
Combinatorial Auctions

Yoav Shoham

CS206, Spring 2001 (c) Shoham 2

What are combinatorial auctions (CAs)

• Multiple goods are auctioned simultaneously
• Each bid may claim any combination of goods
• A typical combination: a bundle (“I bid $100 for the TV, VCR

and couch”)
• More complex combinations are possible

CS206, Spring 2001 (c) Shoham 3

Motivation: complementarity and substitutability

• Complementary goods have a superadditive utility function:
• V({a,b}) > V({a}) + V({b})
• In the extreme, V({a,b}) >>0 but V({a}) = V({b}) = 0
• Example: different segments of a flight

• Substitutable goods have a subadditive utility function:
• V({a,b}) < V({a}) + V({b})
• In the extreme, V({a,b}) = MAX[V({a}) , V({b})]
• Examples: a United ticket and a Delta ticket

CS206, Spring 2001 (c) Shoham 4

Overview of Lecture

• What can you bid: The expressive power of different
bidding languages

• What should you bid: A taste for the game theory of CAs

• Computational complexity of CAs

CS206, Spring 2001 (c) Shoham 5

Overview of Lecture

What can you bid: The expressive power of different
bidding languages

• What should you bid: A taste for the game theory of CAs

• Computational complexity of CAs

CS206, Spring 2001 after Nisan 6

Unstructured bidding is impractical

• Bidder sends his valuation v as a vector of numbers to
auctioneer.
• Problem: Exponential size

• Bidder sends his valuation v as a computer program
(applet) to auctioneer.
• Problem: requires exponential access by any auctioneer algorithm

CS206, Spring 2001 after Nisan 7

In practice bids have specific formats

• “Classic”:
• (take-off right) AND (landing right)
• (frequency A) XOR (frequency B)

• Online Computational resources:
• Links: ((a--b) AND (b--c)) XOR ((a--d) AND (d--c))
• (disk size > 10G) AND (speed >1M/sec)

• E-commerce:
• chair AND sofa -- of matching colors
• (machine A for 2 hours) AND (machine B for 1 hour)

CS206, Spring 2001 after Nisan 8

Bidding Language Requirements

• Expressiveness
• Must be expressive enough to represent every possible valuation.
• Representation should not be too long

• Simplicity
• Easy for humans to understand
• Easy for auctioneer algorithms to handle

CS206, Spring 2001 after Nisan 9

AND, OR, and XOR bids

• {left-sock, right-sock}:10

• {blue-shirt}:8 XOR {red-shirt}:7

• {stamp-A}:6 OR {stamp-B}:8

CS206, Spring 2001 after Nisan 10

General OR bids and XOR bids

• {a,b}:7 OR {d,e}:8 OR {a,c}:4
• {a}=0, {a, b}=7, {a, c}=4, {a, b, c}=7, {a, b, d, e}=15
• Can only express valuations with no substitutabilities.

• {a,b}:7 XOR {d,e}:8 XOR {a,c}:4
• {a}=0, {a, b}=7, {a, c}=4, {a, b, c}=7, {a, b, d, e}=8
• Can express any valuation
• Requires exponential size to represent

{a}:1 OR {b}:1 OR … OR {z}:1

CS206, Spring 2001 after Nisan 11

OR of XORs example

{couch}:7 XOR {chair}:5
OR

{TV, VCR}:8 XOR {Book}:3

CS206, Spring 2001 (c) Shoham 12

Relative expressive power of different formats

• OR bids can represent valuations without substitutabilities
• XOR bids can represent all valuations
• Additive valuations can be represented linearly with OR bids, but

only exponentially with XOR bids

CS206, Spring 2001 (c) Shoham 13

The expressive power of ‘dummy’ (‘phantom’) goods

• Transform “$10 for a XOR (b and c)” into two bids: “$10 for
a and x” and “$10 for b, c and x”; x is the dummy good.
• The idea: any decent CA will never grant the two bids

• With dummy goods, OR can represent any function
• How many dummy goods are needed?

• In the worst case, exponentially many
• Example: the Majority valuation

• OR-of-XORs: s, where s is the number of atomic bids in the input
• XOR-of-ORs: s2

CS206, Spring 2001 (c) Shoham 14

Overview of Lecture

• What can you bid: The expressive power of different
bidding languages

What should you bid: A taste for the game theory of CAs

• Computational complexity of CAs

CS206, Spring 2001 (c) Shoham 15

Two yardsticks for auction design

• Revenue maximization: The seller should extract the highest possible price

• Efficiency: The buyer(s) with the highest valuation get the good(s)

• The latter is usually achieved by ensuring “incentive compatibility” –
bidders are incented to bid their truth value, and hence maximizing over
those bids also ensures efficiency.

Is a CA efficient? Does it maximize revenue?

CS206, Spring 2001 (c) Shoham 16

The Naïve CA is not incentive compatible

• Naïve CA: Given a set of bids on bundles, find a subset
containing non-conflicting bids that maximizes revenue, and
charge each winning bidder his bid

• This is not incentive compatible, and thus not (economically)
efficient

• Example:
• v1(x,y)=100, v1(x)=v2(x)=0
• v2(x,y)=0, v2(x)=v2(y)=75

• Bidder 1 has incentive to “lie” and bid 76; if bidder 2 lies
then bidder 1 has an incentive to lie even more

CS206, Spring 2001 (c) Shoham 17

Lessons from the single dimensional case

• 1st-price sealed bid auction is not incentive compatible (in
equilibirum, it pays to “shave” a bit off your true value)

• 2nd-price sealed bid (“Vickrey”) auction is incentive
compatible

• Can we pull the same trick here?

CS206, Spring 2001 (c) Shoham 18

The Generalized Vickrey Auction (GVA)*
is incentive compatible

• The Generalized Vickrey Auction charges each bidder their
social cost

• Example:
• Red bids 10 for {a}, Green bids 19 for {a,b}, Blue bids 8 for {b}
• Naïve: Green gets {a,b} and pays 19
• GVA: Green gets {a,b} and pays 18 (10 due to Red, 8 due to Blue)

* aka the Vickrey-Clarke-Groves (VCG) mechanism

CS206, Spring 2001 (c) Shoham 19

Formal definition of GVA

• Each i reports a utility function possibly different from
• The center calculates which maximizes sum of s
• The center calculates which maximizes sum of s without i
• Agent i receives and also a payment of

• Thus agent i’s utility is

)(⋅ir)(⋅iu
)(*x ir
)ˆ(ix−

)(*
ix

∑∑
≠≠

−
ij

ij
ij

j xrxr)ˆ()(~
*

ir

∑∑
≠≠

−+
ij

ij
ij

ji xrxrxu)ˆ()()(~
**

CS206, Spring 2001 (c) Shoham 20

What should agent i bid?

Of the overall reward

i’s bid impacts only

the auctioneer maximizes

therefore i should make sure his function is identical to the
auctioneer’s!

∑
≠

+
ij

ji xrxu)()(**

∑∑ =+
≠ j

j
ij

ji xrxrxr)()()(***

∑∑
≠≠

−+
ij

ij
ij

ji xrxrxu)ˆ()()(~
**

CS206, Spring 2001 (c) Shoham 21

Other remarks about GVA

• Applies not only to auctions as we know them, but to
general resources allocation problems
• When “externalities” exist
• E.g, with public goods

• Cannot simultaneously guarantee
• Participation
• Incentive compatibility
• Budget balance

• Not collusion-proof

CS206, Spring 2001 (c) Shoham 22

Overview of Lecture

• What can you bid: The expressive power of different
bidding languages

• What should you bid: A taste for the game theory of CAs

Computational complexity of CAs

CS206, Spring 2001 (c) Shoham 23

The optimization problem of CAs

• “Given a set of bids on bundles, find a subset containing non-
conflicting bids that maximizes revenue”

• Performed once by the naïve method, n+1 times by GVA
• Requires exponential time in the number of goods and bids (assuming

they are polynomially related)
g1 g2 g3 g4 g5

b1
$7

b2
$8

b3
$6

CS206, Spring 2001 (c) Shoham 24

What’s known about the problem?

• Known as the Set Packing Problem (SPP)
• It is NP-complete, meaning that effectively the only

algorithms guaranteed to find the optimal solution will run
exponentially long in the worst case

• Furthermore, you cannot even uniformly approximate the
optimal solution (there isn’t an algorithm that can
guarantee that you always reach within a fixed fraction of
it, no matter how small the fraction, although you can get
within of it, where K is the number of goods)

• Nonetheless, progress has been made recently on
algorithms optimized for this problem…

k/1

CS206, Spring 2001 (c) Shoham 25

Approaches to taming the computational
complexity of CAs

• Finding tractable special cases
• LP-relaxation of the IP problem
• Applying complete heuristic methods
• Applying incomplete heuristic methods
• How to test these algorithms? The need for a test suite

CS206, Spring 2001 (c) Shoham 26

SPP as an Integer Program

• n items -- indexed by i
(some may be phantom)

• m atomic bids: (Sj,pj)
(maybe multiple ones from same

bidder)

• Goal: optimize social
efficiency

• Problem: IP is hard jx

ix
toSubject

pxMaximize

j

Si
j

m

j
jj

j

∀∈

∀≤∑

∑

∈

=

}1,0{

1
:

1

CS206, Spring 2001 (c) Shoham 27

Linear Programming Relaxation of the IP

• Will produce “fractional”
allocations: xj specifies what
fraction of bid j is obtained.

• LP is easy
• If we are lucky, the solution

will be 0,1

jx

ix
toSubject

pxMaximize

j

Si
j

m

j
jj

j

∀≥

∀≤∑

∑

∈

=

0

1
:

1

CS206, Spring 2001 (c) Shoham 28

In matrix form

MSx

Mixts

xSb

s

SiS
s

MS
s

⊂∀=

∈∀≤∑

∑

∈

⊂

1,0

1..

)(max

:

*

CS206, Spring 2001 (c) Shoham 29

When do we get lucky?

• Tree structured bundles:

• Continguous single-dimensional goods (“consecutive ones”);
e.g., time intervals

• Bundles of size at most 2 (quadratic complexity)
• A general condition: Total Unimodular matrices

a b c d e f g

d e f g

e f g

a b c

a b c d

CS206, Spring 2001 (c) Shoham 30

State of the art

• Recent years have seen an explosion of specialized search
algorithms for CAs

• Complete methods guarantee optimal results, but not quick
convergence. On test cases the algorithms scale to xx
goods and xxxxxx bids.

• Incomplete, greedy-search methods sometimes perform an
order of maginitude faster

• Very recent results on the multi-unit case
• CPLEX 7.0 holding its own…
• A major challenge: testing the algorithms (CATS)

CS206, Spring 2001 (c) Shoham 31

Other handouts posted on web page

• Combinatorial Auctions: A Survey, by de Vries and Vohra
• Only pp. 1-14 (thru 2.3.1) required; rest optional

• Mechanism Design for Computerized Agents, Varian
• Elements of Auction Theory, Shoham

• Optional; not required for the course

