
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated Resource Analysis
with Coq Proof Objects‹

Q. Carbonneaux1, J. Hoffmann2, T. Reps3, and Z. Shao1

1 Yale University
2 Carnegie Mellon University

3 University of Wisconsin and GrammaTech, Inc.

Abstract. This paper addresses the problem of automatically performing
resource-bound analysis, which can help programmers understand the
performance characteristics of their programs. We introduce a method for
resource-bound inference that (i) is compositional, (ii) produces machine-
checkable certificates of the resource bounds obtained, and (iii) features a
sound mechanism for user interaction if the inference fails. The technique
handles recursive procedures and has the ability to exploit any known
program invariants. An experimental evaluation with an implementation
in the tool Pastis shows that the new analysis is competitive with state-
of-the-art resource-bound tools while also creating Coq certificates.

1 Introduction
To help developers better understand the performance of programs at compile
time, the programming-language research community has been developing tech-
niques and tools that can automatically and statically analyze the resource
consumption of programs [1, 2, 4, 7, 13, 20, 23, 28, 31]. Most of these techniques
derive symbolic worst-case bounds that depend on the sizes of program variables
or the arguments of a function. Deriving such bounds for arbitrary programs
is an undecidable problem. However, existing tools deliver impressive results
for certain classes of programs. Tools deriving bounds on imperative programs
include KoAT [10], Rank [5], CoFloCo [16], Loopus [30], and C4B [11]. RAML [17]
is able to derive complex bounds on functional programs.

State-of-the-art bound analysis tools suffer from two major shortcomings.
First, when the inference of a resource bounds fails, the user has no other choice
than to either rewrite the input program or modify the tool itself (the second

‹ Supported, in part, by a gift from Rajiv and Ritu Batra; by NSF under grants
1521523 and 1319671; by AFRL under DARPA MUSE award FA8750-14-2-0270,
DARPA STAC award FA8750-15-C-0082, and DARPA award FA8750-16-2-0274;
and by the UW-Madison Office of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Research Foundation. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of the sponsoring agencies.

option being only available to experts). Second, many automated tools are based
on sophisticated algorithms relying on subtle invariants for their correctness.
Even tools based on time-tested programming-language devices like type systems
and program logics have complex implementations that are prone to bugs.

The goal of this paper is to address these shortcomings. We base our work
on automatic amortized resource analysis (AARA), a technique that statically
derives concrete (non-asymptotic) resource bounds. AARA is implemented in
the tools C4B for imperative programs and RAML for functional programs. The
benefits of AARA include compositionality—by generating compositional and
local constraint systems—and reduction of resource-bound inference to efficient
off-the-shelf linear programming (LP).

Contributions. First, we present a new unifying framework for proving the
soundness of AARA-based systems for low-level code. The framework applies
directly to low-level programs parameterized with abstract base constructs. This
parameterized presentation allows, similarly to the theory of abstract interpreta-
tion, multiple instantiations depending on the programs to be analyzed. We also
introduce rewrite functions, a new technical device to encode weakening that is
amenable to sound user interaction.

Second, to demonstrate the effectiveness of these new ideas, we have imple-
mented them in a new tool called Pastis.
– Thanks to our new parametric framework, Pastis is the first AARA-based tool

to generate polynomial bounds on low-level integer programs with recursive
procedures.

– Thanks to rewrite functions, Pastis is the first resource analysis tool to provide
a sound mechanism for user interaction when the inference of a bound fails.

– Thanks to the logical foundations of our framework, and to the certificates
provided by the LP solver, Pastis is the first resource analysis tool able to
automatically generate proof certificates of the validity of its bounds.
Third, to show that Pastis is practical, we have implemented an LLVM

frontend to our new analysis and evaluated it on more than 200,000 lines of
C code against state-of-the-art tools. Surprisingly for a tool generating proof
objects, we are able to report that Pastis is competitive and can successfully
generate many polynomial bounds.

Acknowledgments. We thank Vilhelm Sjöberg and Lionel Rieg for their helpful
suggestions during the implementation of proof certificates in Coq.

2 Setting
Programs will be represented as standard interprocedural control-flow graphs.
This assumption does not tie the presentation of our analysis to a specific set of
statements; moreover, it allows the technique to be applied to unstructured input
programs, including ones written in bytecode and other low-level languages.

Syntax. A program is represented as a directed graph where nodes are program
points and edges bear program actions. Intuitively the program counter jumps
from node to node following edges and updates the program state according to

2

p`, v Ð e, `1q P E

p`, σq Ñ p`1, σrJeKσ{vsq
p`,weaken, `1q P E

p`, σq Ñ p`1, σq

p`, guard e, `1q P E JeKσ P OK

p`, σq Ñ p`1, σq

p`, call P, `1q P E

∆pP q “ p_, `e, `xq
p`e, σq Ñ˚ p`x, σ1q

σ2pvq “

"

σ1pvq if v P G
σpvq otherwise

p`, σq Ñ p`1, σ2q

Fig. 1. Mixed-step semantics of a program pE,∆,Gq. Non-call steps use a classic
small-step transition while calls are atomically executed using Ñ˚.

the actions it encounters. We use the three sets L, V , and P , respectively, for the
program points, the variable names, and the procedure names.

A procedure is represented by a tuple pL, `e, `xq where L Ď V is the set of
local variables for the procedure and `e, `x P L are respectively the entry and
exit points of the procedure.

Act :“ v Ð e | call P | guard e | weaken

An action can be the assignment of a variable v Ð e where v P V and e is an
expression. We leave the syntax of expressions abstract because it is irrelevant
for most of the presentation that follows. An action can also be a call call P to
a procedure P P P. The arguments and return values are passed using global
variables. We also include guards as actions. They are used to represent conditional
statements and block the execution if their condition is not validated at runtime.
Finally, an action can be an explicit weakening hint weaken. Such a hint can
be inserted by the user or by a pre-processing heuristic; it does not have any
semantic effect but is used by our analysis to perform potential rewrites.

We now define a program as a triple pE,∆,Gq where:
– E Ď pLˆActˆ Lq is the set of all edges in the program;
– ∆ is a map from procedure names P to procedures;
– and G Ď V is the set of global variables.
In addition, we require that no two procedures in the program share any local
variables, and that the sets of global variables and local variables are disjoint.
These properties can be ensured by pre-processing.
Semantics. An execution state is a pair p`, σq where σ P Σ is a program state
that maps variables V to a value domain D, and ` P L is the program counter.

We define single-step execution of the program as a transition relation on
execution states. When evaluating an edge of the program, the change made
to the program state is determined by the action labelling the edge. For each
program state σ we assume that we have an evaluation function J¨Kσ that maps
expressions to the value domain D. We also require the presence of a predicate
OK Ď D on the value domain to check the validity of conditions in guards (e.g.,
a singleton ttrueu). We use σru{vs to denote a new program state that extends σ
by updating the binding of v to the value u. The complete operational semantics
of programs is given in Figure 1. We write Ñ˚ to denote the reflexive transitive
closure of the step relation Ñ.

3

3 Introductory Example

We now illustrate the potential-based technique on the program shown in Figure 2.
For presentation purposes, we use a Python-like syntax; the control-flow graph is
derived in a standard way from this syntax.

1 t3.25u
2 k, z = 0, 0
3 t1{4 ¨ p13´ kq ` zu
4 while k < 10 and random:
5 t1{4 ¨ p13´ kq ` zu “
6 t1{4 ¨ p13´ pk`4qq ` 1` zu
7 k = k + 4
8 t1{4 ¨ p13´ kq ` 1` zu
9 z = z + 1

10 t1{4 ¨ p13´ kq ` zu
11 ě tzu

Fig. 2. Example.

The essence of the potential method is to
annotate each program point ` with a poten-
tial function Γ` P pΣ Ñ Qq, which maps a
program state to a rational number. In the
example, the potential functions are displayed
between curly braces. The potential functions
are subject to local constraints that enforce
the condition that, during each program ex-
ecution, the values of the successive poten-
tial functions encountered are non-increasing.
Thus, if the constraints are met, for any exe-
cution p`0, σ0q Ñ˚ p`n, σnq, the value Γ`0pσ0q
of the annotation of the initial program point is an upper bound on the value
Γ`npσnq of the annotation of the final point. The full set of constraints is given
in Section 4; annotations matching them are said admissible.

As we will see, the annotation of the example is admissible, which lets us
deduce that 3.25 is an upper bound on the final value of loop counter z. We often
refer to the final annotation as a potential goal, because that potential function
defines the quantity we are looking to bound. In the example, the goal is tzu.

We now argue that the annotation of the example is admissible: (i) for each
assignment “v Ð e” in the program, the annotations Γ and Γ 1, before and after
the assignment, respectively, are such that for any state σ, Γ pσq “ Γ 1pσrJeKσ{vsq
(that is, they are non-increasing around the assignments); and (ii) for any state
σ reachable at line 11, the potential annotations Γ10 :“ t1{4 ¨ p13´ kq ` zu and
Γ11 :“ tzu satisfy Γ10pσq ě Γ11pσq (indeed, σpkq ď 13 at that point). Thus, all
steps taken by the program keep the potential non-increasing, and the annotation
is admissible.

It is sometimes useful to understand a potential-function annotation “tepvqu”
over v Ď V as an assertion “tepvq ě goalfinalu.” From this point of view, a
potential-function annotation is a two-vocabulary assertion, where epvq is an
expression in the current-state vocabulary (and evaluated in the current state),
and goalfinal is an expression (over V) in the final-state vocabulary (and evaluated
in the final state). Thus, line 5 can be read as the assertion “t1{4 ¨ p13´ kq ` z ě
zfinalu,” and line 1 can be read as the assertion “t3.25 ě zfinalu.”

In the remainder of the paper, we explain how to generalize the reasoning we
did in this section to programs with multiple procedures, and how to automate it
using linear programming. To this end, we formally define admissibility conditions
of potential annotations and then encode these conditions into linear programs. As
in the example, our framework separates assignment constraints from weakening
constraints. To handle the latter we introduce rewrite functions.

4

4 Interprocedural Potential Annotations
In this section, we consider a fixed program pE,∆,Gq. A procedure P in the
program has entry and exit points Pe, Px P L, respectively. A state σ at ` P L is
reachable from pPe, σ0q when there is an execution trace

pPe, σ0q Ñ p`1, σ1q . . .Ñ p`n, σnq,

such that σn “ σ ^ `n “ `, or p`n, call Q,_q P E and σ at ` is reachable from
pQe, σnq. The latter disjunct is necessary because we use mixed-step semantics:
calls are represented by a single step Ñ, and Ñ˚ always relates two points in the
same procedure. Finally, we say that σ at ` is reachable (from Pe), when there is
an initial state σ0 such that σ at ` is reachable from pPe, σ0q.

A potential function is a function that maps program states to rational
numbers. A procedure annotation Γ associates a potential function Γ` with each
program point ` in a procedure. An interprocedural potential annotation (IPA) Ψ
maps each procedure name P to a set of procedure annotations ΨpP q. Sets of
annotations are used because, depending on the context in which a procedure
is called, different annotations might be used. A goal is a potential function of
special interest: it is the quantity at the end of the program that we are seeking
to bound in terms of the initial state.

Definition 1 (Admissible IPA). We say that an IPA Ψ for the program
pE,∆,Gq is admissible for a goal g and an entry and exit point Se and Sx in
a procedure S when:

(A1) DΓ P ΨpSq. ΓSx “ g;
and for every procedure P , edge p`, a, `1q P E, annotation Γ P ΨpP q, and state σ
reachable (from Se) at `:

(A2) if a is weaken, then Γ`pσq ě Γ`1pσq;
(A3) if a is guard e, then Γ`pσq “ Γ`1pσq;
(A4) if a is v Ð e, then Γ`pσq “ Γ`1pσre{vsq;
(A5) if a is call Q, then DΓ 1 P ΨpQq. Γ` “ Γ 1Qe

^ Γ`1 “ Γ 1Qx
.

The reachability condition in Definition 1 ensures that the inequalities are required
to hold only for states that can actually appear in an actual execution trace.
These admissibility conditions provide us with a principled way to obtain upper
bounds on the potential goal, as demonstrated by Proposition 1. Moreover, the
local nature of these conditions makes the generation of constraints described in
Section 6 a local and compositional process.

Proposition 1. For every program state σ reachable at `, if Ψ is an admissible
IPA and p`1, σ1q is such that p`, σq Ñ˚ p`1, σ1q, then for all Γ P ΨpP q, Γ`pσq ě
Γ`1pσ

1q.

Proposition 1 and (A1) imply the existence of a procedure annotation Γ P ΨpSq
such that any execution state p`, σq on a trace pSe, σeq Ñ˚ pSx, σxq gives an
upper bound Γ`pσq on the goal evaluated on the final state gpσxq; in particular,
ΓSe
pσeq ě gpσxq. This property is intuitively clear as all the admissibility condi-

tions of Definition 1 constrain the values of the potential functions to decrease as

5

the program progresses. Suppose now that g measures, in the final state, the size
of the value stored in a variable v (e.g., the length of a list or the absolute value
of an integer). Then each of the potential functions in the procedure annotation
Γ expresses an upper bound on the size of v in the final state in terms of the
local state at other program points. That is, our analysis tracks the size of v
backwards through the program points.

Note that the negation of any admissible IPA for a goal ´g will provide lower
bounds on the goal g. This observation shows that the orientation we chose for
the inequality of (A2) is irrelevant and allows computation of both upper and
lower bounds.

Resource Analysis. When the potential goal g is set, finding an admissible
IPA for a program gives upper bounds on g at all program points. These bounds
can be readily used to account for the resource consumption of a program. For
instance, if a bound on the number of iterations of a loop is desired, the loop
can be instrumented with a counter z initially set to 0 and incremented at every
iteration.

z = 0 # instrumentation counter
while ...:

...
z = z + 1 # counting iterations

The final value of z is the number of times the loop body was executed. So if we
write `1 and `2 for the program points before and after the loop, respectively, an
admissible IPA Ψ for gpσq :“ σpzq will provide a bound Γ`1 for the number of
loop iterations. The actual number of iterations when the loop starts in state σ1
is bounded by Γ`1pσ1q. Note that the bound on the value of z in the final state
is expressed in terms of the values of variables in the initial state: Annotations
provide cross-program invariants.

High-Water Mark Resource Consumption. For resources that can be freed
(e.g. memory, connections, etc.), we often want to know the highest amount of
resource required: the “net” consumption at the end of the program is not
enough. On this aspect, our admissibility departs slightly from previous works
on automated amortized analysis [11,17]. In these papers, a sound annotation
bounds not only the final value of a resource counter, but also the high-water
mark of this counter. So if a program allocates 3 integers, then frees them, an
admissible annotation in this paper is 0, since no memory is in use at the end of
the execution. However, the high-water mark consumption of this program is 3.

We will now explain how to modify our setting to accommodate this differ-
ence. In contrast to previous work that has the resource counter as a semantic
instrumentation, we can use a standard program variable z to track the available
resources. Allocation grows this counter variable and freeing lessens it. We now
show that from an admissible IPA Ψ , by adding an additional requirement, we
can obtain a water-mark-tracking IPA.

Proposition 2. A water-mark-tracking IPA Ψ , is an admissible IPA such that:
p‹q for any point `, Γ P ΨpP q, and state σ reachable at `, Γ`pσq ě σpzq.

6

Given such an IPA Ψ , a trace p`0, σ0q Ñ p`1, σ1q Ñ . . . Ñ p`n, σnq, and
Γ P ΨpP q, we have Γ`ipσiq ě maxjěi σjpzq.

Proof. We give the intuition on a trace with no procedure calls. By induction on
n´ i. If n “ i, the result holds by p‹q. Otherwise, we have Γ`ipσiq ě Γ`i`1

pσi`1q

and, by induction, Γ`ipσq ě maxjěi`1 σjpzq. We conclude using p‹q on σi.

Note that, like admissibility conditions, the condition p‹q is local but implies
a global water-mark property. In a practical implementation, the condition p‹q
can be enforced naturally using the framework we describe in Section 5. The
non-negativity requirement of the potential in previous works is exactly the
condition p‹q, since their potential functions are essentially Γ ´ z in this work.

5 Rewrite Functions
Because of admissibility condition (A2), any automated analysis using the po-
tential method needs to enforce weakening conditions of the form Γ ě Γ 1 on
potential functions. In this section, we present a new principled approach to
weakening in AARA-based systems: rewrite functions. To our knowledge, they
subsume all the existing potential-weakening and potential-rewriting mechanisms.
Moreover, they provide a language for a user to interact with an AARA-based
system, which is a feature unique to this work.

Definition 2 (Rewrite Function). We say that F` is a rewrite function at a
program point ` when for any state σ reachable at `, F`pσq ě 0.

In other words, F` is the left-hand side of a program invariant F`pσq ě 0.
Example. Assume that the potential function at program point ` is Γ :“ 2y` z,
and we are looking for a weakening Γ 1 :“ k1 ` k1x ¨ x` k1y ¨ y ` k1z ¨ z such that
Γ ě Γ 1 holds. We will assume that nothing is known about the sign of variables
x, y, and z, and thus pointwise constraints 2 ě k1y, 1 ě k1z, 0 ě k1x, and 0 ě k1

would not ensure that Γ ě Γ 1 holds.
Now assume that y ě z ` x and z ě x are invariants that hold at `, which

means that we have two rewrite functions F1 :“ ´x` y ´ z and F2 :“ ´x` z.
Write Γ as follows:

Γ “ 2y ` z ´ p0 ¨ F1 ` 0 ¨ F2q. (1)

Because F1 and F2 mean that ´x` y ´ z ě 0 and ´x` z ě 0, respectively, we
obtain a value that is less than or equal to Γ by choosing any positive coefficients
to replace either/both of the 0s in Equation (1). For instance, by choosing both
coefficients to be 2, we have

Γ “ 2y ` z ´ p0 ¨ F1 ` 0 ¨ F2q ě 2y ` z ´ p2 ¨ F1 ` 2 ¨ F2q “ 4x` z,

and thus we can choose Γ 1 to be 4x` z. (Rather than making specific choices for
the coefficients tuiu, however, we will leave it to the LP solver to choose values
that allow it to solve the overall constraint system generated for the program.)

In short, we can systematize potential weakening as a two-step process.

7

1. If the original potential at ` is V , write the weakened potential as V ´
ř

ui ¨Fi,
where tFiu is the set of rewrite functions available at `. (In the example,
V “ 2y ` z.)

2. Choose values for the coefficients tuiu such that ui ě 0, for all i. (In the
example, u1 “ 2 ě 0, and u2 “ 2 ě 0.)

We can express this process using standard linear-algebra notation. Let the
coefficients of Γ (i.e., k), Γ 1 (k1), and u be column vectors, and let the matrix
F represent the set tFiu of rewrite functions, with each Fi a column of F . The
constraints generated to express the allowable rewrites of Γ into Γ 1 as per items 1
and 2 are

pk1 “ k ´ Fuq ^ pu ě 0q. (2)

In the example above, we have
¨

˚

˚

˝

k1

k1x
k1y
k1z

˛

‹

‹

‚

“

¨

˚

˚

˝

0
0
2
1

˛

‹

‹

‚

´

¨

˚

˚

˝

0 0
´1 ´1
1 0
´1 1

˛

‹

‹

‚

ˆ

u1
u2

˙

^

ˆ

u1
u2

˙

ě

ˆ

0
0

˙

.

There are many solutions to this system. The LP solver is free to pick any one
that allows the overall system of constraints to be satisfied.
Rewrite Idempotence. An interesting consequence of the algebraic formulation
of weakenings introduced above is that, for a fixed set of rewrite functions, multiple
compositions of the linear weakening system are never necessary. In practice, this
property means that our automated system never needs to apply a weakening
operation twice consecutively: once is always sufficient.

We call the set of coefficients for the initial and final potential in a satisfying
assignment of a linear weakening system a solution. Then the following property
holds:

Proposition 3 (Rewrite Idempotence). The set of solutions for one weak-
ening application and the set of solutions for two or more composed weakening
applications are identical.

Rewrite Hints. In practice, a system needs a source of rewrite functions to use
at the different points in the program. Because rewrite functions are obtained
from program invariants, abstract interpretation [15]—using various abstract
domains—can be used to obtain rewrite functions for the different points in the
program: given such a source of invariants, a system would employ heuristics
to choose which invariants should be used as rewrite functions in the constraint
system passed to the LP solver.

Occasionally, however, a program requires a complex transfer of potential.
With previous implementations of amortized analysis, one was faced with two
choices: either rewrite the program, or modify the analysis. Both alternatives
have drawbacks.
– Rewriting the program provides only an indirect means for obtaining the

desired effect, and it can be hard to understand whether a given program
rewriting will allow the analyzer to establish the desired bound.

8

– Modifying the analysis to enable more complex transfers of potential requires
the whole soundness proof to be redone as well as a good knowledge of the
implementation of the analyzer.
Rewrite functions offer a third option. A programmer can manually specify

rewrite functions as hints to be used to analyze the complex parts of a program.
These hints, in contrast with typical assertions, both have no runtime effect and
do not compromise soundness. In particular, before using a rewrite function, the
analyzer would ask an oracle (e.g., an SMT solver or an abstract interpreter) if
the value of the user-supplied rewrite function is provably non-negative at that
program point. This approach provides a good fallback mechanism in case the
heuristics of the analyzer are not sophisticated enough to identify an appropriate
set of rewrite functions.

6 Automatic Potential Inference
In this section, we describe a general framework to automate the inference
of potential. To emphasize the modularity of the method presented, we leave
expressions and base potential functions pbiq1ďiďN unspecified. However, we make
two formal requirements necessary to automate the inference process.

Requirement 1: Basis Stability. Ideally, we would like the basis to be linearly
stable under all expression substitutions. However, this requirement is too strong
in practice. As an escape hatch, for each assignment “x Ð e”, we assume an
exclusion set XvÐe of all the base functions that are not expressible as linear
combinations of the basis after the substitution re{vs. An important consequence
of this definition is that if b R XvÐe, there is a family of coefficients pkiq such
that bre{vs “

ř

i ki ¨ bi.
As an example, we show that the requirement is met if the expressions are

increments by a constant u` c where c P Z, the base functions pbiqi are all the
monomials over program variables of total degree d or less, and XvÐe “ H for
all assignments. If the maximum power of v in b is vn (with n ď d), then

bru` c{vs “
ÿ

0ďjďn

ˆ

n

j

˙

cn´j
ujb

vn
.

In this sum, the products
`

n
j

˘

cn´j are the constant coefficients pkiq above and
the multiplicands ujb{vn are base functions. Indeed, they are monomials over
program variables of degree n ď d. Note that when v does not appear in b, n is 0
and the above sum correctly degenerates to b.

The exclusion set enables the implementation of practical tools. For example,
during pre-processing it is often desirable to abstract a statement into one or
more non-deterministic assignments “v Ð ‹”. These assignments cause any base
function that depends on the assigned variable to not be linearly stable. This
situation leads us to define XvÐ‹ “ tbi | v P biu, where we write v P bi to express
that bi depends on v.

Requirement 2: Rewrite Functions. We also assume that we are provided
with a set of rewrite functions for every program point. Recall that, by Definition 2,

9

for any program point ` and any program state σ reachable at that point, such a
rewrite function F` satisfies F`pσq ě 0.

Generating a Linear System. In the following, we explain how to generate
a procedure annotation for a procedure S, given a potential goal g. We assume
that procedure annotations of all the procedures called by S are available. In an
actual implementation, the method described here would be implemented by a
function calling itself recursively to generate all the procedure annotations needed
transitively by the input program. The annotation generated is parameterized by
LP variables that are constrained by a linear system. We also sketch the proof
that a satisfying assignment of the linear system describes an admissible potential
annotation, as specified in Definition 1.

The potential function associated with each program point of S is a “template”
potential function Γ`pσq “

ř

i ki ¨ bipσq, where each ki belongs to LP , a set of
LP variables, and pbiqi is the family of base functions. For every program edge
p`, a, `1q, we constrain the coefficients pkiqi and pk1iqi of Γ` and Γ`1 by case analysis
on the kind of the action a. To be able to use matrix notation, we define the
column vectors k :“ pk1, . . . , kN q

ᵀ and k1 :“ pk11, . . . , k
1
N q

ᵀ.

‚ Case v Ð e. Because of Requirement 1, substituting an expression e for v in a
base function bi R XvÐe is a linear operation. Without loss of generality, assume
that the exclusion set XvÐe is tbi | NX ă i ď Nu. The constraints generated are

pk “ Qk1q ^
ľ

NXăiďN

k1i “ 0.

The NˆN matrix Q contains zeroes everywhere but in the first NX columns.
The jth column (j ď NX) is the result of the substitution bjre{vs; that is:
bjre{vs “

ř

i qi,j ¨ bi. The expansion exists because bj R XvÐe when j ď NX .
These coefficients are constants known before the generation of the linear program,
and only depend on the choice of the basis.

The transformation Γ`1re{vs on Γ`1 is constrained to be linear by setting the
coefficients of base functions in the exclusion set to zero. This linear transformation
is then encoded as a matrix multiplication. Thus, for all states σ, Γ`pσq “
Γ`1re{vspσq “ Γ`1pσre{vsq and the admissibility condition (A4) is satisfied.

‚ Case weaken. To encode a weakening via a set of linear constraints, we make
use of the rewrite functions provided in Requirement 2. As explained in Section 5,
we relate the potential functions Γ` and Γ`1 using an `-specific set of unknowns,
u`, as coefficients in a linear combination of the rewrite functions available at `.
Following Equation (2), let F` denote the matrix of rewrite functions available at
` (in which the ith column of F is the ith rewrite function Fi). In matrix notation,
the constraints generated are

pk1 “ k ´ F`u`q ^ pu ě 0q.

‚ Case call P . When calling a procedure, we need to know what base functions
depend only on global variables and what depend only on local variables of the
caller. We call these sets GF and LF , respectively. Note that these two sets do

10

not form a partition: some potential functions in the complement of GF Y LF
depend on both local and global variables. We write pkei qi and pkxi qi for the
entry and exit annotations of P . With this notation, the analysis generates the
following system of constraints.
– The potential associated with global variables only is passed from the caller to

the callee, and fetched back after the return:
Ź

iPGF ki “ kei ^ k
x
i “ k1i.

– Local variables of the callee start and end without making any contribution to
the potential:

Ź

iRGF k
e
i “ 0^ kxi “ 0.

– The potential associated with local variables before the call can be recovered
after:

Ź

iPLF k
1
i “ ki.

– Finally, we consider the coefficients of base functions that depend on both local
and global variables. Such coefficients are constrained to be zero at the call
and return sites in the caller because we do not know how their base function
will evolve through the call:

Ź

iRGFYLF ki “ 0^ k1i “ 0.
The admissibility argument in this case is more subtle than the ones given

before. It follows from inductive reasoning and leverages a framing lemma to
pass the potential of local variables through the call. Our implementation also
makes use of resource polymorphism, as explained in greater detail below.

‚ Case guard e. We require that k1 “ k, and the admissibility condition (A3) is
trivially satisfied.

‚ Potential Goal. Finally, we constrain the annotation of the exit point ΓSx to
be the potential goal g pointwise, as in the guard case above. This fulfills (A1).

Constraint Solving. The generated constraints can be solved by an off-the-
shelf LP solver. To derive the best possible bound, we minimize the potential
ř

i k
e
i ¨ bipσq that is associated with the entry point of the procedure. When all

the base functions bipσq are non-negative, we use a weighted sum
ř

i wik
e
i as

objective function in the linear program. The weights wi can be set to assign a
higher priority to the coefficients of higher-degree base functions bi.

A more robust method for non-negative base functions that allows us to
prioritize the minimization of the coefficients of high-degree base functions is
to use the support for efficient iterative solving that is provided by modern LP
solvers: We first use the objective function

ř

i k
e
ji

to minimize the coefficients keji
of the base functions bji with the highest degree. If the LP solver finds a solution,
then we add the constraint

ř

i k
e
ji
“ o0 where o0 is the objective value, and re-run

the solver to optimize the coefficients for the lower-degree base functions.
It is not always the case that all base functions are non-negative in the initial

state. In the implementation, we use a linear system to rewrite the initial potential
as X `

ř

kiFi where pFiqi is a family of rewrite functions in the initial state. We
then constrain X to be 0 and minimize the coefficients ki as described before.

Resource Polymorphism. In practice, constraining procedures to always use
the same initial and final potential is too restrictive because procedures can be
executed in different contexts. In the absence of recursion, procedure bodies can
be inlined, and different bounds will be derived for the various call sites. However,
inlining strategies are not applicable to recursive procedures.

11

An example of such a situation is displayed in Figure 3(a). In this example,
we look for an upper bound on n at the program exit. It is easy to show by
induction that n is invariant across a call of P. However, if the analysis naively
uses the equality constraints Γe “ Γc and Γr “ Γx, no bound can be found.
Indeed, Γx has to be set to the goal n, and then Γr “ Γxrn ` 1{ns “ tn`1u
by the admissibility condition (A4); but n ` 1 ‰ n, preventing Γr “ Γx. One
solution to this problem is to allow a framing to be performed at call sites. In
the example in Figure 3(a), the frame used is 1.

def P():
Γe :“ tnu
if n > 0:

n = n - 1
Γc :“ tn`1u
P()
Γr :“ tn`1u
n = n + 1

Γx :“ tnu

(a)

def Q():
Γe :“ tz`

`

n
2

˘

u

if n > 0:
n = n - 1
Γc :“ tz`

`

n
2

˘

`nu
Q()
Γr :“ tz`nu
z = z + n
tzu
n = n + 1

Γx :“ tzu

(b)
Fig. 3. Procedures where resource-polymorphic
recursion is used to infer a bound.

With non-linear procedures,
frames can be of higher degree.
However, we cannot merely add
a term like 5n to a potential func-
tion before and after a procedure
call because the variable n can
be modified by the procedure. A
sound and practical approach to
infer frames that we use in our im-
plementation has been pioneered
in [18]; it uses as a frame an anno-
tation obtained by another run of
the analysis on the callee with a
smaller set of base functions.

Consider, for example, the procedure Q in Figure 3(b). It is a variant of P in
which we added the assignment “z = z + n” after the recursive call. Assume that
our potential goal is Γx “ tzu. If z0 and n0 are the values of z and n before the
call of Q then we have z “ z0 `

`

n0

2

˘

after the call. Consequently, Γe is a sound
potential annotation for the entry point of Q. To justify this potential annotation,
we attempt to use the same annotation Γe for the potential before the recursive
call. Note, however, that we have some additional potential n available in Γc. To
transfer this potential to the return point Γr we have to analyze how n changes
during a call to Q. As with the example on Figure 3(a), n is invariant across the
call, and we can perform a similar analysis on Q to derive Γ 1e “ tnu and Γ 1x “ tnu
for the entry and exit points of Q. The annotations before and after the recursive
call can now use the combined annotations Γe ` Γ 1e and Γx ` Γ 1x, respectively.

7 Pastis: A Practical Implementation for Integer Programs
We implemented the framework of Section 6 in a tool that computes polynomial
resource bounds for imperative integer programs. Programs are internally repre-
sented as described in Section 2, but the tool accepts as input both a minimal
imperative language and LLVM bitcode. The expressions accepted are additions,
subtractions, and multiplications of constants and program variables; a special
random expression is used to represent all other operations (e.g., shifts and
divisions). The base functions are picked among the monomials M defined below.

(Monomials) M :“ 1 | v | M1 ¨M2 | maxp0, P q v P V
(Polynomials) P :“ k ¨M | P1 ` P2 k P Q

12

if v > 0:
tmaxp0, vqu ě
tmaxp0, v´1q`1u
v = v - 1
tmaxp0, vq`1u

Fig. 4.

Heuristics to Select Base and Rewrite Functions.
In Pastis, we make use of invariants generated by abstract
interpretation to generate basis and rewrite functions. For
example, if some variable v can be proved non-negative at
one program point, we add the base function maxp0, vq and
a set of rewrite functions that will be needed to transfer
potential to and from this base function. For instance, we
register the rewrite function maxp0, vq ´maxp0, v´ 1q ´ 1. As shown in Figure 4,
this rewrite function can be used before a decrement when v ě 1. Higher-degree
base functions are introduced by considering successive powers and products of
linear base functions.

By using as base functions the lengths of intervals that can be formed by pairs
of program variables (e.g., maxp0, b ´ aq), Pastis strictly generalizes C4B [11]:
any derivation in that system can be encoded in the framework of Section 6.
Moreover, our work is more general because it allows higher-degree base functions,
as well as base functions that do not match exactly the interval pattern.

1 def nested():
2 t

`

n´0
2

˘

` zu
3 while n > 0:
4 ě t

`

n´1
2

˘

` pn´ 1q ` zu
5 n = n - 1
6 t

`

n´0
2

˘

` pn´ 0q ` zu
7 m = n
8 t

`

n´0
2

˘

` pm´ 0q ` zu
9 while m > 0:

10 ě t
`

n´0
2

˘

` pm´ 1q ` pz`1qu
11 m = m - 1
12 t

`

n´0
2

˘

` pm´ 0q ` pz`1qu
13 z = z + 1
14 t

`

n´0
2

˘

` pm´ 0q ` zu

15 ě t
`

n´0
2

˘

` zu
16 ě tzu

Fig. 5. Polynomial example.

Simple Polynomial Example. The
program shown in Figure 5 has a poly-
nomial bound on the loop counter z.
In the annotations, we use a saturat-
ing subtraction operation a ´ b :“
maxp0, a´ bq. (In our implementation,
maxp0, ¨q is used, as explained above.)
As we will see, the annotations of the
example already form a valid certifi-
cate. We found them by solving the
system of linear constraints derived
using the method of Section 6 on this
program text. In this example, because
there are no procedure calls, there are
only two kinds of checks to do: (i) as-
signment checks, and (ii) potential-
rewrite checks. The potential rewrites
are all marked with a “ě” sign (lines 4,
10, 15, and 16).

The most interesting parts of the reasoning are the “potential transfers” in
this program. The core idea is that the quadratic potential associated with the
counter of the outer loop will, at each decrement (line 5), generate a linear
potential used to pay for the increments of the counter z in the inner loop. The
potential behavior of the inner loop is then very similar to the one given in the
introductory example of Section 3. The only difference is that all annotations
carry an extra quadratic part

`

n´0
2

˘

that remains unchanged through the loop.
The validity of the potential rewrites can be justified with rewrite functions

as explained in Section 5. For example, on line 4, we use the rewrite function
F :“

`

n´0
2

˘

´
`

n´1
2

˘

´pn´1q to show that
`

n´0
2

˘

`z ě
`

n´1
2

˘

`pn´1q`z. Indeed,

13

the right-hand side of the inequality can be rewritten as
`

n´0
2

˘

` z´p1 ¨F q. Note
that the rewrite function F can be used on line 4 because it is under the check
“while n > 0”. It could not be used on line 2, where no information about n is
known yet.

Polynomial Example with Recursion. Figure 6 contains an implementation
of the core of the Quicksort algorithm. All array operations are abstracted away
and we look for a bound on the variable z at the end of the procedure. Note
that we pass two arguments to the procedure qsort. In our implementation, as
in the programs of Section 2, the arguments are passed via global variables. This
approach is similar to machine calling conventions that use registers to pass
arguments.

1 def qsort(l, h):
2 Γe :“ t

`

h´l
2

˘

` zu
3 if l < h:
4 hint
5 ě t

`

h´pl`1q
2

˘

` ph´ pl`1qq ` zu
6 m = l
7 t

`

h´pl`1q
2

˘

` ph´ pm`1qq ` zu
8 while m < h-1 and random:
9 m = m + 1

10 z = z + 1
11 t

`

h´pl`1q
2

˘

` zu
12 hint
13 ě t

`

h´pm`1q
2

˘

`
`

m´l
2

˘

` zu
14 qsort(l, m)
15 t

`

h´pm`1q
2

˘

` zu
16 qsort(m+1, h)
17 tzu

Fig. 6. Quicksort core.

The bound Γe on z is quadratic.
We can express it precisely using the
binomial basis. Indeed, we will see be-
low that Γe is a tight worst-case bound
on z. We left all the annotations on the
inner loop unspecified because they fol-
low exactly the same pattern as the
ones in the inner loop above. The inter-
esting parts of the derivation are the
two weakening hints on lines 4 and 12,
and the two recursive calls. The first
weakening uses the binomial identity
`

X`1
2

˘

“
`

X
2

˘

`X. This identity is ap-
plied with X :“ h´ pl` 1q because in
this branch h´ pl`1q “ h´ l´1. The
current implementation of our system
is not able to infer this rewrite func-
tion from the body of the recursive
function alone; we thus use an explicit
rewrite hint. Similarly on line 12, we use a hint to prove that

ˆ

X ` Y

2

˙

ě

ˆ

X

2

˙

`

ˆ

Y

2

˙

`X ¨ Y ě

ˆ

X

2

˙

`

ˆ

Y

2

˙

, (3)

where X :“ h´ pm`1q and Y :“ m´ l.

Note that X ` Y “ h´ pl ` 1q because l ď m ă h.
Let us now discuss the recursive calls on lines 14 and 16. As in Section 6,

we can describe the potential before and after the calls piecewise. On line 14,
after the arguments are assigned,

`

m´l
2

˘

` z will become
`

h´l
2

˘

` z “ Γe. This
quantity is the potential passed to the recursive call. The term

`

h´pm`1q
2

˘

only
depends on local variables and remains unchanged by the call; it is thus framed
and retrieved on line 15. Finally, z, the final potential of qsort, is returned on
line 15 and added to the frame. The call of line 16 follows a similar logic, but
without any frame.

14

The procedure qsort exhibits its worst-case behavior when the internal loop
goes all the way from l to h´ 1. Note that all the weakenings of the derivation
are actually pure potential rewrites (ě is in fact =), except for the one on line 13.
On that line, the term X ¨ Y of Equation (3) is lost potential. However, in the
worst-case scenario, m “ h ´ 1 on line 13 and thus X ¨ Y “ 0, making the
weakening a pure potential rewrite, too. Thus, in the worst case of Quicksort, no
potential is ever lost and the bound

`

h´l
2

˘

` z is exact: Γepσeq “ σxpzq, where σe
and σx are, respectively, the entry and exit states of qsort.

8 Generation of Coq Proof Objects
In the framework of Section 6, IPAs are natural candidates for proof certificates.
In this section, we explain how to leverage this observation and generate Coq
proofs from the coefficients returned by a successful run of the LP solver. The Coq
files generated depend on a small library described below, and can be checked
completely automatically without modifications. The certified theorems state
that the derived bounds are sound with respect to a Coq formalization of our
interprocedural control-flow graphs and do not rely on any unproved assumptions.
In particular, the certificates also include a soundness proof of the invariants that
we derived with a simple abstract interpretation.

Benefits of Formal Verification. The benefits of checking bounds with a proof
assistant are three-fold. First, it greatly increases the confidence in generated
bounds, which is especially critical considering that we observed LP solvers
silently overflow and return an unsound solution. All resource-analysis tools using
LP solvers are currently vulnerable to this issue. Second, proof certificates are a
license to implement aggressive heuristics and optimizations in our tool without
risking unnoticed soundness issues. Third, it allows the integration of resource
bounds into larger formal developments. We think that automating the inference
of resource-bound theorems will enable a new class of software verification where
not only the correctness is proved, but also quantitative properties are proved,
such as real-time guarantees and memory usage, which are often neglected.

Coq Support Library. We implemented a support library that is used by
all the Coq certificates generated. This library contains a formal definition of
the control-flow graphs presented in Section 2, and a generalized version of the
IPAs presented in Section 4. These generalized IPAs (Coq terms of type IPA)
express in a single annotation the results of both the abstract interpretation and
the potential annotations. A set of admissibility conditions on IPAs is defined
as a predicate “IPA_VC: IPA Ñ Prop”, which is designed to be easily checked
automatically. A theorem similar to Proposition 1 gives a semantic meaning to
this verification condition.

Finally, to automate fully the checking of the certificates produced, a set of
relatively small tactics is defined (130 lines of Coq); they are tightly coupled with
the proof-generation module of Pastis. The checking of IPAs is split into two
tasks for each edge: (i) checking the validity of the abstract-state transformation,
and (ii) checking the corresponding admissibility condition in Definition 1. For
(i), we use the Coq decision procedure lia for linear-integer arithmetic. This logic

15

is sufficient because the abstract interpretation merely derives linear constraints
between program variables. Similarly for (ii), the inequalities to check on potential
annotations are linear in program variables with coefficients in Q. Because the
coefficients are constants, the checking of inequalities is reduced to Z, and also
automated using lia. Equalities are checked with the generic ring tactic. Finally,
one ad hoc tactic handles the normalization of potential annotations using the
maxp0, ¨q function, which is not handled natively by lia.

Importantly, according to the Coq reference manual [32], the lia tactic is
complete. This property means that a failure when checking a proof certificate
can only be explained by an invalid certificate. Invalid certificates can be the
result of a bug in our tool—we found one in the abstract interpreter during the
development—or of invalid coefficients in the potential annotations (e.g., because
of overflows or rounding errors in the LP solver).

Generated Coq Files. A generated file starts by defining the program analyzed
as a control-flow graph with procedure calls. Then, for each procedure and
program point, the results of the abstract-interpretation procedure and the
potential annotations are listed. From these two pieces of information, multiple
procedure annotations are defined and aggregated in a single global IPA for the
complete program (referred to as “ipa” in the Coq file). This IPA is proved to
satisfy the verification condition in a theorem

Theorem admissible_ipa: IPA_VC ipa.
Proof. prove_ipa_vc. Qed.

The proof of admissibility is always a single call to the tactic prove_ipa_vc
imported from the library described above. This tactic call is where the bulk of
the checking happens. Finally, a user-readable theorem expresses the soundness
of the bound that was generated. For example

Theorem bound_valid: forall s1 s2,
steps P_start (proc_start P_start) s1 (proc_end P_start) s2 Ñ

(s2 G_z <= (3#2) * s1 G_g + (1#2) * s1 G_g^2)%Q.
Proof. prove_bound ipa admissible_ipa P_start. Qed.

In this theorem, s1 and s2 are the initial and final program states, respectively,
of the execution of the start procedure (which appears in the hypothesis as
“steps P_start ...”). In this example, the goal was set to tzu, i.e., the value
of the global variable z at the end of the execution (shown as “s2 G_z”). It is
bounded in terms of the initial value of another global variable g. A rational
number a{b is represented in Coq using the notation a#b. The proof of this
theorem leverages both the main theorem about admissible IPAs—proved once
and for all in our library—and one annotation of the start procedure that has
the goal as final potential.

Rewrite Functions. Rewrite functions are also checked for validity in the Coq
implementation. One challenge in this step is that rewrite functions often contain
non-linear expressions (e.g., the binomial functions used in Section 7). This issue
prevents us from using the built-in automation of Coq directly. To solve this
issue, we used a small domain-specific language (DSL). Elements of this DSL are

16

interpreted (in Coq) as a pair of an actual rewrite function (a map from states to
rationals) and a conjunction of linear conditions. The conjunction is, by design of
the DSL, a sufficient condition proving the non-negativity of the rewrite function.
This trick lets us once more reuse Coq’s linear-integer automation to lighten the
proof burden. When checking weakening steps in the tactic prove_ipa_vc, all the
rewrite functions that were used by the LP solver are put in the proof context as
hints for lia to use.

9 Experimental Evaluation

Tool Bounded Op1q Opnq Opn2
q ą Opn2

q Timeout Proof X

Loopus’15 806 205 489 97 15 6 N/A
Pastis 459 187 229 43 0 127 424
Loopus’14 431 200 188 43 0 20 N/A
KoAT 430 253 138 35 4 161 N/A
CoFloCo 386 200 148 38 0 217 N/A

Table 1. Experimental evaluation of Pastis on 1659 functions from the cBench bench-
mark. Only Pastis can generate proof certificates, whence the four occurrences of “N/A”
in the last column. The tools were run with a timeout of 60 seconds.

Benchmark Set. To evaluate the performance of Pastis, we used the benchmark
suite of the paper that presented Loopus’15 [30]. That paper compares Loopus’15
to Loopus’14 [29], KoAT [10], and CoFloCo [16]. The comprehensive program
set used is based on the compiler optimization Collective Benchmark (cBench)
which contains 211,892 lines of C code. These C files are pre-processed to extract
all functions into independent files; those files are then translated to the various
input formats of the tools compared. Pastis accepts directly LLVM bitcode
and processes it to extract a control-flow graph as described in Section 2. The
benchmark was run in intraprocedural mode because only KoAT and Pastis
support procedure calls.

Machine. The experimental evaluation was run on a machine equipped with an
Intel Xeon CPU clocked at 3.10GHz and 32GB of memory.

Results. Table 1 contains a digest of the experiments. The results for Loopus’14,
KoAT, and CoFloCo were taken from the evaluation done by Sinn et al. [30]. By
the number of examples only, Pastis is in the same ballpark as the majority of
other tools. We also found that Pastis infers bounds quickly in most cases: 98%
are found in less than 3 seconds.

Loopus’15 deserves special mention as it performs remarkably well; we were
impressed by its versatility on this benchmark set. In addition to its sophisticated
intraprocedural loop-analysis algorithm, Loopus’15 implements many practical ad
hoc features. Among others, the C types are retrieved from the debugging infor-
mation in the LLVM bitcode; some heuristics to identify loops on null-terminated
C strings and files are built in; and finally, at the expense of compositionality,
large sections of code can be represented symbolically with a Scheme-like syntax
in the case where top-level loops are preceded with complex straight-line code.
Similar features are not yet implemented in Pastis.

17

From the “Proof X” column, we can see that most but not all the bounds that
Pastis generated were successfully checked by Coq. Coq usually processes the
generated files quickly: 311 files take less than 10 seconds to check, and another
83 files take less than 20 seconds. The checking failures are caused by imprecision
in the LP certificates and by our conversion function from floating-point numbers
to rational numbers. Especially on higher-degree problems, it is common to see a
base function in a loop invariant assigned a small, non-zero, bogus coefficient.
Past a certain threshold, our extraction mechanism will output a small rational
number when zero is actually needed. On examples with large constants, we also
observed LP-solver overflows leading to obviously unsound bounds. As a practical
counter-measure, our LLVM-bitcode reader replaces all “large” constants with
non-deterministic expressions.

10 Related Work
Resource-Bound Analysis. The analysis method presented is based on auto-
matic amortized resource analysis (AARA). This analysis technique has been
introduced for functional programs [17,19,20,33] and has also been applied to de-
rive bounds for object-oriented programs [21] and heap-manipulating imperative
programs [6]. In contrast to our work, none of the previous work focuses on proof
certificates or deriving bounds for imperative code that depend on integers. Most
related to our work is the recent application of AARA to derive linear bounds
for imperative integer programs [11]. The main benefits of our work are the
derivation of polynomial bounds, the flexibility introduced by rewrite functions,
and the automatic verification of resource certificates in Coq.

Amortized analysis has been formalized in the proof assistants Isabelle/HOL
and Coq to verify manually the complexity of algorithms and data-structures [14,
26]. Our focus is on integer programs rather than sophisticated data-structures
and algorithms, and our technique verifies programs automatically.

Resource-bound analyses that focus on integer programs include CAMPY [31],
KoAT [10], Rank [5], CoFloCo [16], COSTA [4] and Loopus [30]. The advantages
of our method include LP-based bound inference, natural compositionality, bound
inference for recursive procedures, and automatically-checked Coq certificates.
Recent work on an interprocedural analysis that finds procedure summaries in
non-linear arithmetic [22] has shown how such information can be used to find
resource bounds.

We are only aware of three other papers that describe tools that can generate
bounds with machine-verified certificates. Carbonneaux et al. [12] use Coq and
the verified CompCert C compiler to derive stack bounds for assembly code that
are verified by Coq. In contrast to the present paper, their technique does not use
linear constraint solving and automatic verification is limited to constant stack
bounds. Blazy et al. [9] describe a loop-bound estimation for WCET analysis
that is formally verified in Coq. An advantage of our method is that we generate
complex symbolic bounds and can naturally handle recursive functions. Albert
et al. [3] have used the KeY program verifier to automatically verify bounds
generated by the COSTA bound analyzer. While the overall methodology is
similar, we show that we can handle a large set of benchmarks, perform bounds

18

inference via linear programming, and focus on integer bounds rather than bounds
that depend on the sizes of data structures.

Template-Based Methods. Several program-analysis methods use the idea
of (i) choosing a template that characterizes the kind of invariants of a program
that are sought, (ii) extracting an appropriate set of (linear) constraints from
the program, and (iii) solving the constraints. For example, Template Constraint
Matrices (TCMs) are a parameterized family of linear-inequality domains for
expressing invariants in linear real arithmetic. Sankaranarayanan et al. [27] gave
meet, join, and a set of abstract transformers for all TCM domains. Monniaux [24]
gave an algorithm that finds the best transformer in a TCM domain across a
straight-line block and good transformers across more complicated control flow.

Müller-Olm and Seidl [25] showed how to obtain invariants that are polynomial
equalities of bounded degree. Their method uses a finite-height domain that is a
vector space whose basis elements are (transformers on) the set of monomials in
which polynomial invariants can be expressed.

Bagnara et al. [8] presented a technique to generate invariants that are
polynomial inequalities of bounded degree. Their technique introduces additional
variables (dimensions) to represent nonlinear terms, and uses convex polyhedra
to represent polynomial cones in the extended set of variables.

References
1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Automatic

inference of resource consumption bounds. In: LPAR (2012)
2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of Java

bytecode. In: ESOP (2007)
3. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Román-Díez, G.: Verified resource

guarantees for heap manipulating programs. In: FASE (2012)
4. Albert, E., Fernández, J.C., Román-Díez, G.: Non-cumulative resource analysis. In:

TACAS (2015)
5. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program

termination, and complexity bounds of flowchart programs. In: SAS (2010)
6. Atkey, R.: Amortised resource analysis with separation logic. In: ESOP (2010)
7. Avanzini, M., Lago, U.D., Moser, G.: Analysing the complexity of functional

programs: Higher-order meets first-order. In: ICFP (2012)
8. Bagnara, R., Rodríguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-

algebraic invariants using convex polyhedra. In: SAS (2005)
9. Blazy, S., Maroneze, A., Pichardie, D.: Formal verification of loop bound estimation

for WCET analysis. In: VSTTE (2013)
10. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime

and size complexity analysis of integer programs. In: TACAS (2014)
11. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.

In: PLDI (2015)
12. Carbonneaux, Q., Hoffmann, J., Ramananandro, T., Shao, Z.: End-to-end verifica-

tion of stack-space bounds for C programs. In: PLDI (2014)
13. Cerný, P., Henzinger, T.A., Kovács, L., Radhakrishna, A., Zwirchmayr, J.: Segment

abstraction for worst-case execution time analysis. In: ESOP (2015)
14. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and

amortized complexity of an efficient union-find implementation. In: ITP (2015)

19

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

16. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: APLAS (2014)

17. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for
OCaml. In: POPL (2017)

18. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polymorphic recursion
and partial big-step operational semantics. In: APLAS (2010)

19. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: POPL (2011)

20. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional
programs. In: POPL (2003)

21. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: ESOP (2006)
22. Kincaid, Z., Breck, J., Forouhi Boroujeni, A., Reps, T.: Compositional recurrence

analysis revisited. In: PLDI (2017)
23. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for

higher-order functions with memoization. In: POPL (2017)
24. Monniaux, D.: Automatic modular abstractions for template numerical constraints.

LMCS 6(3) (2010)
25. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.

In: POPL (2004)
26. Nipkow, T.: Amortized Complexity Verified. In: ITP (2015)
27. Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems

using mathematical programming. In: VMCAI (2005)
28. Serrano, A., López-García, P., Hermenegildo, M.V.: Resource usage analysis of logic

programs via abstract interpretation using sized types. TPLP 14(4-5) (2014)
29. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable approach to bound analysis

and amortized complexity analysis. In: CAV (2014)
30. Sinn, M., Zuleger, F., Veith, H.: Difference constraints: An adequate abstraction

for complexity analysis of imperative programs. In: FMCAD (2015)
31. Srikanth, A., Sahin, B., Harris, W.R.: Complexity verification using guided theorem

enumeration. In: POPL (2017)
32. The Coq Development Team: Reference Manual (Version 8.6). https://coq.inria.

fr/distrib/current/refman/index.html
33. Vasconcelos, P.B., Jost, S., Florido, M., Hammond, K.: Type-based allocation

analysis for co-recursion in lazy functional languages. In: ESOP (2015)

20

