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An Example Program

Suppose we have n consecutive stack operations.

7z Y
L1,L9,...,Tg.

popall costs s, push costs 1.
The stack starts empty.



We can rephrase the setting using
non-determinism and a loop.

while n > 0
if *
push ();
else
popall ();
n=mn-— 1;



We can rephrase the setting using
non-determinism and a loop.

while n > 0
if *
push ();
else

popall ();
n=mn-— 1;

What is the worst-case?



Answer: 2n

The number of elements pushed cannot be bigger
than n. Thus,

» the combined cost for all the pops is < n,
» and the combined cost for all pushes is < n.

Hence 2n.



[s it a Proof?

This is nice reasoning, but informal. It’s unclear
how to scale this to real programs. We need

» Formal Cost Semantics
» Formal Logical Reasoning

» Automation

My work brings some answers to these 3 points.



Potential Method and
Quantitative Logic



A Good Start: Tarjan’s Idea

Tarjan proposes to find a potential function.

» 0,0 are program states.
» () is the cost of one loop iteration.
» O : State — Z is a potential function iff

0 if o(n) <0
(o) 2 { Ci+(o") if o(n) >0



Why?

O(0g) > Cr 4+ D(0q)
O(01) > C1 4 D(0y)
(I)(O'Q) 2 C[ + (I)(Ug)

(I)(Uf)' >0

> () is the total program cost.



Claim: Taking ® = 2n + s Works

push case (C; = 1):
b(n,s)=2n+s=14+2n—1)+s+1
ZOZ—}-(I)(TL—I,S—I—I).

popall case (C; = s):
P(n,s) =2n+s=s+2(n—1)+1
> C’H—@(n—l,@).

base case: ®(0,s) =s5>0



What did we prove?

®(n,0) = 2n bounds the number of stack ops.
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What did we prove?

®(n,0) = 2n bounds the number of stack ops.
We proved more! If the stack is not initially

empty, ®(n, s) is a correct bound. We had to
introduce s in ® for the induction.
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Potential Function = Compositional

Using triples, we get compositional resource
bound proofs:

Write {®}S{P'} to mean ®(0) > Cs + P'(d').
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Potential Function = Compositional

Using triples, we get compositional resource
bound proofs:

Write {®}S{P'} to mean ®(0) > Cs + P'(d').
If {0}S;{P'} and {P'}S5{P"} then
{(I)}Sl; SQ{(I)H}.

This is telescoping, because Cg,.g, = Cs, + Cs,.
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{215 {P}  {2}5{¢"}

7 (Q:SEQ)
{®}5; So{@"}



{X ND}S{D}

{®@}while X do S{-X A <I>}

(Q:Loor)



Combining Logic and Potential

Logic Assertions

Potential Functions

State — B State — Qf U {oo}
T 0,1,15,2,...
il 00
A +
\Y min

Example: TV L =T translates to min(0, co) = 0.




Complete Logic for Clight

ABRY, (@ 0] AT (Bl heg) LA
n<0 = Q=0 L .
B (Qtekm{Q—n} T A B Rrr (R(o(@)] retum 2 {q) R

(L:ASSERT)

L:U
NB R (stroe e, — Q) asserte Q) (L:UPDATE)

ABRrL Do Qole = [Tz — e ()
s AT
1>Q  MQRe {}S{I} ABRFQ}SQ)
ABRIL (Teopsiq) O NBRiL (P snssiq)

Ay B Ry istrue [e]- + PYSi1{Q}  A;Bi R -y {isfalse [e] - + P} S2 {Q}
A;B; R 1, {P}if(e) 51 else S5 {Q}

(L:IF)

A(f) =Vz0v.(Prz0,Qpzv) P2 Pry(o(@))+A Yo (Qryv+A>A0.Qalr —1])
A;BiR b {Phr < f(2){Q}

(L:CALL)

AUANBREL{P}S{Q}  Pr20
VP Q. A(f) = V2 00.(Py2.Qp 2v) — Wy o (A U A L5 Qry o, {Pry ) Sy (L))
A;B;R -1, {P}S{Q}

(L:EXTEND)

A;BR - (P} S{Q)
PzP Q>2Q B =B Vu(RvzRv A;B; R Py S reQf

Q=Q e (RozRe) FLAPESHQY w2 QF e
A;B;R -1 {P}S{Q} A;B4a;R+a - {P+x}S{Q+x}

Figure 13: Rules of the Quantitative Hoare Logic
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Example Applications

Linear stack bound for Fib function.

v

Linear stack bound for factorial.

v

Logarithmic stack bound for binary search.

v

v

Logarithmic stack bound for Quicksort.
Backend for automated stack bounds tool.
A stack bound for full CertiKOS.

A powerful semantic tool.

v

v

v

A common language for tools and proofs.

v
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Cost Semantics
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Back to the Technique: What is Cg?

We need a precise definition of the
“resource cost” of a program.

S:=x+ E|skip|S;S
| while £ do S
| if E then S else S
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Classic Small-step Semantics

Define configurations as: (S, K, H).
K :=KLoop £ S K | KSeq S K | KEmpty

Define rules like:

S:SEQ1
(S1: 5, K, H) = (S1,KSeq 55 K, &) 57!

S:SEQ2
(skip. KSeq S K. 1) — (S, K, 1) "%
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[E]s =7
(x < E,K,H) — (skip, K, H[z < n])

(S:SET)

[E]la=0

S:W 1
(while T do 5. 15, ) — (skip. I&, 1) L WHILEL)

[E]a #0
(while E do S, K, H) — (S,KLoop E S K, H)

(S:WHILE2)

S:WHILE3
(skip, KLoop £ S K, H) — (while E do S,K,H)( )
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Example

(while z < 1 do z < = + 1,KE, {z < 0})

x <+ x+ 1,KL (z<1) (x + x + 1) KE, {z « 0})
skip, KL (z<1) (z <=z + 1) KE,{z + 1})
while z < 1do z <~ 2+ 1,KE, {z + 1})

=
=
=
— (skip, KE, {z < 1})

S:WHILE2, S:SET, S:WHILE3, S:WHILE1
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Cost Semantics

Program configurations are now: (S, K, H,c).
This c is resource counter, it changes as the
program executes.

S = ... | tick(n)

(S:TicK)

(tick(n), K, H,c) — (skip, K, H,c — n)

All the rules get a side condition ¢ > 0.



Stuck Configurations

A configuration is stuck if it cannot execute
further. Different kind of stuckness exist:

» Memory error.
» Divisions by 0.
» Resource crashes.

We recognize resource crashes as configurations
(S, K, H,c) where ¢ < 0.



Resource Safety

Identifying crashes lets us define safety:

A configuration C'is safe for n steps if any
execution sequence of n steps or less starting in
C does not end as a resource crash.

This predicate is formally defined inductively
using the small-step semantics.



Why Indexing the Definition?

» It lets us talk about diverging executions.
(Think about stack usage.)

» It makes the soundness proof of our logic
possible. (In the while case.)



Resource Cost of a Program

Cgs = inf{c | Vn. safe, (S, KEmpty, Hy, )}



Resource Cost of a Program

Cgs = inf{c | Vn. safe, (S, KEmpty, Hy, )}

Problems with this notion:
» inf is a promess for trouble.
» Explicit mention of KEmpty and H,.
» In short: non compositional!



Soundness of the Logic
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Revisit Semantic Validity

Remember {®}S{d'} = (o) > Cg + (o).
Let’s be more thorough.



Revisit Semantic Validity

Remember {®}S{d'} = (o) > Cg + (o).
Let’s be more thorough.

A continuation K is safe, for a potential @’ if
VH e ®'(H) <c¢ = safe,(skip, K, H,c).
We write safeK, (9, K).



Revisit Semantic Validity

Remember {®}S{d'} = (o) > Cg + (o).
Let’s be more thorough.

A continuation K is safe, for a potential @’ if
VH e ®'(H) <c¢ = safe,(skip, K, H,c).
We write safeK, (9, K).

A triple {®}S{P'} is wvalid for n steps if
VK He k<n. safeKp(®', K) NP(H) < ¢
— safe, (S, K, H,c).



One Remark

We have V&' n. safeK, (', KEmpty).

So, {®}S{P'} valid for every n implies:
Vn. safe, (S, KEmpty, Hy, ®(Hy)).

That is, Cs < ®(Hy).

Our semantic validity of triples is connected to
the intuitive resource cost of a program.



Example Proof: The Sequence

{@}Si{2}  {P'}S,{2"}
{®}S); S2{ 0"}

(Q:SEQ)

If the two premisses are valid for n steps, the
conclusion will be too.

Let K a continuation safe for k < n steps, let
O(H) < c. We want safe;,(S1; 52, K, H, c).
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Proving safe;(S1; Ss, K, H, ¢)

» By definition of safe;, we must show
safe;_1(S1,KSeq S K, H,c).
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Proving safe;(S1; Ss, K, H, ¢)

» By definition of safe;, we must show
safe;_1(S1,KSeq S K, H,c).

» By the first premiss, we now have to show
safeKy_1(P',KSeq Sy K).
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Proving safe;(S1; Ss, K, H, ¢)

» By definition of safe;, we must show
safe;_1(S1,KSeq Sy K, H,c).

» By the first premiss, we now have to show
safeKy_1(P',KSeq Sy K).

» By definition of safeK} 1, we must show

safe;_,(skip, KSeq Sy K, H', ) for ®'(H")<c.



Proving safe;(S1; Ss, K, H, ¢)

>

By definition of safe,, we must show
safe;_1(S1,KSeq S K, H,c).

By the first premiss, we now have to show
safeKy_1(P',KSeq Sy K).

By definition of safeK;_1, we must show

safe;_,(skip, KSeq Sy K, H', ) for ®'(H")<c.

By definition of safe,_;, we must show
safe;_o(S9, K, H, ), for ®'(H")<c .



Proving safe;(S1; Ss, K, H, ¢)

>

By definition of safe,, we must show
safe;_1(S1,KSeq S K, H,c).

By the first premiss, we now have to show
safeKy_1(P',KSeq Sy K).

By definition of safeK;_1, we must show

safe;_,(skip, KSeq Sy K, H', ) for ®'(H")<c.

By definition of safe,_;, we must show
safe;_o(S9, K, H, ), for ®'(H")<c .

The second premiss finishes the proof, since
safeKy_o(®", K) (after weakening).



This Seemed Tricky?

It’s not! The Coq proof we have for the logic
might be the smallest soundness proof for a
program logic for C in Coq! (400 lines)

Very much recommended for novices and
teaching!



In Coq With No Tactic Fu

Proof with try (intros; ksgn).

unfold valid at 3, safe; intros.

assert (CNNEG: 0 <= c¢).

{ eapply (valid_nneg n B R P Q sl x XSGN PRE1l)...
eapply (valid_.nneg n B R Q Q s2 x XSGN PRE2)...
eassumption .

split; [ exact CNNEG | step ].

apply PREl with (x := x); try (omega || assumption).
clear INT.

unfold safek, safe; intuition;

try step; try ksgn.

+ apple SAFEK; assumption.

+ simpl; apple SAFEK; auto.

+ eapply (valid_nneg n B R Q" Q s2 x XSGN PRE2)...
eassumption .

+ eapply PRE2 with (x := x); try (omega || apply INI).
simpl; apple SAFEK; now auto.

+ eapply (valid_.nneg n B R Q Q s2 x XSGN PRE2)...
eassumption .

Qed .

The previous proof in the full Clight context in
Coq. Arguably very short!
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Automatic Derivation of
Resource Bounds
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Automating the Proof Search

A potential function can be any function.
What if we only look at a few of them?



Automating the Proof Search

A potential function can be any function.
What if we only look at a few of them?

O(H) = ko+ Y kay - |[H(2), H(y)]|

where k€ QF and |[a, b]| = max(b — «a,0).



Motivation for Intervals

for (x = 0; x < y—1; x += 2) {
tick (1);
}
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Motivation for Intervals

for (x = 0; x < y—1; x += 2) {
tick (1);
}

2() = 5[0 H(y)]



Indices

To succintly refer to a potential function, we use
indices.

Z={0}UA{zy | z,y € Vars}



Indices

To succintly refer to a potential function, we use
indices.

Z={0}UA{zy | z,y € Vars}

If fo=A.1and foy = AH.[[H(x), H(y)]|

:Zkl‘fI(H

IeT

fr is a base function. (Linear algebra.)



Rules for Potential

Idea: Reuse the logic’s rules for soundness and
constrain potential functions on their coefficients.

» For example: Ensure ® > @' by VI, k; > k.
» Reuse all syntax directed rules as-is.

» Add a little more work for statemtents
modifying the heap.



Increments of Variables

Consider the increment program x <— x + 1.

The logic rule is notoriously unhelpful:

{\H.®(H[z + [E]y])}x < E{®} (Q:SET)

We need to understand how ® = >, k- fr is
changed.



Constraints for {®}x < x + 1{d'}

Only [y, z] and [z, y] will change. We write 2’ for
the new value of z.
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Constraints for {®}x < x + 1{d'}

Only [y, z] and [z, y] will change. We write 2’ for
the new value of z.

» Consider ® = ko + ky, - |[y, 7|,
we have |[y, ]| = [[y, ]| + 1, so
P = (]{30 — kyx) + kym ) |[yax]|
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Constraints for {®}x < x + 1{d'}

Only [y, z] and [z, y] will change. We write 2’ for
the new value of z.

» Consider ® = ko + ky, - |[y, 7|,
we have |[y, ]| = [[y, ]| + 1, so
P = (]{30 — kyx) + kym ) |[y,$]|

» Suppose 2’ € [z, y] and consider
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Constraints for {®}x < x + 1{d'}

Only [y, z] and [z, y] will change. We write 2’ for
the new value of z.

» Consider ® = ko + ky, - |[y, 7|,
we have |[y, ]| = [[y, ]| + 1, so
P = (]{30 — kyx) + kym ) |[y,$]|

» Suppose 2’ € [z, y] and consider
Q= ko + k»’Cy ’ Hx,y“,
we have |[z/,4]| = |[2,4]] — 1, 50
O = (Ko + Kay) + Fay - [, ]|

In both cases ®(H) = ¢'(H[x + x + 1]).
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Full Automatic System for Clight

(Q:SKIP)

BRI.QrskpI(.Q ¥ (T.Qp): B (1. Q) - break o (17, @) PR
n<0 = Q>0  P=Qulet/s] T =Talret/s]  Viedom(P)pi=q
Bi % (T, Q) F tick(n) = (T Q) (1) B: (Tr Qr)i (. Q) - return = 4 (T, Q) (QRETURN)
Y (Gyu = o + Gyu A Guy = Qhw + dhy) : Q=Q (IMQ)iRI.QEFSHTQ
B (T /u] QM+ ML () b g = (@) (U™ BR(Q) - loops (T, Q) (o
Gy = oy — ;u maxzq“- 7411@ G0y = oy — ;u maxzqw 74%:;
Gyo = Gyo = Xy, MAX(Grus —Quz . G0 = yo — X m8X(Guzr, —Gau
BRI rrerty4100) N BRCW Qg4 @q) T
BiR:(T A e.Q) k51— (I'.Q)) BiR:(I.Q) - 5 4 (I".Q)
BRI A Q) rHA0Q) Q) SiA e
BiR:(1,Q) - 1F(0) S else 55 4 (. ) & BR(I.Q) - S8 4(7.q) 5

(T, Q7. T.Q)) € A(f)  Loc = Locals(Q)
Vitja#a, ceQf Q=P+S Q=P+S Us=Qlais/s] U =Qlret/r]
Viedom(U).pi—ui_Viedom(U').pi —ui  VigdomU).pi=0 Vigloesi=0 oo
:CALL
B; R: (T [ais/@] A Tioe, Q+0) - 7 — [(@) A (Ty[ret/r] A Tioe, @ +6)

Sf=@S) Q=0 Q;=0
) B; (I, Q)s (F/[WS/@T] Qslamgs/g) - Sy 4 (0, Q)
B (0,Q) - aserte A (T AeQ) SAHD @7.Q/. 1. Q) € A (Q:BXTEND)

Tiply Quzr Q@ BiRi(Te,Q) S H(I5,Q)  ThETy  Qhzr @) QWEAK)
BiR: (N1, Q1) = 5 = (1. QY)

= {zy [ UoyeN T Ly S |lryll} - U = oy | JunyeN-T e |2 y]] S way} - Viopirs €Qf
VieUgizqg—ri  VieLqiZqg+p  Vi¢UVLU{O}.g[Za g0 2 qot D wiri — Y libi (RELAX)
ELAX
Q =rQ

Figure 4: Inference rules of the quantitative analysis.
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Example Derivation

{; 0+ T1"[x, ]|}

while (x < y) {
{z <y; 0+ T [[z,y]]}
x =X + 1;
{z <y, T+ T[z,9][}
tick (T);

} {z <y; 0+ T [z, yll}

{z =50+ Tz, y]I}



Tarjan’s Example From 50 Slides Ago

{210, n]] + [[0, s][}
while (n > 0) {
{n>0 210, n][ + [[0, s]|}
{ 242 10, ]| + [0, s][}
if (%)
s+ {5 1+2-1[0,n]] + [0, s][}
tick (1); {5 2-[[0,n]| + |[ s]}

else
{: 0+2-][0,n][ + [[0, s][}
while (s > 0)
{s>0;2-1[0,n]| +[0, s]|}
s——; { 14+2-[[0,n][ +[0, s][}
tick (1)5 {5 2-]0,n]|+ 1[0, 5]/}
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How to Automate?

Remark: All the constraints generated are linear.

v

Collect all the constraints.
Feed them the an LP solver.
A solution is a proof certificate.

v

v

v

v

No solution, report an error.

Implemented in C“B, validated by the PLDI
AEC 2015.

Apply the rules with dummy names for (k;);.



Future Work and Demo



What Now?

P) Automation for polynomial bounds.

v

TP) Extend automation to handle memory.

v

T) Integrate with contextual refinement.

v

v

(P)

(TP

(T) Prove logic completeness.
(T)

(P) Apply to real-time systems.

T is for theory, P is for practice.
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