Elements of auction theory

This material is not part of the course, but is included here for those who are interested

Overview

- Some connections among auctions
- Efficiency and revenue maximization
- Incentive compatibility (or truth revelation)
 - 2nd price auction
 - The generalized Vickrey auction (GVA)
- The revelation principle
- Independent private value versus common value
- Some results on revenue maximization
- Deriving the Nash eq. in 1st-price auction

Some connections among auctions

- Dutch = 1st price sealed bid
- English ~ Japanese
- English ~ 2nd price sealed bid (both price setting and expected revenue under IPV model; see below)

Two yardsticks for good auctions

- Revenue: The seller should extract the highest possible price
- Efficiency: The buyer with the highest valuation should get the good

The two are usually aligned, but can sometimes fail (e.g, 1stprice auction when buyers have different risk attitudes).

Direct mechanisms and incentive compatibility

- In a direct mechanism you simply announce your valuation
- The auction is incentive compatible if it's in your best interest not to lie about your true valuation
- Example: 2nd price ("Vickrey") auction
- Another example: the generalized Vickrey auction (GVA); see discussion of combinatorial auctions below

The revelation principle

- You can transform any auction into an "equivalent" one which is direct and incentive compatible
- "Rather than lie, the mechanism will lie for you"
- Example: Assume two bidders, with valuations drawn uniformly from a fixed interval (plus other assumptions). The optimal strategy is to bid 1/2 your true value. But if the rule is changed so that the winner only pays half his bid, it is optimal to bid your true value.

Various auction settings

- Independent Private Value (IPV)
- Common Value (CV)
- Affiliated Value

These different settings define different Bayesian games; the relationships between the private signals determine the auction settings

Some results on revenue maximization

- IPV model
 - Risk-neutral buyers: all k-price auctions, as well as English (Japanese) and Dutch have identical revenues.
 - Risk-Averse buyers: 1st + Dutch are preferable to 2nd and English; more generally, k-price is superior to k+1 price.
 - Risk-seeking buyers: k+1 price is preferable to k price (e.g., English is preferable to Dutch)
- CV model
 - English and second-price are no longer revenue equivalent, although Dutch and 1st still are
 - English is preferable to 2nd, which is preferable to 1st/Dutch, if the agents are risk-neutral.

Example of equilibirum analysis: 1st-price auction

- Setting:
 - One good, two agents
 - The agents' valuations are independently drawn from the uniform distribution on [0,1]
 - u(y)=y is the utility functions of both agents
 - A first-price (FP) auction

Easy part: proving a particular equilibrium

- Assume player 1 plays z, and player 2's strategy is b(y)=y/2
- If player 1's valuation is x his expected payoff is given by

$$\int_{v=0}^{2z} (x-z)dv = (x-z)2z = 2xz - 2z^2$$

(note: given the y/2 strategy, 1 only wins when 2's valuation is $\langle 2z \rangle$)

- This is a quadratic equation who derivative 2x 4z is equal to 0 at z = x/2
- The same analysis is true of player 2
- Therefore b(x)=x/2 is the "best response" to the same strategy by the other player, and therefore the two players adopting this strategy forms an equilibrium

Harder part: proving this equilibrium unique, under certain assumptions (sketch)*

- We'll be looking for a continuous symmetric increasing equilibrium.
- 1's expected payoff is

$$\int_{v=0}^{b^{-1}(z)} (x-z) dv = b^{-1}(z)(x-z)$$

• Since this is a concave fn (requires proof), max is achieved when derivative is zero:

* This is not part of the class material, and is included for completeness CS206, Spring 2001 © Shoham

Second approach (cont.)

$$b^{-1}(z)(x-z)'*b^{-1}(z)'(x-z) =$$

$$b^{-1}(z) + \frac{(x-(b(x)))}{b'(x)} = \frac{-b^{-1}(z)b'(x) + x - b(x)}{b'(x)}$$
(take this part on faith, even if you didn't see this in your intro calculus course)

• We now look for a value for z which zeros the derivative, under the constraint that z=b(x):

$$-b^{-1}(b(x))b'(x) + x - b(x) = xb'(x) + x - b(x) = 0$$

• Now note that b(x)=x/2 is a solution; and using functional analysis, which we won't enter, you can prove it is the unique solution

CS206, Spring 2001

Multi-player 1st-price auctions

• More generally, with *n* bidders and similar conditions, the symmetric equilibrium is given by:

$$b(x) = \frac{n-1}{n}x$$

Some of the many topics in auction theory not covered here

- "signals" and valuations: the formal model of auctions as Bayesian games
- Precise definition of the "affiliated values" model
- Monopoly, marginal revenue, marginal cost
- Risk-averse auctioneer (auctioneer as trader): if bidders are risk neutral auctioneer prefers 1st>2nd>English(Japanese).
- Constant (absolute) risk aversion
- Computational complexity of combinatorial auctions
- Collusion in auctions

Further reading on auction theory

- Handbook of Auction Theory (P. Klemperer, Ed.)
- *Klemperer's introduction to the Handbook*
- Articles references in the Handbook
- *Many other, more recent articles*