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Abstract—We present a system which observes humans partic-
ipating in various playground games and infers their goals and
intentions through detecting and analyzing their spatiotemporal
activity in relation to one another, and then builds a coherent
narrative out of the succession of these intentional states. We
show that these narratives capture a great deal of essential
information about the observed social roles, types of activity and
game rules by demonstrating the system’s ability to correctly
recognize and group together different runs of the same game,
while differentiating them from other games. Furthermore, the
system can use the narratives it constructs to learn and theorize
about novel observations, allowing it to guess at the rules
governing the games it watches. For example, after watching
several different games, the system figures out on its own that
Tag-like games require close physical proximity in order for the
role of “it” to swap from one person to another. Thus a rich
and layered trove of social, intentional and cultural information
can be drawn out of extremely impoverished and low-context
trajectory data.

I. INTRODUCTION

Every schoolchild knows that teachers have eyes in the
backs of their heads. From across the playground at recess, out
of the corner of an eye, they always notice when a friendly
game of tag transforms into something superficially similar
but much more likely to end in stained clothes, torn jeans and
tears. We all have this capacity; we infer a great deal about the
intentions, goals, social relationships and rules of interaction
from watching people interact, even from such a distance that
only gross body movement can really be seen. How else could
we enjoy a football game from the upper bleachers? What’s
more, we do not need even that much context – we are driven
to recognize dramatic situations even when presented with
extremely simple cues. Animated boxes on a flat white screen
are enough to trigger this inference process, and we happily
spin narratives of anthropomorphized black squares playing
with, hiding from, bullying and swindling one another.

Making sense of very low-context motion data is an im-
portant cognitive task that we perform every day, and yet it
depends on very little information from the world – so little, in
fact, that we can have some hope at designing computational
processes that can manipulate the manageable quantity of data
to accomplish similar results. A computer or robot system
able to watch groups of people perform tasks or play games
and figure out their goals and the rules by which they act
has a number of obvious applications: entertainment, assistive

technology, monitoring and safety. In addition, we hope that
the process of building systems that can perform this kind
of inference with real people and in real-world situations may
help illuminate and ground the psychological questions of how
these capabilities develop and operate in humans.

Our system begins with positional data taken from real
humans playing games with one another, derived from an
installed laboratory sensor network. True, this represents a bit
of a shortcut – humans have no sensory apparatus that provides
us with instantaneous physical location in a 3-d coordinate
space. But we do have a huge visual computational apparatus
that manages to translate retinal impulses into coherent, per-
sistent, reliable object concepts. At the current state of the art
in computational perception, this is still not possible – though
work like ours may help to make it so.

The system uses the raw moment-by-moment trajectory data
to hypothesize about the current intentional states of the people
involved, in terms of their tendency to move toward and away
from one another. It then creates a narrative by stringing
together sequences of these hypothesized intentional states and
noticing relevant facts about the moments where the players’
intentions shift. Armed with this information, the system can
reliably classify and differentiate a number of playground
games: Tag, Smear, Keepaway and Catch. Furthermore, from
comparing the raw data to the narrative sequences it develops
to describe what it saw, the system can infer some of the
hidden rules of the games it sees. For instance, it works out
by itself the fact that in Tag, a person can become the new “it”
only when the old “it” approaches sufficiently close to tag.

II. RELATED WORK

Our approach begins with the pioneering work of Heider
and Simmel more than half a century ago [1]. They found that
even simple moving geometric shapes are often perceived in
animate, goal-directed terms. Humans tend to attribute goals,
roles, social relationships, histories and intentions to such
shapes, even when the available context is extremely impover-
ished. This is notable because such experiences seem to reflect
automatic (and even irresistible) visual processing and are
insulated to some degree from other aspects of cognition. Such
percepts seem relatively unaffected by perceivers’ intentions
and beliefs, but are tightly controlled by subtle aspects of
the displays themselves (for a review, see [2]. In addition,



such percepts seem to occur cross-culturally [3], and even in
infancy [4], but they can be disrupted by neuropsychological
conditions such as autism spectrum disorder [5], [6] and
amygdala damage [7]. Perhaps because such phenomena seem
to lie at an interesting intersection of perception and cognition,
they have attracted the interest of cognitive psychologists [8],
social psychologists [9], [10], developmental psychologists
[11], [12], cognitive neuroscientists [13], vision researchers
[14], anthropologists [3] and computer scientists [15]. A
central goal of this work has been to identify the visual cues
that trigger the perception of animacy such as sudden direction
and speed changes [14], interactions with spatial contexts [16],
apparent violations of Newtonian mechanics [17], or other
characteristic movements [18].

The specific analysis undertaken by our system, hypothe-
sizing vectors of attraction and repulsion between agents and
objects in the world in order to explain the causal relationships
we note in an interaction, relates to the dynamics-based
model of causal representation proposed by Wolff [19] and on
Talmy’s theory of force dynamics [20]. Humans can explain
many events and interactions by invoking a folk-physics notion
of force vectors acting upon objects and agents; our system
explicitly generates these systems of forces in order to make
sense of the events it witnesses.

The system discussed in this paper carries forward research
we reported last year [21]. That work demonstrated that an
analysis based on motion trajectories could recognize events
that agreed with human evaluations of the same data, an
insight that the current research has leveraged into a much
more sophisticated system capable of evaluating a variety
of scenarios, extracting important narrative elements, making
subtle comparisons and generating meaningful interpretations
in an unsupervised fashion.

III. SETUP

A. Detecting Motion

One of the major strengths of our approach is that the
trajectory information upon which the system operates de-
rives from real-world human interaction in an ethologically
valid context. To obtain this data, we employ a system of
ultrasonic beacons, sensors and triangulation software to track
the locations of the game participants and objects to within a
few centimeters, generating five position reports per sensor
per second – fast enough to create fairly smooth motion
trajectories at normal human running speeds, and to notice
important events in significantly less than a second. These
beacons send messages to one another using a simultaneous
radio broadcast and ultrasound chirp, and the receiving units
calculate distance by comparing the time difference of arrival
between the two signals. The system then uses triangulation
from sensors in known locations throughout the room to
triangulate the position of the participants, each of whom wore
a baseball cap affixed with a uniquely-identified sensor. 1

1For a complete description of the sensor hardware, see [22]. The embedded
control and data analysis software are our own.

The sensor system produces a five-dimensional vector of
data: the identity of an object, its x, y and z coordinates in the
room, and the time at which these coordinates were measured.
Further details of the operation and deployment of the network
can be found in [21].

B. Characterizing Attraction and Repulsion

The basic narrative building blocks employed by our system
are sets of hypothesized attractions and repulsions derived
from a folk-physical interpretation of the observed data, as
suggested by the social force-dynamic theory described in [19]
and [20].

For each agent and object in the observed environment,
the system calculates the “influence” of the other people and
objects on its perceived two-dimensional motion, expressed as
constants in a pair of differential equations:
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(and similarly for the y dimension). We obtain the (noisy)
velocities in the x and y direction, as well as the positions of
the other agents and objects, directly from the sensor data:
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This results in an underconstrained set of equations; thus to

solve for the constants we collect all of the data points falling
within a short window of time and find a least-squares best fit.
For further details, see [21]. Given the number of participants
in our evaluation scenarios and the 5 Hz speed with which
our sensor network furnished position reports, this window
needed to be 0.5 seconds long – still a source of temporal
inaccuracy, but much improved over the two seconds reported
in our previous work.

C. Identifying Intentions Over Time

Each constant determined by the process described above
represents in some fashion the influence of one particular
agent or object on the motion of another at a particular point
in time. Some of these may be spurious relationships, while
others capture something essential about the motivations and
intentions of the agents involved.

To determine the long-term relationships that do represent
essential motivational information, we next assemble these
basic building blocks – the time-stamped pairwise constants
that describe instantaneous attraction and repulsion between
each agent and object in the room – into a probabilistic finite
state automaton, each state representing a set of intentions
that extend over time. At any particular point in time, any
particular agent may be attracted or repelled or remain neutral
with respect to each other object and agent in the room;
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Fig. 1. The system’s level of belief in a few intentional states, evolving as
new information arrives. At time n−1, the system believes that A is intending
to chase B, while B and C are fleeing from A. At time n, new data arrives
that shows A continuing to chase B, but C moving sideways. Accordingly,
the system’s belief that B and C both want to escape from A declines (top
circles), while the belief that C is neutral (middle circles) increases. More
of the same kind of data would have to come in before the system would
switch its belief to the middle-circle state, at which point it would review its
observational history to determine the point where C actually stopped running
from A. The bottom circles represent B and C chasing A, while A wants to
evade B – a situation that the system currently views as very unlikely.

this is characterized by the pairwise constants found in the
previous step. The system assumes that the actors in the room
remain in a particular intentional state as long as the pattern
of hypothesized attractions, repulsions and neutralities remains
constant, discounting noise. A particular state, then, might be
that A is attracted by B and neutral toward C, B is repelled by
A and neutral toward C, and C is repelled by A and neutral
toward B. This state might occur, for instance, in the game of
tag when A is it and has decided to chase B.

The system maintains an evolving set of beliefs about the
intentions of the people it observes, modeled as a probability
distribution over all of these possible states. As new data
comes in, the current belief distribution is adjusted, and the
system assumes that the most likely alternative reflects the
current state of the game.

Beln(S) =
Beln−1(S)(1 + λ

∑
c∈S s(cn))

Z
(3)

Here, the belief in any particular state S at time n is the
belief in that state at time n − 1, modified by the current
observation. cn is the value at time n of one of the pairwise
relationship constants derived from the data in the previous
step; the function s is a sign function that returns 1 if the

constant’s sign and the intention represented by the current
state agree, -1 if they disagree, and 0 if the state is neutral
toward the pairwise relationship represented by the constant. λ
is a “learning rate” constant which affects the tradeoff between
the system’s sensitivity to error and its decision-making speed.
Through trial and error, we found a value of λ = 0.08 to yield
the best results. Finally, Z is a normalizing constant obtained
by summing the updated belief values across all of the states
in the system. For an example of how the beliefs of a few of
these states evolve, see Figure 1.

The function s depends on the signs, not the values, of
the constants obtained in the previous step. It is perfectly
straightforward to adjust the function to take account of the
magnitudes of the social forces involved, but we discovered
that doing so increased the effect of sensor noise unacceptably,
without causing a noticeable improvement in performance.

Notice that the system never explicitly handles ambivalence
in its computations – the states that accommodate neutral
attitudes never update their beliefs based on the values of any
constant that may exist between the neutral pair. Instead, the
degree of belief in these states changes owing to normalization
with other states that are changing based on attraction and
repulsion. This works perfectly well, however, because it
amounts to a decision to “default” to a neutral state – if our
degree of belief in both pairwise attraction and repulsion falls,
then naturally our belief in a state of ambivalence between the
pair should increase.

This is not an approach which can deal easily with large
numbers. The number of states in the system depends expo-
nentially on the number of objects and agents being tracked.
Each state represents a particular configuration of attractions,
repulsions and neutralities between each agent pair. Although
the number of states is perfectly manageable with four partic-
ipants, it will eventually become too computationally complex
to represent this way. However, there is no reason to believe
that humans are any more capable of keeping track of many
people’s simultaneous motivations and goals, either. Making
sense of crowd interactions may require a whole different set
of assumptions, representations and computational machinery.

D. Constructing Narrative

The process described in the preceding section converts
instaneous, noisy velocity vectors into sustained beliefs about
the intentional situation that pertains during a particular phase
of a witnessed interaction. As the action progresses, so too do
the system’s beliefs evolve, and as those beliefs change, the
sequence of states becomes a narrative describing the scenario
in progress. This narrative can be analyzed statistically to
identify the action in progress, differentiate it from other
possible activities, and also provide the system with clues to
use in unsupervised feature detection.

When the system finds that it now believes the action it is
watching has changed state, it retroactively updates its beliefs
– the point at which the belief changed is not the actual time
point at which the witnessed behavior changed. Rather, several
rounds of data collection caused the change in belief, so if the



system is to reason about an actual event that changed the
participants’ intentional state, it must backtrack to the point
where the new data began to arrive. This it accomplishes by
looking at the derivative of the beliefs in the two states. The
system assumes that the actual event occurred at

max(t)(
d

dt
Belt(Sold) ≥ 0 ∨ d

dt
Belt(Snew) ≤ 0) (4)

That is, the most recent time point when either the system’s
belief in the old state was not decreasing or the system’s belief
in its new state was not increasing.

The system can now string these states and durations into
an actual (admittedly dull) narrative: “State 13 for 4.6 seconds,
then state 28 for 3.9 seconds, then state 4 for 7.3 seconds...”
It can translate the states into actual English: “A was chasing
B for 4.6 seconds while C was running from A, then B
was chasing C for 3.9 seconds while A stood by...” It can
collect statistics about which states commonly follow which
others (a prerequisite for developing the ability to recognize
distinct activities). And it has identified points in time where
important events take place, which will allow the system to
notice information about the events themselves.

E. Differentiating Activity

The system has now constructed a narrative, an ordered
sequence of states representing the hypothesized intentions
of the people participating. These intentions ebb and flow
according to the progress of the game and the shifting roles
of the actors as they follow the rules of their particular game.
How to evaluate this narrative to determine whether it amounts
to anything we would recognize as understanding the game?

One way, tentatively explored in [21], is to compare the
narrative with ones constructed by human observers of the
same events. This is an attractive approach as it directly
compares human and machine performance, but usually in
qualitative fashion. In this work, we decide instead to use
a statistical approach and determine whether the generated
narrative suffices for the system to distinguish easily between
different games. At the same time, it should be able to
recognize that the narratives it constructs regarding different
instances of the same game are sufficiently similar.

To do this, we treat the narratives (perhaps naturally) as
linguistic constructions, and apply similarity metrics which are
most often used in computational linguistics and automated
language translation. In this work, we use Dice’s coefficient
[23], which compares how often any particular word (or in
our case, intentional state) follows any other in two separate
texts (or narratives).

s =
2nt

nx + ny
(5)

Here, nt is the total number of bigrams (one particular state
followed by another) used in both narratives, while nx and ny

are the number in the first and second narratives, respectively.
As an example, take comparison between two games of Tag.

One has 21 unique state transitions of the kind suggested in

Figure 1, such as a transition from believing that C is fleeing
from A to one where C is neutral toward A. Another game has
26 transitions, and the two games share 20 state transitions in
common. In this case, the coefficient would be 2(20)

21+26 = 0.86.
This is obviously an extremely simple heuristic, and indeed

Dice’s coefficient does not perform as well as state-of-the-
art statistical comparisons for linguistic analysis [24], but it
has the advantage of simplicity and does not rely on a large
narrative corpus to function.

F. Unsupervised Rule Recognition

Building step-by-step from applying force dynamics to real-
word data to create hypotheses about individual intentional
states, through establishing a probabilistic belief about the
sequence of intentional states in a particular narrative, to
comparing and contrasting narratives to find similarites and
differences, our system has by now developed a fairly so-
phisticated and rich understanding of the social framework of
the activities that it has watched. Furthermore, it possesses
the tools to make its own educated guesses at contextual
elements separate from the trajectory information which it
used to build up its narratives. We demonstrate this by letting
the system look at relative position information (not relative
motion, which is what it has been using up to this point) and
allowing it to form its own hypotheses about whether position
is significant to the rules of the games it observes.

The system has already identified the moments where the
intentional states of the actors change during gameplay. Why
do these changes happen? Something in the rules of the game,
most likely. And something to do with relative or absolute
position is a good guess. Associated with each particular
change in intentional state (the state bigrams discussed in
section III-E), the system collects statistics on the absolute
position of each actor and the relative distances between them
all. If the mean of the relative distances is small, say, μ < 30
cm, or, likewise, if the standard deviation of the absolute
positions is small (σ < 30 cm), then it reports that it has
found a potential rule, such as: in this game, and similar ones,
the role of chaser and chased switch only when the two come
into close contact. In other words, Tag!

IV. EXPERIMENTAL VALIDATION

A. Games

To evaluate the performance of the system, we instructed
test subjects to play several common playground games for
periods of three minutes at a time. The sensor network tracked
four objects during the period of play, games played either
with four people or with three people and a ball. The system
had no independent knowledge of which objects were human
and which were inanimate. Six trials of each game were
played, three each by two independent groups of people
(undergraduate and graduate students). The games were:

• Tag: The person designated as “it” chases and tags one
of the other players, at which point that player becomes
“it” and the roles switch (Figure 2).
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Fig. 2. A four-person game of Tag. All four people are constantly in motion,
looping about the room as they chase and are chased in turn.
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Fig. 3. A three-person game of Keepaway. The ball is constantly in motion,
as is one of the players, while the other two players are relatively stationary.
The identity of the moving player changes several times during the game.

• Smear: One of the players carries a ball while the
others attempt to catch and steal the ball for themselves.
Whoever carries the ball is the target of everyone else in
the game.

• Keepaway: Two players throw the ball back and forth,
while a third tries to intercept the passes. If successful, the
interceptor becomes a thrower and the person responsible
for throwing the bad pass must now attempt to intercept
(Figure 3).

• Catch: Each player throws the ball to one of the other
two players in turn.

TABLE I
SIMILARTY METRICS (DICE’S COEFFICIENT)

Tag Smear Keepaway Catch
Tag 0.80 0.62 0.38 0.28
Smear 0.62 0.72 0.54 0.30
Keepaway 0.38 0.54 0.66 0.66
Catch 0.28 0.30 0.66 0.86

TABLE II
CLASSIFICATION RATES

Tag 85%
Smear 77%
Keepaway 53%
Catch 83%

TABLE III
SAMPLE LOCATION STATISTICS FOR TAG

µ(dAB) µ(dAC) µ(dBC)
A chasing → B chasing 21.6 104.8 184.3
A chasing → C chasing 58.3 18.0 112.5
B chasing → A chasing 28.4 90.5 83.8
B chasing → C chasing 107.9 141.6 21.4
C chasing → A chasing 217.9 29.3 191.4
C chasing → B chasing 106.7 137.1 29.3

B. Activity Differentiation

For each game, we calculated the similarity metric between
it and each of the other games – five other instances of the
same game and six of each of the others. Table I shows
the average of these intra-and inter-game similarity metrics.
Tag, Smear and Catch all were significantly more similar to
themselves than to any other game. The exception, Keepaway,
was indistinguishable from Catch. Interestingly, the converse
was not true – although an average game of Keepaway is as
different from other Keepaway games as from Catch, games of
Catch are much more similar to each other than to Keepaway.

Table II depicts a performance measure based on classifica-
tion rates. For each game, we looked at the five games that the
system judged as most similar and scored how many of those
were actually the same game. If performance was perfect, then
for each of the six trials of each game, the system would pick
out all five of the other games of the same type, leading to
30 correct answers per game. In none of the games was the
performance this good, but all are well above random (22%).
Keepaway once again underperforms.

In any event, these results show that the system was indeed
able to perceive the intentions of the game participants and
construct narratives that captured essential similarities and
differences between and among games. Given any two games,
by hypothesizing about the intentions of the players and
stringing together intentional states into a narrative, the system
could usually tell whether the two scenarios told similar
stories, and thus whether they were likely different versions of
the same game or different games altogether. Interestingly, it
even was able to work out that certain games, though different,
were more closely related than others – Tag and Smear, which
both involve chasing and tagging other people, looked more
like each other than Keepaway and Catch, which both involve
tossing a ball around, and vice versa.

C. Rule Recognition

The average number of narrative state transitions detected
by the system across the 24 3-minute games was 28 – not
a huge corpus to analyze for location-based rules. However,
the system already knows which scenarios are similar enough



to be considered the same game, enlarging its pool of data
significantly. For each game, the system averaged together the
absolute and relative location statistics for the five most similar
games, found as described in the previous section. The system
identified all of the following (by displaying noteworthy state
transitions and associated measurements, which the authors
have translated into text for illustration):

• Tag and Smear: when the role of chaser switches between
players, those two people are close together.

• Smear: the two chased objects are always next to each
other (presumably the ball and the ball carrier)

• Catch: three people are always standing in the same place
whenever the ball changes direction.

Table III shows an abridged example of the relative location
data used to make these determinations (for clarity, only three
players are shown, not four). In the six games most similar
to a particular exemplar of Tag, for every type of intentional
state transition, the table depicts the average distance (in cm)
between the three players. In every case, the two players who
are swapping roles are located close to one another.

V. CONCLUSION

Humankind, it has been suggested [25], should more ap-
propriately be called Homo narrans: storytelling man. We are
driven to tell stories to make sense of the world, even or
perhaps especially when we have only sparse information to
go on. We have built a computational system that begins to
demonstrate how a rich set of inferences and conclusions can
be drawn from rudimentary motion data, leading to largely
correct judgments about activity classification and rule infer-
ence. To do this, it hypothesizes about human intentions and
constructs narratives around real-world social interaction. The
better the story it can tell, the more powerful the conclusions
it can draw about the activities it sees.

We are working to expand the range of activity and the
detail of the narrative structure available to our machines. We
have demonstrated the system’s ability to pick out important
rules governing the interactions it witnesses, but so far those
judgments are made entirely after the fact. Hopefully, the
system will soon be able to incorporate this information
to improve its own process of narrative construction – for
example, if the system has begun to guess that touching is an
important component of Tag, then it should expect touching
at particular points, and that should affect the evolution of its
beliefs about the state of the game. Furthermore, a rigorous
treatment of narrative expectation should also help in trying to
wean the system away from the abiological sensor systems we
currently use. If we have good guesses on where to look next,
it may make the visual object-tracking problem a little easier.
Finally, we plan to integrate this system more closely with
robotic participants in the environment. If there is anything
people enjoy more than telling stories about other people, it is
telling stories that include themselves. The same may be true
of robots.
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