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An Example Program

Suppose we have n consecutive stack operations.

push ( ) ;
popa l l ( ) ;
push ( ) ;
push ( ) ;
...

s︷ ︸︸ ︷
x1, x2, . . . , xs .

popall costs s, push costs 1.
The stack starts empty.
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We can rephrase the setting using
non-determinism and a loop.

whi l e n > 0
i f ∗

push ( ) ;
e l s e

popa l l ( ) ;
n = n − 1 ;

What is the worst-case?
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Answer: 2n

The number of elements pushed cannot be bigger
than n. Thus,

I the combined cost for all the pops is ≤ n,

I and the combined cost for all pushes is ≤ n.

Hence 2n.
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Is it a Proof?

This is nice reasoning, but informal. It’s unclear
how to scale this to real programs. We need

I Formal Cost Semantics

I Formal Logical Reasoning

I Automation

My work brings some answers to these 3 points.
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Section 1

Potential Method and
Quantitative Logic
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A Good Start: Tarjan’s Idea

Tarjan proposes to find a potential function.

I σ, σ′ are program states.

I Cl is the cost of one loop iteration.

I Φ : State→ Z is a potential function iff

Φ(σ) ≥
{

0 if σ(n) ≤ 0
Cl + Φ(σ′) if σ(n) > 0

.
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Why?

Φ(σ0) ≥ Cl + Φ(σ1)

Φ(σ1) ≥ Cl + Φ(σ2)

Φ(σ2) ≥ Cl + Φ(σ3)
...

Φ(σf) ≥ 0

∑
Cl is the total program cost.
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Claim: Taking Φ = 2n + s Works

push case (Cl = 1):

Φ(n, s) = 2n+ s = 1 + 2(n− 1) + s+ 1

≥ Cl + Φ(n− 1, s+ 1).

popall case (Cl = s):

Φ(n, s) = 2n+ s = s+ 2(n− 1) + 1

≥ Cl + Φ(n− 1, 0).

base case: Φ(0, s) = s ≥ 0
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What did we prove?

Φ(n, 0) = 2n bounds the number of stack ops.

We proved more! If the stack is not initially
empty, Φ(n, s) is a correct bound. We had to
introduce s in Φ for the induction.
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Potential Function =⇒ Compositional

Using triples, we get compositional resource
bound proofs:

Write {Φ}S{Φ′} to mean Φ(σ) ≥ CS + Φ′(σ′).

If {Φ}S1{Φ′} and {Φ′}S2{Φ′′} then

{Φ}S1;S2{Φ′′}.

This is telescoping, because CS1;S2
= CS1

+ CS2
.
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{Φ}S1{Φ′} {Φ′}S2{Φ′′}
{Φ}S1;S2{Φ′′}

(Q:Seq)
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{X ∧ Φ}S{Φ}
{Φ}while X do S{¬X ∧ Φ} (Q:Loop)
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Combining Logic and Potential

Logic Assertions Potential Functions

State→ B State→ Q+
0 ∪ {∞}

> 0, 1, 1.5, 2, . . .
⊥ ∞
∧ +
∨ min

Example: >∨⊥ = > translates to min(0,∞) = 0.
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Complete Logic for Clight

∆;B;R ✩L tQ✉ skip tQ✉
(L:SKIP)

∆;B;R ✩L tB✉ break tQ✉
(L:BREAK)

n ➔ 0 ùñ Q ➙ 0

∆;B;R ✩L tQ✉ tick♣nq tQ✁ n✉
(L:TICK)

∆;B;R ✩L tR ♣σ♣xqq✉ return x tQ✉
(L:RETURN)

∆;B;R ✩L tistrue JeKσ ùñ Q✉ assert e tQ✉
(L:ASSERT)

∆;B;R ✩L tλσ.Qσrx ÞÑ JeKσs✉xÐ e tQ✉
(L:UPDATE)

I ➙ Q ∆;Q;R ✩L tI✉S tI✉

∆;B;R ✩L tI✉ loop S tQ✉
(L:LOOP)

∆;B;R ✩L tP ✉S1 tQ
✶✉

∆;B;R ✩L tQ
✶✉S2 tQ✉

∆;B;R ✩L tP ✉S1;S2 tQ✉
(L:SEQ)

∆;B;R ✩L tistrue JeKσ � P ✉S1 tQ✉ ∆;B;R ✩L tisfalse JeKσ � P ✉S2 tQ✉

∆;B;R ✩L tP ✉ if♣eq S1 else S2 tQ✉
(L:IF)

∆♣fq ✏ ❅z ~v v.♣Pf z ~v,Qf z vq P ➙ Pf y ♣σ♣~xqq �A ❅v. ♣Qf y v �A ➙ λσ.Qσrr ÞÑ vsq

∆;B;R ✩L tP ✉ r Ð f♣~xq tQ✉
(L:CALL)

∆❨∆✶;B;R ✩L tP ✉S tQ✉ Pf ➙ 0
❅f Pf Qf .∆

✶♣fq ✏ ❅z ~v v.♣Pf z ~v,Qf z vq Ñ ❅y ~v. ♣∆❨∆✶;❑;Qf y ✩L tPf y ~v✉Sf t❑✉q

∆;B;R ✩L tP ✉S tQ✉
(L:EXTEND)

∆;B✶;R✶ ✩L tP
✶✉S tQ✶✉

P ➙ P ✶ Q✶ ➙ Q B✶ ➙ B ❅v. ♣R✶ v ➙ Rvq

∆;B;R ✩L tP ✉S tQ✉
(L:WEAKEN)

∆;B;R ✩L tP ✉S tQ✉ x P Q�
0

∆;B � x;R� x ✩L tP � x✉S tQ� x✉
(L:FRAME)

Figure 13: Rules of the Quantitative Hoare Logic

case in which the code block S is exited by a break statement.
So if the execution is terminated in state σ✶ with a break then
B♣σ✶q resources are available. Similarly, R : Z Ñ Assn
is the postcondition for the case in which the code block
S is exited by a return x statement. The integer argument
of R is the return value. Finally, the function context of
judgements that we write ∆ is a mapping from function
names to specifications of the form

❅z ~v v.♣Pf z ~v,Qf z vq.

The assertion Pf z ~v is the precondition of the function f
and the assertion Qf z v is its postcondition. They are both
parameterized by an arbitrary logical variable z (which can
be a tuple) that relates the function arguments with the
return value. The precondition also depends on ~v, the values
of the arguments at the function invocation. Similarly, the
postcondition depends on the return value v of the function.
The use of logical variables to express relations between
different states of an execution is a standard technique of
Hoare logic. To ensure soundness, we require that Pf and
Qf do not depend on the local variables on the stack, that is,
❅z ~v θ θ✶ γ. Pf z ~v ♣θ, γq ✏ Pf z ~v ♣θ

✶, γq.
For two assertions P,Q : Assn , we write P ➙ Q to if for

all program state σ, P ♣σq ➙ Q♣σq.

Rules of the Quantitative Logic. Figure 13 shows the in-
ference rules of the quantitative logic. The rules are slightly
simplified in comparison to the implemented rules in Coq.
The main difference is that the presented version does not
formalize the heap operations.

In the rule L:SKIP, we do not have to account for any
resource consumption. As a result, the precondition Q can be
any (potential) function and we only have to make sure that
we do not end up with more potential. Since the execution of
skip leaves the program state unchanged, we can simply use
the precondition as postcondition. The potential functions B
for the break and R for the return part of the postcondition
are not reachable and can therefore be arbitrary.

The L:TICK rule accounts for the cost n of the tick
statement. This rule is the only one to account directly for a
cost on in the assertions because calling the tick function is
the only way to change the amount of resource available. The
rule also has a side condition that ensures that the potential
remains positive during all the program execution. It is an
essential semantic property of this system.

In the rule L:ASSERT, we use the notation istrue JeKσ ùñ
Q to express that we require potential Q in the precondition if
e evaluates to true in the current program state. If e evaluates

Extended Version 16 2015/4/20
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Example Applications

I Linear stack bound for Fib function.

I Linear stack bound for factorial.

I Logarithmic stack bound for binary search.

I Logarithmic stack bound for Quicksort.

I Backend for automated stack bounds tool.

I A stack bound for full CertiKOS.

I A powerful semantic tool.

I A common language for tools and proofs.
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Section 2

Cost Semantics
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Back to the Technique: What is CS?

We need a precise definition of the
“resource cost” of a program.

S : = x← E | skip | S;S

| while E do S

| if E then S else S
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Classic Small-step Semantics

Define configurations as: (S,K,H).

K := KLoop E S K | KSeq S K | KEmpty

Define rules like:

(S1;S2, K,H)→ (S1,KSeq S2 K,H)
(S:Seq1)

(skip,KSeq S K,H)→ (S,K,H)
(S:Seq2)
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JEKH = n

(x← E,K,H)→ (skip, K,H[x← n])
(S:Set)

JEKH = 0

(while E do S,K,H)→ (skip, K,H)
(S:While1)

JEKH 6= 0

(while E do S,K,H)→ (S,KLoop E S K,H)
(S:While2)

(skip,KLoop E S K,H)→ (while E do S,K,H)
(S:While3)
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Example

(while x < 1 do x← x+ 1,KE, {x← 0})
→ (x← x+ 1,KL (x<1) (x← x+ 1) KE, {x← 0})
→ (skip,KL (x<1) (x← x+ 1) KE, {x← 1})
→ (while x < 1 do x← x+ 1,KE, {x← 1})
→ (skip,KE, {x← 1})

S:While2, S:Set, S:While3, S:While1
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Cost Semantics

Program configurations are now: (S,K,H, c).
This c is resource counter, it changes as the
program executes.

S := . . . | tick(n)

(tick(n), K,H, c)→ (skip, K,H, c− n)
(S:Tick)

All the rules get a side condition c ≥ 0.
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Stuck Configurations

A configuration is stuck if it cannot execute
further. Different kind of stuckness exist:

I Memory error.

I Divisions by 0.

I Resource crashes.

We recognize resource crashes as configurations
(S,K,H, c) where c < 0.

23 / 46



Resource Safety

Identifying crashes lets us define safety:

A configuration C is safe for n steps if any
execution sequence of n steps or less starting in
C does not end as a resource crash.

This predicate is formally defined inductively
using the small-step semantics.

24 / 46



Why Indexing the Definition?

I It lets us talk about diverging executions.
(Think about stack usage.)

I It makes the soundness proof of our logic
possible. (In the while case.)
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Resource Cost of a Program

CS = inf{c | ∀n. safen(S,KEmpty, H0, c)}

Problems with this notion:

I inf is a promess for trouble.

I Explicit mention of KEmpty and H0.

I In short: non compositional!
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Section 3

Soundness of the Logic
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Revisit Semantic Validity

Remember {Φ}S{Φ′} ≡ Φ(σ) ≥ CS + Φ′(σ′).
Let’s be more thorough.

A continuation K is safen for a potential Φ′ if
∀H c. Φ′(H) ≤ c =⇒ safen(skip, K,H, c).
We write safeKn(Φ′, K).

A triple {Φ}S{Φ′} is valid for n steps if
∀KH c k≤n. safeKk(Φ

′, K) ∧ Φ(H) ≤ c
=⇒ safek(S,K,H, c).
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One Remark

We have ∀Φ′ n. safeKn(Φ′,KEmpty).

So, {Φ}S{Φ′} valid for every n implies:

∀n. safen(S,KEmpty, H0,Φ(H0)).

That is, CS ≤ Φ(H0).

Our semantic validity of triples is connected to
the intuitive resource cost of a program.
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Example Proof: The Sequence

{Φ}S1{Φ′} {Φ′}S2{Φ′′}
{Φ}S1;S2{Φ′′}

(Q:Seq)

If the two premisses are valid for n steps, the
conclusion will be too.

Let K a continuation safe for k ≤ n steps, let
Φ(H) ≤ c. We want safek(S1;S2, K,H, c).
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Proving safek(S1;S2, K,H, c)

I By definition of safek, we must show
safek−1(S1,KSeq S2 K,H, c).

I By the first premiss, we now have to show
safeKk−1(Φ′,KSeq S2 K).

I By definition of safeKk−1, we must show
safek−1(skip,KSeq S2 K,H

′, c′) for Φ′(H ′)≤c′.
I By definition of safek−1, we must show
safek−2(S2, K,H, c

′), for Φ′(H ′)≤c′ .

I The second premiss finishes the proof, since
safeKk−2(Φ′′, K) (after weakening).
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This Seemed Tricky?

It’s not! The Coq proof we have for the logic
might be the smallest soundness proof for a
program logic for C in Coq! (400 lines)

Very much recommended for novices and
teaching!
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In Coq With No Tactic Fu

Proof with try ( i n t r o s ; ksgn ) .
unfo ld va l i d at 3 , s a f e ; i n t r o s .
a s s e r t (CNNEG: 0 <= c ) .
{ eapply ( va l id nneg n B R P Q’ s1 x XSGN PRE1 ) . . .

eapply ( va l id nneg n B R Q’ Q s2 x XSGN PRE2 ) . . .
eassumption .

}
s p l i t ; [ exact CNNEG | s tep ] .
apply PRE1 with (x := x ) ; t ry ( omega | | assumption ) .
c l e a r INI .
unfo ld safek , s a f e ; i n t u i t i o n ;

t ry step ; t ry ksgn .
+ apple SAFEK; assumption .
+ simpl ; apple SAFEK; auto .
+ eapply ( va l id nneg n B R Q’ Q s2 x XSGN PRE2 ) . . .

eassumption .
+ eapply PRE2 with (x := x ) ; t ry ( omega | | apply INI ) .

s impl ; apple SAFEK; now auto .
+ eapply ( va l id nneg n B R Q’ Q s2 x XSGN PRE2 ) . . .

eassumption .
Qed .

The previous proof in the full Clight context in
Coq. Arguably very short!
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Section 4

Automatic Derivation of
Resource Bounds
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Automating the Proof Search

A potential function can be any function.
What if we only look at a few of them?

Φ(H) = k0 +
∑
x,y

kxy · |[H(x), H(y)]|

where k ∈ Q+
0 and |[a, b]| = max(b− a, 0).
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Motivation for Intervals

f o r ( x = 0 ; x < y−1; x += 2) {
t i c k ( 1 ) ;

}

Φ(H) =
1

2
|[0, H(y)]|
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Indices

To succintly refer to a potential function, we use
indices.

I = {0} ∪ {xy | x, y ∈ Vars}

If f0 = λ . 1 and fxy = λH. |[H(x), H(y)]|

Φ(H) =
∑
I∈I

kI · fI(H).

fI is a base function. (Linear algebra.)
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Rules for Potential

Idea: Reuse the logic’s rules for soundness and
constrain potential functions on their coefficients.

I For example: Ensure Φ > Φ′ by ∀I, kI > k′I .
I Reuse all syntax directed rules as-is.

I Add a little more work for statemtents
modifying the heap.
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Increments of Variables

Consider the increment program x← x+ 1.

The logic rule is notoriously unhelpful:

{λH.Φ(H[x← JEKH ])}x← E{Φ} (Q:Set)

We need to understand how Φ =
∑

I kI · fI is
changed.
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Constraints for {Φ}x← x + 1{Φ′}
Only [y, x] and [x, y] will change. We write x′ for
the new value of x.

I Consider Φ = k0 + kyx · |[y, x]|,
we have |[y, x′]| = |[y, x]|+ 1, so
Φ′ = (k0 − kyx) + kyx · |[y, x]|.

I Suppose x′ ∈ [x, y] and consider
Φ = k0 + kxy · |[x, y]|,
we have |[x′, y]| = |[x, y]| − 1, so
Φ′ = (k0 + kxy) + kxy · |[x, y]|.

In both cases Φ(H) = Φ′(H[x← x+ 1]).
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Full Automatic System for Clight
B;R; ♣Γ, Qq ✩ skip ✪ ♣Γ, Qq

(Q:SKIP)
♣Γ, QBq;R; ♣Γ, QBq ✩ break ✪ ♣Γ✶, Q✶q

(Q:BREAK)

n ➔ 0 ùñ Q ➙ 0

B;R; ♣Γ, Qq ✩ tick♣nq ✪ ♣Γ, Q✁nq
(Q:TICK)

P ✏ QRrret④xs Γ ✏ ΓRrret④xs ❅i P dom♣P q. pi ✏ qi

B; ♣ΓR, QRq; ♣Γ, Qq ✩ return x ✪ ♣Γ✶, Q✶q
(Q:RETURN)

❅u.♣qyu ✏ q✶xu � q✶yu ❫ quy ✏ q✶ux � q✶uyq

B;R; ♣Γrx④ys, Q�Mu�Me♣yqq ✩ xÐ y ✪ ♣Γ, Q✶q
(Q:UPDATE)

Q ➙ Q✶ ♣Γ✶, Q✶q;R; ♣Γ, Qq ✩ S ✪ ♣Γ, Qq

B;R; ♣Γ, Qq ✩ loop S ✪ ♣Γ✶, Q✶q
(Q:LOOP)

q✶0y ✏ q0y ✁
➦

u max♣qux,✁qxuq
q✶y0 ✏ qy0 ✁

➦
u max♣qxu,✁quxq

B;R; ♣Γrx④x�ys, Qq ✩ xÐ x� y ✪ ♣Γ, Q✶q
(Q:INC)

q✶0y ✏ q0y ✁
➦

u max♣qxu,✁quxq
q✶y0 ✏ qy0 ✁

➦
u max♣qux,✁qxuq

B;R; ♣Γrx④x✁ys, Qq ✩ xÐ x✁ y ✪ ♣Γ, Q✶q
(Q:DEC)

B;R; ♣Γ❫ e,Qq ✩ S1 ✪ ♣Γ
✶, Q✶q

B;R; ♣Γ❫✥e,Qq ✩ S2 ✪ ♣Γ
✶, Q✶q

B;R; ♣Γ, Qq ✩ if♣eq S1 else S2 ✪ ♣Γ
✶, Q✶q

(Q:IF)

B;R; ♣Γ, Qq ✩ S1 ✪ ♣Γ
✶, Q✶q

B;R; ♣Γ✶, Q✶q ✩ S2 ✪ ♣Γ
✷, Q✷q

B;R; ♣Γ, Qq ✩ S1;S2 ✪ ♣Γ
✷, Q✷q

(Q:SEQ)

♣Γf , Qf ,Γ
✶
f , Q

✶
f q P ∆♣fq Loc ✏ Locals♣Qq

❅i ✘ j. xi ✘ xj c P Q�
0 Q ✏ P � S Q✶ ✏ P ✶ � S U ✏ Qf r ~args④~xs U ✶ ✏ Q✶

f rret④rs
❅i P dom♣Uq. pi ✏ ui ❅i P dom♣U ✶q. p✶i ✏ u✶i ❅i ❘ dom♣U ✶q. p✶i ✏ 0 ❅i ❘ Loc. si ✏ 0

B;R; ♣Γf r ~args④~xs ❫ ΓLoc, Q�cq ✩ r Ð f♣~xq ✪ ♣Γ✶f rret④rs ❫ ΓLoc, Q
✶�cq

(Q:CALL)

B;R; ♣Γ, Qq ✩ assert e ✪ ♣Γ❫ e,Qq
(Q:ASSERT)

Σf ✏ ♣~y, Sf q Qf ➙ 0 Q✶
f ➙ 0

B; ♣Γ✶f , Q
✶
f q; ♣Γf r ~args④~ys, Qf r ~args④~ysq ✩ Sf ✪ ♣Γ

✶, Q✶q

♣Γf , Qf ,Γ
✶
f , Q

✶
f q P ∆♣fq

(Q:EXTEND)

Γ1 ⑤ù Γ2 Q1 ➞Γ1
Q2 B;R; ♣Γ2, Q2q ✩ S ✪ ♣Γ✶2, Q

✶
2q Γ✶2 ⑤ù Γ✶1 Q✶

2 ➞Γ✶

2
Q✶

1

B;R; ♣Γ1, Q1q ✩ S ✪ ♣Γ✶1, Q
✶
1q

(Q:WEAK)

L ✏ txy ⑤ ❉lxyPN .Γ ⑤ù lxy ↕ ⑤rx, ys⑤✉ U ✏ txy ⑤ ❉uxyPN .Γ ⑤ù ⑤rx, ys⑤ ↕ uxy✉ ❅i. pi, ri P Q�
0

❅i P U . q✶i ➙ qi ✁ ri ❅i P L. q✶i ➙ qi � pi ❅i ❘ U❨L❨t0✉. q✶i ➙ qi q✶0 ➙ q0�
➦

iPU uiri ✁
➦

iPL lipi

Q✶
➞Γ Q

(RELAX)

Figure 4: Inference rules of the quantitative analysis.

arguments/return value passing, and the preservation of local
variables. We can sum up the main ideas of the rule as follows.

• The potential in the pre- and postcondition of the function
specification is equalized to its matching potential in the
callee’s pre- and postcondition.

• The potential of intervals ⑤rx, ys⑤ is preserved if x and y
are local variables.

• The unknown potentials after the call (e.g. ⑤rx, gs⑤, with x
local and g global) are set to zero in the postcondition.

If x and y are local variables and f♣x, yq is called, Q:CALL
splits the potential of ⑤rx, ys⑤ in two parts, one part to perform
the computation in the function f and one part to keep for
later use after the function call. This splitting is realized by
the equations Q ✏ P�S and Q✶ ✏ P ✶�S✶. Arguments in
the function precondition ♣Γf , Qf q are named using a fixed

vector ~args of names different from all program variables.
This prevents name conflicts from happening and ensures that
the substitution r ~args④~xs is meaningful. Symmetrically, we
use the unique name ret to represent the return value in the
function’s postcondition ♣Γ✶f , Q

✶
f q.

The rule Q:WEAK is not syntax directed. In the imple-
mentation we apply Q:WEAK before loops and between the
two statements of a sequential composition. We could in-
tegrate weakening into every syntax directed rule but this
simple heuristic helps to make the analysis efficient. The
high-level idea of Q:WEAK is the following: If we have
a sound judgement, then it is sound to add more potential
to the precondition and remove potential from the postcon-
dition. The concept of more potential is formalized by the
relation Q✶

➞Γ Q that is defined in the rule RELAX that also
deals with the important task of transferring constant poten-
tial (represented by q0) to interval sizes and vice versa. If
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Example Derivation

{·; 0 + T ·|[x, y]|}
whi le ( x < y ) {
{x < y; 0 + T ·|[x, y]|}
x = x + 1 ;
{x ≤ y; T + T ·|[x, y]|}
t i c k (T) ;
{x ≤ y; 0 + T ·|[x, y]|}

}
{x ≥ y; 0 + T ·|[x, y]|}
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Tarjan’s Example From 50 Slides Ago
{·; 2 · |[0, n]|+ |[0, s]|}
whi le (n > 0) {

{n > 0; 2 · |[0, n]|+ |[0, s]|}
n−−;
{·; 2 + 2 · |[0, n]|+ |[0, s]|}
i f (∗ )

s++; {·; 1 + 2 · |[0, n]|+ |[0, s]|}
t i c k ( 1 ) ; {·; 2 · |[0, n]|+ |[0, s]|}

e l s e
{·; 0 + 2 · |[0, n]|+ |[0, s]|}
whi le ( s > 0)

{s > 0; 2 · |[0, n]|+ |[0, s]|}
s−−; {·; 1 + 2 · |[0, n]|+ |[0, s]|}
t i c k ( 1 ) ; {·; 2 · |[0, n]|+ |[0, s]|}

}
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How to Automate?

Remark: All the constraints generated are linear.

I Apply the rules with dummy names for (kI)I .

I Collect all the constraints.

I Feed them the an LP solver.

I A solution is a proof certificate.

I No solution, report an error.

Implemented in C4B, validated by the PLDI
AEC 2015.
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Section 5

Future Work and Demo
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What Now?

I (P) Automation for polynomial bounds.

I (TP) Extend automation to handle memory.

I (T) Prove logic completeness.

I (T) Integrate with contextual refinement.

I (P) Apply to real-time systems.

T is for theory, P is for practice.
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