The Resource Bound Problem for Imperative Languages

Quentin Carbonneaux

April 21, 2015

An Example Program

Suppose we have n consecutive stack operations.

```
push();
popall();
push();
push();
\mp@subsup{\overbrace}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{s}{}
```

popall costs s, push costs 1 . The stack starts empty.

We can rephrase the setting using non-determinism and a loop.

$$
\text { while } \mathrm{n}>0
$$

if *
push () ;
else

$$
\begin{aligned}
& \quad \text { popall }() ; \\
& \mathrm{n}=\mathrm{n}-1
\end{aligned}
$$

We can rephrase the setting using non-determinism and a loop.

$$
\text { while } \mathrm{n}>0
$$

if *
push () ;
else

$$
\begin{aligned}
& \text { popall }() \\
& \mathrm{n}=\mathrm{n}-1
\end{aligned}
$$

What is the worst-case?

Answer: $2 n$

The number of elements pushed cannot be bigger than n. Thus,

- the combined cost for all the pops is $\leq n$,
- and the combined cost for all pushes is $\leq n$.

Hence $2 n$.

Is it a Proof?

This is nice reasoning, but informal. It's unclear how to scale this to real programs. We need

- Formal Cost Semantics
- Formal Logical Reasoning
- Automation

My work brings some answers to these 3 points.

Potential Method and Quantitative Logic

A Good Start: Tarjan's Idea

Tarjan proposes to find a potential function.

- σ, σ^{\prime} are program states.
- C_{l} is the cost of one loop iteration.
- Φ : State $\rightarrow \mathbb{Z}$ is a potential function iff

$$
\Phi(\sigma) \geq\left\{\begin{array}{ll}
0 & \text { if } \sigma(n) \leq 0 \\
C_{l}+\Phi\left(\sigma^{\prime}\right) & \text { if } \sigma(n)>0
\end{array} .\right.
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{0}\right) \geq C_{l}+\Phi\left(\sigma_{1}\right) \\
& \Phi\left(\sigma_{1}\right) \geq C_{l}+\Phi\left(\sigma_{2}\right) \\
& \Phi\left(\sigma_{2}\right) \geq C_{l}+\Phi\left(\sigma_{3}\right) \\
& \quad \vdots \\
& \Phi\left(\sigma_{f}\right) \geq 0
\end{aligned}
$$

$\sum C_{l}$ is the total program cost.

Claim: Taking $\Phi=2 n+s$ Works

push case $\left(C_{l}=1\right)$:

$$
\begin{aligned}
\Phi(n, s) & =2 n+s=1+2(n-1)+s+1 \\
& \geq C_{l}+\Phi(n-1, s+1)
\end{aligned}
$$

popall case $\left(C_{l}=s\right)$:

$$
\begin{aligned}
\Phi(n, s) & =2 n+s=s+2(n-1)+1 \\
& \geq C_{l}+\Phi(n-1,0)
\end{aligned}
$$

base case: $\Phi(0, s)=s \geq 0$

What did we prove?

$\Phi(n, 0)=2 n$ bounds the number of stack ops.

What did we prove?

$\Phi(n, 0)=2 n$ bounds the number of stack ops.
We proved more! If the stack is not initially empty, $\Phi(n, s)$ is a correct bound. We had to introduce s in Φ for the induction.

Potential Function \Longrightarrow Compositional

Using triples, we get compositional resource bound proofs:

Write $\{\Phi\} S\left\{\Phi^{\prime}\right\}$ to mean $\Phi(\sigma) \geq C_{S}+\Phi^{\prime}\left(\sigma^{\prime}\right)$.

Potential Function \Longrightarrow Compositional

Using triples, we get compositional resource bound proofs:

Write $\{\Phi\} S\left\{\Phi^{\prime}\right\}$ to mean $\Phi(\sigma) \geq C_{S}+\Phi^{\prime}\left(\sigma^{\prime}\right)$.
If $\{\Phi\} S_{1}\left\{\Phi^{\prime}\right\}$ and $\left\{\Phi^{\prime}\right\} S_{2}\left\{\Phi^{\prime \prime}\right\}$ then

$$
\{\Phi\} S_{1} ; S_{2}\left\{\Phi^{\prime \prime}\right\}
$$

This is telescoping, because $C_{S_{1} ; S_{2}}=C_{S_{1}}+C_{S_{2}}$.

$$
\frac{\{\Phi\} S_{1}\left\{\Phi^{\prime}\right\} \quad\left\{\Phi^{\prime}\right\} S_{2}\left\{\Phi^{\prime \prime}\right\}}{\{\Phi\} S_{1} ; S_{2}\left\{\Phi^{\prime \prime}\right\}}(\mathrm{Q}: \mathrm{SEQ})
$$

$\frac{\{X \wedge \Phi\} S\{\Phi\}}{\{\Phi\} \text { while } X \text { do } S\{\neg X \wedge \Phi\}}(\mathrm{Q}:$ Loop $)$

Combining Logic and Potential

Logic Assertions	Potential Functions
State $\rightarrow \mathbb{B}$	State $\rightarrow \mathbb{Q}_{0}^{+} \cup\{\infty\}$
\top	$0,1,1.5,2, \ldots$
\perp	∞
\wedge	+
\vee	min

Example: $T \vee \perp=\top$ translates to $\min (0, \infty)=0$.

Complete Logic for Clight

$$
\begin{gathered}
\overline{\Delta ; B ; R \vdash_{L}\{Q\} \operatorname{skip}\{Q\}}(\mathrm{L}: \mathrm{SKIP}) \\
\frac{n<0 \Longrightarrow Q \geqslant 0}{\Delta ; B ; R \vdash_{L}\{Q\} \operatorname{tick}(n)\{Q-n\}}(\mathrm{L}: \mathrm{TICK})
\end{gathered}
$$

$$
\overline{\Delta ; B ; R \vdash_{L}\{B\} \text { break }\{Q\}}(\mathrm{L}: \mathrm{BREAK})
$$

$$
\overline{\Delta ; B ; R \vdash_{L}\{R(\sigma(x))\} \text { return } x\{Q\}}(\mathrm{L}: \text { RETURN })
$$

$\overline{\Delta ; B ; R \vdash_{L}\left\{\text { istrue } \llbracket e \rrbracket_{\sigma} \Longrightarrow Q\right\} \text { assert } e\{Q\}}{ }^{\text {(L:ASSERT) }}$
$\overline{\Delta ; B ; R \vdash_{L}\left\{\lambda \sigma . Q \sigma\left[x \mapsto \llbracket e \rrbracket_{\sigma}\right]\right\} x \leftarrow e\{Q\}}$ (L:UpDATE)
$\frac{I \geqslant Q \quad \Delta ; Q ; R \vdash_{L}\{I\} S\{I\}}{\Delta ; B ; R \vdash_{L}\{I\} \operatorname{loop} S\{Q\}}$ (L:Loop)

$$
\begin{aligned}
& \Delta ; B ; R \vdash_{L}\{P\} S_{1}\left\{Q^{\prime}\right\} \\
& \frac{\Delta ; B ; R \vdash_{L}\left\{Q^{\prime}\right\} S_{2}\{Q\}}{\Delta ; B ; R \vdash_{L}\{P\} S_{1} ; S_{2}\{Q\}} \text { (L:SEQ) }
\end{aligned}
$$

$$
\frac{\Delta ; B ; R \vdash_{L}\left\{\text { istrue } \llbracket e \rrbracket_{\sigma}+P\right\} S_{1}\{Q\} \quad \Delta ; B ; R \vdash_{L}\left\{\text { isfalse } \llbracket e \rrbracket_{\sigma}+P\right\} S_{2}\{Q\}}{\Delta ; B ; R \vdash_{L}\{P\} \text { if }(e) S_{1} \text { else } S_{2}\{Q\}} \text { (L:IF) }
$$

$$
\frac{\Delta(f)=\forall z \vec{v} v .\left(P_{f} z \vec{v}, Q_{f} z v\right) \quad P \geqslant P_{f} y(\sigma(\vec{x}))+A \quad \forall v .\left(Q_{f} y v+A \geqslant \lambda \sigma \cdot Q \sigma[r \mapsto v]\right)}{\Delta ; B ; R \vdash_{L}\{P\} r \leftarrow f(\vec{x})\{Q\}} \text { (L:CALL) }
$$

$$
\Delta \cup \Delta^{\prime} ; B ; R \vdash_{L}\{P\} S\{Q\} \quad P_{f} \geqslant 0
$$

$$
\frac{\forall f P_{f} Q_{f} \cdot \Delta^{\prime}(f)=\forall z \vec{v} v .\left(P_{f} z \vec{v}, Q_{f} z v\right) \rightarrow \forall y \vec{v} \cdot\left(\Delta \cup \Delta^{\prime} ; \perp ; Q_{f} y \vdash_{L}\left\{P_{f} y \vec{v}\right\} S_{f}\{\perp\}\right)}{\Delta ; B ; R \vdash_{L}\{P\} S\{Q\}} \text { (L:EXTEND) }
$$

Figure 13: Rules of the Quantitative Hoare Logic

Example Applications

- Linear stack bound for Fib function.
- Linear stack bound for factorial.
- Logarithmic stack bound for binary search.
- Logarithmic stack bound for Quicksort.
- Backend for automated stack bounds tool.
- A stack bound for full CertiKOS.
- A powerful semantic tool.
- A common language for tools and proofs.

Cost Semantics

Back to the Technique: What is C_{S} ?

We need a precise definition of the "resource cost" of a program.

$$
\begin{aligned}
S: & =x \leftarrow E \mid \text { skip } \mid S ; S \\
& \mid \text { while } E \text { do } S
\end{aligned}
$$

if E then S else S

Classic Small-step Semantics

Define configurations as: (S, K, H).

$$
K:=\mathrm{KLoop} E S K|\mathrm{KSeq} S K| \text { KEmpty }
$$

Define rules like:

$$
\begin{gathered}
\overline{\left(S_{1} ; S_{2}, K, H\right) \rightarrow\left(S_{1}, \mathrm{KSeq} S_{2} K, H\right)}(\mathrm{S}: \mathrm{SeQ} 1) \\
\overline{(\text { skip, KSeq } S K, H) \rightarrow(S, K, H)}(\mathrm{S}: \mathrm{SEQ} 2)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\llbracket E \rrbracket_{H}=n}{(x \leftarrow E, K, H) \rightarrow(\text { skip }, K, H[x \leftarrow n])} \text { (S:SET) } \\
\frac{\llbracket E \rrbracket_{H}=0}{\text { (while } E \text { do } S, K, H) \rightarrow(\text { skip }, K, H)} \text { (S:WhiLE1 }
\end{gathered}
$$

$\frac{\llbracket E \rrbracket_{H} \neq 0}{\text { (while } E \text { do } S, K, H) \rightarrow(S, \text { KLoop } E S K, H)}$ (S:WhiLE2)
$\overline{\text { (skip, KLoop } E S K, H) \rightarrow(\text { while } E \text { do } S, K, H)}$

Example

(while $x<1$ do $x \leftarrow x+1$, KE, $\{x \leftarrow 0\}$)
$\rightarrow(x \leftarrow x+1, \mathrm{KL}(x<1)(x \leftarrow x+1) \mathrm{KE},\{x \leftarrow 0\})$
\rightarrow (skip, $\mathrm{KL}(x<1)(x \leftarrow x+1) \mathrm{KE},\{x \leftarrow 1\})$
\rightarrow (while $x<1$ do $x \leftarrow x+1$, KE, $\{x \leftarrow 1\}$)
$\rightarrow($ skip, KE, $\{x \leftarrow 1\})$

S:While2, S:Set, S:While3, S:While1

Cost Semantics

Program configurations are now: (S, K, H, c). This c is resource counter, it changes as the program executes.

$$
S:=\ldots \mid \operatorname{tick}(n)
$$

$\overline{(\operatorname{tick}(n), K, H, c) \rightarrow(\operatorname{skip}, K, H, c-n)}(\mathrm{S}:$ Тıск)
All the rules get a side condition $c \geq 0$.

Stuck Configurations

A configuration is stuck if it cannot execute further. Different kind of stuckness exist:

- Memory error.
- Divisions by 0 .
- Resource crashes.

We recognize resource crashes as configurations (S, K, H, c) where $c<0$.

Resource Safety

Identifying crashes lets us define safety:
A configuration C is safe for n steps if any execution sequence of n steps or less starting in C does not end as a resource crash.

This predicate is formally defined inductively using the small-step semantics.

Why Indexing the Definition?

- It lets us talk about diverging executions. (Think about stack usage.)
- It makes the soundness proof of our logic possible. (In the while case.)

Resource Cost of a Program

$$
C_{S}=\inf \left\{c \mid \forall n . \operatorname{safe}_{n}\left(S, \text { KEmpty, } H_{0}, c\right)\right\}
$$

Resource Cost of a Program

$$
C_{S}=\inf \left\{c \mid \forall n . \operatorname{safe}_{n}\left(S, \text { KEmpty, } H_{0}, c\right)\right\}
$$

Problems with this notion:

- inf is a promess for trouble.
- Explicit mention of KEmpty and H_{0}.
- In short: non compositional!

Soundness of the Logic

Revisit Semantic Validity

Remember $\{\Phi\} S\left\{\Phi^{\prime}\right\} \equiv \Phi(\sigma) \geq C_{S}+\Phi^{\prime}\left(\sigma^{\prime}\right)$.
Let's be more thorough.

Revisit Semantic Validity

Remember $\{\Phi\} S\left\{\Phi^{\prime}\right\} \equiv \Phi(\sigma) \geq C_{S}+\Phi^{\prime}\left(\sigma^{\prime}\right)$.
Let's be more thorough.
A continuation K is safe e_{n} for a potential Φ^{\prime} if $\forall H c . \Phi^{\prime}(H) \leq c \Longrightarrow \operatorname{safe}_{n}(\mathrm{skip}, K, H, c)$. We write $\operatorname{safe}_{n}\left(\Phi^{\prime}, K\right)$.

Revisit Semantic Validity

Remember $\{\Phi\} S\left\{\Phi^{\prime}\right\} \equiv \Phi(\sigma) \geq C_{S}+\Phi^{\prime}\left(\sigma^{\prime}\right)$.
Let's be more thorough.
A continuation K is $s a f e_{n}$ for a potential Φ^{\prime} if $\forall H c . \Phi^{\prime}(H) \leq c \Longrightarrow \operatorname{safe}_{n}(\operatorname{skip}, K, H, c)$. We write $\operatorname{safe}_{n}\left(\Phi^{\prime}, K\right)$.

A triple $\{\Phi\} S\left\{\Phi^{\prime}\right\}$ is valid for n steps if $\forall K H c k \leq n . \operatorname{safeK}_{k}\left(\Phi^{\prime}, K\right) \wedge \Phi(H) \leq c$ $\Longrightarrow \operatorname{safe}_{k}(S, K, H, c)$.

One Remark

We have $\forall \Phi^{\prime}$ n. safe $K_{n}\left(\Phi^{\prime}\right.$, KEmpty $)$.
So, $\{\Phi\} S\left\{\Phi^{\prime}\right\}$ valid for every n implies:

$$
\forall n . \operatorname{safe}_{n}\left(S, \text { KEmpty, } H_{0}, \Phi\left(H_{0}\right)\right) .
$$

That is, $C_{S} \leq \Phi\left(H_{0}\right)$.
Our semantic validity of triples is connected to the intuitive resource cost of a program.

Example Proof: The Sequence

$$
\frac{\{\Phi\} S_{1}\left\{\Phi^{\prime}\right\} \quad\left\{\Phi^{\prime}\right\} S_{2}\left\{\Phi^{\prime \prime}\right\}}{\{\Phi\} S_{1} ; S_{2}\left\{\Phi^{\prime \prime}\right\}}(\mathrm{Q}: \mathrm{SEQ})
$$

If the two premisses are valid for n steps, the conclusion will be too.

Let K a continuation safe for $k \leq n$ steps, let $\Phi(H) \leq c$. We want $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$.

Proving $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$

- By definition of $s a f e_{k}$, we must show safe $_{k-1}\left(S_{1}\right.$, KSeq $\left.S_{2} K, H, c\right)$.

Proving $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$

- By definition of $s a f e_{k}$, we must show safe $_{k-1}\left(S_{1}\right.$, KSeq $\left.S_{2} K, H, c\right)$.
- By the first premiss, we now have to show safe $K_{k-1}\left(\Phi^{\prime}\right.$, KSeq $\left.S_{2} K\right)$.

Proving $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$

- By definition of $s a f e_{k}$, we must show safe $_{k-1}\left(S_{1}\right.$, KSeq $\left.S_{2} K, H, c\right)$.
- By the first premiss, we now have to show safe $K_{k-1}\left(\Phi^{\prime}\right.$, KSeq $\left.S_{2} K\right)$.
- By definition of safe K_{k-1}, we must show safe $_{k-1}\left(\right.$ skip, KSeq $\left.S_{2} K, H^{\prime}, c^{\prime}\right)$ for $\Phi^{\prime}\left(H^{\prime}\right) \leq c^{\prime}$.

Proving $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$

- By definition of $s a f e_{k}$, we must show safe $_{k-1}\left(S_{1}\right.$, KSeq $\left.S_{2} K, H, c\right)$.
- By the first premiss, we now have to show safe $K_{k-1}\left(\Phi^{\prime}\right.$, KSeq $\left.S_{2} K\right)$.
- By definition of safe K_{k-1}, we must show safe $_{k-1}\left(\right.$ skip, KSeq $\left.S_{2} K, H^{\prime}, c^{\prime}\right)$ for $\Phi^{\prime}\left(H^{\prime}\right) \leq c^{\prime}$.
- By definition of safe $_{k-1}$, we must show safe $_{k-2}\left(S_{2}, K, H, c^{\prime}\right)$, for $\Phi^{\prime}\left(H^{\prime}\right) \leq c^{\prime}$.

Proving $\operatorname{safe}_{k}\left(S_{1} ; S_{2}, K, H, c\right)$

- By definition of $s a f e_{k}$, we must show safe $_{k-1}\left(S_{1}\right.$, KSeq $\left.S_{2} K, H, c\right)$.
- By the first premiss, we now have to show safe $K_{k-1}\left(\Phi^{\prime}\right.$, KSeq $\left.S_{2} K\right)$.
- By definition of safe K_{k-1}, we must show safe $_{k-1}\left(\right.$ skip, KSeq $\left.S_{2} K, H^{\prime}, c^{\prime}\right)$ for $\Phi^{\prime}\left(H^{\prime}\right) \leq c^{\prime}$.
- By definition of safe ${ }_{k-1}$, we must show safe $_{k-2}\left(S_{2}, K, H, c^{\prime}\right)$, for $\Phi^{\prime}\left(H^{\prime}\right) \leq c^{\prime}$.
- The second premiss finishes the proof, since safe $K_{k-2}\left(\Phi^{\prime \prime}, K\right)$ (after weakening).

This Seemed Tricky?

It's not! The Coq proof we have for the logic might be the smallest soundness proof for a program logic for C in Coq! (400 lines)

Very much recommended for novices and teaching!

In Coq With No Tactic Fu

```
Proof with try (intros; ksgn).
unfold valid at 3, safe; intros.
assert (CNNEG: 0<= c).
{ eapply (valid_nneg n B R P Q' s1 x XSGN PRE1)...
    eapply (valid_nneg n B R Q' Q s2 x XSGN PRE2)
    eassumption.
}
split; [ exact CNNEG | step ].
apply PRE1 with (x := x); try (omega || assumption).
clear INI.
unfold safek, safe; intuition;
    try step; try ksgn.
+ apple SAFEK; assumption.
+ simpl; apple SAFEK; auto.
+ eapply (valid_nneg n B R Q' Q s2 x XSGN PRE2)...
    eassumption.
+ eapply PRE2 with (x := x); try (omega || apply INI).
    simpl; apple SAFEK; now auto.
+ eapply (valid_nneg n B R Q' Q s2 x XSGN PRE2)...
    eassumption.
Qed.
```


The previous proof in the full Clight context in
 Coq. Arguably very short!

Automatic Derivation of Resource Bounds

Automating the Proof Search

A potential function can be any function. What if we only look at a few of them?

Automating the Proof Search

A potential function can be any function. What if we only look at a few of them?

$$
\Phi(H)=k_{0}+\sum_{x, y} k_{x y} \cdot|[H(x), H(y)]|
$$

where $k_{-} \in \mathbb{Q}_{0}^{+}$and $|[a, b]|=\max (b-a, 0)$.

Motivation for Intervals

for $(\mathrm{x}=0 ; \mathrm{x}<\mathrm{y}-1 ; \mathrm{x}+=2)\{$ tick(1); \}

Motivation for Intervals

$$
\begin{aligned}
& \text { for }(\mathrm{x}=0 ; \mathrm{x}<\mathrm{y}-1 ; \mathrm{x}+=2)\{ \\
& \quad \operatorname{tick}(1) ; \\
& \} \\
& \qquad \Phi(H)=\frac{1}{2}|[0, H(y)]|
\end{aligned}
$$

Indices

To succintly refer to a potential function, we use indices.

$$
\mathcal{I}=\{0\} \cup\{x y \mid x, y \in \text { Vars }\}
$$

Indices

To succintly refer to a potential function, we use indices.

$$
\mathcal{I}=\{0\} \cup\{x y \mid x, y \in \text { Vars }\}
$$

$$
\text { If } f_{0}=\lambda_{.} 1 \text { and } f_{x y}=\lambda H .|[H(x), H(y)]|
$$

$$
\Phi(H)=\sum_{I \in \mathcal{I}} k_{I} \cdot f_{I}(H)
$$

f_{I} is a base function. (Linear algebra.)

Rules for Potential

Idea: Reuse the logic's rules for soundness and constrain potential functions on their coefficients.

- For example: Ensure $\Phi>\Phi^{\prime}$ by $\forall I, k_{I}>k_{I}^{\prime}$.
- Reuse all syntax directed rules as-is.
- Add a little more work for statemtents modifying the heap.

Increments of Variables

Consider the increment program $x \leftarrow x+1$.
The logic rule is notoriously unhelpful:

$$
\overline{\left\{\lambda H . \Phi\left(H\left[x \leftarrow \llbracket E \rrbracket_{H}\right]\right)\right\} x \leftarrow E\{\Phi\}}(\mathrm{Q}: \mathrm{SET})
$$

We need to understand how $\Phi=\sum_{I} k_{I} \cdot f_{I}$ is changed.

Constraints for $\{\Phi\} x \leftarrow x+1\left\{\Phi^{\prime}\right\}$
Only $[y, x]$ and $[x, y]$ will change. We write x^{\prime} for the new value of x.

Constraints for $\{\Phi\} x \leftarrow x+1\left\{\Phi^{\prime}\right\}$

Only $[y, x]$ and $[x, y]$ will change. We write x^{\prime} for the new value of x.

- Consider $\Phi=k_{0}+k_{y x} \cdot|[y, x]|$, we have $\left|\left[y, x^{\prime}\right]\right|=|[y, x]|+1$, so $\Phi^{\prime}=\left(k_{0}-k_{y x}\right)+k_{y x} \cdot|[y, x]|$.

Constraints for $\{\Phi\} x \leftarrow x+1\left\{\Phi^{\prime}\right\}$

Only $[y, x]$ and $[x, y]$ will change. We write x^{\prime} for the new value of x.

- Consider $\Phi=k_{0}+k_{y x} \cdot|[y, x]|$, we have $\left|\left[y, x^{\prime}\right]\right|=|[y, x]|+1$, so $\Phi^{\prime}=\left(k_{0}-k_{y x}\right)+k_{y x} \cdot|[y, x]|$.
- Suppose $x^{\prime} \in[x, y]$ and consider $\Phi=k_{0}+k_{x y} \cdot|[x, y]|$, we have $\left|\left[x^{\prime}, y\right]\right|=|[x, y]|-1$, so $\Phi^{\prime}=\left(k_{0}+k_{x y}\right)+k_{x y} \cdot|[x, y]|$.

Constraints for $\{\Phi\} x \leftarrow x+1\left\{\Phi^{\prime}\right\}$

Only $[y, x]$ and $[x, y]$ will change. We write x^{\prime} for the new value of x.

- Consider $\Phi=k_{0}+k_{y x} \cdot|[y, x]|$, we have $\left|\left[y, x^{\prime}\right]\right|=|[y, x]|+1$, so $\Phi^{\prime}=\left(k_{0}-k_{y x}\right)+k_{y x} \cdot|[y, x]|$.
- Suppose $x^{\prime} \in[x, y]$ and consider $\Phi=k_{0}+k_{x y} \cdot|[x, y]|$, we have $\left|\left[x^{\prime}, y\right]\right|=|[x, y]|-1$, so $\Phi^{\prime}=\left(k_{0}+k_{x y}\right)+k_{x y} \cdot|[x, y]|$.

In both cases $\Phi(H)=\Phi^{\prime}(H[x \leftarrow x+1])$.

Full Automatic System for Clight

$$
\overline{B ; R ;(\Gamma, Q) \vdash \text { skip } \dashv(\Gamma, Q)}(\mathrm{Q}: \mathrm{SKIP}) \quad \overline{\left(\Gamma, Q_{B}\right) ; R ;\left(\Gamma, Q_{B}\right) \vdash \text { break } \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)}(\mathrm{Q}: \text { Break })
$$

$\frac{n<0 \Longrightarrow Q \geqslant 0}{B ; R ;(\Gamma, Q) \vdash \operatorname{tick}(n) \dashv(\Gamma, Q-n)}(\mathrm{Q}: \operatorname{TIcK}) \quad \frac{P=Q_{R}[\mathrm{ret} / x] \quad \Gamma=\Gamma_{R}[\mathrm{ret} / x] \quad \forall i \in \operatorname{dom}(P) \cdot p_{i}=q_{i}}{B ;\left(\Gamma_{R}, Q_{R}\right) ;(\Gamma, Q) \vdash \operatorname{return} x \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)}$ (Q:RETURN)
$\frac{\forall u \cdot\left(q_{y u}=q_{x u}^{\prime}+q_{y u}^{\prime} \wedge q_{u y}=q_{u x}^{\prime}+q_{u y}^{\prime}\right)}{B ; R ;\left(\Gamma[x / y], Q+M_{u}+M_{e}(y)\right) \vdash x \leftarrow y \dashv\left(\Gamma, Q^{\prime}\right)}(\mathrm{Q}: \mathrm{UPDATE}) \quad \frac{Q \geqslant Q^{\prime} \quad\left(\Gamma^{\prime}, Q^{\prime}\right) ; R ;(\Gamma, Q) \vdash S \dashv(\Gamma, Q)}{B ; R ;(\Gamma, Q) \vdash \operatorname{loop} S \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)}(\mathrm{Q}:$ Loop $)$

$$
\begin{gathered}
q_{0 y}^{\prime}=q_{0 y}-\sum_{u} \max \left(q_{u x},-q_{x u}\right) \\
q_{y 0}^{\prime}=q_{y 0}-\sum_{u} \max \left(q_{x u},-q_{u x}\right) \\
B ; R ;(\Gamma[x / x+y], Q) \vdash x \leftarrow x+y \dashv\left(\Gamma, Q^{\prime}\right)
\end{gathered}(\mathrm{Q}: \mathrm{INC})
$$

$$
\begin{gathered}
q_{0 y}^{\prime}=q_{0 y}-\sum_{u} \max \left(q_{x u},-q_{u x}\right) \\
q_{y 0}^{\prime}=q_{y 0}-\sum_{u} \max \left(q_{u x},-q_{x u}\right) \\
B ; R ;(\Gamma[x / x-y], Q) \vdash x \leftarrow x-y \dashv\left(\Gamma, Q^{\prime}\right) \\
(\mathrm{Q}: \mathrm{DEC})
\end{gathered}
$$

$$
B ; R ;(\Gamma, Q) \vdash S_{1} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)
$$

$$
\begin{array}{cc}
B ; R ;(\Gamma \wedge e, Q) \vdash S_{1} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right) & B ; R ;(\Gamma, Q) \vdash S_{1} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right) \\
\frac{B ; R ;(\Gamma \wedge \neg e, Q) \vdash S_{2} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)}{B ; R ;(\Gamma, Q) \vdash \text { if }(e) S_{1} \text { else } S_{2} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right)}(\mathrm{Q}: \mathrm{IF}) & \frac{B ; R ;\left(\Gamma^{\prime}, Q^{\prime}\right) \vdash S_{2} \dashv\left(\Gamma^{\prime \prime}, Q^{\prime \prime}\right)}{B ; R ;(\Gamma, Q) \vdash S_{1} ; S_{2} \dashv\left(\Gamma^{\prime \prime}, Q^{\prime \prime}\right)}(\mathrm{Q}: \text { SEQ })
\end{array}
$$

$$
\left(\Gamma_{f}, Q_{f}, \Gamma_{f}^{\prime}, Q_{f}^{\prime}\right) \in \Delta(f) \quad \operatorname{Loc}=\operatorname{Locals}(Q)
$$

$\forall i \neq j . x_{i} \neq x_{j} \quad c \in \mathbb{Q}_{0}^{+} \quad Q=P+S \quad Q^{\prime}=P^{\prime}+S \quad U=Q_{f}[\mathrm{args} / \vec{x}] \quad U^{\prime}=Q_{f}^{\prime}[\mathrm{ret} / \mathrm{r}]$

$$
\begin{equation*}
\forall i \in \operatorname{dom}(U) \cdot p_{i}=u_{i} \quad \forall i \in \operatorname{dom}\left(U^{\prime}\right) \cdot p_{i}^{\prime}=u_{i}^{\prime} \quad \forall i \notin \operatorname{dom}\left(U^{\prime}\right) \cdot p_{i}^{\prime}=0 \quad \forall i \notin \text { Loc. } s_{i}=0 \tag{Q:CALL}
\end{equation*}
$$

$$
B ; R ;\left(\Gamma_{f}[a \overrightarrow{a r g} s / \vec{x}] \wedge \Gamma_{\mathrm{Loc}}, Q+c\right) \vdash r \leftarrow f(\vec{x}) \dashv\left(\Gamma_{f}^{\prime}[r e t / r] \wedge \Gamma_{\mathrm{Loc}}, Q^{\prime}+c\right)
$$

$$
\frac{\sum f=\left(\vec{y}, S_{f}\right) \quad Q_{f} \geqslant 0 \quad Q_{f}^{\prime} \geqslant 0}{B ; R ;(\Gamma, Q) \vdash \operatorname{assert} e \dashv(\Gamma \wedge e, Q)}(\mathrm{Q}: \mathrm{AsSERT}) \quad \begin{gathered}
\Sigma f\left(\Gamma_{f}^{\prime}, Q_{f}^{\prime}\right) ;\left(\Gamma_{f}[\operatorname{args} / \vec{y}], Q_{f}[\operatorname{args} / \vec{y}]\right) \vdash S_{f} \dashv\left(\Gamma^{\prime}, Q^{\prime}\right) \\
\left(\Gamma_{f}, Q_{f}, \Gamma_{f}^{\prime}, Q_{f}^{\prime}\right) \in \Delta(f)
\end{gathered}(\mathrm{Q}: \text { Extend) }
$$

$$
\begin{array}{cccc}
\Gamma_{1} \models \Gamma_{2} \quad Q_{1} \succeq_{\Gamma_{1}} Q_{2} \quad B ; R ;\left(\Gamma_{2}, Q_{2}\right) \vdash S \dashv\left(\Gamma_{2}^{\prime}, Q_{2}^{\prime}\right) & \Gamma_{2}^{\prime} \models \Gamma_{1}^{\prime} & Q_{2}^{\prime} \succeq_{\Gamma_{2}^{\prime}} Q_{1}^{\prime} \\
B ; R ;\left(\Gamma_{1}, Q_{1}\right) \vdash S \dashv\left(\Gamma_{1}^{\prime}, Q_{1}^{\prime}\right) &
\end{array}
$$

$\mathcal{L}=\left\{x y\left\|\exists l_{x y} \in \mathbb{N} . \Gamma \models l_{x y} \leqslant\|[x, y]\|\right\}\right.$	$\mathcal{U}=\left\{x y\left\|\exists u_{x y} \in \mathbb{N} . \Gamma \models\right\|[x, y] \mid \leqslant u_{x y}\right\} \quad \forall i . p_{i}, r_{i} \in \mathbb{Q}_{0}^{+}$
$\forall i \in \mathcal{U} . q_{i}^{\prime} \geqslant q_{i}-r_{i}$	$\forall i \in \mathcal{L} . q_{i}^{\prime} \geqslant q_{i}+p_{i}$
$\forall i \notin \mathcal{U} \cup \mathcal{L} \cup\{0\} . q_{i}^{\prime} \geqslant q_{i} \quad q_{0}^{\prime} \geqslant q_{0}+\sum_{i \in \mathcal{U}} u_{i} r_{i}-\sum_{i \in \mathcal{L}} l_{i} p_{i}$	
	$Q^{\prime} \geq_{\Gamma} Q$

Figure 4: Inference rules of the quantitative analysis.

Example Derivation

$\{\cdot ; 0+T \cdot|[x, y]|\}$

$\{x<y ; 0+T \cdot|[x, y]|\}$
$\mathrm{x}=\mathrm{x}+1$;
$\{x \leq y ; T+T \cdot|[x, y]|\}$
tick(T);
$\{x \leq y ; 0+T \cdot|[x, y]|\}$
\}
$\{x \geq y ; 0+T \cdot|[x, y]|\}$

Tarjan's Example From 50 Slides Ago

$\{\cdot ; 2 \cdot|[0, n]|+|[0, s]|\}$
while ($\mathrm{n}>0$) \{
$\{n>0 ; 2 \cdot|[0, n]|+|[0, s]|\}$
n--;
$\{\cdot ; 2+2 \cdot|[0, n]|+|[0, s]|\}$
if (*)
$\mathrm{s}++;\{\cdot ; 1+2 \cdot|[0, n]|+|[0, s]|\}$
tick (1); $\{\cdot ; 2 \cdot|[0, n]|+|[0, s]|\}$
else

$$
\begin{aligned}
& \{\cdot ; 0+2 \cdot|[0, n]|+|[0, s]|\} \\
& \text { while } \quad(\mathrm{s}>0) \\
& \quad\{s>0 ; 2 \cdot|[0, n]|+|[0, s]|\} \\
& \quad \text { s--; }\{\cdot ; 1+2 \cdot|[0, n]|+|[0, s]|\} \\
& \quad \text { tick }(1) ;\{\cdot ; 2 \cdot|[0, n]|+|[0, s]|\}
\end{aligned}
$$

How to Automate?

Remark: All the constraints generated are linear.

- Apply the rules with dummy names for $\left(k_{I}\right)_{I}$.
- Collect all the constraints.
- Feed them the an LP solver.
- A solution is a proof certificate.
- No solution, report an error.

Implemented in $C^{4} B$, validated by the PLDI AEC 2015.

Future Work and Demo

What Now?

- (P) Automation for polynomial bounds.
- (TP) Extend automation to handle memory.
- (T) Prove logic completeness.
- (T) Integrate with contextual refinement.
- (P) Apply to real-time systems.

T is for theory, P is for practice.

