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Abstract

We study a model of path-vector routing in which nodes’ nogitpolicies are based on
subjectivecost assessments of alternative routes. The routes argainad by the require-
ment that all routes to a given destination must be confliatshow that it is NP-hard to
determine whether there is a set of stable routes. We also itz it is NP-hard to find a
set of confluent routes that minimizes the total subjecto&;dt is hard even to approxi-
mate minimum cost closely. These hardness results holdfeverry restricted classes of
subjective costs.

We then consider a model in which the subjective costs aredbas the relative im-
portance nodes place on a small number of objective costuresas/Ne show that a small
number of confluent routing trees is sufficient for each nadeave a route that nearly
minimizes its subjective cost. We show that this scheméviallly strategyproof and that it
can be computed easily with a distributed algorithm. Furtioee, we prove a lower bound
on the number of trees required to contaifila+ €)-approximately optimal route for each
node and show that our scheme is nearly optimal in this réspec
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1 Introduction

In any networked computation environment, routing (findiaghs from each node
in the network to every other node) is an essential task. Bmailfes of routing
protocols are widely usetink-staterouting protocols angath-vectorouting pro-
tocols. In link state protocols, the state of the entire roekvis maintained by every
single node; this is updated whenever there is a change amgviin the network.
In a path-vector protocol, each node only maintains a locab wf the network
that includes the paths currently used by neighboring nddading to significant
space and communication savings. In this paper, we focustinyector routing
protocols.

With path-vector routing, routes are propagated by a nodewcing its current
path to a given destination to some or all of its neighbors.oflen with many
neighbors may thus receive annoncements of many diffeoemes to a given des-
tination j. It can then select (at least) one of these available rogtésearoute it
will use to send its traffic; subsequentlygzan announce this chosen route (prefixed
by i itself) to its neighbors. Proceeding in this manner, every node in thear&tw
can eventually discover at least one route to destingtiorhus, one of the key
decisions that has to be made at each node is thauté selectionGiven all the
currently available routes to destinatipnwhich one is traffic sent on?

At first glance, it may seem as though nodes should alwaystp&khortest route;
in practice, however, node preferences may be greatly mfkeek by other factors,
such as perceived reliability or preferences over whiclgoing link is used. This
is particularly important when nodes have some degree ohanty {.e., they are
controlled by different entities. In this case, each nodg mdependently choose
a routing policythat governs its route selection. The resulting routingeso is
called policy-based routingor policy routingfor short. With policy routing, the
global routes depend on all the individual nodes’ policyichs. Achieving efficient
routing thus requires coordination of routing policies aalvas attention to the
incentives and preferences of autonomous nodes.
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1.1 Path-Vector Routing in the Internet

Policy routing has chiefly been studied in the contexinéérdomain routing The
Internet is divided into mangutonomous Syster(sSes). Loosely speaking, each
AS is a subnetwork that is administered by a single orgaioizainterdomain rout-
ing is the task of routing between different ASes. Curreritig only widely used
protocol for interdomain routing is the Border Gateway Becol (BGP). BGP is
a path-vector protocol that allows an AS to “advertise” esuit currently uses to
neighboring ASes.

AS route preferences are complex, and are largely dependetite commercial
relationships that an AS has with other ASes. For this reaB@P allows ASes
complete freedom to pick a route according to their e@uting policies However,
BGP does place one important constraint on routing: It &iegs that an AS can
only advertise a route that the advertising AS itself cuiyemses. This is because
of the way traffic is routed in the Internet: Routers examime destination of in-
coming packets and simply forward the packet to the next imojhe current route
to that destination. At a given time, each AS typically hasatly one active route
to the destination. Thus, the set of all ASes’ routes to argdestination A§ must
beconfluenti.e., they must form a tree rooted at

The policy-routing aspect of interdomain routing has rélgereceived a lot of at-
tention from researchers. Varadhan et al. [10] observedgérzeral policy routing
could lead to route oscillations. Griffin, Shepherd, andfovig [7,6] studied the
following abstract model of general policy routing: Each A&Spolicy is repre-
sented by a preference ordering over all possible routegivea destination. At
any given time; inspects the routes all of its neighbors are advertising a4nd
picks the one that is ranked highest. ABen advertises this route (prefixed by
itself) to all its neighbors. Griffin et al.proved that, inckua scenario, BGP may not
converge to a set aftable pathsthe routes might keep oscillating as ASes contin-
uously change their selection in response to their neighlobanges. They further
showed that, given a network and a set of route preferencissNP-complete to
determine whether a set of stable paths exists. In recerk, Wweamster et al. [1]
showed that instability can arise even for restricted rgugolicies.

Feigenbaunet al. [4] extended the model of [7] by including cardinal preferes
instead of preference orderings. Specifically, they assinaeAS: conceptually
assigns each potential route a monetary value and then raontes according to
their value. The advantage of working with cardinal prefiees is that a set of paths
can be stabilized by making payments to some of the ASesoiAdth the ASesa
priori preferences may have led to oscillation (in the absenceyhpats), ASes
preferences can be changed if they receive more money fog asiess valuable
route. This is the basis for the mechanism-design appraaaiuting, which seeks
to structure incentives so as to achieve a stable, globaitynal set of routes;



see [4] for further details. In the context of policy routjrige most natural global
goal is to select a set of confluent routes that maximizesatad¢ welfare(the sum

of all ASes’ values for their selected routes). Howevergeebaum et al.showed
that, for general valuation functions, it is NP-hard to finadvelfare-maximizing
set of routes; it is even NP-hard to approximate the maximwtifane to within a
factor of ni~, wheren is the number of nodes. Thus, in this model too, general
routing policies lead to computationally intractable desbs.

The natural approach to get around the intractability tesslto restrict either the
network or the routing policy. Restricting the network aafoes not appear to be
a very promising direction, because the hardness resutiskien for fairly simple
networks that cannot be excluded without excluding mantetimet-like” networks.
This has led researchers to turn to restricted classesfefrprees that can express a
wide class of routing policies that ASes use in practiceg&ibaunet al.[4] study
next-hoppreferences — preferences in which an ASvalue for a path depends
only on the next AS on the path — and show that, in this case|fan@enaximizing
set of routes can be found in polynomial time. Next-hop pesfees can capture
the effects of’s having different commercial relationships with neighibg ASes.
Similarly, in the ordinal-preference model, Gao and Rex{éi show that, with the
current hierarchical Internet structure, BGP is certaiodoverge to a set of stable
paths as long as every AS prefers a customer rawge 4 route in which the next
hop is one of its customers) over a peer or provider route;dan also be viewed
as a next-hop restriction on preferences.

1.2 More expressive preference classes

There are many reasonable policies that cannot be expressads of next-hop
preferences alone. Although commercial relationshipsteerimary determinant
of current AS routing policies, understanding other classiepolicies that could
be handled without abandoning the path-vector approachdamei useful as the
Internet continues to evolve. In addition, new domains saglwireless ad-hoc
networks also involve loosely coupled autonomous node$.canld also benefit
from policy-based routing protocols.

In this paper, we study other classes of routing policies¢hpture plausible node
preferences. We examine the global routing behavior urfterconfluence con-
straint that requires all routes to a destination to formea;tas discussed above,
this is a natural requirement when packets are forwardeeldoais the destination
alone. For example, a nodenight wish to avoid any route that goes through node
k, either because it perceivéso be unreliable or becaugeis a malicious com-
petitor who would like to drop all of's traffic. This leads to théorbidden-setlass

of routing policies: For each nodethere is a set of nodes such that prefers
any route that avoids; over any route that uses a nodeSn We can then ask the



following questions: (1) If each node uses a forbidden-seting policy, will the
path-vector routing protocol converge to a set of stablagigtand (2) Can we find
a welfare-maximizing routing treeg., a set of confluent routes that maximizes the
number of nodes whose routes daotintersect the setS;? If the latter optimiza-
tion problem were tractable, then this class of routinggied would be a candidate
for a mechanism-design solution as in [3].

Forbidden-set policies (and many others) can be framednmstefsubjective costs
Each node assigns a cost; (k) to every other nodé. Then, the “cost” perceived
by nodek for a routeP is 3", p c;(k); nodei prefers routes with lower subjective
cost. Subjective-cost routing is a natural generalizatiblowest-cost routing (in
which there is a single objective measure of cost that alesaree upon). It is
well known that lowest-cost routes can be computed easityh&nce we hope that
some more general class of subjective-cost routing pslieié also be tractable.

However, we find that even very restricted subsets of sutsgecbst policies lead
to intractable optimization problems: We show that, if aldies rank paths based
on subjective-cost assignments, it is still possible teetavinstance in which there
is no stable-path solution. Further, given a network angestive costs, it is NP-
complete to determine whether there is a set of stable ptbseover, the NP-
completeness reduction only requires subjective costeirang€g0, 1, 2} for each
node. In the cardinal utility model, the outlook is not muclghter: We show that,
even if all subjective costs are eitheor 1, it is NP-hard to find a set of routes that
maximizes the overall welfare; indeed, it is NP-hard eveapjoroximate maximum
welfare to withinanyfactor. The forbidden-set routing policies can be formedat
in terms of0-1 subjective costs, and hence optimizing for this class s dilficult.
We then turn to subjective costs with bounded ratios. We ghatyif the subjective
costs are restricted to lie in the rande2], the problem of finding a confluent tree
with minimum total subjective cost is APX-hard; thus findiagsolution that is
within a(1+-¢) factor of optimal is intractable. In this case, however, aweighted
shortest-path tree provides a trivial 2-approximatiorneaptimization problem.

In light of all these hardness results, we consider a morgice=s] scenario in
which the differing subjective cost assignments arise fobfferences in the rel-
ative importance placed on twabjectivemetrics, such as latency and reliability.
Thus, we suppose that every pathhas two objective costs(P) and ly(P).
We assume that nodeevaluates the cost of path as the convex combination
Ail1(P) + (1 — \)l2(P), where); € [0, 1] reflects the importanceplaces on the
first metric. Here, too, itis NP-hard to find a routing treetttiasely approximates
the maximum welfare. However, if we slightly relax the coastt that each node
stores only a single route to the destination, we show thiatppssible to find a
nearly optimal route, as follows. Given amy> 0, we can find a set af)(logn)
trees’ rooted atj with the following property: If each nodechooses the route it

® The dependence aris detailed in Section 5.



likes best among th€@(log n) alternatives, the overall welfare is within(a + ¢)
factor of optimal. This solution can be implemented by replg each destination
with a set ofO(logn) logical destinations and then finding a lowest-cost routing
tree to each of these logical destinations. The resultsrgkreto the convex com-
binations ofd > 2 objective metrics)(d3%1log? ' n) trees are required in this
case.This scheme is trivially strategyproof, and, furthiean be implemented with
an efficient distributed algorithm.

The rest of this paper is structured as follows: In sectiowe jntroduce the sub-
jective-cost model of routing preferences. In section 3stugly the stable-paths
problem for path rankings based on subjective costs. Inogectt and 5, we study
the problem of finding a routing tree that minimizes the tetdjective cost.

2 Subjective-cost model for policy routing

In this section, we present the subjective-cost model ofenmekferences. The
model involves each nodés assigning a cost;(k) to every other nodé. These
costs aresubjective because there is no requirement thét) andcy(.) be consis-
tent. We assume that each subjective eggt) is non-negative. The total cost of n
node: for a routeP;; to destinatiory is

ci(Py) = > (k).

keP;;

Here, the notatiok € P;; is used to indicate thatis atransit nodeon the the path
P;;; i andj are thus excluded from the summation. Naaeants to use a routé,;
that minimizes the cost (F;;).

The subjective-cost model can be used to express a wide odipgeferences, but
it does place some restrictions on node preferences. Ranice, an nodécannot

prefer a pathP over a pathP’ whose nodes are a strict subset/dfThe class of
preferences that can be expressed as subjective costdasclu

e Lowest-cost routing
If ¢;(k) is the actual cost of transiting nodeminimizing the path cost is exactly
lowest-cost routing.

e Routing with a forbidden set
Let ¢;(.) take the following form: Ik € S;, ¢;(k) = 1, elsec;(k) = 0. Then any
route that avoids nodes 1)} is preferred by over any route that involves a node
in Sz

Subjective costs can form the basis for either ordinal pegiees or cardinal util-
ities. In section 3, we study the stable-paths problem foin pankings based on



subjective costs. In sections 4 and 5, we study the probldindihg a routing tree
that minimizes the total subjective cost.

3 Stable Paths with Subjective Costs

The Stable Paths Problem (SPRihtroduced by Griffiret al. [6], is defined as fol-
lows. We are given a graph with a specified destination nodeach other node
1 represents a node; there is an edge between two nodes if and trey ex-
change routing information with each other. Thus, a patmfido j in the graph
corresponds to a potential route from nade the destination. Each nodeanks
all potential routes to destinatign A route assignmens a specification of a path
P,; for each node such that the union of all the routes forms a tree rootegl at
(i.e., the confluence property is satisfied). A route assignmecalied stableif,
for every nodei, the following property holds: For every neighboof i, node:
does not strictly prefer the pathP,; over the pathP;;; in other words; would not
want to change its current route to any of the other routesently being adver-
tised by its neighbors. The stable-paths problesoisableif there is a stable route
assignment.

Griffin et al. [7,6] have shown that there are instances of SPP that ardwunso
able, and, further, that it is NP-complete to determine Wwaef given SPP is
solvable. Their constructions used preferences that ¢dmnalirectly expressed
as subjective-cost preferences. This leads us to hopedhatbjective-cost pref-
erences, the stable-paths problem might be tractable.rtunfately, this is not the
case. In this section, we prove that these hardness restdtsdeto subjective-cost
preferences.

Assume that the rankings assigned by nodes are based onentyimgisubjective-
cost assignment. Then, the stable paths problem can bed/iawwerms of a strate-
gic game, as follows: The players of this game are the nodesn@ grapttz(V, E)
with a specific destinationand a subjective-cost functien V(G) x V(G) — R,
thenext-hop games defined as follows. Nodes correspond to the vertices gffgra
G. The strategy space for nodeés the setV (i) of neighboring nodes in the graph;
thus, node’s picking the route advertised by a neighboring nadmrresponds to
i's playing strategy:. Given a vector of strategies (one for each player), the cost
incurred by playet is the subjective cost of its route to the destination; iféhis
no route fromi to the destination;’s cost iscc. A vector of strategies is a pure-
strategy Nash equilibrium if, given the strategies of a# tither nodes, no node
could decrease its subjective cost by changing its strategyre-strategy Nash-
equilibrium strategy profile must result in every node hgwome route tg, and,
hence, it must correspond to a valid route assignment. Tgrosjng that an SPP
is solvable is equivalent to proving that the correspondiegt-hop game has a



... Fig. 1. A bad triangle.
pure-strategy Nash equilibrium.

Definition 1 Thebad triangles defined as follows. It is a graph with vertex set
{a,b,c,d’,V/,d,r} and edge sefad’,a'r,cc,r, bV b'r,ab,be,ca}. Sete,(c) =
co(d) = 0; o(a) = cp(a’) = 0; and c.(b) = c.(b') = 0. All other subjective costs
are set tol. A bad triangle is shown in Figure 1. (This construction ised on the
bad gadgedlefined in [7].)

In the bad triangle, node prefers the patfia, ¢, ¢, r) to the path(a,a’, ), node

b prefers the pathb,a,a’,r) to the path(b,’,r), and nodec prefers the path
(¢, b,b',r)tothe path(c, ¢, r). It follows from the arguments in [7] that this network
is not solvable.

We now show that, as in the case of unrestricted routing ieslict is NP-complete
to determine if an SPP based on subjective-cost preferensessable.

Theorem 1 Given an instance of the next-hop game, it is NP-completetald
whether it has a pure Nash equilibrium or not.

Proof. The proof is based on the corresponding NP-completeness prq7].
We give a reduction from the 3SAT problem to this problem.rirestance of the
3SAT problem, we are given a set of variables, ..., z,} and a set of clauses
{C4,...,C,}. Each clause”; contains three literals;;, =, andz;3. Given an
instance({xy, ..., x,},{C1,Cs,...,C,}) of the 3SAT problem, we construct the
following next-hop game: For each variablg(1 < i < n), we put three vertices
x;, ;, andy; in the graph. For each clausg (1 < j < m), we put a bad triangle.
We also put a separate vertein the graph. Let the center and three outer vertices
of the bad triangle corresponding to tl#h clause be;, vj;, vj2, andv;; respec-
tively. The edge set of the graph 5(G) = {vyix;, viTi, xiYi—1, TiYi_1, T17, T1T,
VT, Vi1Yn, VjaYn, VisYn|l < i < n,1 < j < m}. The structure of the graph is de-
picted in Figure 2. If vertexy; corresponds to the literal, thenc,, (z;) = 2and
Cy, (73) = 0. If it corresponds ta;, thene,,, (z;) = 2 ande,,, (7;) = 0.

Further, we set,, (v;) = ¢z, (y;) = 1 andey, (zi41) = ¢, (Ti41) = 1. Finally, we
setc,, (¢;) = c.,(yn) = 1 for each clausg. These assignments are to ensure that,
in any Nash equilibrium, all the bad-triangle centeysonnect directly to-, and
all thez;, z;, y; nodes use paths directed towards the left of Figure 2. Nattg ith



any pure Nash equilibrium, there is a unique path frignto the rootr. For each,,
this path passes through eitheror z;, indicating an assignment of in the 3SAT
instance.

The subjective costs of vertices inside bad triangles ¥olioe pattern of the bad-
triangle example. All other subjective costs are set to.ZEnas, for a set of routes
to be stable, for each claugeat least one of the verticgd,1, vj2, v;3} must use

the path through,, to the root, because there is no stable set of routes through

We now show that, if there exists an assignment of varialilasdatisfies all the
clauses, then there exists a pure Nash equilibrium in thehmgx game. We can
find this Nash equilibrium by putting a path through the triterdls fromy,, to r.
We then assign all nodes;, corresponding to a true literal the route through
This route has zero subjective cost, andvgohas no incentive to change routes.
Each clause contains at least one true literal, and henbtebealctriangle is broken
up, and the remaining vertices can be assigned stable mattieriough the center
’Uj.

Conversely, if there is a pure Nash equilibrium in the nesp-lyame, assign all
literals corresponding to the path fragto r the valuet r ue. In this way, for each
1, eitherz; ist rue or z; ist r ue, but not both, and hence we have a valid variable
assignment. There are no bad triangles in the Nash equitihand so each clause
must contain a vertex;;, that uses a route through to r. Note that;;, always has
the option of switching to a path throughwith costl. The path stability implies
thatv;, does not have a subjective costDdfor the path throughy,,; hence, the
literal corresponding to;;, must be assigneidr ue. There is such a vertex for each
clausej, and hence this variable assignment satisfies all the dal$es shows
that there exists a pure Nash equilibrium in the next-hopegdmand only if there
exists a satisfying assignment in the 3SAT instance. O

Fig. 2. The reduction from 3SAT.



4 The Minimum Subjective-Cost Tree (MSCT) Problem

In this section, we assume that the subjective ¢ggt) is an actual monetary
amount that is measured in the same unit across all nodestufahaverall goal

is then to minimize the sum of subjective costs,, to pick a set of route$P; }

that minimizesy_; ", c;(P;;). However, there is a constraint that all the routes to
a single destinatiori must form a tree, because the packets are actually sent by
forwarding. This constraint applies independently to edektination, and so we
can consider the simpler problem of routing to a single dasitn;.

Thus, we can frame the subjective-cost minimization prokdes:

Subjective-cost minimization: We are given a graply, a set of cost functions
{ci(.)}, and a specific destination We want to find a set of routes’; } and
payments, to each node such that:

(1) The routeq P;;} form a tree rooted at.
(2) Among all such trees, the selected tree minimizes the}syM ;. p,, ci(k).

We first prove that, for arbitrary cost functions, the MSColgem is NP-hard to
approximate within any multiplicative factor. Lef,.. = max, yev () ¢»(u) and
Cmin = MiN, 4ev (@) ¢ (1). Then, we have the following result:

Theorem 2 It is NP-hard to approximate the MSCT problem within a fadtet-
ter than o, wheren is the number of vertices. In particular, it is NP-hard to
approximate MSCT within any factordf,;,, = 0 andcy,., > 0.

Proof. We prove that, if we can approximate MSCT in polynomial tiresn we
can solve thé-DISPATHproblem in polynomial time. In the-DISPATH problem,
we are givenagrapy = (V, E) andk pairs of verticessy, t1), (s2,t2), . . ., (Sk, tr),
and we want to find: vertex disjoint paths frony; to ¢; for 1 < ¢ < k. The
k-DISPATH problem is among the ones that Karp originally sedwo be NP-
hard [8]. From an instancé = (G, {(s;,t;)|1 < ¢ < k}), we construct the fol-
lowing instance7 = (G',r,{c, : |[v € V(G")}) of the MSCT problemV (G') =
V(G)U{r}andE(G") = E(G) U {tir|l < i < k}. We definec,,(t;) = cmax

if ¢ # j. For all the other cases (u) = cnim. Thus the subjective cost of a tree
in which ¢, is not on the path froms; to the root is at most,,;,n?, because each
path has at most vertices on it. The subjective cost of a tree in whigchand¢;
are on the same path in the tree, fa¢ j, is at least,.. It is apparent that there
is a tree without a paifs;,¢;) for i # j on a path to the root if and only i is
ayes instance oft-DISPATH problem. Thus, distinguishing between the case in
which the total subjective cost is at mest,»> and the case in which it is at least
cmax 1S NP-hard. In particular, it,;, = 0 andc,., > 0, we can use any finite
approximation algorithm for MSCT to solve tieDISPATH problem. O

10



B € S;

Fig. 3. The reduction from the set-cover problem

Note that the above theorem does not show hardness for thialkspgses in which
emax s not large. This may be a reasonable restriction; howaw@now show that
this also yields an intractable optimization problem. Intjcalar, we study the
special case in which all subjective costs are either 1 ore2c&ll this problem the
(1,2)-MSCT problem. In the following, we give a hardness resulittfee (1, 2)-
MSCT problem.

Theorem 3 The(1, 2)-MSCT problem is APX-Hard.

Proof. We first prove that the problem is NP-hard and then modify #duc-
tion to prove APX-hardness. We give a reduction from thecsetr problem to
(1,2)-MSCT. Consider an instancg of the set-cover problem with elements
{FE1, Es, ..., E,} andm sets{S,S,,...,S,}. We construct an instancg¢ =
(G, {c, : V(G) — {1,2}|v € V(G)}) of (1,2)-MSCT problem as follows: Ver-
ticess; andp,, for 1 < j < m, corresponds to sét; in Z. Vertexe;, for1 <i <n,
corresponds to the elemeht in Z. There are two other vertices, the reoand a
helper vertexa. Thus,V(G) = {r,h} U {s;,p;|1 < j < m} U {e|l <i < n}.
Vertexe; is connected to all vertices such thatE; € S; in Z. There is an edge
betweens; andp;, for all 1 < ;5 < m, and there is an edge from eaghto the
helper vertexa. All verticesp;, for 1 < j < m, and vertex, are connected to.
We also set,,(h) = 2, forall 1 < i < n, andc,,(p;) = 2. For all otherv andu,
c,(u) = 1. GraphG is depicted in Figure 3.

We claim that there is a set cover of sizen Z if and only if there is tree with total
subjective costn + m + k in 7.

If there is a family of setg” of sizek that covers all the elements1n then we can
construct the following solution it. If S; € F' then connecs; to p; to . Each

e; is connected to som&; € F' in the tree; because all elements are covered in

the set cover, all vertices will be included in the tree. For any vertexsuch that
S; ¢ F', connects; to h, and finally, conneck to r. It is straightforward to check
that the subjective cost of this tree is exa@ty+ m + k.

11



Conversely, if there is a tréB of cost2n + m + k in J, then there is a set cover
of sizek in Z. First we can assume that all the edges tare in7T’, because, if
they weren’t, we could add them and remove an edge ffolm decrease the total
subjective cost. Also we can assume that, if there is an edgen 7', thens;p, €
E(T), because otherwiseh would be inE(7"), and we could remove the edgg:
and adds;p; to 7" to get another tree with lower or equal subjective cost. Kingw
these properties of the trde we can easily construct the set cover of gizeom
T'. This completes the NP-hardness proof.

For APX-hardness, we need to look at a special case of theoset-problem. The
case in which each element occurs two times and each set igeohtsmost 3 is
APX-complete [9].6 For this special case of the set-cover problem, we know that
n < m < 1.5n and thatt < m; thus, there is a constansuch than+m-+k < ck.

This means that &+e-approximation for the¢1, 2)-MSCT problem gives &l +¢c)-
approximation for this special case of set cover. O

Theorem 3 shows that, for sufficiently smallt is hard to find &1+ ¢)-approxima-
tion for the(1, 2)-MSCT problem. However, we note that finding@-approximation

is easy: Simply ignore the costs, and construct an unweidgsitertest-path tree
with destination;. This is optimal to within a factor of 2, because the number of
nodes on the shortest path frarno j is a lower bound on the subjective cosgtr;;)

for any pathP;; from to j.

5 An Alternative Model: Subjective Choice of Metrics

In this section, we consider a more restricted preferenceetn®/e assume that
there are multiple objective metrics on routesg( cost and latency), and nodes’
preferences differ only in the relative importance theyoaddo different metrics.
This is a non-trivial restriction only when the number of@dijve metrics is small;
here, we first consider the case in which there are only tweablvg metrics on a
route. The results are generalizedito- 2 objective metrics in Section 5.1.

Formally, suppose that any transit noddias two associated objective “length”
values/; (k) andly(k). Both the length values can be extended to additive path
metrics,i.e, we can definé, (P;;) = Y icp, l1(k) andly(F;;) = Yyep, l2(k). Note
that we use the term “metric” for the ease of presentatiortlaatdve do not impose
the triangle equality on the length functiohsand/,.

Each node has a private parametgy, 0 < \; < 1. Nodei’s subjective cost for the
route P;; is given byc; (P;;) = Nil1(P;;) + (1 —X\;)l2(P;5), i.e., Node:'s preferences
are modeled as a convex combination of the two path metrics.

6 In fact, this is the vertex-cover problem in bounded-degyegphs.
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It is easy to show that the APX-hardness proof for the)-MSCT problem (The-
orem 3) can be adapted to the two-metric routing problem s we

Theorem 4 In the subjective-metric model, it is APX-hard to find a tieehat
minimizes total subjective cost.

Proof. In the construction of Theorem 3, assigth) = 2, ly(h) = 1; V) Li(p;) =
1, 1x(p;) = 2, andVj l1(s;) = 2,12(s;) = 1. Assign)., = 1 forall i, and\,; = 0
for all j. Then, the subjective costs are exactly as specified in thef pf Theo-
rem 3, and the APX-hardness follows. 0

We now investigate whether relaxing the confluent-treeimgutonstraint would
lead to stronger results. If we allowed the routes to be cetefyl arbitrary, then
clearly we could have optimal routing: Each node could symyde the route it
liked the best. However, supporting these routes woul@ertquire source routing
(i.e., the packet header contains a full path) or a massive ineieagorage at each
router to record the forwarding link for each source andidasbn. Instead, we
ask whether we can get positive results with only a small ¢mawrouters’ space
requirements.

Our approach is to usesmall number of confluent routing tree$;, 75, - - - T, to
each destinatiop. Then, each nodieevaluates its subjective costtan each of the
routing trees and picks a trég, that minimizes this subjective cost. Nodéhen
marks each packet it sends with the headej, t; >. Each nodeen routestores

its route toj along each tredj; thus, it can inspect the header of each incoming
packet and forward along the appropriate route.

We can prove the following result:

Theorem 5 Suppose that, for transit node, [, (k) andly(k) are integers bounded
by a polynomial, i.e.l;(k), (k) < n° for some constant. Then, for any given
e > 0, there is a set of routing tre€B,, T», - - - T, with r = O(Z[logn + log(+)])
such that:

For each node, there is a tre€l;, such thaic;(7;,) < (1 + €)c;i(F;5), whereP;;
is the minimum-subjective-cost route frono ;.

Further, this set of trees can be constructed in polynonniaét

Proof. Let a« = (1 + ¢). We now show how to construct an appropriate set of
trees. Each tre&; in our collection is the shortest-path tree for a specificvean
combination of the two metrics. We name the trees after thieicseghey optimize:

Tw: 1(+), with ties broken by minimuni,(-).
T o: I3(+), with ties broken by minimunh (-).
Ty () = 20 () +—l() fort € {—k, —(k—1)...,—1,0,1,-- -k}, where

1+at 1+at

13



k = [log, (2¢ tnct1)].

Thus, there are a total of = 2k + 3 = O(logn) trees. These trees can be con-
structed withr shortest-path computations and hence can be done in poighom
time. Now, consider a nodeand let\; € [0, 1] denote its private choice of metric.
If \; = 1, then clearlyT’,, will contain the optimal route from to j. Similarly,

if \; = 0, T_,will contain the optimal route from to j. Hence, we restrict our
attention to the case in which € (0, 1).

Let P, denote the path fromto j in T}, and P; denote the path fromto j to
which ¢ assigns minimum subjective cost. We divide all values ef (0, 1) into 4
cases.

Case (iy 124 > 2¢ 'nt!
Now, if l1(E*) = 0, then7'_,, must contain?;;

", because itis the optimal path under
thel, metric. If1,(P};) > 1, we get:

c(PE) = N (PE) + (1= A)la(PY)
S Al () + (1 = Ai)l(PF)
< \ili(Pj;) + ¢/2 (Using the bound on node costs)

<(1+e)a(F;)

* S

<)

L%

6—1nc+1

Case (iiy 1 <
Let

Ai
1—>\iJ

= |log,

Then, we have

by
¢ i t+1
o < < o
1— )\

Now, becauséjfj is the optimal tree under metrig we have

o'l (P) + 15(P;) < o'li(P;) + 1o(P))

Then,

J:1 )\ll(P>+l2(Pt>
o' (PL) + 1(P)

14



a(a’l (P )+l2(P )

o(a'h(Py) + b(P})
a(T2h(P) + (7))
1

= 1_7)\1_0402‘(135)

IAINA

| /\

Case (jii): 1 < 52 < 2¢7!Inet!
The same argument as Case (ii) shows that sbnieea good approximation.

Case (iv) 152 > 2¢~1pot!
The same argument as Case (i) shows that eitheor 7", is a good approxima-
tion.

Thus, in each case, one of the routing trees contains a mytbat has a subjective
cost of at most1 + €)c;(F};). 0

There are several points worth noting about this schemelt @ghieves a result
that is slightly stronger than our initial goal — it approxataly maximizes each
individual node’s welfare, not just the sum of all nodes’ faet. (2) The compu-
tation of the trees is oblivious to the nodes’ preferencerimftion. Thus, if we
assume that the objective costs are common knowledge (diatéz), this scheme
is trivially a strategyproof mechanism. (3) Each tree cotapan involves comput-
ing lowest-cost routes for a specific objective metric. Thus easily computed
within the framework of the Border Gateway Protocol (BGR).the terminology
of Feigenbaum et al. [3,4], there is a natural BGP-basedilis¢d algorithm for
this scheme.)

We now prove a corresponding lower bound that shows thatrene® is nearly
optimal.

Theorem 6 Lete > 0 be given. There is a family of instances of the subjective-
metric routing problem, with all weights ii0, n¢| for some constant, such that the
following property holds:

Any set of routing trees that containg &+ ¢)-approximately optimal pat®;;
for eachi must have)(log n/€) trees.

(Here,n is the number of nodes of the network.)

Proof. First, consider the network shown in Figure 4: The destimajfi hasr
neighborsey, x,, - - -, z,.. There is a node that is adjacent to each of thesaodes,
and there are more nodey;, - - -, y, that are adjacent to.

Leta = 1+e. The transit lengths are set as follows: For each ngdset/; (z;) =

15



s

Fig. 4. Network used in Theorem 6

a¥ =% andly(x;,) = o**+?*. Fora, setl;(a) = ly(a) = 0; the lengths of nodeg;
are irrelevant, because they cannot be transit nodeslyiftaleach node;, define
Ay, = (1 —a™*). Hence, for a routé®, we have

a4z

ati 1

Cyi(P): ll(P)+a

We now show that, for these costs and preferences, the mimisuljective-cost
route fromy; to j is az;j, and that, further, no other path is withir{ a+ ¢) factor
of optimal.

Let P, denote the pathz,j. Then,y;’s subjective cost for this path is

Cy: (Pr) = Ayila (1) + (1 = Ay, )la()

ot 1
= Q22 4 . 2r 42k
a* +1 a* +1
Thus,
ati L

Now, we evaluate,, (F;) for i # k. Consider two cases:
Case (iY k >

In this case,

16



4i
o 1
P 2r—2k 2r+2k
Cy; ( k) Q

o +1 + o +1
_ Q4Z 022k {1 + a4(kz—i)}

ot 41

4
o 2r—2i _2(k—1)
Tt
> OéCyi(PZ-)
Case (i} k <1

In this case, we have

(P,) = at i 1 2r 42k
R = a1 ot + 1

_ QAJ 022k {1 + a4(kz—i)}

ot 41
4i
o 2r—2i _2(i—k)
T
> OéCyi(PZ-)

Thus, if a solution contains @ + ¢)-approximately optimal path for eveny, it
must containP;. In any one routing tree; can have only a single route o thus,
at leastr routing trees are required to achieve this.

Finally, observe that the costs are all bounded below byd bounded above by
o', For ann-node graph, we can set= ciffg"a = O(lo%) to ensure that all costs

are at mosh‘; then, the graph in Figure 4 can be embedded intaithede graph.
O

5.1 Generalization to more thahmetrics

In this section, we show that Theorems 5 and 6 generalizestoete in which there
ared > 2 objective metrics, and a node’s subjective cost is a congexbination
of these metrics.

Theorem 7 Suppose that, for transit node, all lengthsl; (k), lo(k) . .., l4(k) are
integers bounded by a polynomial, i.€,(k) < n° for some constant Then, for

any givere > 0, ¢ < 1, there is a set of routing treds , 75, - - - T,. with total number
4
of treesr = O(d3d[%]d—l) such that:

For each node, there is a tre€l}, such thate;(73,) < (1 + €)c;(P;), whereP;

17



is the minimum-subjective-cost route frono ;.
Further, this set of trees can be constructed in polynonmaétfor any constan.

Proof. The proof, like Theorem 5, uses the idea of rounding the peafees to a
bounded grid. The only subtle detail is to handle the caséhiclw’s optimal path
has zero costs in some metrics. We do this by including, feryesubset of metrics,
a tree that preferentially selects paths with zero cost andhibset.

Leta = /1 + e. First, let us define the set of trees constructedkLet[log,, (4¢~'nct1)].
Each such tree is indexed by a pgirh), wherej € {1,2,---,d}, h € {—oco, —k, —(k—
1),---,—1,0,00}1, andh; = 0. The corresponding cost function is defined by

alil;(P)

j Za,ha;éoo Oéia

For each such cost function, we construct the corresponaimgmum-cost tree
T(]A. ) Note that the cost of a path may be infinite; if there is no jatim ; that has
a finite cost undeTG iy We can include an arbitrary path franmn this tree.

Note thatj does not influence the cost function; it merely indicatesmetric that
has the maximum weightage und%{,;). It follows that multiple index pair$;, ﬁ)
may correspond to the same cost metric, and hence the samadre&e are proving
an upper bound on the number of trees required, this redegdsnot problematic.
For fixed}, there arek + 3)?~* legal values fotx. Thus, the total number of trees

constructed is bounded ik + 3)¢~1 = O(dk?!) = O(d3d[%ﬁ;;’g%)]d—l).

We now show that this set of trees contains, for each ripdegath that approxi-
mately minimizes’s subjective costi’'s subjective cost is a convex combination of
the metrics, and hence, can be represented as

6(P) = Y M li(P)

where the); ; values are non-negative and sumlto Let P* be the path from
that minimizes’s subjective cost. We need to prove that there is a path inobne
the constructed trees that approximates the subjectiv€toas of P*.

First, consider the case(P*) = 0. Consider the tree with indefg, h) defined

as follows:h; = —oo if \;; = 0, andh; = 0 otherwise.;j is picked such that

h; = 0 (there is at least one sughbecause not all; ; can be zero). It follows that
¢;.n(P*) must bed. The optimal pati?; fromin 7}; 7, must hence have zero cost
underc,; .. Therefore/;( ;) must be zero whenevey; > 0, and saP’; must also
have zero cost under metrig Thus, in this case, the constructed paths contain an
exactly optimal path fof.

18



Now, suppose that,(P*) > 0. Let.S = {j[l;(P*) > 0} be the set of base metrics
under whichP* has positive cost. Now, pickto maximize\,; ; within S:

J= argma>§es)\i,j

Note that), ; > 0, because;(P*) > 0. Leti; = log,, i—; then,i; € [—o0,0].

We now select a vectar as follows:

Vj¢5, hj:OO
VJ c S, ij Z —]C,hj - I]'JJ
Vi e S,ij < —/{Z,hj = —0

Let P be the optimal path from to j in Ti; 5y- We now show that it is nearly
optimal in terms of’s subjective cost.

First, observe thaP* has finite cost undet;; ;; , because, by constructidn(*) =
0 wheneverh; = co. Next, observe that We do not alter the cost much by rounding
all sufﬁuently smalli; to —oo, because;(P*) > 1:

> avl(P7) < da”nth < (ef4) < (e/4)(P7)

jlij<—k

(Here, we have used the fact that the maximum cost of a pa#mnyirbase metric,
is at most - n¢ = n°tL))

This gives us a bound:

Zo/il (P)<(1+e/4) > a'l;(PF)

Jjlij>—k
Zoﬂﬂlj P)<a(l+e/4) > oMl (P*) (becauser™ < a-a)
j ilij=—k

Now, we can bound the cost of paftt in the cost metrie;; ;.

> ahjlj (P7)
Za,h(ﬁéoo aha
L X aM(P)
T X,k

cGp(P)=

(increasing the denominator)
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oL Xav(P)
“all4e€/4) >, al

| *
Z ot et

Note thatc; 7 (F;) < ;5 (F"), because the treE; 7, is a lowest-cost tree. Fur-
ther, P, must have finite cost in this metric, and hentg¢/;) = 0 whenever
[;(P*) = 0. Thus, we get

> ()
Do Qe

<2 Of”lj(Pg)
o Za,h(ﬁéoo Qle
< 25 ()
- Za,ha;éoo aha
PP o™il (Py)
- Za,ha;éoo aha
= ot

()=
(reducing the denominator)
(reducing the denominator)

(usinga < o - M)

Combining, we get that;(P;) < a?(1+¢/4)c;P*. Fore < 1, we have(l +¢/4) <
V1+es0c¢(P;) < (14 €)c(P*). Thus,P; is an approximately optimal path for
1. O

Theorem 8 Lete > 0 be given and > 2 be given. There is a family of instances of
the subjective-metric routing problem, with all weightg(nn°| for some constant
¢, such that the following property holds:

Any set of routing trees that containg &+ ¢)-approximately optimal path for

eachi must havé)((#ﬁg(pﬂ)d‘l) trees.

(Here,n is the number of nodes of the network.)

Proof. Consider the network shown in Figure 5. The destinatiomasm neigh-
borszq, zs, - - -, x,,. There is a node/’ that is adjacent to each of thesenodes,
and there ares more nodesy, - - -, v, that are adjacent ta’. Consider all inte-
ger vectors = (iy, 4y, ...,iq_1,1) € [1,7]%. There are®~! such vectors. We set
m = r%1 and correspond each vectato one of the vertices;. Thus, we denote
by z the vertexz; corresponding to vectar

Leta = 1 4 . Now we define the transit lengths as follows: For each ngaeith

7 - T
i = (ib B A 1), we Se'[lj(x;) — ¢iitr—a(@) for 1 <j<d Whel’ea(i) _ ij j
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Fig. 5. Network used in Theorem 8.

andt is a constant that is fixed later. Fof, set/;(w') = 0 forall 1 < j < d; the
lengths of nodes; are irrelevant, because they cannot be transit nodeslyifual
m nodesy;, define), ; = t~% for 1 < j < d—1land),, = 1. For the other
n —mvertices\,, ; = = for1 < j < dform <k <n.

Let P; be the pati{w’, =7, w). For a routeP;, we have

Cy;(P?) = dtr_a@)'

We now show that, for these costs and preferences, and bygsestich thatog ¢ >
d(logd + log o) the minimum subjective-cost route frog to j via P, and that,
further, no other path is within @l + ¢) factor of optimal.y;’s subjective cost for
path P;, we claim that

g i
¢y.(P57) > max ¢~ . ¢r=e)
i 1<j<d

Z O[dtT_a(;)
> acy(Fy).

To see the second inequality, we need to show that for a nuinfdexK ; < d),
thita=al@) > od. Assumingi # ¢, there exists an indexsuch that’, — i; +

— —
/

a(i) — a(’') > %. Thus, in order to prove the claim it is sufficient to provettha
t7 > ad, but this is an immediate consequencéogft > dlog o + dlog d.

This shows that if a solution containg it €)-approximately optimal path for every
yz, it must contain?;. In any one routing treey’ can have only a single route g
thus, at leastn = r9~! routing trees are required to achieve this.

Now, if there is an upper bound of on the subjective costs, we can et ©(n°).

By settinglogt = O(dlogd+dloga), r = @(Cf(‘jggt”) = @(dmgc;i%)- Therefore,

we needn = ! = O([5%5—-]%"") routing trees. m
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6 Conclusion

In this paper, we have studied classes of ordinal and cdrpliaterences based on
subjective costs. The subjective-cost preference modetiugively appealing, and
it is very expressive. However, our results show that, ef/greicosts are restricted
to a very small range, unstructured subjectivity leads toagtable problems in
both models: NP-completeness of the stable paths probleordaal preferences
and APX-hardness of the minimum subjective-cost tree praldbr cardinal pref-
erences.

The root cause of these hardness results appears to be thdifmgnsion of the
space of node preferences. Thus, it is necessary to workmgtlels that provide a
more consistent global structure. In Section 5, we condfdecase in which there
are two objective cost metrics, and nodes differ in the iredaportance they place
on the first metric. For example, nodes may agree on the hat@md packet-loss
rate of each node in the network but have subjective opinairmait the relative
importance of latency and loss rate. Thus, in this model,sipeece of all node
typesis one-dimensional. We showed that it is possible to selesshall number
(O(log n+1log(L)]) for a(1 + ¢)-approximation) of representative types such that
every nodes’ preferences are closely approximated by otleeafepresentatives;
then, by picking asetof routing trees, each of which is optimized for a specific
representative type, we can guarantee each node a routé that-approximately
minimizes its subjective cost. Further, this scheme is easyiplement, even in the
distributed-computing context: Each destination can ptased by a small number
of logical destinations, and a lowest-cost routing aldonite.g, the Bellman-Ford
algorithm) can be used for each logical destination.

It is also possible that other models that restrict the safivjéy of the costs in some
way may yield positive results. For example, the nodes’exthje costs for a given
transit nodek are random variables drawn from a specific distributiondig
such models that are both realistic and tractable is anesitieg avenue for future
research.
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