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Abstract— By learning a range of possible times over which
the effect of an action can take place, a robot can reason
more effectively about causal and contingent relationships
in the world. However, learning these time windows in a
noisy environment where random events interfere can pose a
challenge. We present an algorithm for learning the interval
[t1min , t1max ] of possible times during which a response to
an action can take place, and implement the model on a
physical robot for the domains of visual self-recognition and
auditory social-partner recognition. The environment model
that we use to justify our error bounds assumes that natural
environments generate Poisson distributions of random events
at all scales. From this assumption, we derive a linear-
time algorithm, which we call Poisson threshold learning, for
finding a threshold T that provides an arbitrarily small rate
of background events λ(T ) if such a threshold exists for the
specified error rate. We can then use this rate to calculate an
expected number of false positives in our sample data and
discard them. We implement the principles of our method
using a motion detection module as our input stream in the
visual domain, and sampled audio energy in the auditory
domain. In this way, we find time windows for self-generated
motion, self-generated audio, and verbal social responses. We
also present data on the distributions of these events, showing
that while our self-generated action had a normal distribution,
the social events were better modeled by a Poisson process.
Finally, we present several applications for which such simple
classifiers could potentially prove useful, such as mirror self-
recognition and learning the meanings of the words “I” and
“you.”

I. INTRODUCTION

The identification of self-generated sensory information
and the identification of social partners are both primarily
problems of causality. If a motor command reliably causes
a certain response in the visual field, a robot may correctly
assume that it is seeing itself move. Similarly, social partner
identification is not simply a matter of finding faces in the
visual field; a person is not interacting with the robot unless
she is responding to the robot – again, a judgment about
causality.

To reason about causality, it is not enough to look at
the order of events; one must also take into account when
those events occurred. If one sends a letter in the mail
and receives a letter from the recipient the very same day,
it probably isn’t a response. The various nodes running
in parallel on a modern robot architecture must contend
with exactly this problem; motor responses and visual or
audio feedback may not be immediate, and assuming that
they are can lead to mistakes. The round trip time between
command and response may be quite large, for instance, in
the case of a robot being controlled by a rack of computers

that is not physically close to the robot’s sensors and end-
effectors.

Identifying a chain of causality does not necessarily
require logical reasoning. Humans appear to have the
ability to detect contingent responses from an early age.
Infants at 12 months are willing to follow the “gaze” of a
faceless object that emits beeps and flashes contingent upon
the infant’s own behavior, but will not follow the object’s
gaze if the beeps and flashes are emitted at random [1].
Even 6-to-12-week-old infants become agitated if a closed-
circuit video feed of their mothers interacting with them is
replaced with a non-contingent recording [2]. Experiments
with adults show that the illusion of animacy conferred by
an object acting without visible cause is largely perceptual
and automatic [3], suggesting that these decisions are fairly
low-level, and therefore potentially easy to emulate.

From a machine-learning point of view, the learning
of the window of acceptable times for an event is also
very tractable. The problem of learning the minimum and
maximum times between a cause and a particular effect
is essentially that of learning an interval [a, b] on the
real number line. It is straightforward to prove that the
Vapnik-Chervonenkis dimension, or VC-dimension, of this
problem is 2, and that therefore the number of examples
required to learn this interval with probability at least
1 − δ and error at most ε is at most 13

ε (2 ln 1
ε + ln 1

δ )
by a theorem in [4]. This result holds regardless of the
distribution of the data, which is useful for dealing with
potentially unpredictable events such as the actions of
a human being. In a noiseless environment, once this
many training examples have been presented, events falling
outside the time window can be confidently discarded as
not belonging to the class in question – whether the domain
is self-generated motion or social responses.

The problem is that in the real world, we are not
provided with clear positive and negative examples, as we
would be in an ideal theoretical environment. Instead, we
are presented with streams of real-valued sensor data, with
higher values that may reflect either a contingent reaction
to the robot’s actions, unrelated events occurring in the
environment, or just sensor noise. If we merely take the
minimum and maximum of the observed values, we run a
high risk of choosing events generated by the environment
as our extrema. To solve this problem, we have developed a
method of adaptively setting a threshold on the input chan-
nel to guarantee a low rate of irrelevant threshold events.
The method, which we call PoissonThresholdLearning,



relies on the assumption that the onsets of environmental
events are largely uncorrelated with each other to produce a
model that generates a sensor threshold with an arbitrarily
low rate of background noise. As long as the events of
interest produce sensor values that are above this threshold,
the model can successfully learn a time window for detect-
ing those events contingently by discarding the expected
number of false positives. Moreover, the algorithm for set-
ting the threshold runs in time linear with the sample size,
and is optimal given the Poisson assumptions described
above.

This does not completely solve the problem of positively
identifying instances of the class, however. The problem
is that while all events of class C may occur within a
specific time window t, this does not logically imply that
all events within time window t belong to class C. (This
problem of “affirming the consequent” is common when
applying simple property detectors, such as using color
to judge whether an image contains skin.) Whether this
is a problem in practice depends on the size of the time
window. If the domain is self-generated motion, then we
may hope that the responses are quick enough and reliable
enough to make the probability of other events occurring
within the window very small. If the domain is highly
unpredictable, as it is in identifying social responses, then
we may either bring in information from other sensors or
attempt to reason probabilistically using Bayes’ Rule.

Whether these solutions work in practice is an empirical
question – one that we shall address in this paper for the
domains of self-recognition and social partner identifica-
tion. In our other work, we have shown that a robot can
learn to match the words “I” and “you” to the properties
of “speaker” and “listener” by watching a game of catch
in which the two participants comment on the action [5].
Here, we study the properties we hope to associate with
the robot’s first-person understanding of these terms. By
learning the grounded meanings of these terms, we hope to
create robots that are better able to produce and understand
social behavior.

Self-identification in [6] was performed by cross-
correlating the repetitive motion of the robot’s hand with
proprioceptive feedback from the motors, identifying the
zero-crossings of each. This method of using motion
feedback is similar to our approach in the visual domain.
Cohen et al. [7] used Allen’s six possible relationships
between fluents [8], instead of the specific time windows,
to characterize the effects of their robot’s actions. Other
recent approaches for learning about the self have included
statistically reasoning about invariant visual properties [9]
and mapping visual feedback to tactile feedback [10].
Much less work has been done on learning to detect social
contingency, but [11] presented a robot programmed to
do so; the probabilities it used were calculated using a
supercomputer that ran a dynamic programming algorithm
on human-collected experimental data. Finally, our work
follows the general paradigm of a robot learning about its
environment with very little preprogrammed knowledge –
a methodology first proposed by Turing [12] and currently

known as “autonomous mental development” [13], “epige-
netic robotics” [14], or “developmental robotics” (e.g., this
issue of Connection Science).

We have implemented our system for detecting self-
generated feedback in both the visual and auditory domains
on Nico, a humanoid robot that has the same physi-
cal proportions as a human infant. (Some of the work
presented here for the visual domain first appeared in
[15], as well as in the 2005 AAAI Spring Symposium
on developmental robotics.) In the auditory domain, we
have extended the system to handle the detection of social
responses as well. In addition to implementing the system
of time windows outlined above, we also collected data
on the resulting response time distributions, to determine
whether a Bayesian comparison of these distributions could
produce reliable indications of whether the events were
self-generated, socially contingent, or neither. We describe
our results below.

II. THE TIME WINDOW MODEL

Before describing the physical robot, we will first de-
scribe our general method for learning contingency time
windows.

Assume that the robot is attempting to learn via a noisy
sensor S in a complicated environment E. Given a module
M that issues a command to an actuator at time 0, the
onset of the feedback to the module M occurs at some
time given by an unknown probability distribution P (t).
We wish to find {[t1min

, t1max
] : P (t < t1min

∪ t >
t1max) < ε1} for some small ε1. In other words, we want
to find the interval over which we can reasonably expect
self-generated feedback to return to the module issuing the
command.

If we were in a noiseless environment, we could sim-
ply note that this is a learning problem with a Vapnik-
Chervonenkis dimension of 2, since any collection of two
points cannot be inconsistently labeled, but a dataset of 3
exists that is impossible to consistently label – the case
of two positive examples on either side of a negative
example. (The details of VC dimension are not terribly
important to our argument, but see [16] for a full ex-
planation.) This would entail, by a theorem in [4], that
13
ε (2 ln 1

ε + ln 1
δ ) trials are sufficient to learn the correct

window with probability at least (1 − δ) and error at
most ε – a number polynomial in 1/ε and 1/δ. (Such a
problem is said to be “PAC-learnable”, where PAC stands
for “probably approximately correct” [16].) However, our
sensor does not detect infallible Booleans of event/non-
event, but some set of numbers {(s1, . . . , sn) : si ∈ <},
with only the vague guarantee that during an interesting
event, at least one of the si will be “large.” (In the case
of visual data, this “sensor” may actually be a vision-
processing module.) In addition, the environment and the
sensor’s own noise occasionally produce high values for
the si that are at least as high as those produced by self-
generated action. To learn the timing of its self-feedback,
it seems as if the robot must first distinguish between its
own actions and sensory data generated by noise and the



environment. The reader may well wonder, then, how is
this is to become a method of self-identification!

The answer lies in how we model the environment. If we
assume that the likelihood of an event occurring within a
time interval of length t is the same probability p regardless
of when we take our measurement, and that these events
are stochastically independent of each other, then taking
the limit as t → 0 results in the Poisson distribution:

p(k;λt) = eλt (λt)k

k!
(1)

where p(k;λt) is the probability of k events occurring
within time t, given an event density of λ. In particular,
p(0;λt) = e−λt, and therefore the probability of at least
one event happening within a time interval t is 1 − e−λt.
Because of its relatively easy to achieve prerequisites, the
Poisson distribution has been observed in many natural
domains, including radioactive disintegrations, flying bomb
hits on London during World War II, chromosome in-
terchanges in cells, wrong numbers, and distributions of
bacteria on petri plates [17].

To successfully apply the assumption of stochastic inde-
pendence, we must first handle the fact that natural events
are likely to occur over time, and thus will produce values
for the si that are potentially correlated with each other.
For this reason, we will only be interested in the onsets of
these natural events, and assume that events can be tracked
across their durations.

We define events in terms of a threshold T : an event
takes place at time t if at least one value of si has risen
above T , and it does not belong to an already tracked
event. Then the event density becomes a function of this
threshold. We assume that λ(T ) is nonincreasing, with
higher sensor values no denser than lower values.

We would like a threshold T that sets the probability
of an environmental event occurring between our self-
initiated action and the true sensory feedback to be less
than some small number ε. (This ε is not to be confused
with the ε mentioned in the discussion of the PAC-learning
model.) Using our Poisson model of the environment and
an estimate t0 of the true time delay, this gives us the
equation:

1− e−λ(T )t0 < ε (2)

Rearranging the terms to find λ(T ) gives:

λ(T ) <
− ln(1− ε)

t0
(3)

In any sample of N sensor readings from S taken over
t seconds, we expect Ntλ(T ) readings to have an event
above the threshold T . This suggests the following linear
time algorithm for finding an appropriate threshold, which
we call Poisson Threshold Learning:

(S0, S1, . . . , SN ) = SAMPLE(N,S, t)
M = (max(S0),max(S1), . . . ,max(SN ))
T = SELECT(N − b−N ln(1−ε)

t0t c,M )

Here, SAMPLE(N,S, t) returns N samples of the value
sets returned by the sensor S over t seconds. Since a sensor
set exceeds the threshold iff its maximum value exceeds
the threshold, we need only the maximum value for each
sensor set. (This can be done online during sampling, to
reduce memory requirements.) On this reduced data set,
we call SELECT(i,M ): a linear time algorithm described
in [18] for finding the ith smallest element of a set without
sorting. Here, it guarantees that only Nλ(T ) values exceed
the threshold. Because every operation presented here is
linear time, the algorithm runs in O(N + n) time, where
N is the number of samples and n is the number of values
in each sample.

Once the environment has been sampled and the thresh-
old calculated, the robot can begin to act. For N trial
movements, the system finds the length of time between
sending a command to the actuator and sensing a value that
exceeds the sensory threshold. Once this data has been col-
lected, the system discards the b1−e−λ(T )t1min cN smallest
values from t1, since these are the expected number of
false positive samples. The maximum and minimum of the
remaining values become [t1min

, t1max
].

Waiting between steps ensures that the robot does not
attempt to act if the environment has suddenly changed;
presumably, an environment that once had a reasonable λ
will eventually quiet down again. Finally, we discard the
b1−e−λ(T )t1min cN environmentally generated events that
we expect to occur between sending a command and t1min

to obtain a closer estimate of the true window.
Detection of a social response is similar, except that

the timing is measured from the offset of a self-generated
event. Learning the social window [t2min

, t2max
] therefore

requires both identifying and tracking a self-generated
event with some success. This implies that at least some
self-learning must occur before social learning. In a real
environment, we would also require that social learning
only take place in the presence of some additional cue
that signalled the presence of a social partner, such as a
forward-looking face. We did not, however, require this
condition to be fulfilled in our tests.

III. THE ROBOT PLATFORM

Nico is a humanoid robot built to serve as a testbed
for models of infant learning (Fig.1). Nico currently has
a single arm with 6 degrees of freedom (DOFs), while its
head-neck assembly has an additional 7 DOFs.

Four miniature CCD cameras provide streaming video in
wide and narrow fields of view for each of Nico’s eyes; for
simplicity, we will describe the path of a single image as
it passes through the image processing pipeline. A frame
grabber operating at 29-30Hz receives a 320x240 image
from one of the cameras. Once lens distortion is removed
using a fixed lookup table, the image is passed to a motion
module, which finds the absolute difference between the
grayscales of the current image and the previous one.
This difference image is smoothed and thresholded with
an adjustable threshold Tm and passed to a pre-attentive
vision module. There, large regions of thresholded motion
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Fig. 2. The visual preprocessing pipeline.

Fig. 1. The robot, Nico. Nico is an upper-torso robot with a 6-DOF arm
(left) and a 7-DOF head. Its four CCD cameras are located on either side
of the bottom of Nico’s “forehead” cylinder (top, left).

are joined using a region-growing algorithm, which creates
bounding box objects for each region. These events are then
passed on to a tracking module before finally reaching our
learning algorithm, at a frame rate of roughly 25Hz. Fig. 2
provides an overview of the vision pipeline.

In the audio domain, Nico uses a two-channel micro-
phone connected to a Sound Blaster Live card for audio
recording. Data was sampled at 44100Hz on each channel,
and was sampled again to provide the raw energy of each
100ms segment as input to the learning module. Because of
the instability of the Sound Blaster Live drivers on QNX,
sound production was performed by a Creative CT5880
card. The resulting sound was issued through normal PC
speakers.

Each module ran on one of 16 processors running
the QNX Neutrino real-time operating system. The nodes
communicated over a 100Mbit switch, with each module
providing its output to the other modules via shared mem-
ory in a concurrency-safe fashion.

Fig. 3. A bounding box around Nico’s arm indicates that its motion was
identified as self-generated using the t1 time window.

IV. SELF-RECOGNITION IN THE VISUAL DOMAIN

A. Methodology

Since the data from this portion of the paper were
collected before our discovery of the Poisson threshold
learning algorithm, T was set manually to provide a low
λ(T ). An estimate of ε = 0.05 was used to discard values
after learning, but that was not based on a principled
estimate of the underlying density λ(T ). (We intend to
correct this and rerun our experiments in time for final
publication.)

A series of 40 random poses was generated for Nico’s
arm. Nico would then wait to ensure that the background
rate of new bounding boxes was acceptably low; in prac-
tice, this meant waiting until there was no detected motion
for several seconds. Nico then iterated through the poses,
calculating the delay in its actions t1 as described above
by measuring the time from sending the motor command
to receiving the first untracked motion bounding box.
After each action, Nico returned briefly to monitoring the
background rate of bounding boxes to ensure that it had
not significantly changed. Finally, at the end of the trials,
two outlying values were dropped (since εN = 2) and
the remaining minimum and maximum were designated
[t1min , t1max ]. The resulting window could then be used
to filter motion bounding boxes for self-generated motion
(Fig. 3).

B. Results and Analysis

A subsequent 60 movement test run using the learned
window resulted in only 3 movements that did not receive
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Fig. 4. Distribution of times elapsed between sending a random motor
command to the robot’s arm and the perception of the resultant motion
after the visual image has passed through the whole processing pipeline.
The robot iterated through ten randomly selected motions 22 times.

the self-generated label – exactly the 95% accuracy for
which we aimed. The learning thus took much less time
than the theoretical upper bound described in the introduc-
tion, despite the relative variability of the response times
(Fig. 4).

Under our normally placid laboratory conditions, it was
difficult to assess how well this system would perform in
a busier natural environment Therefore, to test the limits
of the system, we asked an independent subject to try to
fool the robot by attempting to move when it did. If any
part of the subject’s thresholded motion fell within the time
window, it counted as a false positive, even if there was
already some bounding box with the self-label. Despite this
demanding adversarial setup, the widely variable t1 times,
and the relative simplicity of the method, the robot falsely
labeled the subject’s movements only about half the time
(33/60 movements).

Since our data shows that the self-feedback times form a
quite well-behaved normal distribution 4, it is presumably
possible to implement a Bayesian decision procedure for
whether an event was more likely to come from the
learned normal distribution for the self or the estimated
Poisson distribution of environmentally generated events.
Such an implementation would be potentially useful and
straightforward to implement, but it is beyond the scope of
the current paper.

V. SELF AND SOCIAL RECOGNITION IN THE AUDITORY
DOMAIN

A. Methodology

Nico’s lack of text-to-speech software, combined with
the fact that it doesn’t currently have much to say, required
some creativity in its production of social-response eliciting
actions. To this end, we used a selection of sound files of
the character R2D2 from the film Star Wars: a character
known for its emotive – if inscrutable – beeps, chirps,
and whistles. A background threshold was set using the
threshold algorithm described earlier with 100 samples, ε
set to 0.05, and the conservative guess t0 set to 2 seconds.

First, the robot went through a brief exploratory session
alone in which it learned the t1 for each sound. Unlike the

Fig. 5. The distribution of detected social responses for the robot.
It appears to follow a negative exponential function, corresponding to
the idea that humans generally respond socially as quickly as they can.
Background Poisson events follow a negative exponential distribution with
a longer tail, making the upper bound of the time window important and
the lower bound mostly irrelevant in this domain.

motor-motion loop, this loop was highly reliable, with all
but one of the 30 responses falling within 200 ms of the
average. The algorithm then excluded that response from
the window by virtue of falling within the ε lowest values.
The long time required by QNX to interpret .wav files
resulted in a t1 time window of [1.3998s, 1.7017s] for the
auditory domain.

Two independent subjects were then instructed to re-
spond to these sounds as if Nico were actually engaging
them in conversation. The exchanges continued for 45
utterances per subject. To avoid unnecessarily frustrating
the subjects and reducing the social plausibility of the
scenario, Nico did not wait for extended silence between
utterances, but initiated sounds after only a second of
detected silence. If the time delay detected for t1 did not
match fall within the expected time window, Nico ignored
that data for future processing. (Since the transformed input
was one-dimensional, there was no way in this simple
space to keep track of what sound was whose if the two
voices overlapped.) Otherwise, the detected sound was
followed to its conclusion, and the first sound after that
was assumed to be social for the purposes of learning. ε
was again chosen to be 0.05 and t0 was set to 2.

B. Results and Analysis

The resulting distribution of social response times is
shown in Figure 5. Contrary to our expectations, the
response times of socially interacting individuals are not
normally distributed at all. Instead, the probability distri-
bution function appears to be better modeled by a negative
exponential.

In retrospect, there are good reasons to think that the
social interaction distribution would have small or no time
delays. While the turnaround time seems very fast com-
pared to human processing speed, it is probably uncommon
to have to wait until the very end of an utterance to
decide what to say; we are good at predicting where a
conversation is going, and the final syllable is usually
unlikely to change our minds. Moreover, the decision of
what to say next may have a roughly Poisson distribution



Fig. 6. Delays measured during conversations between the experimenter
and the two social interaction subjects. Originally taken as potential data
for a Bayesian estimator of the probability of social interaction, the data
suggests that real social interactions have negative binomial or Poisson-
like delay distributions.

over the length of the first speaker’s utterance; we would
then expect a negative exponential to model the waiting
time for this event. Assuming that the listener waits until
the first speaker is done, this would result in a slightly
top-heavy negative distribution.

If this model of “idea arrival” seems contrived, we can
also argue from the conditions of the Poisson distribution.
A Poisson distribution results from the assumption that an
event is no more likely during one interval than another.
Assuming that the probability that a person responds within
a time interval ∆t is non-increasing over time – that is, that
the social partner does not become more likely to answer
as time passes – then the probability density of the social
response function is at most the negative exponential given
by the Poisson process with λmax, the probability density
near time 0.

Both of these arguments assume that humans are good
enough at predicting the end-content of speech directed at
them to allow immediate responses. But what if this was
only trivially true because of the crudeness of our robot’s
social repertoire? Given a sequence of meaningless beeps
and whistles, it was entirely possible, or even probable,
that they began to ignore the “content” of Nico’s speech.

To provide suggestive (but not conclusive) evidence
to rebut this claim, we present data originally collected
to provide a “non-interacting” condition for any future
Bayesian models. After testing in the interactive condition
for each subject, each subject was engaged in conversation
with the experimenter. Meanwhile, Nico was restarted in its
learning mode, collecting the delays between the first string
of detected sound after sending its vocalization command
and the second. (The data presented here includes the cases
where t1 < t1min , which Nico would normally reject.)
Given the long t1 delay for the vocalization, the measured
delay was highly likely to be a delay in the conversation
itself. Figure 6 shows a very clear negative exponential
distribution for the combined data of the two subjects.

Just as in the case of self-recognition, a Bayesian deci-
sion algorithm could certainly be built to compare an event
onset time to the social distribution and the environmental

distribution, to decide which was a more probable source
for the event. However, such an algorithm would be useful
only insofar as it discarded events that occurred too late –
a function already performed by our time windows – and
would be potentially harmful if it discarded social events
that occurred within the acceptable interval.

VI. APPLICATIONS

One strong advantage of the method presented here for
self-recognition is that it makes very few assumptions
about the behavior, appearance, and kinematics of the
robot. Instead of requiring a specific behavior for finding
the self, as in [6], these self-recognition and social modules
can easily piggyback on top of behaviors performed for
some other purpose, or for no purpose except random
exploration. The lack of assumptions about the robot’s
appearance is also useful in case that appearance changes
– for example, if the robot were to wear a glove. On the
other hand, if the association of a particular color with the
“self” property were to prove useful, this method can be
used to bootstrap an expectation for that color.

But why not use a kinematic model? One argument for
having a low-level detector for contingent motion is that it
may help the robot quickly adapt to handling new tools and
new situations. But the most intriguing answer may be the
“mirror test” [19]. In brief, the ability to recognize oneself
in the mirror has long been used (possibly without much
good justification) as a gold standard for that vague notion
called “self-awareness.” While recognizing the robot’s own
static image could allow the robot to, for instance, identify
a picture of itself, the primary distinction between that case
and the mirror test – the one that would allow the robot to
understand that the image was not merely a representation
of itself, but an instantaneous image of itself in the present
– is that of temporal contingency. If a robot can only ever
learn one kinematic model for its arm, and rejects all other
contingent events as “not self,” then it is doomed to fail
the “mirror test.” (Note that we do not claim that Nico has
“passed” the mirror test – currently a vague and subjective
goal for a humanoid robot – but only that it satisfies a
necessary condition for any reasonable definition of the
test (Fig. 7).

In the social domain, the most obvious application
of the social time window is to detect potential social
partners that are not within the field of view. A potentially
more interesting application is that this Boolean feature
corresponds well to the semantic content of the word
“you.” Elsewhere, we have shown that a machine observing
others’ conversations can learn that “I” refers to the speaker
and “you” refers to the listener [5]. To move to first-
person usage, the robot will need properties grounded in
its own experience to which those words can be anchored.
We hypothesize that this is possible using the properties
described in this paper.

VII. CONCLUSIONS

We have made novel contributions in three major areas
with this paper.



Fig. 7. The robot identifies the self-generated motion of its reflection.
The shot is from one of Nico’s wide-angle cameras; Nico’s reflection
(center) is moving its hand as Nico moves a real arm in the foreground
(bottom right). Because the motion occurs within the the learned time
interval [t1min , t1max ], the motion is tagged as potentially self-generated
(highlights).

First, we have provided a novel framework for learning
contingent causal chains in noisy environments and arbi-
trary domains. Given a relatively innocuous set of assump-
tions about the environment and the nature of the sensory
data, we showed that we can find a threshold that reduces
the error in the possible time windows [t1min , t1max ] to
an arbitrarily low value in linear time. We have also
described briefly why we expect this number of samples to
have an upper bound that is polynomial regardless of the
distribution, using principles of PAC-learning [4].

Second, we have applied this framework to the problem
of detecting the robot’s self-generated feedback in the
environment. We have shown that the number of samples
required to achieve an error rate ε on the true positives is
much smaller in practice than the upper bound suggested
by the VC dimension of the problem [4]. We also show
that the distribution of the self-generated motion is quite
clearly Gaussian, allowing us to substitute a probabilistic
model for the Boolean attribute model given here. We
nevertheless believe that real robotic systems should not
use the learned time window as a sole determiner of self-
identification, but as a filter to eliminate those actions that
are not self-generated, or as a cue to investigate responses
further.

Third, we have applied this framework to the problem of
detecting contingent social responses, and have presented
empirical data that suggests that these follow a negative
exponential distribution similar to the waiting times for a
Poisson process. We have argued that our time window
process therefore captures the most critical distinction
that a Bayesian decision process would make in deciding
between the two distributions – namely, the time after
which to give up on a social response.

But much work still lies ahead in this area. Our data
on social delays is suggestive, not conclusive, and more
psychological data is necessary to decide whether that
distribution is well-modeled by a Poisson distribution. The
utility of employing Bayesian methods in the time win-
dow domain has yet to be determined. Poisson threshold

learning has yet to see very many field tests, since its in-
vention occurred after much of the data presented here was
collected. We also have yet to prove how many samples
are needed to bound the error of the λ(T ) estimation,
and have not yet formally proven that the problem of
learning real-valued intervals in our noisy environment
is learnable in polynomial time. How reasonable is the
assumption of uncorrelated event onset times in the real
world? How should we sample the environment to best
preserve this assumption, while still taking linear time
to calculate the threshold? Are these time windows more
useful as Boolean attributes or probabilities? And are these
the correct properties to associate with the words “I” and
“You”?

We and our robot still have much to learn.
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