Elements of auction theory

This material is not part of the course, but is
included here for those who are interested



Overview

* Some connections among auctions
» Efficiency and revenue maximization

* Incentive compatibility (or truth revelation)

e 2nd price auction
» The generalized Vickrey auction (GVA)

* The revelation principle
* Independent private value versus common value
« Some results on revenue maximization

* Deriving the Nash eq. in 1%-price auction
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Some connections among auctions

e Dutch = Ist price sealed bid

* English ~ Japanese

* English ~ 2nd price sealed bid (both price setting and
expected revenue under IPV model; see below)

CS206, Spring 2001 © Shoham



Two yardsticks for good auctions

* Revenue: The seller should extract the highest possible price

* Efficiency: The buyer with the highest valuation should get
the good

The two are usually aligned, but can sometimes fail (e.g, 1st-
price auction when buyers have different risk attitudes).
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Direct mechanisms and incentive compatibility

* In a direct mechanism you simply announce your valuation

» The auction 1s incentive compatible 1f it’s in your best
interest not to lie about your true valuation

« Example: 2nd price (“Vickrey”) auction
* Another example: the generalized Vickrey auction (GVA);
see discussion of combinatorial auctions below
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The revelation principle

* You can transform any auction into an “equivalent” one
which is direct and incentive compatible

e “Rather than lie, the mechanism will lie for you™

« Example: Assume two bidders, with valuations drawn
uniformly from a fixed interval (plus other assumptions).
The optimal strategy 1s to bid 1/2 your true value. But if
the rule 1s changed so that the winner only pays half his
bid, it 1s optimal to bid your true value.
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Various auction settings

 Independent Private Value (IPV)
* Common Value (CV)
» Affihated Value

These different settings define different Bayesian
games; the relationships between the private signals
determine the auction settings
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Some results on revenue maximization

e [PV model

» Risk-neutral buyers: all k-price auctions, as well as English
(Japanese) and Dutch have identical revenues.

» Risk-Averse buyers: 1st + Dutch are preferable to 2nd and English;
more generally, k-price is superior to k+1 price.

» Risk-seeking buyers: k+1 price is preferable to k price (e.g., English
is preferable to Dutch)

e CV model

» English and second-price are no longer revenue equivalent, although
Dutch and 1st still are

» English is preferable to 2nd, which is preferable to 1st/Dutch, if the
agents are risk-neutral.
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Example of equilibirum analysis:
15t-price auction

« Setting:
* One good, two agents

* The agents’ valuations are independently drawn from
the uniform distribution on [0,1]

* u(y)=y 1s the utility functions of both agents
A first-price (FP) auction
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Easy part: proving a particular equilibrium

« Assume player 1 plays z, and player 2’s strategy is b(y)=y/2
e Ifplayer 1’s valuation is x his expected payoff is given by

2z
j(x —2)dv=(x—2)2z=2xz-2z2"
v=0
(note: given the y/2 strategy, 1 only wins when 2’s valuation is <2z)
 This is a quadratic equation who derivative 2x —4z
isequaltoOat z=x/2
e The same analysis is true of player 2

* Therefore b(x)=x/2 1s the “best response” to the same strategy by the
other player, and therefore the two players adopting this strategy forms
an equilibrium
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Harder part: proving this equilibrium unique,
under certain assumptions (sketch)*

« We’ll be looking for a continuous symmetric increasing
equilibrium.

e 1’s expected payoff is

b7 (2)
[(x=2)dv=b"(z)(x~2)
v=0
 Since this is a concave fn (requires proof), max 1s achieved
when derivative 1s zero:

* This 1s not part of the class material, and is included for completeness
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Second approach (cont.)

b (z)(x=2)*b ' (2)(x—2) =
b (2)+ (x=(b(x))) _=b"(2)b'(x) +x—b(x)

b'(x) b'(x)
(take this / part on faith, even if you didn’t see this in your
intro calculus course)

«  We now look for a value for z which zeros the derivative, under the
constraint that z=b(x):

—b ' (B(x))b' (x)+x=b(x)=xb'"(x)+x—b(x)=0

« Now note that b(x)=x/2 1s a solution; and using functional analysis,
which we won’t enter, you can prove it is the unique solution
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Multi-player 1%-price auctions

* More generally, with n bidders and similar conditions, the
symmetric equilibrium 1s given by:

n—1

b(x) =

X
n
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Some of the many topics in auction theory not
covered here

e “signals” and valuations: the formal model of auctions as
Bayesian games

* Precise definition of the “affiliated values” model
* Monopoly, marginal revenue, marginal cost

« Risk-averse auctioneer (auctioneer as trader): 1f bidders are
risk neutral auctioneer prefers 15>2">English(Japanese).

« Constant (absolute) risk aversion
« Computational complexity of combinatorial auctions

e (Collusion 1in auctions
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Further reading on auction theory

Handbook of Auction Theory (P. Klemperer, Ed.)

Klemperer’s introduction to the Handbook

Articles references in the Handbook

Many other, more recent articles
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