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Abstract. Motivated by applications in software verification, we explore
automated reasoning about the non-disjoint combination of theories of
infinitely many finite structures, where the theories share set variables
and set operations. We prove a combination theorem and apply it to
show the decidability of the satisfiability problem for a class of formulas
obtained by applying propositional connectives to formulas belonging to:
1) Boolean Algebra with Presburger Arithmetic (with quantifiers over
sets and integers), 2) weak monadic second-order logic over trees (with
monadic second-order quantifiers), 3) two-variable logic with counting
quantifiers (ranging over elements), 4) the Bernays-Schönfinkel-Ramsey
class of first-order logic with equality (with ∃∗∀∗ quantifier prefix), and
5) the quantifier-free logic of multisets with cardinality constraints.

1 Introduction

Constraint solvers based on satisfiability modulo theories (SMT) [4, 8, 13] are a
key enabling technique in software and hardware verification systems [2,3]. The
range of problems amenable to such approaches depends on the expressive power
of the logics supported by the SMT solvers. Current SMT solvers implement the
combination of quantifier-free stably infinite theories with disjoint signatures, in
essence following the approach pioneered by Nelson and Oppen [27]. Such solvers
serve as decision procedures for quantifier-free formulas, typically containing
uninterpreted function symbols, linear arithmetic, and bit vectors. The limited
expressiveness of SMT prover logics translates into a limited class of properties
that automated verification tools can handle.

To support a broader set of applications, this paper considers decision proce-
dures for the combination of possibly quantified formulas in non-disjoint theories.
The idea of combining rich theories within an expressive language has been ex-
plored in interactive provers [5,7,26,28]. Such integration efforts are very useful,
but do not result in complete decision procedures for the combined logics. The
study of completeness for non-disjoint combination is relatively recent [37, 40]
and provides foundations for the general problem. Under certain conditions, such
as local finiteness, decidability results have been obtained even for non-disjoint
theories [14]. Our paper considers a case of combination of non-disjoint theories
sharing operations on sets of uninterpreted elements, a case that was not consid-
ered before. The theories that we consider have the property that the tuples of
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cardinalities of Venn regions over shared set variables in the models of a formula
are a semi-linear set (i.e., expressible in Presburger arithmetic).

Reasoning about combinations of decidable logics. The idea of deciding
a combination of logics is to check the satisfiability of a conjunction of formulas
A ∧B by using one decision procedure, DA, for A, and another decision proce-
dure, DB , for B. To obtain a complete decision procedure, DA and DB must
communicate to ensure that a model found by DA and a model found by DB

can be merged into a model for A ∧B.

Reduction-based decision procedure. We follow a reduction approach to
decision procedures. The first decision procedure,DA, computes a projection, SA,
of A onto shared set variables, which are free in both A and B. This projection is
semantically equivalent to existentially quantifying over predicates and variables
that are free in A but not in B; it is the strongest consequence of A expressible
only using the shared set variables. DB similarly computes the projection SB of
B. This reduces the satisfiability of A∧B to satisfiability of the formula SA∧SB ,
which contains only set variables.

A logic for shared constraints on sets. A key parameter of our combina-
tion approach is the logic of sets used to express the projections SA and SB . A
suitable logic depends on the logics of formulas A and B. Inspired by verifica-
tion of linked data structures, we consider as the logics for A,B the following:
weak monadic second-order logic of two successors WS2S [36], two-variable logic
with counting C2 [16,29,34], the Bernays-Schönfinkel-Ramsey class of first-order
logic [6], BAPA [22], and quantifier-free logics of multisets [31,32]. Remarkably,
the smallest logic needed to express the projection formulas in these logics has
the expressive power of Boolean Algebra with Presburger Arithmetic (BAPA),
described in [23] and in Fig. 4. We show that the decision procedures for these
four logics can be naturally extended to a reduction to BAPA that captures pre-
cisely the constraints on set variables. The existence of these reductions, along
with quantifier elimination [22] and NP membership of the quantifier-free frag-
ment [23], make BAPA an appealing reduction target for expressive logics.

Contribution summary. We present a technique for showing decidability of
theories that share sets of elements. Furthermore, we show that the logics

1. Boolean Algebra with Presburger Arithmetic [9, 22,23],
2. weak monadic second-order logic of two successors WS2S [36],
3. two-variable logic with counting C2 [34],
4. Bernays-Schönfinkel-Ramsey class [6], and
5. quantifier-free multisets with cardinality constraints [31,32]

all meet the conditions of our combination technique. Consequently, we obtain
the decidability of quantifier-free combination of formulas in these logics.1
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class Node {Node left, right ; Object data;}
class Tree {

private static Node root;
private static int size ; /∗:
private static specvar nodes :: objset ;
vardefs ”nodes=={x. (root,x) ∈ {(x,y). left x = y ∨ right x = y}∗}”;
private static specvar content :: objset ;
vardefs ”content=={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ” ∗/

private void insertAt (Node p, Object e) /∗:
requires ”tree [ left , right ] ∧ nodes ⊆ Object.alloc ∧ size = card content ∧

e /∈ content ∧ e 6= null ∧ p ∈ nodes ∧ p 6= null ∧ left p = null”
modifies nodes,content, left , right ,data, size
ensures ”size = card content” ∗/
{

Node tmp = new Node();
tmp.data = e;
p. left = tmp;
size = size + 1;

}
}

Fig. 1. Fragment of insertion into a tree

2 Example: Verifying a Code Fragment

Our example shows a verification condition formula generated when verifying
an unbounded linked data structure. The formula belongs to our new decidable
class obtained by combining several decidable logics.
Specification and verification in Jahob. Fig. 1 shows a fragment of Java
code for insertion into a binary search tree, factored out into a separate insertAt
method. The search tree has fields (left, right) that form a tree, and field
data, which is not necessarily an injective function (an element may be stored
multiple times in the tree). The insertAt method is meant to be invoked when
the insertion procedure has found a node p that has no left child. It inserts
the given object e into a fresh node tmp that becomes the new left child of p.
In addition to Java statements, the example in Fig. 1 contains preconditions
and postconditions, written in the notation of the Jahob verification system [21,
39, 41]. The vardefs notation introduces two sets: 1) the set of auxiliary objects
nodes, denoting the Node objects stored in the binary tree, and 2) the set content
denoting the useful content of the tree. To verify such examples in the previously
reported approach [41], the user of the system had to manually provide the
definitions of auxiliary sets, and to manually introduce certain lemmas describing
changes to these sets. Our decidability result means that there is no need to
manually introduce these lemmas.
Decidability of the verification condition. Fig. 2 shows the verification
condition formula for a method (insertAt) that inserts a node into a linked list.
1 An earlier version of some of these results is in [24].
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tree [ left , right ] ∧ left p = null ∧ p ∈ nodes ∧
nodes={x. (root,x) ∈ {(x,y). left x = y| right x = y}ˆ∗} ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
e /∈ content ∧ nodes ⊆ alloc ∧
tmp /∈ alloc ∧ left tmp = null ∧ right tmp = null ∧
data tmp = null ∧ (∀ y. data y 6= tmp) ∧
nodes1={x. (root,x) ∈ {(x,y). ( left (p:=tmp)) x = y) | right x = y} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x} →

card content1 = card content + 1

Fig. 2. Verification condition for Fig. 1

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}
WS2S FRAGMENT:
tree [ left , right ] ∧ left p = null ∧ p ∈ nodes ∧ left tmp = null ∧ right tmp = null ∧
nodes={x. (root,x) ∈ {(x,y). left x = y| right x = y}ˆ∗} ∧
nodes1={x. (root,x) ∈ {(x,y). ( left (p:=tmp)) x = y) | right x = y}

CONSEQUENCE: nodes1=nodes ∪ {tmp}
C2 FRAGMENT:

data tmp = null ∧ (∀ y. data y 6= tmp) ∧ tmp /∈ alloc ∧ nodes ⊆ alloc ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x}

CONSEQUENCE: nodes1 6= nodes ∪ {tmp} ∨ content1 = content ∪ {e}
BAPA FRAGMENT: e /∈ content ∧ card content1 6= card content + 1
CONSEQUENCE: e /∈ content ∧ card content1 6= card content + 1

Fig. 3. Negation of Fig. 2, and consequences on shared sets

The validity of this formula implies that invoking a method in a state satisfying
the precondition results in a state that satisfies the postcondition of insertAt.
The formula contains the transitive closure operator, quantifiers, set compre-
hensions, and the cardinality operator. Nevertheless, there is a (syntactically
defined) decidable class of formulas that contains the verification condition in
Fig. 2. This decidable class is a set-sharing combination of three decidable logics,
and can be decided using the method we present in this paper.

To understand the method for proving the formula in Fig. 2, consider the
problem of showing the unsatisfiability of the negation of the formula. Fig. 3
shows the conjuncts of the negation, grouped according to three decidable logics
to which the conjuncts belong: 1) weak monadic second-order logic of two suc-
cessors WS2S [36], 2) two-variable logic with counting C2 [34], and 3) Boolean
Algebra with Presburger Arithmetic (BAPA) [9,22,23]. For the formula in each
of the fragments, Fig. 3 also shows a consequence formula that contains only
shared sets and statements about their cardinalities. (We represent elements as
singleton sets, so we admit formulas sharing elements as well. )
A decision procedure. Note that the conjunction of the consequences of
three formula fragments is an unsatisfiable formula. This shows that the original
verification condition is valid. In general, our decidability result shows that the
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decision procedures of logics such as WS2S and C2 can be naturally extended to
compute strongest consequences of formulas involving given shared sets. These
consequences are all expressed in BAPA, which is decidable. In summary, the
following is a decision procedure for satisfiability of combined formulas: 1) split
the formula into fragments (belonging to WS2S, C2, or BAPA); 2) for each
fragment compute its strongest BAPA consequence; 3) check the satisfiability of
the conjunction of consequences.

3 Syntax and Semantics of Formulas

Higer-order logic. We present our problem in a fragment of classical higher-
order logic [1, Chapter 5] with a particular set of types, which we call sorts.
We assume that formulas are well-formed according to sorts of variables and
logical symbols. Each variable and each logical symbol have an associated sort.
The primitive sorts we consider are 1) bool, interpreted as the two-element set
{true, false} of booleans; 2) int, interpreted as the set of integers Z; and 3) obj,
interpreted as a non-empty set of elements. The only sort constructors is the bi-
nary function space constructor ‘→’. We represent a function mapping elements
of sorts s1, . . . , sn into an element of sort s0 as a term of sort s1× . . .× sn → s0
where s1 × s2 × . . . × sn → s0 is a shorthand for s1 → (s2 → . . . (sn → s0)).
When s1, . . . , sn are all the same sort s, we abbreviate s1 × . . . × sn → s0 as
sn → s0. We represent a relation between elements of sorts s1, . . . , sn as a func-
tion s1× . . .× sn → bool. We use set as an abbreviation for the sort obj→ bool.
We call variables of sort set set variables. The equality symbol applies only to
terms of the same sort. We assume to have a distinct equality symbol for each
sort of interest, but we use the same notation to denote all of them. Proposi-
tional operations connect terms of sort bool. We write ∀x:s.F to denote a uni-
versally quantified formula where the quantified variable has sort s (analogously
for ∃x:s.F and ∃x:sK .F for counting quantifiers of Section 5.3). We denote by
FV(F ) the set of all free variables that occur free in F . We write FVs(F ) for the
free variables of sort s. Note that the variables can be higher-order (we will see,
however, that the shared variables are of sort set). A theory is simply a set of
formulas, possibly with free variables.

Structures. A structure α specifies a finite set, which is also the meaning of
obj, and we denote it α(obj).2 When α is understood we use JXK to denote α(X),
where X denotes a sort, a term, a formula, or a set of formulas. If S is a set
of formulas then α(S) = true means α(F ) = true for each F ∈ X. In every
structure we let JboolK = {false, true}. Instead of α(F ) = true we often write
simply α(F ). We interpret terms of the sort s1× . . .× sn → s0 as total functions
Js1K × . . . JsnK → Js0K. For a set A, we identify a function f : A → {false, true}
with the subset {x ∈ A | f(x) = true}. We thus interpret variables of the sort

2 We focus on the case of finite α(obj) primarily for simplicity; we believe the extension
to the case where domains are either finite or countable is possible and can be done
using results from [22, Section 8.1], [34, Section 5], [36].
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objn → bool as subsets of JobjKn. If s is a sort then α(s) depends only on α(obj)
and we denote it also by JsK. We interpret propositional operations ∧,∨,¬ as
usual in classical logic. A quantified variable of sort s ranges over all elements
of JsK. (Thus, as in standard model of HOL [1, Section 54], quantification over
variables of sort s1 → s2 is quantification over all total functions Js1K→ Js2K.)

3.1 Boolean Algebra with Presburger Arithmetic

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∀x:s.F | ∃x:s.F

s ::= int | obj | set
A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT

B ::= x | ∅ | Univ | {x} | B1 ∪B2 | B1 ∩B2 | Bc

T ::= x | K | CardUniv | T1 + T2 | K · T | card(B)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 4. Boolean Algebra with Presburger Arithmetic (BAPA)

It will be convenient to enrich the language of our formulas with operations
on integers, sets, and cardinality operations. These operations could be given by
a theory or defined in HOL, but we choose to simply treat them as built-in logical
symbols, whose meaning must be respected by all structures α we consider. Fig. 4
shows the syntax of Boolean Algebra with Presburger Arithmetic (BAPA) [9,22].
The following are the sorts of symbols appearing in BAPA formulas: ⊆ : set2 →
bool, < : int2 → bool, dvdK : int → bool for each integer constant K (with
dvdK(t) denoted by K dvd t), ∅,Univ : set, singleton : obj→ set (with singleton(x)
denoted as {x}), ∩,∪ : set2 → set, complement : set→ set (with complement(A)
denoted by Ac),K : int for each integer constantK, CardUniv : int, + : int2 → int,
mulK : int → int for each integer constant K (with mulK(t) denoted by K · t),
and card : set→ int.

We sketch the meaning of the less common among the symbols in Fig. 4. Univ
denotes the universal set, that is, JUnivK = JobjK. card(A) denotes the cardinality
of the set A. CardUniv is interpreted as card(Univ). The formula K dvd t denotes
that the integer constant K divides the integer t. We note that the condition
x ∈ A can be written in this language as {x} ⊆ A. Note that BAPA properly
extends the first-order theory of Boolean Algebras over finite structures, which
in turn subsumes the first-order logic with unary predicates and no function
symbols, because e.g. ∃x:obj.F (x) can be written as ∃X:set. card(X)=1∧F ′(X)
where in F ′ e.g. P (x) is replaced by X ⊆ P .
BAPA-definable relations between sets. A semilinear set is a finite union
of linear sets. A linear set is a set of the form {a+k1b1 + . . .+knbn | k1, . . . , kn ∈
{0, 1, 2 . . .}} where a, b1, . . . , bn ∈ ZM . We represent a linear set by its generating
vectors a, b1, . . . , bn, and a semilinear set by the finite set of representations of
its linear sets. It was shown in [15] that a set of integer vectors S ⊆ ZM is a
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solution set of a Presburger arithmetic formula P i.e. S = {(v1, . . . , vn).P} iff S
is a semilinear set. We then have the following characterization of relationships
between sets expressible in BAPA, which follows from [22].

Lemma 1 (BAPA-expressible means Venn-cardinality-semilinear).
Given a finite set U and a relation ρ ⊆ (2U )p the following are equivalent:

1. there exists a BAPA formula F whose free variables are A1, . . . , Ap, and have
the sort set, such that ρ = {(s1, . . . , sp) | {A1 7→ s1, . . . , Ap 7→ sp}(F )};

2. the following subset of ZM for M = 2p is semilinear:
{(|sc1∩sc2∩. . .∩scp|, |s1∩sc2∩. . .∩scp|, . . . , |s1∩s2∩. . .∩sp|) | (s1, . . . , sp) ∈ ρ}.

Structures of interest in this paper. In the rest of this paper we con-
sider structures that interpret the BAPA symbols as defined above. Because the
meaning of BAPA-specific symbols is fixed, a structure α that interprets a set
of formulas is determined by a finite set α(obj) as well as the values α(x) for
each variable x free in the set of formulas. Let {obj 7→ u, x1 7→ v1, . . . , xn 7→ vn}
denote the structure α with domain u that interprets each variable xi as vi.

4 Combination by Reduction to BAPA

The Satisfiability Problem. We are interested in an algorithm to determine
whether there exists a structure α ∈M in which the following formula is true

B(F1, . . . , Fn) (1)

where

1. F1, . . . , Fn are formulas with FV(Fi) ⊆ {A1, . . . , Ap, x1, . . . , xq}.
2. VS = {A1, . . . , Ap} are variables of sort set, whereas x1, . . . , xq are the re-

maining variables.3

3. Each formula Fi belongs to a given class of formulas, Fi. For each Fi we
assume that there is a corresponding theory Ti ⊆ Fi.

4. B(F1, . . . , Fn) denotes a formula built from F1, . . . , Fn using the proposi-
tional operations ∧,∨. 4

5. As the set of structuresM we consider all structures α of interest (with finite
JobjK, interpreting BAPA symbols in the standard way) for which α(∪ni=1Ti).

6. (Set Sharing Condition) If i 6= j, then FV({Fi} ∪ Ti) ∩ FV({Fj} ∪ Tj) ⊆ VS .

Note that, as a special case, if we embed a class of first-order formulas into our
framework, we obtain a framework that supports sharing unary predicates, but
not e.g. binary predicates.

3 For notational simplicity we do not consider variables of sort obj because they can
be represented as singleton sets, of sort set.

4 The absence of negation is usually not a loss of generality because most Fi are closed
under negation so B is the negation-normal form of a quantifier-free combination.
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Combination Theorem. The formula B in (1) is satisfiable iff one of the
disjuncts in its disjunctive normal form is satisfiable. Consider a disjunct F1 ∧
. . .∧Fm for m ≤ n. By definition of the satisfiability problem (1), F1 ∧ . . .∧Fm
is satisfiable iff there exists a structure α such that for each 1 ≤ i ≤ m, for each
G ∈ {Fi} ∪ Ti, we have α(G) = true. Let each variable xi have some sort si
(such as obj2 → bool). Then the satisfiability of F1 ∧ . . . ∧ Fm is equivalent to
the following condition:

∃ finite set u. ∃a1, . . . , ap ⊆ u. ∃v1 ∈ Js1Ku. . . . ∃vq ∈ JsqKu.
∧m
i=1

{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, x1 7→ v1, . . . , xq 7→ vq}({Fi} ∪ Ti)
(2)

By the set sharing condition, each of the variables x1, . . . , xq appears only in one
conjunct and can be moved inwards from the top level to this conjunct. Using
xij to denote the j-th variable in the i-th conjunct we obtain the condition

∃ finite set u. ∃a1, . . . , ap ⊆ u.
∧m
i=1 Ci(u, a1, . . . , ap) (3)

where Ci(u, a1, . . . , ap) is

∃vi1. . . .∃viwi .
{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, xi1 7→ vi1, . . . , xiwi 7→ viwi}({Fi} ∪ Ti)

The idea of our combination method is to simplify each condition
Ci(u, a1, . . . , ap) into the truth value of a BAPA formula. If this is possible,
we say that there exists a BAPA reduction.

Definition 2 (BAPA Reduction). If Fi is a set of formulas and Ti ⊆ Fi a
theory, we call a function ρ : Fi → FBAPA a BAPA reduction for (Fi, Ti) iff for
every formula Fi ∈ Fi and for all finite u and a1, . . . , ap ⊆ u, the condition

∃vi1 . . . ∃viwi .
{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, xi1 7→ vi1, . . . , xiwi 7→ viwi}({Fi} ∪ Ti)

is equivalent to the condition {obj→ u,A1 7→ a1, . . . , Ap 7→ ap}(ρ(Fi)).

A computable BAPA reduction is a BAPA reduction which is computable as a
function on formula syntax trees.

Theorem 3. Suppose that for every 1 ≤ i ≤ n for (Fi, Ti) there exists a com-
putable BAPA reduction ρi. Then the problem (1) in Section 4 is decidable.

Specifically, to check satisfiability of B(F1, . . . , Fn), compute
B(ρ1(F1), . . . , ρn(Fn)) and then check its satisfiability using a BAPA de-
cision procedure [22,23].

5 BAPA Reductions

5.1 Monadic Second-Order Logic of Finite Trees

Figure 5 shows the syntax of (our presentation of) monadic second-order logic of
finite trees (FT), a variant of weak monadic second-order logic of two successors
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F ::= P | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∀x:s.F | ∃x:s.F

s ::= obj | set
P ::= B1 = B2 | B1 ⊆ B2 | r(x, y)

r ::= succL | succR

B ::= x | ε | ∅ | Univ | {x} | B1 ∪B2 | B1 ∩B2 | Bc

Fig. 5. Monadic Second-Order Logic of Finite Trees (FT)

(WS2S) [19,36]. The following are the sorts of variables specific to FT formulas:
succL, succR : obj2 → bool.

We interpret the sort obj over finite, prefix-closed sets of binary strings. More
precisely, we use {1, 2} as the binary alphabet, and we let JobjK ⊂ {1, 2}∗ such
that

∀w ∈ {1, 2}∗. (w1 ∈ JobjK ∨ w2 ∈ JobjK)→ w ∈ JobjK

In each model, JsetK is the set of all subsets of JobjK. We let JεK be the empty
string which we also denote by ε. We define

JsuccLK = {(w,w1) | w1 ∈ JobjK} and JsuccRK = {(w,w2) | w2 ∈ JobjK}

The remaining constants and operations on sets are interpreted as in BAPA.
Let FFT be the set of all formulas in Figure 5. LetMFT be the set of all (finite)

structures described above. We define TFT as the set of all formulas F ∈ FFT

such that F is true in all structures from MFT.
The models of the theory TFT correspond up to isomorphism with the inter-

pretations in MFT.

Lemma 4. If α is a structure such that α(TFT) then α is isomorphic to some
structure in MFT.

Note that any FT formula F (x) with a free variable x of sort obj can be
transformed into the equisatisfiable formula ∃x : obj.y = {x} ∧ F (x) where y is
a fresh variable of sort set. For conciseness of presentation, in the rest of this
section we only consider FT formulas F with FVobj(F ) = ∅.
Finite tree automata. In the following, we recall the connection between FT
formulas and finite tree automata. Let Σ be a finite ranked alphabet. We call
symbols of rank 0 constant symbols and a symbol of rank k > 0 a k-ary function
symbol. We denote by Terms(Σ) the set of all terms over Σ. We associate a
position p ∈ {1, . . . , rmax}∗ with each subterm in a term t where rmax is the
maximal rank of all symbols in Σ. We denote by t[p] the topmost symbol of the
subterm at position p. For instance, consider the term t = f(g(a, b, c), a) then
we have t[ε] = f and t[13] = c.

A finite (deterministic bottom-up) tree automaton A for alphabet Σ is a
tuple (Q,Qf , ι) where Q is a finite set of states, Qf ⊆ Q is a set of final states,
and ι is a function that associates with each constant symbol c ∈ Σ a state
ι(c) ∈ Q and with each k-ary function symbol f ∈ Σ a function ι(f) : Qk → Q.
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We homomorphically extend ι from symbols in Σ to Σ-terms. We say that A
accepts a term t ∈ Terms(Σ) if ι(t) ∈ Qf . The language L(A) accepted by A is
the set of all Σ-terms accepted by A.

Let F be an FT formula and let SV(F ) be the set SV(F ) = FV(F )∪ {Univ}.
We denote byΣF the alphabet consisting of the constant symbol⊥ and all binary
function symbols fν where ν is a function ν : SV(F ) → {0, 1}. We inductively
associate a ΣF -term tα,w with every structure α ∈ MFT and string w ∈ {1, 2}∗
as follows:

tα,w =

{
fνα,w(tα,w1, tα,w2) if w ∈ α(obj)
⊥ otherwise

such that for all x ∈ SV(F ), να,w(x) = 1 iff w ∈ α(x). The language L(F ) ⊆
Terms(ΣF ) of F is then defined by L(F ) = { tα,ε | α ∈MFT ∧ α(F ) }.

The following theorem states the connection between the structures satisfying
FT formulas and the languages accepted by finite tree automata5.

Theorem 5 (Thatcher and Wright [36]). For every FT formula F there
exists a finite tree automaton AF over alphabet ΣF such that L(F ) = L(AF )
and AF can be effectively constructed from F .

Parikh image. We recall Parikh’s commutative image [30]. The Parikh image
for an alphabet Σ is the function Parikh : Σ∗ → Σ → N such that for any word
w ∈ Σ∗ and symbol σ ∈ Σ, Parikh(w)(σ) is the number of occurrences of σ
in w. The Parikh image is extended pointwise from words to sets of words:
Parikh(W ) = {Parikh(w) | w ∈W }. In the following, we implicitly identify
Parikh(W ) with the set of integer vectors { (χ(σ1), . . . , χ(σn)) | χ ∈ Parikh(W ) }
where we assume some fixed order on the symbols σ1, . . . , σn in Σ.

Theorem 6 (Parikh [30]). Let G be a context-free grammar and L(G) the
language generated from G then the Parikh image of L(G) is a semilinear set
and its finite representation is effectively computable from G.

We generalize the Parikh image from words to terms as expected: the Parikh
image for a ranked alphabet Σ is the function Parikh : Terms(Σ)→ Σ → N such
that for all t ∈ Terms(Σ) and σ ∈ Σ, Parikh(t)(σ) is the number of positions p
in t such that t[p] = σ. Again we extend this function pointwise from terms to
sets of terms.

Lemma 7. Let A be a finite tree automaton over alphabet Σ. Then the Parikh
image of L(A) is a semilinear set and its finite representation is effectively com-
putable from A.

5 The theorem was originally stated for WS2S where the universe of all structures is
fixed to the infinite binary tree {1, 2}∗ and where all set variables range over finite
subsets of {1, 2}∗. It carries over to finite trees in a straightforward manner.
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5.2 BAPA Reduction for Monadic Second-Order Logic of Finite
Trees

In the following, we prove the existence of a computable BAPA reduction for
the theory of monadic second-order logic of finite trees.

Let F be an FT formula and let Σ2
F be the set of all binary function symbols

in ΣF , i.e., Σ2
F

def= ΣF \ {⊥}. We associate with each σν ∈ Σ2
F the Venn region

vr(σν), which is given by a set-algebraic expression over SV(F ): let SV(F ) =
{x1, . . . , xn} then

vr(σν) def= x
ν(x1)
1 ∩ · · · ∩ xν(xn)

n .

Hereby x0
i denotes xci and x1

i denotes xi. Let α ∈MFT be a model of F . Then the
term tα,ε encodes for each w ∈ α(obj) the Venn region to which w belongs in α,
namely vr(tα,ε[w]). Thus, the Parikh image Parikh(tα,ε) encodes the cardinality
of each Venn region over SV(F ) in α.

Lemma 8. Let F be an FT formula then

Parikh(L(F ))|Σ2
F

=
{{

σ 7→ |α(vr(σ))| | σ ∈ Σ2
F

}
| α ∈MFT ∧ α(F )

}
.

According to Theorem 5 we can construct a finite tree automaton AF over
ΣF such that L(F ) = L(AF ). From Lemma 7 follows that Parikh(L(F )) is a
semilinear set whose finite representation in terms of base and step vectors is
effectively computable from AF . From this finite representation we can construct
a Presburger arithmetic formula φF over free integer variables {xσ | σ ∈ ΣF }
whose set of solutions is the Parikh image of L(F ), i.e.

Parikh(L(F )) = { {σ 7→ kσ | σ ∈ ΣF } | {xσ 7→ kσ | σ ∈ Σ } (φF ) } (4)

Using the above construction of the Presburger arithmetic formula φF for a given
FT formula F , we define the function ρFT : FFT → FBAPA as follows:

ρFT(F ) def= ∃xσ. φF ∧
∧

σ∈Σ2
F

card(vr(σ)) = xσ

where xσ are the free integer variables of φF .

Theorem 9. The function ρFT is a BAPA reduction for (FFT, TFT).

5.3 Two-Variable Logic with Counting

Figure 6 shows the syntax of (our presentation of) two-variable logic with count-
ing (denoted C2) [33]. As usual in C2, we require that every sub-formula of a
formula has at most two free variables. In the atomic formula r(x1, x2), variables
x1, x2 are of sort obj and r is a relation variable of sort obj2 → bool. The for-
mula {x} ⊆ A replaces A(x) in predicate-logic notation, and has the expected
meaning, with the variable x is of sort obj and A of sort set. The interpretation
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F ::= P | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃Kx:obj.F

P ::= x1 = x2 | {x} ⊆ A | r(x1, x2)

Fig. 6. Two-Variable Logic with Counting (C2)

of the counting quantifier ∃Kx:obj.F for a positive constant K is that there exist
at least K distinct elements x for which the formula F holds.

Let FC2 be the set of all formulas in Figure 6. Let MC2 be the set of struc-
tures that interpret formulas in FC2. We define TC2 as the set of all formulas
F ∈ FC2 such that F is true in all structures from MC2. Modulo our minor
variation in syntax and terminology (using relation and set variables instead of
predicate symbols), TC2 corresponds to the standard set of valid C2 formulas
over finite structures [33].

5.4 BAPA Reduction for Two-Variable Logic with Counting

We next build on the results in [34] to define a BAPA reduction for C2. We
fix set variables A1, . . . , Ap and relation variables r1, . . . , rq. Throughout this
section, let ΣA = {A1, . . . , Ap}, ΣR = {r1, . . . , rq}, and Σ0 = ΣA ∪ΣR. We call
ΣA, ΣR, Σ0 signatures because they correspond to the notion of signature in the
traditional first-order logic formulation of C2.
Model theoretic types. Define the model-theoretic notion of n-type
πΣ(x1, . . . , xn) in the signature Σ as the maximal consistent set of non-equality
literals in Σ whose obj-sort variables are included in {x1, . . . , xn}. 6 Given a
structure α such that α(x1), . . . , α(xn) are all distinct, α induces an n-type

itypα,Σ(x1, . . . , xn) = {L | α(L)∧FV(L) ⊆ {x1, . . . , xn}, L is Σ-literal without ’=’}

We also define the set of n-tuples for which a type π holds in a structure α:

Sα(π(x1, . . . , xn)) = {(e1, . . . , en) ∈ α(obj)n | α(x1 := e1, . . . , xn := en)(π)}

If Σ ⊆ Σ′ and π′ is an n-type in signature Σ′, by π′|Σ we denote the subset of
π containing precisely those literals from π whose sets and relations belong to
Σ. The family of sets {Sα(π′) | π′|Σ = π} is a partition of Sα(π′). We will be
particularly interested in 1-types. We identify a 1-type π(x) in the signature ΣA
with the corresponding Venn region⋂

{Ai | ({x} ⊆ Ai) ∈ π(x)} ∩
⋂
{Aci | (¬({x} ⊆ Ai)) ∈ π(x)}.

If π1, . . . , πm is the sequence of all 1-types in the signature Σ and α is a structure,
let Iα(Σ) = (|Sα(π1)|, . . . , |Sα(πm)|). If M is a set of structures let IM(Σ) =
{Iα(Σ) | α ∈M}.
6 For example, if Σ has one relation variable r, and two set variables A1, A2, then

each 2-type with free variables x, y contains, for each of the atomic formulas with
variables x, y (i.e. {x} ⊆ A1, {y} ⊆ A1, {x} ⊆ A2, {y} ⊆ A2, r(x, x), r(y, y), r(x, y),
r(y, x)), either the formula or its negation.
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Observation 10 If π is a 1-type in Σ and π′ a 1-type in Σ′ for Σ ⊆ Σ′, then

|Iα(π)| =
∑

π′|Σ=π

|Iα(π′)|

Making structures differentiated, chromatic, sparse preserves 1-types.
Let φ be a C2 formula with signature Σ0 of relation symbols. By Scott normal
form transformation [34, Lemma 1] it is possible to introduce fresh set variables
and compute another C2 formula φ∗ in an extended signature Σ∗ ⊇ Σ0, and
compute a constant Cφ such that, for all sets u with |u| ≥ Cφ: 1) if α0 is
a Σ0 interpretation with domain u such that α0(φ), then there exists its Σ∗

extension α∗ ⊇ α0 such that α∗(φ∗), and 2) if α∗ is a Σ∗ interpretation with
domain u such that α∗(φ∗), then for its restriction α0 = α∗|Σ we have α0(φ).
By introducing further fresh set- and relation- symbols, [34, lemmas 2 and 3]
shows that we can extend the signature from Σ∗ to Σ such that each model α∗

in Σ∗ extends to a model α in Σ, where α satisfies some further conditions of
interest: α is chromatic and differentiated. [34, Lemma 10] then shows that it is
possible to transform a model of a formula into a so-called X-sparse model for
an appropriately computed integer constant X. What is important for us is the
following.

Observation 11 The transformations that start from α0 with α0(φ), and that
produce a chromatic, differentiated, X-sparse structure α with α(φ), have the
property that, for structures of size Cφ or more,

1. the domain remains the same: α0(obj) = α(obj),
2. the induced 1-types in the signature Σ0 remain the same: for each 1-type π

in signature Σ0, Sα0(π) = Sα(π).

Star types. [34, Definition 9] introduces a star-type (π,v) (denoted by letter
σ) as a description of a local neighborhood of a domain element, containing its
induced 1-type π as well as an integer vector v ⊆ ZN that counts 2-types in which
the element participates, where N is a function of the signature Σ. A star type
thus gives a more precise description of the properties of a domain element than
a 1-type. Without repeating the definition of star type [34, Definition 9], we note
that we can similarly define the set Sα((π,v)) of elements that realize a given
star type (π,v). Moreover, for a given 1-type π, the family of the non-empty
among the sets Sα((π,v)) partitions the set Sα(π).
Frames. The notion of Y -bounded chromatic frame [34, Definition 11] can be
thought of as a representation of a disjunct in a normal form for the formula φ∗.
It summarizes the properties of elements in the structure and specifies (among
others), the list of possible star types σ1, . . . , σN whose integer vectors v are
bounded by Y . For a given φ∗, it is possible to effectively compute the set of
Cφ-bounded frames F such that F |= φ∗ holds. The ‘|=’ in F |= φ∗ is a certain
syntactic relation defined in [34, Definition 13].

For each frame F with star-types σ1, . . . , σN , [34, Definition 14] introduces an
effectively computable Presburger arithmetic formula PF with N free variables.
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We write PF (w1, . . . , wN ) if PF is true when these variables take the values
w1, . . . , wN . The following statement is similar to the main [34, Theorem 1], and
can be directly recovered from its proof and the proofs of the underlying [34,
lemmas 12,13,14].

Theorem 12. Given a formula φ∗, and the corresponding integer constant Cφ,
there exists a computable constant X such that if N ≤ X, if σ1, . . . , σN is
a sequence of star types in Σ whose integer vectors are bounded by Cφ, and
w1, . . . , wN are integers, then the following are equivalent:

1. There exists a chromatic differentiated structure α such that α(φ∗),
wi=|Sα(σi)| for 1 ≤ i ≤ N , and α(obj) =

⋃N
i=1 S

α(σi).
2. There exists a chromatic frame F with star types σ1, . . . , σN , such that F |=

φ∗ and PF (w1, . . . , wN ).

We are now ready to describe our BAPA reduction. Fix V1, . . . , VM to be the list
of all 1-types in signature ΣA; let s1, . . . , sM be variables corresponding to their
counts. By the transformation of models into chromatic, differentiated, X-sparse
ones, the observations 11, 10, and Theorem 12, we obtain

Corollary 13. IfM = {α | α(φ∗)}, then there is a computable constant X such
that IM(ΣA) = {(s1, . . . , sM ) | Fφ∗(s1, . . . , sM )} where Fφ∗(s1, . . . , sM ) is the
following Presburger arithmetic formula

∨
N,σ1,...,σN ,F

∃w1, . . . , wN . PF (w1, . . . , wN ) ∧
M∧
j=1

sj =
∑
{wi | Vj = (πi|ΣA)}

where N ranges over {0, 1, . . . , X}, σ1, . . . , σN range over sequences of Cφ-
bounded star types, and where F ranges over the Cφ-bounded frames with star
types σ1, . . . , σN such that F |= φ∗.

By adjusting for the small structures to take into account Scott normal form
transformation, we further obtain

Corollary 14. If M = {α | α(φ)}, then IM(ΣA) = {(s1, . . . , sM ) |
Gφ(s1, . . . , sM )} where Gφ(s1, . . . , sM ) is the Presburger arithmetic formula

M∑
i=1

si ≥ Cφ ∧ Fφ∗(s1, . . . , sM )
∨

∨
{
M∧
i=1

si = di | ∃α. |α(obj)| < Cφ ∧ (d1, . . . , dM ) ∈ Iα(ΣA)}

Theorem 15. The following is a BAPA reduction for C2 over finite models to
variables ΣA: given a two-variable logic formula φ, compute the BAPA formula
∃s1, . . . , sM . Gφ(s1, . . . , sM ) ∧

∧M
i=1 card(Vi) = si.
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5.5 Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic

Figure 7 shows the syntax of (our presentation of) the Bernays-Schönfinkel-
Ramsey fragment of first-order logic with equality [6], often called effectively
propositional logic (EPR). The interpretation of atomic formulas is analogous
as for C2 in previous section. Quantification is restricted to variables of sort obj
and must obey the usual restriction of ∃∗∀∗-prenex form that characterizes the
Bernays-Schönfinkel-Ramsey class.

F ::= ∃z1:obj. . . .∃zn:obj. ∀y1:obj. . . .∀ym:obj. B

B ::= P | B1 ∧B2 | B1 ∨B2 | ¬B
P ::= x1 = x2 | {x} ⊆ A | r(x1, . . . , xk)

Fig. 7. Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic

5.6 BAPA Reduction for Bernays-Schönfinkel-Ramsey Fragment

Our BAPA reduction for the Bernays-Schönfinkel-Ramsey fragment (EPR) is
in fact a reduction from EPR formulas to unary EPR formulas, in which all
free variables have the sort set. To convert a unary EPR formula into BAPA,
treat first-order variables as singleton sets and apply quantifier elimination for
BAPA [22].

Theorem 16 (BAPA Reduction for EPR). Let φ be a quantifier-free for-
mula whose free variables are: 1) A1, . . . , Ap, of sort set, 2) r1, . . . , rq, each ri
of sorts objK(i) → bool for some K(i) ≥ 2, 3) z1, . . . , zn, y1, . . . , ym, of sort obj.
Then

∃r1, . . . rq. ∃z1, . . . , zn. ∀y1, . . . , ym. φ

is equivalent to an effectively computable BAPA formula.

The proof of Theorem 16 builds on and generalizes, for finite models, the results
on the spectra of EPR formulas [10, 11, 35]. We here provide some intuition.
The key insight [35] is that, when a domain of a model of an EPR formula has
sufficiently many elements, then the model contains an induced submodel S of
m nodes such that for every 0 ≤ k < m elements e1, . . . , ek outside S the m-
type induced by e1, . . . , ek and any m − k elements in S is the same. Then an
element of S can be replicated to create a model with more elements, without
changing the set of all m-types in the model and thus without changing the
truth value of the formula. Moreover, every sufficiently large model of the EPR
formula that has a submodel S with more than m such symmetric elements can
be shrunk to a model by whose expansion it can be generated. This allows us
to enumerate a finite (even if very large) number of characteristic models whose
expansion generates all models. The expansion of a characteristic model increases
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by one the number of elements of some existing 1-type, so the cardinalities of
Venn regions of models are a semilinear set whose base vectors are given by
characteristic models and whose step vectors are given by the 1-types being
replicated.

5.7 Quantifier-free Mutlisets with Cardinality Constraints

Figure 8 shows the syntax of quantifier-free multiset constraints with cardinality
operators [31] in our setting. Multiset expressions have sort obj → int, which
we abbreviate by multiset in the following. Formulas are built from set expres-
sions over set variables of sort set, multiset expressions over multiset variables of
sort multiset and inner and outer linear arithmetic formulas. Formally, we have
distinct variables for operations on sets and multisets, e.g., we have a variable
∪s : set2 → set and a variable ∪m : multiset2 → multiset, but we use the same
symbol ∪ for both of them.

top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= S=S | S ⊆ S |M=M |M ⊆M | ∀e : obj.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
P

(tin, . . . , tin)
tout ::= k | card(S) | card(M) | K | tout + tout | K · tout | ite(Fout, tout, tout)

inner linear arithmetic formulas:
Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | K | tin + tin | K · tin | ite(Fin, tin, tin)
set expressions:

S ::= s | ∅ | S ∩ S | S ∪ S | Sc | setof(M)
multiset expressions:
M ::= m | ∅ |M ∩M |M ∪M |M ]M |M \M |M \\M | multisetof(S)

terminals:
s - set variables; m - multiset variables; e - index variable (fixed)
k - integer variable; K - integer constant

Fig. 8. Quantifier-Free Multiset Constraints with Cardinality Operators

We restrict ourself to structures α that interpret multiset variables as func-
tions from JobjK to the nonnegative integers. Set and arithmetic operations are
interpreted as in BAPA. Multiset operations are interpreted as expected, in
particular, ’]’ denotes additive union, ’\’ denotes multiset difference, and ’\\’
denotes set difference. The variables multisetof and setof are interpreted as func-
tions that convert between multisets and sets, e.g., JsetofK maps a multiset
M : JobjK → N to the set { e |M(e) > 0 }. The variable ite is interpreted as
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the conditional choice function, i.e., Jite(F, t1, t2)K denotes Jt1K if JF K = true and
Jt2K otherwise. Finally, the atom (u1, . . . , un)=

∑
(t1, . . . , tn) denotes true iff for

all i ∈ [1, n]
α(ui) =

∑
o∈JobjK

α[e := o](ti)

Let FMS be the set of all formulas defined in Figure 8 and let MMS be the
set of all structures interpreting formulas in FMS as described above. We define
the theory of quantifier-free multisets with cardinality constraints TMS as the set
of all formulas F ∈ FMS such that α(F ) is true for all structures α in MMS.

5.8 BAPA Reduction for Quantifier-free Multiset Constraints

The satisfiability of the quantifier-free fragment of multisets with cardinality
operators is decidable [31]. There is, in fact, also a BAPA reduction from a
quantifier-free multiset formula over multiset and set variables to a BAPA for-
mula ranging only over the set variables.

Let F ∈ FMS be a multiset constraint containing set variables A1, . . . , Ap
and multiset variables M1, . . . ,Mq. To obtain a BAPA reduction, we apply the
decision procedure described in [31] to the formula

F1
def= F ∧

w∧
i=1

card(Vi)=ki

where k1, . . . , kw are fresh integer variables and V1, . . . , Vw are the Venn regions
over the set variables A1, . . . , Ap. Before applying the decision procedure we
convert F1 to a formula F2 that only ranges over multiset variables. This is done
by replacing every set operation in F by the corresponding multiset operation,
replacing every set variable Ai by a fresh multiset variable MAi , and conjoining
the formula

∀e : obj.

p∧
i=1

(MAi(e) = 0 ∨MAi(e) = 1) .

The decision procedure constructs a Presburger arithmetic formula P with
{k1, . . . , kw} ⊆ FV(P ). From the proofs of [31, Theorems 1, 2, and Lemma 3]
follows that {

α|{k1,...,kw} | α(F2)
}

=
{
α|{k1,...,kw} | α(P )

}
If x1, . . . , xn are the variables in P other than k1, . . . , kw then the result of the
BAPA reduction is the formula

PF
def= ∃k1 : int. . . .∃kw : int. (

w∧
i=1

card(Vi)=ki) ∧ (∃x1:int. . . .∃xn:int. P ) (5)

Theorem 17. The function mapping a formula F ∈ FMS to the BAPA formula
PF is a BAPA reduction for (FMS, TMS).

The proof of Theorem 17 uses Equation 5 following a similar argumentation
than in the proof of Theorem 9.
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6 Further Related Work

There are combination results for the disjoint combinations of non-stably infinite
theories [10, 11, 20, 38]. These results are based on the observation that such
combinations are possible whenever one can decide for each component theory
whether a model of a specific cardinality exists. Our combination result takes
into account not only the cardinality of the models, i.e. the interpretation of
the universal set, but cardinalities of Venn regions over the interpretations of
arbitrary shared set variables. It is a natural generalization of the disjoint case
restricted to theories that share the theory of finite sets, thus, leading to a non-
disjoint combination of non-stably infinite theories.

Ghilardi [14] proposes a model-theoretic condition for decidability of the
non-disjoint combination of theories based on quantifier elimination and local
finiteness of the shared theory. Note that BAPA is not locally finite and that, in
general, we need the full expressive power of BAPA to compute the projections
on the shared set variables. For instance, consider the C2 formula

(∀x.∃=1y.r(x, y)) ∧ (∀x.∃=1y.r(y, x)) ∧ (∀y. y ∈ B ↔ (∃x.x ∈ A ∧ r(x, y)))

where r is a binary relation variable establishing the bijection between A and B.
This constraint expresses |A| = |B| without imposing any additional constraint
on A and B. Similar examples can be given for weak monadic second-order logic
of finite trees.

The reduction approach to combination of decision procedures has previously
been applied in the simpler scenario of reduction to propositional logic [25].
Like propositional logic, quantifier-Free BAPA is NP-complete, so it presents an
appealing alternative for combination of theories that share sets.

Gabbay and Ohlbach [12] present a procedure, called SCAN, for second-
order quantifier elimination. However, [12] gives no characterization of when
SCAN terminates. We were therefore unable to use SCAN to derive any BAPA
reductions.

The general combination of weak monadic second-order logics with linear car-
dinality constraints has been proven undecidable by Klaedtke and Rueß [17,18].
They introduce the notion of Parikh automata to identify decidable fragments
of this logic which inspired our BAPA reduction of MSOL of finite trees. Our
combined logic is incomparable to the decidable fragments identified by Klaedtke
and Rueß because it supports non-tree structures as well. However, by applying
projection to C2 and the Bernays-Schönfinkel-Ramsey class, we can combine our
logic with [17,18], obtaining an even more expressive decidable logic.

7 Conclusion

Many verification techniques rely on decision procedures to achieve a high degree
of automation. The class of properties that such techniques are able to verify is
therefore limited by the expressive power of the logics supported by the underly-
ing decision procedures. We have presented a combination result for logics that
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share operations on sets. This result yields an expressive decidable logic that
is useful for software verification. We therefore believe that we made an impor-
tant step in increasing the class of properties that are amenable to automated
verification.
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A Additional Proofs

A.1 Proof of Lemma 4

Lemma 4. If α is a structure such that α(TFT) then α is isomorphic to some
structure in MFT.
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Proof. First, define FT formulas Succ(x, y) and Reach(x, y) as follows, where
x, y are variables of sort obj:

Succ(x, y) = (succL(x, y) ∨ succR(x, y))
Reach(x, y) = (∀S :set. x ∈ S ∧ (∀u, v :obj. u ∈ S ∧ Succ(u, v)→ v ∈ S)→ y ∈ S)

Note that in any structure α, Succ denotes the union of the relations succL and
succR and Reach denotes the reflexive transitive closure of Succ. The following
FT formulas are true in all structures MFT:

OneRoot = (∀x : obj.(∀y : obj.¬Succ(y, x))→ x = ε)
Acyclic = (∀x : obj, y : obj.Succ(x, y)→ ¬Reach(y, x))

NoShared = (∀x : obj, y : obj, z : obj.(Succ(x, z) ∧ Succ(y, z)→ x = y) ∧
(∀x : obj, y : obj.¬succL(x, y) ∨ ¬succR(x, y))

Now, assume α(TFT). Let r = α(ε) and let further JSuccK be the relation denoted
by Succ(x, y) in α and JReachK the relation denoted by Reach(x, y). Furthermore,
let h : α(obj)× {1, 2}∗ be the smallest relation satisfying:

– (r, ε) ∈ h
– for all o1, o2 ∈ α(obj), (o1, w) ∈ h and (o1, o2) ∈ α(succL) implies (o2, w1) ∈ h
– for all o1, o2 ∈ α(obj), (o1, w) ∈ h and (o1, o2) ∈ α(succR) implies (o2, w2) ∈
h

Let H1 be the projection of h to its first component, i.e.

H1
def= { o1 | ∃o2.(o1, o2) ∈ h } .

Likewise, let H2 be the projection of h to its second component. Note that for
all o ∈ H1 we have (r, o) ∈ JReachK.

We claim that h is a bijection between α(obj) and H2. First, assume that
there exists o0 ∈ α(obj) \H1. Then (r, o0) /∈ JReachK. Assume there is some or,
such that (r, or) /∈ JReachK, (or, o0) ∈ JReachK and for all o1 ∈ α(obj), (o1, or) /∈
JSuccK. Thus, in particular or 6= r. This contradicts the fact that OneRoot is
true in α. Thus, assume there is no such or. Then there exists an infinite chain
o0, o1, o2, . . . of elements in α(obj) such that for all i ∈ N, (oi+1, oi) ∈ JSuccK.
It follows for all i, j ∈ N with i < j that (oj , oi) ∈ JReachK. Since α(obj) is
finite, there exist i, j ∈ N such that i < j and o1 = oj . Thus, (oi, oj−1) ∈ JSuccK
and (oj−1, oi) ∈ JReachK. This contradicts the fact that Acyclic is true in α. We
conclude H1 = α(obj).

For proving that h is functional, assume that there is o ∈ α(obj) and distinct
w1, w2 ∈ H2 such that (o, w1) ∈ h and (o, w2) ∈ h. Then there exist distinct o1
and o2 such that (o1, o) ∈ JSuccK and (o2, o) ∈ JSuccK. This contradicts the fact
that NoShared is true in α. Thus, h is functional. By similar reasoning we can
prove that h is injective.

Since h is a bijection between α(obj) and H2, it follows that H2 is finite. By
construction, H2 is also prefix-closed. Let α′ be the structure in MFT that is
determined by H2. Again by construction, h is isomomorphic with respect to
the interpretations of ε, succL, and succR in α and α′, which proves the lemma.
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A.2 Proof of Lemma 7

Lemma 7. Let A be a finite tree automaton over alphabet Σ. Then the Parikh
image of L(A) is a semilinear set and its finite representation is effectively com-
putable from A.

Proof. Let A = (Q,Qf , ι) be a tree automaton over ranked alphabet Σ. Consider
the context-free grammar G = (N,T,R, S) where S is a fresh start symbol
disjoint from Σ and Q, N = Q, T = Σ, and R is the smallest set containing the
production rules:

– S → q: if q ∈ Qf ,
– q → c: if c is a constant symbol in Σ and ι(c) = q,
– q → fq1 . . . qk: if f is a k-ary function symbol in Σ and ι(f)(q1, . . . , qk) = q.

Then G generates all words in Σ∗ that result from a pre-order traversal of
some Σ-term accepted by A, i.e., Parikh(L(G)) = Parikh(L(A)). Then the lemma
follows from Theorem 6.

A.3 Proof of Theorem 9

Theorem 9. The function ρFT is a BAPA reduction for (FFT, TFT).

Proof. Let F be an FT formula. For proving the left-to-right direction assume
that α is a structure such that α(TFT ∪ {F}). From Lemma 4 follows that there
exists some structure α′ ∈ MFT such that α′ is isomorphic to α. Thus, α′ is a
model of F . According to Lemma 8 there exists k ∈ N such that

(
{
σ 7→ |α′(vr(σ))| | σ ∈ Σ2

F

}
∪ {⊥ 7→ k}) ∈ Parikh(L(F ))

From Equation 4 and the definition of ρFT follows α′|SV(F )(ρFT). Since α and α′

agree up to isomorphism on the interpretations of obj and the free set variables
of F , we conclude α|SV(F )(ρFT).

For the right-to-left direction assume that α is a structure such that α(ρFT)
holds. We need to find interpretations for succL and succR that extend α to a
model of TFT∪{F}. From the definition of ρFT and Equation 4 follows that there
exists k ∈ N such that

(
{
σ 7→ |α(vr(σ))| | σ ∈ Σ2

F

}
∪ {⊥ 7→ k}) ∈ Parikh(L(F )) .

From Lemma 8 follows that there exists α′ ∈ MFT such that α′(F ) and for all
σ ∈ Σ2

F , |α(vr(σ))| = |α′(vr(σ))|. Since α and α′ agree on the cardinalities of
all Venn regions over SV(F ), there exists a bijection h : α(obj)→ α′(obj) which
is isomorphic with respect to the interpretation of all x ∈ SV(F ) in α and α′.
Choose one such isomorphism h. Let sL, sR : α(obj)2 → {true, false} be such
that for all o1, o2 ∈ α(obj), (o1, o2) ∈ sL,R iff (h(o1), h(o2)) ∈ α′(succL,R). Then
(α ∪ {succL 7→ sL, succR 7→ sR, ε 7→ h(ε)}) is a model of TFT ∪ {F}.
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