∧ A1 of A0 and A1,
one can form an event with success probability 1 − q0 by taking the complementary event A0 of A0, and
one can form an event with success probability q0q1 + (1 − q0)q2—a convex combination—by taking event
A1 if A0 holds and taking event A2 if A0 fails, an event that we denote by (A0 ? A1 : A2). In this way, we
have implemented functions on the real numbers q0, q1, q2 by manipulating events algorithmically, without
the need to know q0, q1, q2. We refer to the functions x 7→ 1− x, (x, y) 7→ xy, and (x, y, z) 7→ xy + (1− x)z
as elementary manipulations of biases.

We now use these elementary manipulations to construct an event with success probability negligibly far
from p1/n, given a coin with (unknown) bias p, which is used to generate independent events with success
probability p. We use the Taylor series for x1/n at x = 1, which is

∑
j(−1)j

(
1/n
j

)
(1− x)j . The coefficient of

(1− x)j is

(−1)j

(
1/n
j

)
= (−1)j

(
1
n

) (
1
n − 1

) (
1
n − 2

)
· · ·

(
1
n − j + 1

)
j!

= −
(

1
n

) (
1− 1

n

) (
2− 1

n

)
· · ·

(
j − 1− 1

n

)
j!

= − 1
nj

(
1− 1

n

) (
1− 1

2n

)
· · ·

(
1− 1

(j − 1)n

)
,
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which is negative and is at most 1/(nj) in absolute value. Thus, the sum of the absolute values of all but
the leading coefficient in a O(nk)-term Taylor polynomial T (x) is at most

∑kn
j=1

1
nj ≤

log(kn)
n , which we can

assume is less than 1. (Otherwise, k > 2n/n, and we can solve the permanent exactly in time polynomial
in k, by [48].) Thus T (x) is 1 less a sub-convex combination of (1 − x), (1 − x)2, . . . , (1 − x)kn. We now
make two important observations. First, for x ≥ 1/(2n), an O(nk)-term Taylor expansion for x1/n around
x = 1 has error bounded by 2−2k = O(2−k/n). So O(nk) terms suffice for our purposes. Second, an `-
term approximation to T (x) can be written as a circuit of gates of the form x 7→ 1 − x, (x1, x2) 7→ x1x2,
and (x, y) 7→ rx + (1 − r)y; all of these gates compute functions that are implementable as elementary
manipulations of biases, as desired. It follows that, given a coin with bias negligibly far from unknown p, one
can construct an experiment with success probability negligibly far from p1/n, using tosses of the original
coin. From the form of the expression for T (x), it follows that we need at most poly(nk) tosses of the original
coin and at most poly(nk) computation.

As an illustration, consider the three-term expansion to the square root of x at x = 1, namely

√
x ≈ T (x) = 1− (1− x)

2
− (1− x)2

8
.

Isolating the leading 1 and using convex combinations instead of sums, we get

T (x) = 1−
[
1
2
(1− x) +

1
2

(1− x)2

4

]
.

Suppose event A has unknown probability p and Ft (a coin flip) has success probability t. Then the following
event, which can be constructed directly from the above expression for T (x), has probability T (p), where all
occurrences in the formula of A’s and F ’s are independent.

E = (F1/2 ?A : A
2
F1/4). (3)

For a polynomial of degree `, the appropriate generalization of Event (3) uses just O(`2) experiments of type
A (i.e., at most O(`2) random variables, all independent and distributed identically to the indicator random
variable for A) and constantly many F experiments for each A experiment, though, in general, constructing
Ft from F1/2 may require Ω(k) repetitions to achieve the desired accuracy (1± 2−k). The coefficients other
than the leading 1 sum to less than 1, so the sum of this part of the series can be implemented using the
(· ? · : ·) construction and the product construction.

Finally, we show how to use the new p 7→≈ p1/n construction. Because
∏
p
1/n
i = 1/per(M)1/n ≥

1/ poly(n), this product can be efficiently approximated by sampling directly from the joint distribution of
coins with biases p1/n

1 , . . . , p
1/n
n , and, by raising to the power −n, we are done. This yields the following

theorem.

Theorem 6.1 Let f(M1,M2) = per(M1 +M2), where M1,M2 are n × n matrices with n-bit non-negative
entries. Then, for any ε(n) ≥ 1/ poly(n), there is a polynomial-time private ε(n)-approximation for f .

Proof: Consider the overall algorithm from [36] described above, in which we want to compute
∏

1/pi

and, for each i, we have a coin with bias within the factor
(
1± 2−k/n

)
of pi. Now consider the construction

described above, in which we construct an event Ai with probability p′i within the factor
(
1± 2−k/n

)
of p1/n

i ,
given a coin with bias pi. Then the joint event

∧
iAi has probability (

∏
pi)

1/n (
1±O

(
2−k

))
. Because each

pi is at least 1/ poly(n) in [36], so is their geometric mean, so that Pr (
∧

iAi) ≥ 1/ poly(n). Using Lemma 2.1,
estimate Pr (

∧
iAi) from poly(n log(1/δ)/ε) samples, getting per(M1 +M2)−1/n(1±O(ε/n)) with probability

at least 1−δ, and then take the −n power. By the preceding discussion, the result is efficient, approximately
correct, and private.

6.2 Extensions to Other #P-complete Problems

As discussed at the start of Section 6.1, secure approximation of the permanent immediately implies secure
approximation for the large array of problems that reduce to the permanent in an approximation-preserving
manner, some examples of which were presented. We now turn to showing how to generalize the techniques
we used in the permanent approximation to work for a more general class of problems.
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General Secure Approximations Based on Monte-Carlo Methods

Our proof for the permanent built on a (non-secure) approximation based on Monte Carlo Markov chains.
We now want to extend our techniques to work for other intractable functions f(a, b) that have polynomial-
time approximation schemes based on a similar Monte Carlo Markov chain approach. Indeed, the technique
of rapidly mixing Markov chains is inherently suited for use in functionally private approximations, as by
the definition of “rapidly mixing,” the Markov chain supports sampling from a distribution of items that is
statistically indistinguishable from uniform. If we then sample to estimate the fraction of items satisfying
some property, the resulting estimate depends only on the fraction, not otherwise on the set of items or the
input used to generate them. Often, as in the case of the permanent, we do not want to estimate the fraction
of objects satisfying some property, but rather some function of several such fractions (such as the product).
To this end, our techniques of manipulating probabilities and using jth roots (through a Taylor expansion
estimation) are useful, as described in more detail below.

In the following, we assume that there is an underlying size n and security parameter k. Computations
must be correct to within the factor (1 ± ε) with probability 3/4. Two distributions are “statistically
indistinguishable” if their statistical difference is at most 2−k (and a condition of similar strength in k
applies for computational indistinguishability). “Polynomial time” means time polynomial in n, k, and 1/ε,
and is denoted here by “poly.” The success probability 3/4 can be boosted up to 1 − δ by performing
O(log(1/δ)) repetitions.

We begin with a definition that intuitively says that ψ is an approximation-preserving function.

Definition 9 A deterministic real function ψ is polynomially relatively continuous if, for all x and for all
ε > 0, there exists η > 1/ poly such that ψ(x · (1± η)) ⊆ ψ(x) · (1± ε).

Lemma 6.2 Let ψ be a polynomially relatively continuous function that is easy to compute and to invert.
Suppose f(a, b) = ψ (Pr(E)), Pr(E) ≥ 1/ poly, where E is an event (parameterized by a and b) under a
probability distribution, D, such that one can sample in polynomial time from a distribution that is statisti-
cally (respectively, computationally) indistinguishable from D. Then f(a, b) has a statistically (respectively,
computationally) functionally private approximation computable in polynomial time.

Proof: One can estimate Pr(E) to within the factor (1± η) in polynomial time using Lemma 2.1 and then
apply ψ. To see that this is functionally private, note that, from f(a, b) alone, a sampling algorithm S can
construct an Ω(k)-bit approximation to Pr(E) = ψ−1(f(a, b)). It can then apply Lemma 2.1 to a Bernoulli
random variable with success probability negligibly far from Pr(E) and apply ψ. The result follows.

Before proceeding, we consider another transformation, not needed for the permanent:

Lemma 6.3 Fix known r ≥ 1 and small τ1, τ2 > 0. Suppose we can make independent tosses of a coin with
unknown bias p, where p ≥ τ1 ≥ 1/ poly. Suppose further that rp is known to be at most 1− τ2 ≤ 1− 1/ poly.
Then we can construct a coin with bias indistinguishable from rp.

Proof: Suppose we are given a number r and a coin with bias p, bounded as above. We “enrich” the coin
by the factor r when we do the following experiment: Toss the original coin N ≈ (k + ln(1/τ1))r2/τ2

2 times
and let S denote the number of heads obtained. Toss one more coin, with bias min(1, rS/N), and output the
result of the last coin. Let p′ denote the overall probability of success. We now show that p′ = rp(1± 2−k).

Write the probability that the constructed coin succeeds as

p′ =
∑

s

Pr(1|S = s) Pr(S = s) =
∑

s

min
(
1,
rs

N

)
Pr(S = s).

One direction is easy—namely,

p′ =
∑

s

min
(
1,
rs

N

)
Pr(S = s)

≤
∑

s

rs

N
Pr(S = s)

=
r

N
E[S]

= rp,
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as desired. Thus we need to show that p′ ≥ rp(1 − 2−k), which we do by bounding the probability that
min

(
1, rS

N

)
= 1.

Note that rS/N > 1 iff S exceeds its mean of pN by at least (1/r − p)N . By the Chernoff inequality,
because (1/r − p) = (1 − rp)/r ≥ τ2/r, this occurs with probability at most e−Θ((1/r−p)2N) ≤ e−Θ(τ2

2 N/r2),
and, below, we want this to be less than τ12−k. For that, it suffices that N = Θ(k + log(1/τ1))r2/τ2

2 .
Next, observe that if Bp′ is a Bernoulli random variable with success probability p′, then

p′ = E[Bp′ ] =
∑

s

min(1, rs/N) Pr(S = s)

=
∑

s

(rs/N) Pr(S = s)−
∑

rs/N>1

(rs/N − 1) Pr(S = s)

≥
∑

s

(rs/N) Pr(S = s)−
∑

rs/N>1

(rs/N) Pr(S = s)

≥ r

∑
s

(s/N) Pr(S = s)−
∑

rs/N>1

(s/N) Pr(S = s)


≥ r

∑
s

(s/N) Pr(S = s)−
∑

rs/N>1

Pr(S = s)


≥ r (p− Pr(rS/N > 1))
≥ r

(
p− τ1/2k

)
≥ rp

(
1− 2−k

)
.

We now return to general Monte Carlo Markov chain methods. In general, as in the case of the per-
manent, a Monte Carlo Markov chain approach to approximations involves making several estimates from
separate Markov chain experiments and combining the estimates in an arbitrary way. While we cannot claim
that any function with a Monte Carlo Markov chain-based approximation also has a functionally private
approximation, we do exhibit functionally private approximations for a large class of such functions.

Theorem 6.4 Let ψ be a polynomially relatively continuous function that is easy to compute and to invert.
Suppose f(a, b) = ψ (φ (Pr(E1),Pr(E2), . . .Pr(Ej))), where each event has probability at least 1/ poly in a
probability distribution that can be nearly sampled in polynomial time, and where φ is a polynomial-sized,
constant-depth arithmetic formula with gates of the following form:

• t→ 1− t

• t1, t2 → t1t2

• ⊥ → r, where r ∈ [1/ poly, 1 − 1/ poly] (Here ⊥ denotes the empty input. The number r must be
efficiently constructible; e.g., the `th bit of r should be computable in time polynomial in `.)

• (t1, t2, . . . , t`)→
∑

i riti, where
∑

i ri = 1

• t→ tr, for 1/ poly ≤ r ≤ 1

• t→ rt, for r ≥ 1, under the promise that 1/ poly < t and rt < 1− 1/ poly

• (t1, t2, . . . , t`)→
∏

i t
ri
i , where

∑
i ri = 1 and each ri > 1/ poly.

Then f(a, b) has a functionally private approximation that can be computed in polynomial time.

Proof: We show that each gate in φ satisfies the following invariant: If each input takes values in [1/ poly, 1−
1/ poly], each input can be approximated in polynomial time by sampling, and, for each input, there is a
polynomial-time-constructible Bernoulli experiment with success probability negligibly far from the ideal
value, then the output satisfies the same three conditions:
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1. it takes values in [1/ poly, 1− 1/ poly],

2. it can be approximated in polynomial time by sampling,

3. it has associated with it a Bernoulli experiment with success probability negligibly far from the ideal
value.

The first conclusion is clear for each of the gates. The second conclusion follows from the first and third
conclusions, the hypothesis about estimation of events Ei by sampling, and Lemma 2.1. As for the third
conclusion, we consider the allowed types of gates in turn. We show, for each gate g, that we can construct
a coin with bias differing negligibly from the output value of g, given coins with biases equal to the input
values to g, such that the total number of coins required by g is polynomial. Each gate above was discussed
in Section 6.1 or in Lemma 6.3.

As in Lemma 6.2, it follows that we can estimate f by estimating φ and then applying ψ. Also as in
Lemma 6.2, to see that this approximation is functionally private, from f(a, b), a sampling algorithm S can
compute

ψ−1(f(a, b)) = φ (Pr(E1),Pr(E2), . . .Pr(Ej)) ,
apply Lemma 2.1 to a Bernoulli random variable with success probability indistinguishable from ψ−1(f(a, b)),
then apply ψ. The result follows.
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A General Definition of Secure Computation

In this section, we sketch the standard simulation-based approach for defining secure computation. This
definition generalizes Definition 3 in that it addresses also the case of multiple parties and the case of
an active (malicious) adversary. Our definition refers to the stand-alone setting (i.e., it does not consider
protocol composition) and refers to the case of a non-adaptive adversary, who picks the set of corrupted
parties in advance. We do not address here the relaxed notion of “security with abort,” which is necessary
when the adversary is active and may corrupt at least half of the parties. We refer the reader to [12, 28, 13]
for more general and detailed definitions.

Let π be an m-party protocol and let A be an adversary corrupting at most t parties. The following
definition compares the interaction of the adversary in the real-life protocol with the interaction of an
adversary with an ideal process for evaluating the target function f .

Real-life model. The interaction of the adversary in the real-life model is captured by a random variable
realπ,A(x), set to the view of A when attacking the execution of π on input x, concatenated with the
outputs of the uncorrupted parties and their identities. The adversary’s view includes all inputs, random
inputs, and messages viewed by corrupted parties. The concatenation of this view with the outputs on
non-corrupted parties serves two purposes. First, it captures the information that the adversary may learn
about the outputs of uncorrupted parties. Second, it captures the correctness requirement of the protocol
(possibly in the presence of an active adversary who tries to alter the outputs of uncorrupted parties).

Ideal process. The ideal process is parameterized by a target function f , which may be a general,
possibly randomized, mapping from m inputs to m outputs. In our context, it is convenient to restrict f
to be a deterministic, single-output function. An adversary A′ corrupting the ideal process is referred to
as an ideal-process adversary or a simulator. The ideal process proceeds as follows. First, S decides on a
set T of at most t parties to corrupt, where t is the given security threshold. If the adversary is active,
it may first modify the inputs of the parties it corrupts based on their observed values. Subsequently, all
parties send their inputs to a trusted party, who evaluates the function f and hands each of its outputs
to the corresponding party. (If f is a single-output randomized function, then our convention is that each
party receives an identical instance of its output.) Based on the inputs and outputs of corrupted parties,
the adversary produces some output, which is supposed to emulate the transcript of the real-life protocol.
The interaction of the adversary A′ with the f -ideal process on input x is captured by a random variable
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idealπ,A′,f (x), containing the adversary’s output concatenated with the outputs of uncorrupted parties and
their identities.

We now formalize our definition of a secure protocol.

Definition 10 A protocol π is said to be a perfectly/statistically/computationally t-secure protocol for f , if
for any adversary A corrupting at most t parties in the real-life model, there exists a probabilistic polynomial-
time simulator A′ corrupting at most t parties in the ideal process, such that

{realπ,A,f (x)}x∈X ≡ {idealπ,A′,f,f̂ (x)}x∈X ,

where “≡” denotes perfect/statistical/computational indistinguishability. In the case of computational se-
curity, the adversary A is restricted to probabilistic polynomial time. In the other two cases, it may be
computationally unbounded and the time resources of A′ are allowed to be polynomial in those of A.

In this paper, we consider by default the case of a computationally 1-secure 2-party protocol, whose security
holds against a passive adversary.

B A Liberal Definition of Secure Approximation

In this section, we detail the general formulation of the liberal definition of secure approximations discussed
in Section 3.1.

The liberal definition of secure approximations modifies the simulation-based definition of secure (ex-
act) computation from Appendix A as follows. The real model remains unchanged. The f -ideal model is
modified to what we call the (f ′, f̂)-ideal model . For a single-output, possibly randomized function f̂ , the
corresponding random variable idealπ,A′,f ′,f̂ (x) is defined similarly to idealπ,A′,f (x) from Appendix A,
with the following modification. Instead of sending the values of the single function f to all parties, the
trusted party evaluates both f ′ and f̂ on the inputs it receives and sends the two values to all parties. All
uncorrupted or passively corrupted parties output the value f̂ alone.

The function f ′ models the information that we allow the adversary to learn, whereas f̂ captures the
correctness requirement for the outputs of uncorrupted parties. Our liberal definition lets f ′ be the same
as the target function f by default. This is philosophically justified by the fact that when approximating a
function f , one is implicitly willing to pay the privacy compromise implied by the knowledge of f . However,
in some cases it may be desirable to choose f ′ so that it reveals strictly less information than f ; the above
formulation provides a convenient means for formalizing the type of “extra security” provided in such cases.
Taking f ′ = f̂ yields precisely the strict notion of Definition 6.

We now give the general formulation of the liberal definition of a secure approximation protocol.

Definition 11 (secure approximation: general liberal definition) A protocol π is said to be a per-
fectly/statistically/computationally t-secure P-approximation protocol for f in the liberal sense, if there
exists a functionally private P-approximation f̂ of f such that the following holds. For any probabilistic
polynomial-time adversary A corrupting at most t parties in the real-life model, there exists a probabilistic
polynomial-time simulator A′ (corrupting at most t parties) in the ideal process, such that

{realπ,A,f (x)}x∈X ≡ {idealπ,A′,f,f̂ (x)}x∈X ,

where “≡” denotes perfect/statistical/computational indistinguishability.

In this paper, we consider by default the case of a computationally 1-secure 2-party protocol whose security
holds against a passive adversary.
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