Combinatorial Auctions

Yoav Shoham



What are combinatorial auctions (CAs)

* Multiple goods are auctioned simultaneously
* Each bid may claim any combination of goods

A typical combination: a bundle (“I bid $100 for the TV, VCR
and couch”)

* More complex combinations are possible
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Motivation: complementarity and substitutability

* Complementary goods have a superadditive utility function:
* V({a,bj)>V({a}) + V({b})
* In the extreme, V({a,b}) >>0 but V({a})=V({b})=0
« Example: different segments of a flight

* Substitutable goods have a subadditive utility function:

* V({a,b}) <V({a}) + V({b})
* Inthe extreme, V({a,b}) = MAX][ V({a}), V({b}) ]
« Examples: a United ticket and a Delta ticket
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Overview of Lecture

* What can you bid: The expressive power of different
bidding languages

* What should you bid: A taste for the game theory of CAs

* Computational complexity of CAs
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Unstructured bidding 1s impractical

 Bidder sends his valuation v as a vector of numbers to
auctioneer.

* Problem: Exponential size

« Bidder sends his valuation v as a computer program
(applet) to auctioneer.

« Problem: requires exponential access by any auctioneer algorithm
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In practice bids have specific formats

o “Classic’:
 (take-off right) AND (landing right)
e (frequency A) XOR (frequency B)
e Online Computational resources:
 Links: ((a--b) AND (b--¢)) XOR ((a--d) AND (d--c))
e (disk size > 10G) AND (speed >1M/sec)
* E-commerce:

 chair AND sofa -- of matching colors
e (machine A for 2 hours) AND (machine B for 1 hour)
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Bidding Language Requirements

* Expressiveness
« Must be expressive enough to represent every possible valuation.
» Representation should not be too long

« Simplicity
« Easy for humans to understand

» Easy for auctioneer algorithms to handle
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AND, OR, and XOR bids

« {left-sock, right-sock}:10

e {blue-shirt}:8 XOR {red-shirt}:7

e {stamp-A}:6 OR {stamp-B}:8
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General OR bids and XOR bids

 {a,b}:7 OR {d,e}:8 OR {a,c}:4
« {a}=0, {a,b}=7, {a,c}=4, {a,b,c}=7, {a,b, d, e}=15
« (Can only express valuations with no substitutabilities.

« {a,b}:7 XOR {d,e}:8 XOR {a,c}:4
« {a}=0, {a,b}=7, {a,c}=4, {a,b,c}=7, {a, b, d, e}=8
e (Can express any valuation

« Requires exponential size to represent
{a}:1 OR {b}:1 OR ... OR {z}:1
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OR of XORs example

{couch}:7 XOR {chair}:5
OR
{TV, VCR}:8 XOR {Book}:3
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Relative expressive power of different formats

OR bids can represent valuations without substitutabilities

XOR bids can represent all valuations

Additive valuations can be represented linearly with OR bids, but
only exponentially with XOR bids
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The expressive power of ‘dummy’ (‘phantom’) goods

e Transform “$10 for a XOR (b and ¢)” into two bids: “$10 for
a and x” and “$10 for b, ¢ and x’’; x 1s the dummy good.
e The 1dea: any decent CA will never grant the two bids

* With dummy goods, OR can represent any function

 How many dummy goods are needed?

 In the worst case, exponentially many

» Example: the Majority valuation
* OR-0f-XORs: s, where s is the number of atomic bids in the input
¢ XOR-0f-ORs: s?
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Overview of Lecture

« What can you bid: The expressive power of different
bidding languages

v What should you bid: A taste for the game theory of CAs

* Computational complexity of CAs
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Two yardsticks for auction design

» Revenue maximization: The seller should extract the highest possible price
« Efficiency: The buyer(s) with the highest valuation get the good(s)

* The latter 1s usually achieved by ensuring “incentive compatibility” —
bidders are incented to bid their truth value, and hence maximizing over
those bids also ensures efficiency.

Is a CA efficient? Does it maximize revenue?
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The Naive CA 1s not incentive compatible

 Naive CA: Given a set of bids on bundles, find a subset
containing non-conflicting bids that maximizes revenue, and
charge each winning bidder his bid

« This is not incentive compatible, and thus not (economically)
efficient

« Example:
« v1l(x,y)=100, vI(x)=v2(x)=0
e v2(x,y)=0, v2(x)=v2(y)=75

* Bidder 1 has incentive to “lie”” and bid 76; 1f bidder 2 lies
then bidder 1 has an incentive to lie even more
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Lessons from the single dimensional case

* [st-price sealed bid auction is not incentive compatible (in
equilibirum, it pays to “shave” a bit off your true value)

« 2ndoprice sealed bid (“Vickrey”) auction is incentive
compatible

e (Can we pull the same trick here?
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The Generalized Vickrey Auction (GVA)*
1s Incentive compatible

The Generalized Vickrey Auction charges each bidder their
social cost

Example:
 Red bids 10 for {a}, Green bids 19 for {a,b}, Blue bids 8 for {b}
« Naive: Green gets {a,b} and pays 19
 GVA: Green gets {a,b} and pays 18 (10 due to Red, 8 due to Blue)

aka the Vickrey-Clarke-Groves (VCG) mechanism
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Formal definition of GVA

Each i reports a utility function 7;(-) possibly different from (")
The center calculates (x ) which maximizes sum of s
The center calculates (x_,) which maximizes sum of »s without i
Agent i receives (x; ) and also a payment of
%k A
PRACHEDWACH
i i
Thus agent i’s utility 1s
* * A
u,(x)+ D r(x) =) ri(%)
i i
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What should agent i bid?

Of the overall reward U, (x")+ er (x") —Z r, (x_,)

ji j#i
i’s bid impacts only U, (x)+ Z v, (x")
J#i
the auctioneer maximizes 7:(x )+ Z r, (x)= Z r, (x)
J#i J

therefore i should make sure his function is identical to the
auctioneer’s!
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Other remarks about GVA

« Applies not only to auctions as we know them, but to
general resources allocation problems
 When “externalities” exist
* E.g, with public goods
« (Cannot simultaneously guarantee
 Participation
* Incentive compatibility

« Budget balance
* Not collusion-proof
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« What should you bid: A taste for the game theory of CAs

v Computational complexity of CAs
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The optimization problem of CAs

“Given a set of bids on bundles, find a subset containing non-
conflicting bids that maximizes revenue”

Performed once by the naive method, n+1 times by GVA

Requires exponential time in the number of goods and bids (assuming
they are polynomially related)

bl b2 b3
$7 $8 $6
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What’s known about the problem?

« Known as the Set Packing Problem (SPP)

« [t 1s NP-complete, meaning that effectively the only
algorithms guaranteed to find the optimal solution will run
exponentially long in the worst case

* Furthermore, you cannot even uniformly approximate the
optimal solution (there 1sn’t an algorithm that can
guarantee that you always reach within a fixed fraction of
it, no matter how small the fraction, although you can get
within 1/./f of it, where K 1s the number of goods)

* Nonetheless, progress has been made recently on
algorithms optimized for this problem...
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Approaches to taming the computational
complexity of CAs

« Finding tractable special cases

* LP-relaxation of the IP problem

* Applying complete heuristic methods

* Applying incomplete heuristic methods

* How to test these algorithms? The need for a test suite
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SPP as an Integer Program

m

* 7 items -- indexed by I Maximi

(some may be phantom) aximiz ez X j p Jj
* m atomic bids: (\S},p)) /=1
(maybe multiple ones from same Su b ] ect fo

bidder) )
* Goal: optimize social Z r. <1 Vi

efficiency J

ieS i

 Problem: IP 1s hard :
x, €{0,l} Vj

CS206, Spring 2001 (c) Shoham

26



Linear Programming Relaxation of the IP

m
Will produce “fractional” Moaxim izez "
allocations: x;j specifies what J P J
fraction of bid j is obtained. J=1
LP1s casy Subject to:
If we are lucky, the solution
will be 0,1 Zx_ <1 Vi
i
€S ;
x, 20 Vj
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In matrix form

CS206, Spring 2001

max Zb*(S)xS

ScM

s.t. sz <WVieM

S:ieS

x. =0,lvS c M
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When do we get lucky?

Tree structured bundles:

abcdefg
AN
ab.c defg
ab c d efg

Continguous single-dimensional goods (“consecutive ones”);
¢.g., time intervals

Bundles of size at most 2 (quadratic complexity)
A general condition: Total Unimodular matrices
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State of the art

« Recent years have seen an explosion of specialized search
algorithms for CAs

* Complete methods guarantee optimal results, but not quick
convergence. On test cases the algorithms scale to xx
goods and xxxxxx bids.

* Incomplete, greedy-search methods sometimes perform an
order of maginitude faster

* Very recent results on the multi-unit case
« CPLEX 7.0 holding its own...
* A major challenge: testing the algorithms (CATS)
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Other handouts posted on web page

o Combinatorial Auctions: A Survey, by de Vries and Vohra
e Only pp. 1-14 (thru 2.3.1) required; rest optional

* Mechanism Design for Computerized Agents, Varian
« FElements of Auction Theory, Shoham

» Optional; not required for the course
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