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Abstract

We study a model of path-vector routing in which nodes’ routing policies are based on
subjectivecost assessments of alternative routes. The routes are constrained by the require-
ment that all routes to a given destination must be confluent.We show that it is NP-hard to
determine whether there is a set of stable routes. We also show that it is NP-hard to find a
set of confluent routes that minimizes the total subjective cost; it is hard even to approxi-
mate minimum cost closely. These hardness results hold evenfor very restricted classes of
subjective costs.

We then consider a model in which the subjective costs are based on the relative im-
portance nodes place on a small number of objective cost measures. We show that a small
number of confluent routing trees is sufficient for each node to have a route that nearly
minimizes its subjective cost. We show that this scheme is trivially strategyproof and that it
can be computed easily with a distributed algorithm. Furthermore, we prove a lower bound
on the number of trees required to contain a(1 + ǫ)-approximately optimal route for each
node and show that our scheme is nearly optimal in this respect.
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1 Introduction

In any networked computation environment, routing (findingpaths from each node
in the network to every other node) is an essential task. Two families of routing
protocols are widely used:link-staterouting protocols andpath-vectorrouting pro-
tocols. In link state protocols, the state of the entire network is maintained by every
single node; this is updated whenever there is a change anywhere in the network.
In a path-vector protocol, each node only maintains a local map of the network
that includes the paths currently used by neighboring nodes, leading to significant
space and communication savings. In this paper, we focus on path-vector routing
protocols.

With path-vector routing, routes are propagated by a node announcing its current
path to a given destination to some or all of its neighbors. A node i with many
neighbors may thus receive annoncements of many different routes to a given des-
tination j. It can then select (at least) one of these available routes as the route it
will use to send its traffic; subsequently,i can announce this chosen route (prefixed
by i itself) to its neighbors. Proceeding in this manner, every node in the network
can eventually discover at least one route to destinationj. Thus, one of the key
decisions that has to be made at each node is that ofroute selection: Given all the
currently available routes to destinationj, which one is traffic sent on?

At first glance, it may seem as though nodes should always pickthe shortest route;
in practice, however, node preferences may be greatly influenced by other factors,
such as perceived reliability or preferences over which outgoing link is used. This
is particularly important when nodes have some degree of autonomy (i.e., they are
controlled by different entities. In this case, each node may independently choose
a routing policy that governs its route selection. The resulting routing scheme is
calledpolicy-based routing, or policy routing for short. With policy routing, the
global routes depend on all the individual nodes’ policy choices. Achieving efficient
routing thus requires coordination of routing policies as well as attention to the
incentives and preferences of autonomous nodes.
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1.1 Path-Vector Routing in the Internet

Policy routing has chiefly been studied in the context ofinterdomain routing. The
Internet is divided into manyAutonomous Systems(ASes). Loosely speaking, each
AS is a subnetwork that is administered by a single organization. Interdomain rout-
ing is the task of routing between different ASes. Currently, the only widely used
protocol for interdomain routing is the Border Gateway Protocol (BGP). BGP is
a path-vector protocol that allows an AS to “advertise” routes it currently uses to
neighboring ASes.

AS route preferences are complex, and are largely dependenton the commercial
relationships that an AS has with other ASes. For this reason, BGP allows ASes
complete freedom to pick a route according to their ownrouting policies. However,
BGP does place one important constraint on routing: It stipulates that an AS can
only advertise a route that the advertising AS itself currently uses. This is because
of the way traffic is routed in the Internet: Routers examine the destination of in-
coming packets and simply forward the packet to the next hop on the current route
to that destination. At a given time, each AS typically has exactly one active route
to the destination. Thus, the set of all ASes’ routes to a given destination ASj must
beconfluent, i.e., they must form a tree rooted atj.

The policy-routing aspect of interdomain routing has recently received a lot of at-
tention from researchers. Varadhan et al. [10] observed that general policy routing
could lead to route oscillations. Griffin, Shepherd, and Wilfong [7,6] studied the
following abstract model of general policy routing: Each ASi’s policy is repre-
sented by a preference ordering over all possible routes to agiven destinationj. At
any given time,i inspects the routes all of its neighbors are advertising toj and
picks the one that is ranked highest. ASi then advertises this route (prefixed byi
itself) to all its neighbors. Griffin et al.proved that, in such a scenario, BGP may not
converge to a set ofstable paths; the routes might keep oscillating as ASes contin-
uously change their selection in response to their neighbors’ changes. They further
showed that, given a network and a set of route preferences, it is NP-complete to
determine whether a set of stable paths exists. In recent work, Feamster et al. [1]
showed that instability can arise even for restricted routing policies.

Feigenbaumet al. [4] extended the model of [7] by including cardinal preferences
instead of preference orderings. Specifically, they assumethat AS i conceptually
assigns each potential route a monetary value and then ranksroutes according to
their value. The advantage of working with cardinal preferences is that a set of paths
can be stabilized by making payments to some of the ASes: Although the ASes’a
priori preferences may have led to oscillation (in the absence of payments), ASes
preferences can be changed if they receive more money for using a less valuable
route. This is the basis for the mechanism-design approach to routing, which seeks
to structure incentives so as to achieve a stable, globally optimal set of routes;
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see [4] for further details. In the context of policy routing, the most natural global
goal is to select a set of confluent routes that maximizes thetotal welfare(the sum
of all ASes’ values for their selected routes). However, Feigenbaum et al.showed
that, for general valuation functions, it is NP-hard to find awelfare-maximizing
set of routes; it is even NP-hard to approximate the maximum welfare to within a
factor ofn

1

4
−ǫ, wheren is the number of nodes. Thus, in this model too, general

routing policies lead to computationally intractable problems.

The natural approach to get around the intractability results is to restrict either the
network or the routing policy. Restricting the network alone does not appear to be
a very promising direction, because the hardness results hold even for fairly simple
networks that cannot be excluded without excluding many “Internet-like” networks.
This has led researchers to turn to restricted classes of preferences that can express a
wide class of routing policies that ASes use in practice. Feigenbaumet al.[4] study
next-hoppreferences – preferences in which an ASi’s value for a path depends
only on the next AS on the path – and show that, in this case, a welfare-maximizing
set of routes can be found in polynomial time. Next-hop preferences can capture
the effects ofi’s having different commercial relationships with neighboring ASes.
Similarly, in the ordinal-preference model, Gao and Rexford [5] show that, with the
current hierarchical Internet structure, BGP is certain toconverge to a set of stable
paths as long as every AS prefers a customer route (i.e., a route in which the next
hop is one of its customers) over a peer or provider route; this can also be viewed
as a next-hop restriction on preferences.

1.2 More expressive preference classes

There are many reasonable policies that cannot be expressedin terms of next-hop
preferences alone. Although commercial relationships arethe primary determinant
of current AS routing policies, understanding other classes of policies that could
be handled without abandoning the path-vector approach would be useful as the
Internet continues to evolve. In addition, new domains suchas wireless ad-hoc
networks also involve loosely coupled autonomous nodes, and could also benefit
from policy-based routing protocols.

In this paper, we study other classes of routing policies that capture plausible node
preferences. We examine the global routing behavior under the confluence con-
straint that requires all routes to a destination to form a tree; as discussed above,
this is a natural requirement when packets are forwarded based on the destination
alone. For example, a nodei might wish to avoid any route that goes through node
k, either because it perceivesk to be unreliable or becausek is a malicious com-
petitor who would like to drop all ofi’s traffic. This leads to theforbidden-setclass
of routing policies: For each nodei, there is a set of nodesSi such thati prefers
any route that avoidsSi over any route that uses a node inSi. We can then ask the

4



following questions: (1) If each node uses a forbidden-set routing policy, will the
path-vector routing protocol converge to a set of stable paths?, and (2) Can we find
a welfare-maximizing routing tree,i.e., a set of confluent routes that maximizes the
number of nodesi whose routes donot intersect the setsSi? If the latter optimiza-
tion problem were tractable, then this class of routing policies would be a candidate
for a mechanism-design solution as in [3].

Forbidden-set policies (and many others) can be framed in terms ofsubjective costs:
Each nodei assigns a costci(k) to every other nodek. Then, the “cost” perceived
by nodek for a routeP is

∑

k∈P ci(k); nodei prefers routes with lower subjective
cost. Subjective-cost routing is a natural generalizationof lowest-cost routing (in
which there is a single objective measure of cost that all nodes agree upon). It is
well known that lowest-cost routes can be computed easily, and hence we hope that
some more general class of subjective-cost routing policies will also be tractable.

However, we find that even very restricted subsets of subjective-cost policies lead
to intractable optimization problems: We show that, if all nodes rank paths based
on subjective-cost assignments, it is still possible to have an instance in which there
is no stable-path solution. Further, given a network and subjective costs, it is NP-
complete to determine whether there is a set of stable paths.Moreover, the NP-
completeness reduction only requires subjective costs in the range{0, 1, 2} for each
node. In the cardinal utility model, the outlook is not much brighter: We show that,
even if all subjective costs are either0 or 1, it is NP-hard to find a set of routes that
maximizes the overall welfare; indeed, it is NP-hard even toapproximate maximum
welfare to withinany factor. The forbidden-set routing policies can be formulated
in terms of0-1 subjective costs, and hence optimizing for this class is also difficult.
We then turn to subjective costs with bounded ratios. We showthat, if the subjective
costs are restricted to lie in the range[1, 2], the problem of finding a confluent tree
with minimum total subjective cost is APX-hard; thus findinga solution that is
within a(1+ǫ) factor of optimal is intractable. In this case, however, an unweighted
shortest-path tree provides a trivial 2-approximation to the optimization problem.

In light of all these hardness results, we consider a more restricted scenario in
which the differing subjective cost assignments arise fromdifferences in the rel-
ative importance placed on twoobjectivemetrics, such as latency and reliability.
Thus, we suppose that every pathP has two objective costsl1(P ) and l2(P ).
We assume that nodei evaluates the cost of pathP as the convex combination
λil1(P ) + (1 − λi)l2(P ), whereλi ∈ [0, 1] reflects the importancei places on the
first metric. Here, too, it is NP-hard to find a routing tree that closely approximates
the maximum welfare. However, if we slightly relax the constraint that each node
stores only a single route to the destination, we show that itis possible to find a
nearly optimal route, as follows. Given anyǫ > 0, we can find a set ofO(log n)
trees5 rooted atj with the following property: If each nodei chooses the route it

5 The dependence onǫ is detailed in Section 5.
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likes best among theO(log n) alternatives, the overall welfare is within a(1 + ǫ)
factor of optimal. This solution can be implemented by replacing each destination
with a set ofO(log n) logical destinations and then finding a lowest-cost routing
tree to each of these logical destinations. The results generalize to the convex com-
binations ofd > 2 objective metrics;O(d3d logd−1 n) trees are required in this
case.This scheme is trivially strategyproof, and, further, it can be implemented with
an efficient distributed algorithm.

The rest of this paper is structured as follows: In section 2,we introduce the sub-
jective-cost model of routing preferences. In section 3, westudy the stable-paths
problem for path rankings based on subjective costs. In sections 4 and 5, we study
the problem of finding a routing tree that minimizes the totalsubjective cost.

2 Subjective-cost model for policy routing

In this section, we present the subjective-cost model of node preferences. The
model involves each nodei’s assigning a costci(k) to every other nodek. These
costs aresubjective, because there is no requirement thatci(.) andck(.) be consis-
tent. We assume that each subjective costci(k) is non-negative. The total cost of n
nodei for a routePij to destinationj is

ci(Pij) =
∑

k∈Pij

ci(k) .

Here, the notationk ∈ Pij is used to indicate thatk is atransit nodeon the the path
Pij; i andj are thus excluded from the summation. Nodei wants to use a routePij

that minimizes the costci(Pij).

The subjective-cost model can be used to express a wide rangeof preferences, but
it does place some restrictions on node preferences. For instance, an nodei cannot
prefer a pathP over a pathP ′ whose nodes are a strict subset ofP . The class of
preferences that can be expressed as subjective costs includes:

• Lowest-cost routing
If ci(k) is the actual cost of transiting nodek, minimizing the path cost is exactly
lowest-cost routing.

• Routing with a forbidden set
Let ci(.) take the following form: Ifk ∈ Si, ci(k) = 1, elseci(k) = 0. Then any
route that avoids nodes inSi is preferred byi over any route that involves a node
in Si.

Subjective costs can form the basis for either ordinal preferences or cardinal util-
ities. In section 3, we study the stable-paths problem for path rankings based on
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subjective costs. In sections 4 and 5, we study the problem offinding a routing tree
that minimizes the total subjective cost.

3 Stable Paths with Subjective Costs

TheStable Paths Problem (SPP), introduced by Griffinet al. [6], is defined as fol-
lows. We are given a graph with a specified destination nodej. Each other node
i represents a node; there is an edge between two nodes if and only if they ex-
change routing information with each other. Thus, a path from i to j in the graph
corresponds to a potential route from nodei to the destination. Each nodei ranks
all potential routes to destinationj. A route assignmentis a specification of a path
Pij for each nodei such that the union of all the routes forms a tree rooted atj
(i.e., the confluence property is satisfied). A route assignment iscalledstableif,
for every nodei, the following property holds: For every neighbora of i, nodei
does not strictly prefer the pathaPaj over the pathPij ; in other words,i would not
want to change its current route to any of the other routes currently being adver-
tised by its neighbors. The stable-paths problem issolvableif there is a stable route
assignment.

Griffin et al. [7,6] have shown that there are instances of SPP that are unsolv-
able, and, further, that it is NP-complete to determine whether a given SPP is
solvable. Their constructions used preferences that cannot be directly expressed
as subjective-cost preferences. This leads us to hope that,for subjective-cost pref-
erences, the stable-paths problem might be tractable. Unfortunately, this is not the
case. In this section, we prove that these hardness results extend to subjective-cost
preferences.

Assume that the rankings assigned by nodes are based on an underlying subjective-
cost assignment. Then, the stable paths problem can be viewed in terms of a strate-
gic game, as follows: The players of this game are the nodes. Given a graphG(V, E)
with a specific destinationj and a subjective-cost functionc : V (G)×V (G) → R,
thenext-hop gameis defined as follows. Nodes correspond to the vertices of graph
G. The strategy space for nodei is the setN(i) of neighboring nodes in the graph;
thus, nodei’s picking the route advertised by a neighboring nodea corresponds to
i’s playing strategya. Given a vector of strategies (one for each player), the cost
incurred by playeri is the subjective cost of its route to the destination; if there is
no route fromi to the destination,i’s cost is∞. A vector of strategies is a pure-
strategy Nash equilibrium if, given the strategies of all the other nodes, no node
could decrease its subjective cost by changing its strategy. A pure-strategy Nash-
equilibrium strategy profile must result in every node having some route toj, and,
hence, it must correspond to a valid route assignment. Thus,proving that an SPP
is solvable is equivalent to proving that the correspondingnext-hop game has a
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Fig. 1. A bad triangle.
pure-strategy Nash equilibrium.

Definition 1 Thebad triangleis defined as follows. It is a graphG with vertex set
{a, b, c, a′, b′, c′, r} and edge set{aa′, a′r, cc′, c′r, bb′, b′r, ab, bc, ca}. Setca(c) =
ca(c

′) = 0; cb(a) = cb(a
′) = 0; and cc(b) = cc(b

′) = 0. All other subjective costs
are set to1. A bad triangle is shown in Figure 1. (This construction is based on the
bad gadgetdefined in [7].)

In the bad triangle, nodea prefers the path(a, c, c′, r) to the path(a, a′, r), node
b prefers the path(b, a, a′, r) to the path(b, b′, r), and nodec prefers the path
(c, b, b′, r) to the path(c, c′, r). It follows from the arguments in [7] that this network
is not solvable.

We now show that, as in the case of unrestricted routing policies, it is NP-complete
to determine if an SPP based on subjective-cost preferencesis solvable.

Theorem 1 Given an instance of the next-hop game, it is NP-complete to decide
whether it has a pure Nash equilibrium or not.

Proof. The proof is based on the corresponding NP-completeness proof in [7].
We give a reduction from the 3SAT problem to this problem. In an instance of the
3SAT problem, we are given a set of variables{x1, . . . , xn} and a set of clauses
{C1, . . . , Cm}. Each clauseCi contains three literalsxi1, xi2, andxi3. Given an
instance({x1, . . . , xn}, {C1, C2, . . . , Cm}) of the 3SAT problem, we construct the
following next-hop game: For each variablexi (1 ≤ i ≤ n), we put three vertices
xi, x̄i, andyi in the graph. For each clauseCj (1 ≤ j ≤ m), we put a bad triangle.
We also put a separate vertexr in the graph. Let the center and three outer vertices
of the bad triangle corresponding to thejth clause bevj , vj1, vj2, andvj3 respec-
tively. The edge set of the graph isE(G) = {yixi, yix̄i, xiyi−1, x̄iyi−1, x1r, x̄1r,
vjr, vj1yn, vj2yn, vj3yn|1 ≤ i ≤ n, 1 ≤ j ≤ m}. The structure of the graph is de-
picted in Figure 2. If vertexvkj corresponds to the literalxi, thencvkj

(x̄i) = 2 and
cvkj

(xi) = 0. If it corresponds tōxi, thencvkj
(xi) = 2 andcvkj

(x̄i) = 0.

Further, we setcxi
(yi) = cx̄i

(yi) = 1 andcyi
(xi+1) = cyi

(x̄i+1) = 1. Finally, we
setcyn(cj) = ccj

(yn) = 1 for each clausej. These assignments are to ensure that,
in any Nash equilibrium, all the bad-triangle centersvj connect directly tor, and
all thexi, x̄i, yi nodes use paths directed towards the left of Figure 2. Note that, in
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any pure Nash equilibrium, there is a unique path fromyn to the rootr. For eachi,
this path passes through eitherxi or x̄i, indicating an assignment ofxi in the 3SAT
instance.

The subjective costs of vertices inside bad triangles follow the pattern of the bad-
triangle example. All other subjective costs are set to zero. Thus, for a set of routes
to be stable, for each clausej, at least one of the vertices{vj1, vj2, vj3} must use
the path throughyn to the root, because there is no stable set of routes throughvj .

We now show that, if there exists an assignment of variables that satisfies all the
clauses, then there exists a pure Nash equilibrium in the next-hop game. We can
find this Nash equilibrium by putting a path through the true literals fromyn to r.
We then assign all nodesvjk corresponding to a true literal the route throughyn.
This route has zero subjective cost, and sovjk has no incentive to change routes.
Each clause contains at least one true literal, and hence each bad triangle is broken
up, and the remaining vertices can be assigned stable paths to r through the center
vj .

Conversely, if there is a pure Nash equilibrium in the next-hop game, assign all
literals corresponding to the path fromyn to r the valuetrue. In this way, for each
i, eitherxi istrue or x̄i istrue, but not both, and hence we have a valid variable
assignment. There are no bad triangles in the Nash equilibrium, and so each clause
must contain a vertexvjk that uses a route throughyn to r. Note thatvjk always has
the option of switching to a path throughcj with cost1. The path stability implies
that vjk does not have a subjective cost of2 for the path throughyn; hence, the
literal corresponding tovjk must be assignedtrue. There is such a vertex for each
clausej, and hence this variable assignment satisfies all the clauses. This shows
that there exists a pure Nash equilibrium in the next-hop game if and only if there
exists a satisfying assignment in the 3SAT instance. 2

v_1

v_m

r

v11 v12

v13

vm1 vm2

vm3

y1 y2 y3
yn−2

yn

x1 x2 x3 xn−1 xn

x̄1 x̄2 x̄3 x̄n−1

x̄n

Fig. 2. The reduction from 3SAT.
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4 The Minimum Subjective-Cost Tree (MSCT) Problem

In this section, we assume that the subjective costci(k) is an actual monetary
amount that is measured in the same unit across all nodes. A natural overall goal
is then to minimize the sum of subjective costs,i.e., to pick a set of routes{Pij}
that minimizes

∑

j

∑

i ci(Pij). However, there is a constraint that all the routes to
a single destinationj must form a tree, because the packets are actually sent by
forwarding. This constraint applies independently to eachdestination, and so we
can consider the simpler problem of routing to a single destinationj.

Thus, we can frame the subjective-cost minimization problem as:

Subjective-cost minimization: We are given a graphG, a set of cost functions
{ci(.)}, and a specific destinationj. We want to find a set of routes{Pij} and
paymentspi to each nodei such that:
(1) The routes{Pij} form a tree rooted atj.
(2) Among all such trees, the selected tree minimizes the sum

∑

i

∑

k∈Pij
ci(k).

We first prove that, for arbitrary cost functions, the MSCT problem is NP-hard to
approximate within any multiplicative factor. Letcmax = maxv,u∈V (G) cv(u) and
cmin = minv,u∈V (G) cv(u). Then, we have the following result:

Theorem 2 It is NP-hard to approximate the MSCT problem within a factorbet-
ter than cmax

cminn2 , wheren is the number of vertices. In particular, it is NP-hard to
approximate MSCT within any factor ifcmin = 0 andcmax > 0.

Proof. We prove that, if we can approximate MSCT in polynomial time,then we
can solve thek-DISPATHproblem in polynomial time. In thek-DISPATH problem,
we are given a graphG = (V, E) andk pairs of vertices(s1, t1), (s2, t2), . . . , (sk, tk),
and we want to findk vertex disjoint paths fromsi to ti for 1 ≤ i ≤ k. The
k-DISPATH problem is among the ones that Karp originally showed to be NP-
hard [8]. From an instanceI = (G, {(si, ti)|1 ≤ i ≤ k}), we construct the fol-
lowing instanceJ = (G′, r, {cv : |v ∈ V (G′)}) of the MSCT problem:V (G′) =
V (G) ∪ {r} andE(G′) = E(G) ∪ {tir|1 ≤ i ≤ k}. We definecsi

(tj) = cmax

if i 6= j. For all the other casescv(u) = cmin. Thus the subjective cost of a tree
in which ti is not on the path fromsi to the root is at mostcminn

2, because each
path has at mostn vertices on it. The subjective cost of a tree in whichsi andtj
are on the same path in the tree, fori 6= j, is at leastcmax. It is apparent that there
is a tree without a pair(si, tj) for i 6= j on a path to the root if and only ifI is
ayes instance ofk-DISPATH problem. Thus, distinguishing between the case in
which the total subjective cost is at mostcminn

2 and the case in which it is at least
cmax is NP-hard. In particular, ifcmin = 0 and cmax > 0, we can use any finite
approximation algorithm for MSCT to solve thek-DISPATH problem. 2
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Fig. 3. The reduction from the set-cover problem

Note that the above theorem does not show hardness for the special cases in which
cmax

cmin

is not large. This may be a reasonable restriction; however,we now show that
this also yields an intractable optimization problem. In particular, we study the
special case in which all subjective costs are either 1 or 2. We call this problem the
(1, 2)-MSCT problem. In the following, we give a hardness result for the (1, 2)-
MSCT problem.

Theorem 3 The(1, 2)-MSCT problem is APX-Hard.

Proof. We first prove that the problem is NP-hard and then modify the reduc-
tion to prove APX-hardness. We give a reduction from the set-cover problem to
(1, 2)-MSCT. Consider an instanceI of the set-cover problem withn elements
{E1, E2, . . . , En} and m sets{S1, S2, . . . , Sm}. We construct an instanceJ =
(G, r, {cv : V (G) → {1, 2}|v ∈ V (G)}) of (1, 2)-MSCT problem as follows: Ver-
ticessj andpj , for 1 ≤ j ≤ m, corresponds to setSj in I. Vertexei, for 1 ≤ i ≤ n,
corresponds to the elementEi in I. There are two other vertices, the rootr and a
helper vertexh. Thus,V (G) = {r, h} ∪ {sj, pj|1 ≤ j ≤ m} ∪ {ei|1 ≤ i ≤ n}.
Vertex ei is connected to all verticessj such thatEi ∈ Sj in I. There is an edge
betweensj andpj, for all 1 ≤ j ≤ m, and there is an edge from eachsj to the
helper vertexh. All verticespj, for 1 ≤ j ≤ m, and vertexh are connected tor.
We also setcei

(h) = 2, for all 1 ≤ i ≤ n, andcsj
(pj) = 2. For all otherv andu,

cv(u) = 1. GraphG is depicted in Figure 3.

We claim that there is a set cover of sizek in I if and only if there is tree with total
subjective cost2n + m + k in J .

If there is a family of setsF of sizek that covers all the elements inI, then we can
construct the following solution inJ . If Sj ∈ F then connectsj to pj to r. Each
ei is connected to someSj ∈ F in the tree; because all elements are covered in
the set cover, all verticesei will be included in the tree. For any vertexsj such that
Sj 6∈ F , connectsj to h, and finally, connecth to r. It is straightforward to check
that the subjective cost of this tree is exactly2n + m + k.
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Conversely, if there is a treeT of cost2n + m + k in J , then there is a set cover
of sizek in I. First we can assume that all the edges tor are inT , because, if
they weren’t, we could add them and remove an edge fromT to decrease the total
subjective cost. Also we can assume that, if there is an edgeeisj in T , thensjpj ∈
E(T ), because otherwisesjh would be inE(T ), and we could remove the edgesjh
and addsjpj to T to get another tree with lower or equal subjective cost. Knowing
these properties of the treeT , we can easily construct the set cover of sizek from
T . This completes the NP-hardness proof.

For APX-hardness, we need to look at a special case of the set-cover problem. The
case in which each element occurs two times and each set is of size at most 3 is
APX-complete [9].6 For this special case of the set-cover problem, we know that
n ≤ m ≤ 1.5n and thatk ≤ m; thus, there is a constantc such that2n+m+k ≤ ck.
This means that a1+ǫ-approximation for the(1, 2)-MSCT problem gives a(1+ǫc)-
approximation for this special case of set cover. 2

Theorem 3 shows that, for sufficiently smallǫ, it is hard to find a(1+ǫ)-approxima-
tion for the(1, 2)-MSCT problem. However, we note that finding a2-approximation
is easy: Simply ignore the costs, and construct an unweighted shortest-path tree
with destinationj. This is optimal to within a factor of 2, because the number of
nodes on the shortest path fromi to j is a lower bound on the subjective costci(Pij)
for any pathPij from i to j.

5 An Alternative Model: Subjective Choice of Metrics

In this section, we consider a more restricted preference model. We assume that
there are multiple objective metrics on routes (e.g., cost and latency), and nodes’
preferences differ only in the relative importance they accord to different metrics.
This is a non-trivial restriction only when the number of objective metrics is small;
here, we first consider the case in which there are only two objective metrics on a
route. The results are generalized tod > 2 objective metrics in Section 5.1.

Formally, suppose that any transit nodek has two associated objective “length”
valuesl1(k) and l2(k). Both the length values can be extended to additive path
metrics,i.e., we can definel1(Pij) =

∑

k∈Pij
l1(k) andl2(Pij) =

∑

k∈Pij
l2(k). Note

that we use the term “metric” for the ease of presentation andthat we do not impose
the triangle equality on the length functionsl1 andl2.

Each nodei has a private parameterλi, 0 ≤ λi ≤ 1. Nodei’s subjective cost for the
routePij is given byci(Pij) = λil1(Pij)+(1−λi)l2(Pij), i.e., Nodei’s preferences
are modeled as a convex combination of the two path metrics.

6 In fact, this is the vertex-cover problem in bounded-degreegraphs.
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It is easy to show that the APX-hardness proof for the(1, 2)-MSCT problem (The-
orem 3) can be adapted to the two-metric routing problem as well:

Theorem 4 In the subjective-metric model, it is APX-hard to find a treeT that
minimizes total subjective cost.

Proof. In the construction of Theorem 3, assignl1(h) = 2, l2(h) = 1; ∀j l1(pj) =
1, l2(pj) = 2; and∀j l1(sj) = 2, l2(sj) = 1. Assignλei

= 1 for all i, andλsj
= 0

for all j. Then, the subjective costs are exactly as specified in the proof of Theo-
rem 3, and the APX-hardness follows. 2

We now investigate whether relaxing the confluent-tree routing constraint would
lead to stronger results. If we allowed the routes to be completely arbitrary, then
clearly we could have optimal routing: Each node could simply use the route it
liked the best. However, supporting these routes would either require source routing
(i.e., the packet header contains a full path) or a massive increase in storage at each
router to record the forwarding link for each source and destination. Instead, we
ask whether we can get positive results with only a small growth in routers’ space
requirements.

Our approach is to use asmall numberr of confluent routing treesT1, T2, · · ·Tr to
each destinationj. Then, each nodei evaluates its subjective cost toj in each of the
routing trees and picks a treeTti that minimizes this subjective cost. Nodei then
marks each packet it sends with the header< j, ti >. Each nodeen routestores
its route toj along each treeTj ; thus, it can inspect the header of each incoming
packet and forward along the appropriate route.

We can prove the following result:

Theorem 5 Suppose that, for transit nodek , l1(k) andl2(k) are integers bounded
by a polynomial, i.e.,l1(k), l2(k) < nc for some constantc. Then, for any given
ǫ > 0, there is a set of routing treesT1, T2, · · ·Tr with r = O(1

ǫ
[log n + log(1

ǫ
)])

such that:

For each nodei, there is a treeTti such thatci(Tti) ≤ (1 + ǫ)ci(P
∗
ij), whereP ∗

ij

is the minimum-subjective-cost route fromi to j.

Further, this set of trees can be constructed in polynomial time.

Proof. Let α = (1 + ǫ). We now show how to construct an appropriate set of
trees. Each treeTt in our collection is the shortest-path tree for a specific convex
combination of the two metrics. We name the trees after the metrics they optimize:

T∞: l1(·), with ties broken by minimuml2(·).
T−∞: l2(·), with ties broken by minimuml1(·).
Tt: lt(·) = αt

1+αt l1(·)+ 1
1+αt l2(·) for t ∈ {−k,−(k−1) . . . ,− 1, 0, 1, · · ·k}, where

13



k = ⌈logα(2ǫ−1nc+1)⌉.

Thus, there are a total ofr = 2k + 3 = O(log n) trees. These trees can be con-
structed withr shortest-path computations and hence can be done in polynomial
time. Now, consider a nodei, and letλi ∈ [0, 1] denote its private choice of metric.
If λi = 1, then clearlyT∞ will contain the optimal route fromi to j. Similarly,
if λi = 0, T−∞will contain the optimal route fromi to j. Hence, we restrict our
attention to the case in whichλi ∈ (0, 1).

Let P t
ij denote the path fromi to j in Tt, andP ∗

ij denote the path fromi to j to
which i assigns minimum subjective cost. We divide all values ofλ ∈ (0, 1) into 4
cases.

Case (i): λi

1−λi
> 2ǫ−1nc+1

Now, if l1(P
∗
ij) = 0, thenT−∞ must containP ∗

ij , because it is the optimal path under
thel2 metric. If l1(P ∗

ij) ≥ 1, we get:

ci(P
∞
ij ) = λil1(P

∞
ij ) + (1 − λi)l2(P

∞
ij )

≤λil1(P
∗
ij) + (1 − λi)l2(P

∞
ij )

≤λil1(P
∗
ij) + ǫ/2 (Using the bound on node costs)

≤ (1 + ǫ)ci(P
∗
ij)

Case (ii): 1 ≤ λi

1−λi
≤ 2ǫ−1nc+1

Let

t = ⌊logα

λi

1 − λi

⌋

Then, we have

αt ≤ λi

1 − λi

≤ αt+1

Now, becauseP t
ij is the optimal tree under metriclt, we have

αtl1(P
t
ij) + l2(P

t
ij) ≤ αtl1(P

∗
ij) + l2(P

∗
ij)

Then,

1

1 − λi

ci(P
t
ij) =

λi

1 − λi

l1(P
t
ij) + l2(P

t
ij)

≤αt+1l1(P
t
ij) + l2(P

t
ij)
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≤α(αtl1(P
t
ij) + l2(P

t
ij))

≤α(αtl1(P
∗
ij) + l2(P

∗
ij))

≤α(
λi

1 − λi

l1(P
∗
ij) + l2(P

∗
ij))

=
1

1 − λi

αci(P
∗
ij)

Case (iii): 1 < 1−λi

λi
≤ 2ǫ−1nc+1

The same argument as Case (ii) shows that someTt is a good approximation.

Case (iv): 1−λi

λi
> 2ǫ−1nc+1

The same argument as Case (i) shows that eitherT∞ or T−∞ is a good approxima-
tion.

Thus, in each case, one of the routing trees contains a route to j that has a subjective
cost of at most(1 + ǫ)ci(P

∗
ij). 2

There are several points worth noting about this scheme: (1)It achieves a result
that is slightly stronger than our initial goal – it approximately maximizes each
individual node’s welfare, not just the sum of all nodes’ welfare. (2) The compu-
tation of the trees is oblivious to the nodes’ preference information. Thus, if we
assume that the objective costs are common knowledge (or verifiable), this scheme
is trivially a strategyproof mechanism. (3) Each tree computation involves comput-
ing lowest-cost routes for a specific objective metric. Thus, it is easily computed
within the framework of the Border Gateway Protocol (BGP). (In the terminology
of Feigenbaum et al. [3,4], there is a natural BGP-based distributed algorithm for
this scheme.)

We now prove a corresponding lower bound that shows that Theorem 5 is nearly
optimal.

Theorem 6 Let ǫ > 0 be given. There is a family of instances of the subjective-
metric routing problem, with all weights in[0, nc] for some constantc, such that the
following property holds:

Any set of routing trees that contains a(1 + ǫ)-approximately optimal pathPij

for eachi must haveΩ(log n/ǫ) trees.

(Here,n is the number of nodes of the network.)

Proof. First, consider the network shown in Figure 4: The destination j hasr
neighborsx1, x2, · · · , xr. There is a nodea that is adjacent to each of theser nodes,
and there arer more nodesy1, · · · , yr that are adjacent toa.

Let α = 1+ ǫ. The transit lengths are set as follows: For each nodexk, setl1(xk) =

15



x1

a

j

x2 xr

y1 y2 yr

Fig. 4. Network used in Theorem 6

α2r−2k andl2(xk) = α2r+2k. Fora, setl1(a) = l2(a) = 0; the lengths of nodesyi

are irrelevant, because they cannot be transit nodes. Finally, for each nodeyi, define
λyi

= (1 − α−4i). Hence, for a routeP , we have

cyi
(P ) =

α4i

α4i + 1
l1(P ) +

1

α4i + 1
l2(P )

We now show that, for these costs and preferences, the minimum subjective-cost
route fromyi to j is axij, and that, further, no other path is within a(1 + ǫ) factor
of optimal.

Let Pk denote the pathaxkj. Then,yi’s subjective cost for this path is

cyi
(Pk) =λyi

l1(xi) + (1 − λyi
)l2(xk)

=
α4i

α4i + 1
α2r−2k +

1

α4i + 1
α2r+2k

Thus,

cyi
(Pi) =

α4i

α4i + 1
α2r−2i

Now, we evaluatecyi
(Pk) for i 6= k. Consider two cases:

Case (i): k > i

In this case,

16



cyi
(Pk) =

α4i

α4i + 1
α2r−2k +

1

α4i + 1
α2r+2k

=
α4i

α4i + 1
α2r−2k

[

1 + α4(k−i)
]

>
α4i

α4i + 1
α2r−2iα2(k−i)

>αcyi
(Pi)

Case (ii): k < i

In this case, we have

cyi
(Pk) =

α4i

α4i + 1
α2r−2k +

1

α4i + 1
α2r+2k

=
α4i

α4i + 1
α2r−2k

[

1 + α4(k−i)
]

>
α4i

α4i + 1
α2r−2iα2(i−k)

>αcyi
(Pi)

Thus, if a solution contains a(1 + ǫ)-approximately optimal path for everyyi, it
must containPi. In any one routing tree,a can have only a single route toj; thus,
at leastr routing trees are required to achieve this.

Finally, observe that the costs are all bounded below by1 and bounded above by
α4r. For ann-node graph, we can setr = c log n

4 log α
= O( log n

ǫ
) to ensure that all costs

are at mostnc; then, the graph in Figure 4 can be embedded into then-node graph.
2

5.1 Generalization to more than2 metrics

In this section, we show that Theorems 5 and 6 generalize to the case in which there
ared > 2 objective metrics, and a node’s subjective cost is a convex combination
of these metrics.

Theorem 7 Suppose that, for transit nodek , all lengthsl1(k), l2(k) . . . , ld(k) are
integers bounded by a polynomial, i.e. ,lj(k) < nc for some constantc. Then, for
any givenǫ > 0, ǫ < 1, there is a set of routing treesT1, T2, · · ·Tr with total number

of treesr = O(d3d[
(c+1) log n+log( 4

ǫ
)

log(1+ǫ)
]d−1) such that:

For each nodei, there is a treeTti such thatci(Tti) ≤ (1 + ǫ)ci(P
∗
ij), whereP ∗

ij
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is the minimum-subjective-cost route fromi to j.

Further, this set of trees can be constructed in polynomial time for any constantd.

Proof. The proof, like Theorem 5, uses the idea of rounding the preferences to a
bounded grid. The only subtle detail is to handle the case in which i’s optimal path
has zero costs in some metrics. We do this by including, for every subset of metrics,
a tree that preferentially selects paths with zero cost on that subset.

Letα = 3
√

1 + ǫ. First, let us define the set of trees constructed. Letk = ⌈logα(4ǫ−1nc+1)⌉.
Each such tree is indexed by a pair(ĵ,~h), wherêj ∈ {1, 2, · · · , d},~h ∈ {−∞,−k,−(k−
1), · · · ,−1, 0,∞}d, andhĵ = 0. The corresponding cost function is defined by

c(ĵ,~h)(P ) =
∑

j

αhj lj(P )
∑

a,ha 6=∞ αia

For each such cost function, we construct the correspondingminimum-cost tree
T(ĵ,~h). Note that the cost of a path may be infinite; if there is no pathfrom i that has
a finite cost underT(ĵ,~h), we can include an arbitrary path fromi in this tree.

Note that̂j does not influence the cost function; it merely indicates onemetric that
has the maximum weightage underc(ĵ,~h). It follows that multiple index pairs(ĵ,~h)
may correspond to the same cost metric, and hence the same tree. As we are proving
an upper bound on the number of trees required, this redundancy is not problematic.
For fixedĵ, there are(k + 3)d−1 legal values for~h. Thus, the total number of trees

constructed is bounded byd(k + 3)d−1 = O(dkd−1) = O(d3d[
(c+1) log n+log( 4

ǫ
)

log(1+ǫ)
]d−1).

We now show that this set of trees contains, for each nodei, a path that approxi-
mately minimizesi’s subjective cost.i’s subjective cost is a convex combination of
the metrics, and hence, can be represented as

ci(P ) =
∑

j

λi,jlj(P )

where theλi,j values are non-negative and sum to1. Let P ∗ be the path fromi
that minimizesi’s subjective cost. We need to prove that there is a path in oneof
the constructed trees that approximates the subjective cost (to i) of P ∗.

First, consider the caseci(P
∗) = 0. Consider the tree with index(ĵ,~h) defined

as follows:hj = −∞ if λi,j = 0, andhj = 0 otherwise.̂j is picked such that
hĵ = 0 (there is at least one suchĵ, because not allλi,j can be zero). It follows that
c(ĵ,~h)(P

∗) must be0. The optimal pathP~h from i in T(ĵ,~h) must hence have zero cost
underc(ĵ,~h). Therefore,lj(P~h

) must be zero wheneverλi,j > 0, and soP~h
must also

have zero cost under metricci. Thus, in this case, the constructed paths contain an
exactly optimal path fori.
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Now, suppose thatci(P
∗) > 0. Let S = {j|lj(P ∗) > 0} be the set of base metrics

under whichP ∗ has positive cost. Now, pick̂j to maximizeλi,j within S:

ĵ = argmaxj∈Sλi,j

Note thatλi,ĵ > 0, becauseci(P
∗) > 0. Let ij = logα

λi,j

λi,ĵ
; then,ij ∈ [−∞, 0].

We now select a vector~h as follows:

∀j /∈ S, hj = ∞
∀j ∈ S, ij ≥ −k, hj = ⌊ij⌋
∀j ∈ S, ij < −k, hj = −∞

Let P~h be the optimal path fromi to j in T(ĵ,~h). We now show that it is nearly
optimal in terms ofi’s subjective cost.

First, observe thatP ∗ has finite cost underc(ĵ,~h), because, by construction,lj(P
∗) =

0 wheneverhj = ∞. Next, observe that we do not alter the cost much by rounding
all sufficiently smallij to−∞, becauselĵ(P

∗) ≥ 1:

∑

j|ij<−k

αij lj(P
∗) ≤ dα−knc+1 ≤ (ǫ/4) ≤ (ǫ/4)lĵ(P

∗)

(Here, we have used the fact that the maximum cost of a path, inany base metric,
is at mostn · nc = nc+1.)

This gives us a bound:

∑

j

αij lj(P
∗)≤ (1 + ǫ/4)

∑

j|ij≥−k

αij lj(P
∗)

∑

j

αij lj(P
∗)≤α(1 + ǫ/4)

∑

j|ij≥−k

αhj lj(P
∗) (becauseαik ≤ α · αhk )

Now, we can bound the cost of pathP ∗ in the cost metricc(ĵ,~h).

c(ĵ,~h)(P
∗) =

∑

j αhj lj(P
∗)

∑

a,ha 6=∞ αha

≥
∑

j αhj lj(P
∗)

∑

a αia
(increasing the denominator)
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≥ 1

α(1 + ǫ/4)

∑

j αij lj(P
∗)

∑

a αia

≥ 1

α(1 + ǫ/4)
ci(P

∗)

Note thatc(ĵ,~h)(P~h
) ≤ c(ĵ,~h)(P

∗), because the treeT(ĵ,~h) is a lowest-cost tree. Fur-
ther, P~h must have finite cost in this metric, and hence,lj(P~h) = 0 whenever
lj(P

∗) = 0. Thus, we get

ci(P~h
) =

∑

j αij lj(P~h
)

∑

a αia

≤
∑

j αij lj(P~h
)

∑

a,ha 6=∞ αia
(reducing the denominator)

≤
∑

j αij lj(P~h
)

∑

a,ha 6=∞ αha
(reducing the denominator)

≤α

∑

j αhj lj(P~h)
∑

a,ha 6=∞ αha
(usingαij < α · αhj )

≤αc(ĵ,~h)P~h

Combining, we get thatci(P~h
) ≤ α2(1+ ǫ/4)ciP

∗. Forǫ < 1, we have(1+ ǫ/4) ≤
3
√

1 + ǫ, soci(P~h) ≤ (1 + ǫ)ci(P
∗). Thus,P~h is an approximately optimal path for

i. 2

Theorem 8 Letǫ > 0 be given andd > 2 be given. There is a family of instances of
the subjective-metric routing problem, with all weights in[0, nc] for some constant
c, such that the following property holds:

Any set of routing trees that contains a(1 + ǫ)-approximately optimal path for
eachi must haveΩ(( log n

d log d+d log(1+ǫ)
)d−1) trees.

(Here,n is the number of nodes of the network.)

Proof. Consider the network shown in Figure 5. The destinationw hasm neigh-
borsx1, x2, · · · , xm. There is a nodew′ that is adjacent to each of thesem nodes,
and there aren more nodesy1, · · · , yn that are adjacent tow′. Consider all inte-
ger vectors~i = (i1, i2, . . . , id−1, 1) ∈ [1, r]d. There arerd−1 such vectors. We set
m = rd−1 and correspond each vector~i to one of the verticesxj . Thus, we denote
by x~i the vertexxj corresponding to vector~i.

Let α = 1 + ǫ. Now we define the transit lengths as follows: For each nodex~i with

~i = (i1, . . . , id−1, 1), we setlj(x~i) = tij+r−a(~i) for 1 ≤ j ≤ d wherea(~i) =

∑d−1

j=1
ij

d

20



xmx1

yny1

x2

y2

w

w′

Fig. 5. Network used in Theorem 8.

andt is a constant that is fixed later. Forw′, setlj(w′) = 0 for all 1 ≤ j ≤ d; the
lengths of nodesy~i are irrelevant, because they cannot be transit nodes. Finally, for
m nodesy~i, defineλy~i,j

= t−ij for 1 ≤ j ≤ d − 1 andλy~i,d
= 1. For the other

n − m vertices,λyk,j = 1
d

for 1 ≤ j ≤ d for m < k ≤ n.

Let P~i be the path(w′, x~i, w). For a routeP~i, we have

cy~i
(P~i) = dtr−a(~i).

We now show that, for these costs and preferences, and by setting t such thatlog t ≥
d(log d + log α) the minimum subjective-cost route fromy~i to j via P~i, and that,
further, no other path is within a(1 + ǫ) factor of optimal.y~i’s subjective cost for
pathP~i′

, we claim that

cy~i
(P~i′

)≥ max
1≤j≤d

ti
′

j−ij · tr−a(~i′)

≥αdtr−a(~i)

≥αcy~i
(P~i).

To see the second inequality, we need to show that for a numberj (1 ≤ j ≤ d),

ti
′

j−ij+a(~i)−a(~i′) ≥ αd. Assuming~i 6= ~i′, there exists an indexj such thati′j − ij +

a(~i) − a(~i′) ≥ 1
d
. Thus, in order to prove the claim it is sufficient to prove that

t
1

d ≥ αd, but this is an immediate consequence oflog t ≥ d log α + d log d.

This shows that if a solution contains a(1+ǫ)-approximately optimal path for every
y~i, it must containP~i. In any one routing tree,w′ can have only a single route tow;
thus, at leastm = rd−1 routing trees are required to achieve this.

Now, if there is an upper bound ofnc on the subjective costs, we can settr = Θ(nc).
By settinglog t = Θ(d log d+d log α), r = Θ( c log n

log t
) = Θ( c log n

d log d+d log α
). Therefore,

we needm = rd−1 = Θ([ c log n

d log d+d log α
]d−1) routing trees. 2
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6 Conclusion

In this paper, we have studied classes of ordinal and cardinal preferences based on
subjective costs. The subjective-cost preference model isintuitively appealing, and
it is very expressive. However, our results show that, even if the costs are restricted
to a very small range, unstructured subjectivity leads to intractable problems in
both models: NP-completeness of the stable paths problem for ordinal preferences
and APX-hardness of the minimum subjective-cost tree problem for cardinal pref-
erences.

The root cause of these hardness results appears to be the high dimension of the
space of node preferences. Thus, it is necessary to work withmodels that provide a
more consistent global structure. In Section 5, we considerthe case in which there
are two objective cost metrics, and nodes differ in the relative importance they place
on the first metric. For example, nodes may agree on the latency and packet-loss
rate of each node in the network but have subjective opinionsabout the relative
importance of latency and loss rate. Thus, in this model, thespace of all node
typesis one-dimensional. We showed that it is possible to select asmall number
(O(1

ǫ
[log n+log(1

ǫ
)]) for a (1+ ǫ)-approximation) of representative types such that

every nodes’ preferences are closely approximated by one ofthe representatives;
then, by picking asetof routing trees, each of which is optimized for a specific
representative type, we can guarantee each node a route that(1 + ǫ)-approximately
minimizes its subjective cost. Further, this scheme is easyto implement, even in the
distributed-computing context: Each destination can be replaced by a small number
of logical destinations, and a lowest-cost routing algorithm (e.g., the Bellman-Ford
algorithm) can be used for each logical destination.

It is also possible that other models that restrict the subjectivity of the costs in some
way may yield positive results. For example, the nodes’ subjective costs for a given
transit nodek are random variables drawn from a specific distribution. Finding
such models that are both realistic and tractable is an interesting avenue for future
research.
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