DEDUKTI: A Universal Proof Checker

Mathieu Boespflug¹ Quentin Carbonneaux² Olivier Hermant³

¹McGill University

 $^2 {\sf INRIA}$ and ${\sf ENPC}$

³INRIA and ISEP

PxTP 2012

INTRODUCTION

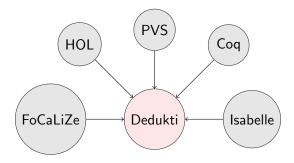
The $\lambda\Pi$ -calculus modulo

The Dedukti proof checker

Better performance using JIT compilation

CONCLUSION

Dedukti as a universal backend



INTRODUCTION

The $\lambda\Pi$ -calculus at the core

A calculus with dependent types: array : $nat \rightarrow Type$.

In a Curry-de Bruijn-Howard style, the $\lambda\Pi$ -calculus is a language representing proofs of minimal predicate logic.

At least two choices to increase expressiveness:

- 1. enrich the $\lambda\Pi$ -calculus by adding more deduction rules (*e.g.* CIC);
- 2. liberalize the conversion rule ($\lambda \Pi$ -calculus modulo).

The $\lambda\Pi$ -calculus modulo

$Var \ni x, y, z$ Term $\ni t, A, B ::= x \mid \lambda x : A. M \mid \Pi x : A. B \mid M N \mid \mathsf{Type} \mid \mathsf{Kind}$

FIGURE: Grammar of the $\lambda\Pi$ -calculus modulo

TYPING RULES: ABSTRACTIONS

$$(prod) \frac{\Gamma \vdash A : \mathsf{Type} \qquad \Gamma, x: A \vdash B : s}{\Gamma \vdash \Pi x: A. \ B : s}$$

$$(abs) \frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma, x: A \vdash B : s \quad \Gamma, x: A \vdash M : B}{\Gamma \vdash \lambda x: A. \ M : \Pi x: A. \ B}$$

 $s \in \{\mathsf{Type},\mathsf{Kind}\}$

Typing rules: Dependent application

$$(app) \frac{\Gamma \vdash M : \Pi x : A. B}{\Gamma \vdash M N : \{N/x\}B} \frac{\Gamma \vdash N : A}{B}$$

Typing rules: Conversion modulo

$$(conv) \frac{\Gamma \vdash M : A \qquad \Gamma \vdash A : s \qquad \Gamma \vdash B : s}{\Gamma \vdash M : B} A \equiv_{\beta \mathcal{R}} B$$

A Dedukti signature

$$\forall y, 0 + y = y$$

$$\forall x, \forall y, S x + y = S (x + y).$$

A SAMPLE DERIVATION

In the following context:

$$\Gamma := nat: Type, vec: nat \to Type,$$

$$cat: \Pi n: nat. \Pi m: nat. vec \ n \to vec \ m \to vec \ (n+m)$$

$$n: nat, \ v: vec \ n.$$

we have

$$(apps) \frac{\Gamma \vdash cat:... \quad \Gamma \vdash n:nat \quad \Gamma \vdash v:vec \ n}{(conv) \frac{\Gamma \vdash cat \ n \ n \ v \ v:vec \ (n+n)}{\Gamma \vdash cat \ n \ n \ v \ v:vec \ (2*n)}}$$

DEDUKTI'S GOALS

- Fast type checking of an extensible λ -calculus.
- Use compilation techniques.
 - Plenty of efficient compilers available;
 - reuse them off the shelf (separate concerns).
- Lightest possible runtime system.

Two choices are possible:

DEDUKTI'S GOALS

- Fast type checking of an extensible λ -calculus.
- Use compilation techniques.
 - Plenty of efficient compilers available;
 - reuse them off the shelf (separate concerns).
- Lightest possible runtime system.

Two choices are possible:

generate a specific type checker for each theory (LFSC);

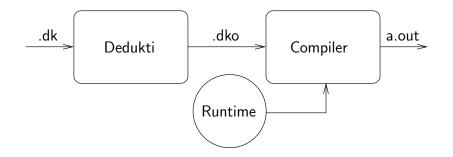
DEDUKTI'S GOALS

- Fast type checking of an extensible λ -calculus.
- Use compilation techniques.
 - Plenty of efficient compilers available;
 - reuse them off the shelf (separate concerns).
- Lightest possible runtime system.

Two choices are possible:

- generate a specific type checker for each theory (LFSC);
- ▶ generate a specific type checker for a set of terms (DEDUKTI).

The big picture



The Dedukti proof checker

We fully embed the type checking logic in the target language. Generated data/code must fit two purposes:

- 1. Type checking (*static* representation).
- 2. Normalizing (*dynamic* representation).

The static version of terms in HOAS ($\lceil . \rceil$).

```
data Term =
   Lam (Term → Term)
   App Term Term
   B Term
```

$$\lceil x \rceil = B x$$
$$\lceil \lambda x. t \rceil = Lam (\lambda x. \lceil t \rceil)$$
$$\lceil a b \rceil = App \lceil a \rceil \lceil b \rceil$$

The Dedukti proof checker

The static version of terms in HOAS ($\lceil . \rceil$).

```
data Term =
  Lam (Term → Term)
  | App Term Term
  | B Term
```

With this interpreter:

$$\lceil x \rceil = B x$$
eval $(B x) = x$ $\lceil \lambda x. t \rceil = Lam (\lambda x. \lceil t \rceil)$ eval $(Lam f) = \lambda x. eval (f x)$ $\lceil a b \rceil = App \lceil a \rceil \lceil b \rceil$ eval $(App a b) = (eval a)(eval b)$

How to peel the result of the evaluation?

eval' (B x) = xeval' (Lam f) = L (λx .eval' (f x)) eval' (App a b) = app (eval' a) (eval' b)

$$\begin{array}{l} \mathsf{app} \ (\mathsf{L} \ f) \ x = f \ x \\ \mathsf{app} \ a \ b = \mathsf{A} \ a \ b \end{array}$$

The Dedukti proof checker

eval' (B
$$x$$
) = x
eval' (Lam f) = L (λx .eval' ($f x$))
eval' (App $a b$) = app (eval' a) (eval' b)

app (L f)
$$x = f x$$

app $a b = A a b$

The dynamic version of terms (\llbracket . \rrbracket).

$$\begin{split} \llbracket . \rrbracket = \mathsf{eval'} \circ \ulcorner . \urcorner & \llbracket x \rrbracket = x \\ \llbracket \lambda x. \ t \rrbracket = \mathsf{L} \ (\lambda x. \llbracket t \rrbracket) \\ \llbracket a \ b \rrbracket = \mathsf{app} \ \llbracket a \rrbracket \ \llbracket b \rrbracket \end{aligned}$$

Two interpretations

eval' (B
$$x$$
) = x
eval' (Lam f) = L (λx .eval' ($f x$))
eval' (App $a b$) = app (eval' a) (eval' b)

$$app (L f) x = f x$$
$$app a b = A a b$$

CONTEXT FREE TYPE CHECKING

DE BRUIJN'S CRITERION We must have the simplest possible runtime.

As a solution, we rely on the host language's features.

Judgements become closures: we move from $\Gamma \vdash t: T$ to $\vdash t: T$; substitutions are performed using HOAS.

Term $\ni t, A, B ::= x \mid [y : T] \mid \lambda x. M \mid \Pi x:A. B \mid M N \mid \mathsf{Type} \mid \mathsf{Kind}$

CONTEXT FREE TYPE CHECKING

$$(abs^{b}) \frac{C \longrightarrow_{w}^{*} \Pi x: A. B}{\vdash \lambda x. M \Leftarrow C} \stackrel{\vdash \{[y:A]/x\}M \Leftarrow \{y/x\}B}{\vdash \lambda x. M \Leftarrow C}$$

The Dedukti proof checker

CONTEXT FREE TYPE CHECKING

$$(abs^{b}) \frac{C \longrightarrow_{w}^{*} \Pi x: A. B}{\vdash \{[y:A]/x\}} M \Leftarrow \{y/x\}B}{\vdash \lambda x. M \Leftarrow C}$$

Which maps trivially to this Haskell snippet:

The Dedukti proof checker

DEDUKTI ON A SIMPLE EXAMPLE

Module	Dedukti	Compilation and execution	
Coq.Init.Logic	50 sec	$1 \min 13 \sec + 0.261 \sec$	

DEDUKTI ON A SIMPLE EXAMPLE

Module	Dedukti	Compilation and execution
Coq.Init.Logic	50 sec	$1 \min 13 \sec + 0.261 \sec$

Module	CHICKEN	
Coq.Init.Logic	0.170 sec	

Better performance using JIT compilation

 $\operatorname{Ded}_{\mathrm{UKTI}}$ was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

DEDUKTI was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

1. the translator can be an online program (work in a stream friendly way);

DEDUKTI was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

- 1. the translator can be an online program (work in a stream friendly way);
- 2. the internal state of the translator is tiny, hence no garbage collection is needed.

 $\operatorname{Dedukti}$ now switches from Haskell to Lua.

- Lua is a minimal programming language.
- Lua enjoys a very fast cutting edge JIT (luajit).
- Lua is not statically typed, not scoped.

A huge performance gap

File	DEDUKTI before	DEDUKTI after
bool_steps.dk	> 5 min	б sec
Coq_Init_Logic.dk	50 sec	0.08 sec

FIGURE: Speed of the first translation

Because memory management is handmade, several gigabytes are saved during the processing of big files.

Better performance using JIT compilation

The JIT compromise

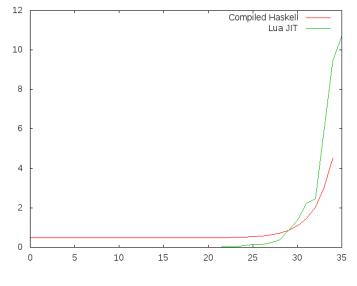


FIGURE: Compilation vs JIT

Better performance using JIT compilation

CONCLUSION

Dedukti is

- ▶ 1285 lines of C (+ 451 lines of comments);
- blazingly fast on resonably sized examples;
- not worse than a trivial implementation;
- generating Lua code.
- Using a JIT allows a a smoother behavior of type checking times.
- Next steps: improve our control on generated code, cope with luajit's limits.