
A Type-Directed Approach to Program Repair

Alex Reinking and Ruzica Piskac

Yale University

Abstract. Developing enterprise software often requires composing several li-
braries together with a large body of in-house code. Large APIs introduce a steep
learning curve for new developers as a result of their complex object-oriented un-
derpinnings. While the written code in general reflects a programmer’s intent, due
to evolutions in an API, code can often become ill-typed, yet still syntactically-
correct. Such code fragments will no longer compile, and will need to be updated.
We describe an algorithm that automatically repairs such errors, and discuss its
application to common problems in software engineering.

1 Introduction

While coding, a developer often knows the approximate structure of the expression she
is working on, but may yet write code that does not compile because some fragments
are not well-typed. Such mistakes occur mainly because modern libraries often evolve
into complex application programming interfaces (APIs) that provide a large number of
declarations. It is difficult, if not impossible, to learn the specifics of every declaration
and its utilization.

In this paper we propose an approach that takes ill-typed expressions and automat-
ically suggests several well-typed corrections. The suggested code snippets follow the
structure outlined in the original expression as closely as possible, and are ranked based
on their similarity to the original code. This approach can also be seen as code synthesis.
In fact, our proposed method extends the synthesis functionality described in [3, 6, 10].
In light of program repair, plain expression synthesis can be seen as a repair of the
empty expression.

We have implemented an early prototype of our algorithm, and empirically tested it
on synthesis and repair benchmarks. The initial evaluation strongly supports the idea of
a graph-based type-directed approach to code repair and snippet synthesis. Compared to
the results reported in [3], our approach outperforms on similar benchmarks, sometimes
by several orders of magnitude, while still producing high-quality results.

2 Related Work

Our work is largely inspired by two synthesis tools: Prospector [6] and InSynth [3, 4].
Prospector is a tool for synthesizing code snippets containing only unary API methods.
The basic synthesis algorithm used in [6] encodes method signatures using a graph.
Although we also encode function information in a graph structure, our synthesis graph
is more general. As explained in Sec. 4.1, we distinguish nodes into types and functions,

2 Alex Reinking and Ruzica Piskac

as opposed to just types. In a way, the connections to each function node models its
succinct type as described in [3]. While our approach acts as a generalization of both
these tools, we significantly extend their capability. Our algorithm can repair ill-typed
expressions, as well.

Debugging and locating errors in code [1, 8] play an important role in the process
of increasing software reliability. While our approach suggests repairs based only on
a given ill-typed expression and its environment, other tools that tackle this problem
[2, 5, 7, 9] additionally require test cases, code contracts and/or symbolic execution.

3 Motivating Example: Correcting Multiple Errors

In this section, we show how our algorithm efficiently repairs ill-typed expressions.
Sometimes, such expressions might poorly reflect the structure of the desired expres-
sion, while still retaining other useful information. This is the case when the correct
structure is obscured by passing too many or too few arguments to a function, or by
passing them in the wrong order.

The following code fragment attempts to read a compressed file though a buffered
stream while using an extensive number of calls to the standard Java API. The developer
attempts to instantiate an InputStream object:

int buffSize = 1024, compLevel = Deflater.BEST_SPEED;
String fileName = "compressed.txt";

InputStream input =
new BufferedInputStream(buffSize, new DeflaterInputStream(
new FileInputStream(), compLevel, true)); // error

In this example, the single variable assignment contains three errors. First, the construc-
tor for the FileInputStream requires at least one argument, yet has received none;
second, the DeflaterInputStream constructor has been passed too many arguments;
and finally, the BufferedInputStream has been passed valid arguments, but in the
wrong order.

To repair this expression, our algorithm proceeds from the bottom, viewed as a parse
tree, up to the top-level. Thus, it begins by correcting the innermost sub-expression:
new FileInputStream(). From the entire available code, our repair algorithm re-
turns new FileInputStream(fileName) as the closest match. To repair code, we
consider the visible user-defined values along with the standard libraries, favoring the
values that appear closest to the point in the program where the repair was initiated.

After applying this repair, the repair proceeds to correct the DeflaterInputStream
call. Since all of its arguments are well-typed, the repair will attempt to re-use them
while synthesizing a replacement. After searching through the space of possible repairs,
the algorithm finds the following snippet:

new DeflaterInputStream(new FileInputStream(fileName), new
Deflater(compLevel, true))

A Type-Directed Approach to Program Repair 3

Here, the repair wraps the extra arguments in a call to the Deflater constructor from
the Java API. Notice that even though Deflater was not previously present in the ex-
pression, our repair algorithm was able to discover it by examining the valid constructor
calls for a DeflaterInputStream.

Finally, the algorithm rebuilds the overall expression by interchanging the argu-
ments in the top-level expression to arrive at the final, correct result:

new BufferedInputStream(new DeflaterInputStream(
new FileInputStream(fileName),new Deflater(compLevel, true)),
buffSize);

As we discuss in Sec. 5, the whole search and repair takes under a second to complete.

4 The Algorithm

4.1 Synthesis Graph Construction

Our algorithm operates by searching through a data structure we call the synthesis
graph. Each node of the synthesis graph corresponds to either a value-producing lan-
guage entity, such as a function, variable, constant, or literal, or to a type in the language.
We therefore divide nodes into two sets Vt (type nodes) and Vf (function nodes). Since
variables, constants, and literals can be considered functions taking the empty set to
their value, they belong to Vf . From every function node, there is an out-edge to the
type it produces, and for each distinct type that the function takes as an argument, there
is an incoming edge into the function node to the type node. Importantly, this means
that a function on three input parameters of the same type will have in-degree exactly
one.

In addition, we assign to every edge a cost, which is a subjective measure that guides
the search towards desirable traits. Such traits could include smaller expressions or
lower memory usage, similar to [4]. The cost of an expression is defined to be an accu-
mulation of the costs of the edges it includes.

4.2 Synthesis Procedure

We now outline the synthesis portion of our algorithm, Algorithm 1. The algorithm
takes as input the synthesis graph G � pVt Y Vf , Eq, the type of expression to synthe-
size τ , and two numbers Cmax and N . N is the number of expressions to synthesize,
and Cmax is an upper bound on the cost of an expression. The synthesis algorithm re-
turns a list of expressions of type τ . The first two steps can be done using Dijkstra’s
algorithm. The types in V 1

t are explored in reverse order to avoid performing expensive
recomputations. The loop finds N expressions of type σ with the shortest cost-distance
to τ in G1 and stores them in snips. This way, GetExpressions is able to reuse these
computations without reducing the search space.

Next we describe the GetExpressions procedure, whose task is to find the N best
snippets of type τ in G1 within a prescribed cost bound Cnow. The procedure oper-
ates recursively, and it checks the snips table to see whether it can reuse the existing
computations. To compute candidates for τ P Vt, the procedure looks at its outgoing

4 Alex Reinking and Ruzica Piskac

Algorithm 1: Synthesis Algorithm
input : G � pVt Y Vf , Eq, τ P Vt, Cmax, N
output: exprs, the list of expressions

1 G1 � pV 1

t Y V 1

f , E
1q ÐÝ subgraph of G reachable within Cmax from τ ;

2 Sort V 1

t in descending distance away from τ ;
3 snips ÐÝ Hash table mapping types to snippets ;
4 foreach σ P V 1

t do
5 snips [σ] ÐÝ GetExpressions(G1, snips, σ, Cmax� Dist(σ), N) ;

6 exprs ÐÝ snips [τ] ;

Procedure GetExpressions(G1 � pV 1

t Y V 1

f , E
1q, snips, τ, Cnow, N)

1 if τ P Keys(snips) then return snips rτ s;
2 results ÐH ;
3 foreach g P V 1

f of the form g : pτ1 � � � � � τkq Ñ τ do
4 if Cost(g) ¡ Cnow then continue;
5 For all i, let si Ð GetExpressions(G1, snips, τi, Cnow� Cost(g), N) ;
6 foreach args P s1 � � � � � sk do
7 if Cost(g(args)) ¤ Cnow then
8 Add g(args) to results;

9 while | results | ¡ N do
10 Remove the most costly entry from results;

11 return results

neighbors, which are all functions whose output is of type τ . For each function that
does not immediately break the cost constraint, GetExpressions attempts to synthesize
subexpressions for each of its arguments recursively. This only needs to be done once
for each type. Then, for every possible set of arguments to the function, it adds the al-
lowable expressions to the results. Furthermore, it pushes out the worst few results if
the size of the set would exceed N .

4.3 Repair Algorithm

Finally, we describe the repair algorithm, Algorithm 2. The key step in our approach
is biasing the previously-described synthesis procedures towards the correctly-typed
subexpressions of the broken expression. The intuition for this is that the search should
be directed to favor those components that the programmer intended to use. To do this,
we adjust the Cost function used by GetExpressions to assign the lowest possible cost
to the well-types subexpressions. Informally, we call these zero-cost subexpressions
“reinforced”. This lowers the weights of results that contain these expressions, thus
improving their ranking among the returned results.

This scheme has a few advantages: first, it will very strongly prefer those expres-
sions that occurred as part of the given incorrect expression; second, in cases where
more than one of the same type is required, it will favor using multiple, distinct subex-

A Type-Directed Approach to Program Repair 5

pressions; and finally, if no expressions are given, then Cost actually remains un-
changed.

With this modification in place, the repair algorithm proceeds from the bottom up.
For each broken sub-expression in the input, we first reinforce each of its well-typed
subexpressions and then initiate a synthesis for the desired type of the current subex-
pression. If any of its children are ill-typed, we recurse and repair them first.

Notice that this means the repaired subexpressions will also be reinforced. This
behavior is desirable because it favors reusing the subexpressions generated once the
repair synthesizes a higher level. Additionally, the recursion guarantees that reinforcing
a subexpression will not interfere with a synthesis that occurs at the same level as that
subexpression. Although this algorithm, as described, returns up to N possible repairs,

Algorithm 2: Repair Algorithm
input : G � pVt Y Vf , Eq, the synthesis graph; expr, the broken expression; Cmax, the

maximum allowable cost; N , the number of repairs to synthesize
output: repairs, a list

1 if expr is well-typed then return [expr];
2 Write expr as expr px1, . . . , xkq where xi are its subexpressions of type τi ;
3 foreach x P tx1, . . . , xku do
4 xÐÝ Repair (G, x,Cmax, N) ; // Replace x with a list of either

itself or its possible corrections

5 foreach subs P x1 � . . .� xk do
6 Reinforce all expressions in subs;
7 Add all results of Synthesize (G, τ, Cmax, N) to repairs;
8 Clear reinforcements ;

9 repairs ÐÝ Best N results in repairs

in our preliminary implementation, the first returned result was mostly the correct one,
so we speculate that setting N really low might be acceptable in a practical setting.

5 Preliminary Evaluation

We empirically evaluated our approach on benchmarks based on those found in [4].
Table 1 shows the summary of the results. The runtimes were measured on a standard
university-supplied computer. For each benchmark, the best of 50 consecutive trials
was recorded to account for variance in process scheduling, cache behavior, and JVM
warmup. It was not uncommon to see four-to-five-fold speed increases between the best
and the worst runtimes of the algorithm. This is due to the delay in program optimization
afforded by Oracle’s JIT compiler.

It is important to note that these numbers represent a worst-case scenario for our
algorithm. Since the full set of Java libraries are rarely imported, the algorithm should
run even faster in practice as it will have smaller graphs to search. We imported the
whole Java standard library which resulted in a graph of 45,557 nodes and 102,377
edges.

6 Alex Reinking and Ruzica Piskac

Benchmark Type Size Time
(ms)

Nodes Edges Rank

SequenceInputStream Synthesis 3 1 141 149 1
SequenceInputStream Repair 5 4 – – 1
BufferedReader Synthesis 3 16 3119 4225 2
BufferedReader Repair 3 18 – – 1
AudioClip (applet) Synthesis 3 27 6808 9291 2
InputStreamReader Synthesis 2 29 7064 9673 1
FileInputStream Synthesis 2 38 7832 10516 1
Matcher (regex) Synthesis 4 93 14505 24740 1
InputStream (from byte array) Synthesis 2 116 13163 20581 2
DeflaterInputStream Repair 8 380 – – 1

Table 1. Typical-use runtimes in various benchmarks. “Nodes” and “Edges” refer to the size of
the searched subgraph, and “Rank” indicates the correct expression’s position among the results.
The “size” refers to the number of subexpressions in the output expression. Each test case was
initialized with a small environment consisting of five variables, and produced ten results.

These benchmarks show that repair is fast and accurate even in the face of multiple,
difficult errors. The compressed stream example in Sec. 3 had several distinct errors:
a missing parameter, two parameters transposed, and additional parameters passed to
a function that did not accept them. Still, in three calls to the synthesis routine, our
algorithm automatically corrected all three errors in around a third of a second.

Although it is impossible to test the full range of possible type errors everywhere
they might appear in the Java standard library, if these speeds are indeed representative
of the whole space of possible errors, then our repair algorithm is sufficiently fast to
operate in an interactive setting.

6 Conclusions and Future Directions

We have seen that our algorithm efficiently subsumes the work done in [3,6,10] and ex-
tends it to the problem of program repair. Using our novel graph-theoretic approach, we
efficiently solve instances of this problem to synthesize a correct expression from the
salvageable parts of a broken one. We believe that the algorithm in its current state has
two compelling uses. First, it can assist programmers in writing complex expressions.
Second, it could be integrated into a compiler to provide enhanced error messages that
not only point to errors, but offer ways to correct them. We believe that our algorithm
will perform useful and effective repairs that are well-aligned with the developer’s in-
tentions, even when the given ill-typed expression requires several steps to repair.

Acknowledgments. We thank Tihomir Gvero and Ivan Kuraj for early discussions
about program repair.

A Type-Directed Approach to Program Repair 7

References

1. S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11, pages 121–130, New
York, NY, USA, 2011. ACM.

2. C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for auto-
matic software repair. IEEE Trans. Software Eng., 38(1):54–72, 2012.

3. T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types and weights.
In PLDI, pages 27–38, 2013.

4. T. Gvero, V. Kuncak, and R. Piskac. Interactive synthesis of code snippets. In G. Gopalakr-
ishnan and S. Qadeer, editors, Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 418–423. Springer, 2011.

5. S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso. Minthint: Automated synthesis of
repair hints. In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 266–276, New York, NY, USA, 2014. ACM.

6. D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining: helping to navigate the
api jungle. In PLDI, 2005.

7. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: program repair via
semantic analysis. In D. Notkin, B. H. C. Cheng, and K. Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,
pages 772–781. IEEE / ACM, 2013.

8. Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error sources. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 525–542, New York, NY, USA, 2014.
ACM.

9. Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Code-based automated program fixing.
In P. Alexander, C. S. Pasareanu, and J. G. Hosking, editors, 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, November
6-10, 2011, pages 392–395. IEEE, 2011.

10. D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed completion of partial
expressions. In PLDI, pages 275–286, 2012.

