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ABSTRACT

We present a method of grounded word learning that is pow-
erful enough to learn the meanings of first and second person
pronouns. The model uses the understood words in an utter-
ance to focus on the agents to which they refer. The method
then uses chi-square tests to find significant associations be-
tween the remaining words and the attributes of the relevant
agents. We show that this model can learn from a tran-
script of a parent-child interaction taken from the CHILDES
database [22] that “I” refers to the person who is speaking.
With the additional information that questions about wants
refer to the addressee, the system can also learn the meaning
of “you” from observed dialogue. We show that an incor-
rect assumption about the probable referent of “want” ques-
tions can lead to pronoun reversal, a linguistic error most
commonly found in autistic and congenitally blind children.
Finally, we present results from a physical implementation
on a robot that runs in real time. Our preliminary results
on the robot, while indicative of the difficulty of using real
sensors for concept learning, show that the model does work
in practice.
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1. INTRODUCTION

The learning of first and second-pronouns presents a puzzle
for models of word acquisition. Suppose an experimenter
is attempting to teach a robot some words. “Ball,” the
experimenter says, showing the robot a ball. After some
repetition of this word, either alone or embedded in other
phrases, the robot might associate the word with the object,
and be able to point to the ball and say, “ball.” A similar
associative process was carried out by Roy and Pentland
[1], who showed their robot Ripley a series of objects in
conjunction with a recording of a mother teaching her child
the words for the object. By finding the object-word pairings
with the highest mutual information, Ripley learned words
that corresponded to each object.

But now consider the case of “I” and “you.” Suppose the
experimenter points to himself and says, “I.” Under the cur-
rent state of affairs, the robot would point to the experi-
menter and say, “I.” Conversely, if the experimenter pointed
to the robot and said, “you,” the robot would point to it-
self and say, “you.” By assuming that these words are the
names of things in the environment, the robot has acciden-
tally reversed their meanings.

Pronoun reversal is not limited to hypothetical robots; hu-
mans can make the same mistake early in life. Children
with precocious language development before the age of two
often use “you” when they mean “I” [2]. Though it is not
clear whether all children pass through this phase [3], two
groups of children in particular are known for their tendency
to switch first and second-person pronouns. The first group
is autistic children [4]. The second is the congenitally blind.

It is perhaps unsurprising that autistic children should have
trouble with “I” and “you,” since they have such pervasive
problems with other aspects of interpersonal communica-
tion. Blindness, on the other hand, is a much more un-
derstandable deficit, and thus it is surprising that such a
seemingly simple condition should manifest itself with such
an obscure symptom.

Many explanations have been put forward for why congen-
itally blind children should have a higher incidence of pro-
noun reversal than sighted children. One of the first claimed
that blind children have a less developed sense of self, on
account of their inability to see themselves — but the au-
thor apparently found the explanation so self-evident that



she provided no quantitative evidence to support it [5]. A
later study suggested that blind children lacked proficiency
in “perspective-taking” [6], though it too lacked any ex-
perimental evidence to support the idea. Yet another at-
tempted to link the two pronoun-reversing groups together,
by claiming that the blind child’s inability to see faces and
the autistic child’s inability to understand them led to an
impoverished social understanding [7]. These hypotheses all
remained speculative, with little evidence to support any
of them — though, to be fair, congenitally blind children
are somewhat difficult to find before they enter elementary
school, and small sample sizes have precluded statistically
significant results [8]. Still, what quantitative evidence ex-
isted in these studies typically did not support one model
over another, and none of them even acknowledged the fact
that excessive pronoun reversal does not occur in all congen-
itally blind children, and possibly not even in a majority [8].

A more sensible explanation may be that the blind children
in question simply did not receive enough data to give a
correct interpretation. Oshima-Takane has argued that it is
very difficult to correct a child’s pronoun reversals, since the
correction itself is subject to misinterpretation [9]. Rather,
the child must learn what “I” and “you” mean by observ-
ing others. Oshima-Takane has shown that children with
older siblings learn correct pronoun usage faster than eldest
children [10]. She also found that children will correctly
use first-person pronouns earlier if parents demonstrate the
correct usage by saying “I” to each other while pointing
at themselves [11]. (A similar experiment in which par-
ents demonstrated “you” produced inconclusive results [11].)
Furthermore, a neural network model began to correctly pro-
duce “I” and “you” when it was exposed to multiple demon-
strators speaking to each other, but not when it was only
exposed to one person’s usage [12]. These results suggest
that the blind children may simply be slow to learn correct
usage because they lack the visual input that would clarify
whom the speaker is addressing in multiple-person scenar-
ios, and thus they simply lack a body of clear evidence from
which to surmise the meaning of the word.

Oshima-Takane’s neural network model was instructive, but
it was not intended to be a practical system. One problem
with Oshima-Takane’s neural network model was that the
inputs were heavily abstracted. Each person in the simula-
tion was represented by a unique number, and the training
inputs were the three numbers indicating the speaker, the
addressee, and the referent of the word. The system merely
had to learn to produce “I” when the speaker number was
equal to the referent number, and “you” when the addressee
equaled the referent. But how would a real system identify
these characteristics?

The identification of who is speaking seems straightforward,
barring the usual problems of noise: watch for moving mouths,
or localize the direction of the sound. The addressee could
be determined by using cues such as head orientation and
gaze direction [13].

It is determining the referent of a word that is most prob-
lematic for a real system. The speaker’s gaze direction is
of little help, because the speaker will look at the addressee
regardless of whether he refers to the addressee or himself.

Similarly, pointing at the referent is simply not realistic for
first and second-person pronouns; pointing the addressee is
not polite, and pointing at the self is usually unnecessary. If
we are to believe that learning the correct usage of “I” and
“you” requires observing other people, then we cannot rely
on unnatural gestures.

Even if the referent were easily identified, any model that
learns only the words “I” and “you” is effectively useless.
In the real world, word learning is not a multiple-choice
test. These words could be bound to anything, not merely
functions of the speaker, addressee, and referent; how is the
infant to know that “I” does not refer to a specific person,
or to the speaker’s gender, or to the color of the addressee’s
hair? A model of learning “I” and “you” must take into
account the possibility of other meanings. Conversely, by
thinking about how to solve this difficult problem, we may
learn something about how children can learn new meanings
for words in general.

We propose that the words “I” and “you” are actually learned
in the context of complete sentences, and that the inter-
pretation of other words in the sentence provides potential
referents for the unknown words. By finding objects in the
environment that match the known words in the sentence,
the unknown words can then become associated with those
objects and their properties.

2. WORD LEARNING FROM CONTEXT

Finding word boundaries within the auditory channel is be-
yond the scope of the current paper. In the present study,
we shall treat the auditory channel as if it were plaintext.
(In our implementation, described below, we made use of
the Sphinx 4 speech recognition system [14], while the sim-
ulations were run on transcripts.)

We here model simple properties of people as boolean at-
tributes. These attributes represent actions such as “speak-
ing,” or descriptions such as “blue.” We do not elaborate
in this model how the boolean representations of such at-
tributes might form, though self-organizing maps seem rea-
sonable [15]. Though boolean attributes may seem to be
an oversimplification, it is worth remembering that Boole
originally conceived of his logic as describing human rules of
thought [16], and that boolean models of concept learning
are still not entirely out of fashion [17].

Our basic method consists of two parts: an attention-focusing
mechanism and a statistical learning mechanism. When a
sentence is first heard, the words with understood meanings
are used to determine what items in the environment are be-
ing talked about. All items in the environment that match
the description are placed in a candidate pool of targets for
the remaining words of the sentence. The positive attributes
of these items are then associated with all of the remaining
words in the sentence.

While Hebbian learning [15] may be a more biologically
motivated mechanism of association, we chose a statisti-
cal implementation to allow a more principled threshold for
association significance. Each word’s probability P(word)
is estimated using the frequency of the word in the cor-
pus, and each attribute’s probability P(att) is estimated



by the number of spoken words during which the attribute
is true for some attended object. The null hypothesis is
that these probabilities are independent, so that P(word A
att) = P(word)P(att). Using the real frequency of the event
(word A att), we can then use a chi-square test to determine
whether the word is spoken in conjunction with the attribute
more frequently than chance would dictate. This approach
is essentially that used for word collocations in statistical
natural language processing [18], but we apply it here to
word-attribute pairs instead of word-word bigrams.

Just as in corpus-based statistical natural language process-
ing, we expect that many attribute collocations will be sig-
nificant for a single word if we are given enough data — not
just the attribute that best captures the meaning. For this
reason, we rank the chi-square values for each word, and ac-
cept only the association with the highest chi-square value.
In addition, chi-square values that do not achieve signifi-
cance (here, p < 0.05) and those representing negative cor-
relations of word and attribute are discarded. Finally, we ig-
nore associations for which we have insufficient data; follow-
ing a convention for chi-square analysis, this means ignoring
associations with chi-square tables that have an expectation
in any of the cells of less than 5 [18]. (One advantage of using
chi-square tests over mutual information, as was used in [1],
is that mutual information exaggerates the importance of
collocations with sparse data [18].)

When we are done, we are left with a few words whose mean-
ing can be reliably interpreted from observation. We assume
that the part of speech can be inferred from another mecha-
nism that handles grammar, which we do not model here —
so a word associated with the attribute “speaker” may be a
verb such as speak, an adjective such as talkative, or even a
pronoun: I. We hypothesized that by associating the word
“I” with the attribute of speaking, a child or a robot can
learn that “I” refers to the person that is speaking.

Similarly, we hoped that the word “you” could become as-
sociated with the action of attending to a speaker. We sus-
pected that our hypothesis might run into a pragmatic prob-
lem, however: it is rare to tell people obvious facts about
themselves (e.g., ”You are wearing a blue shirt”). We dis-
cuss our findings, and our solution to this problem, below.

3. EXPERIMENTS IN SIMULATION
3.1 Learning “I’

To test our model before implementing it on a real embod-
ied system, we ran it on a transcript of a mother and her
child playing catch [19] [20] [21], taken from the CHILDES
database [22]. Only the raw words were used from these
transcripts, and not the CHILDES part-of-speech annota-
tions. We did not omit any “stop words” from the analysis.
The corpus was relatively small, consisting of 1707 words.
Of these, only 372 appeared in sentences with understood
referents.

Because the transcript contains no stage directions, we can
only infer the participants’ actions from the text; luckily,
the mother’s comments make this process of interpretation
fairly uncontroversial (e.g.: “You got it!”, “Why are you
blowing on it?”, etc.). Annotating the text in this way pro-
duced six attributes that changed over the course of the text:
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Figure 1: Success rates in learning “I” for varying
numbers of speaker attributes that changed over the
course of the simulation. No trial correctly surmised
the meaning of “you” under these conditions.

throwing, catching, missing a catch, getting hit on the head,
blowing on an object, and falling down. Accordingly, we as-
sumed that the system already knew the words for these
actions, as well as the word “mommy” and the name of the
child.

To avoid bias in the annotation process, and more fully
model a complicated environment, we added additional dy-
namic variables which did not correspond to anything in
the script, but that changed with probability 1/2 from line
to line. These represented other attributes of the attended
objects that were changing, and could potentially be asso-
ciated with the dialogue by accident. (The number of these
distractors varied according to experimental condition, as
described below.) In addition, we added six random at-
tributes to each actor that remained fixed over the course
of the interaction. We did not vary the number of static
attributes, since all of them that were true for an individual
would have an equal chi value for each attribute. Binding
a pronoun to a static attribute that was true for one actor
but not the other would indicate that the system had failed
to generalize its meaning across individuals.

Finally, we added two attributes speaking and addressee that
were true or false depending on who was delivering the line
of dialogue.

A trial was considered a success if, by the end of the ex-
change, the word “I” was associated with the attribute speak-
ing. Figure 1 shows the success rates out of 40 trials for vary-
ing numbers of dynamic variables. Even with large numbers
of distractor attributes, the system performs well given the
small size of the corpus. (We shall see later that increas-
ing the number of understood sentences produces better re-
sults.)

Remarkably, this method succeeds even though one of the
participants is occasionally lapsing into pronoun reversal:

CHILD: I got it!

MOTHER: Mommy got it.

MOTHER: That’s right, mommy got it.
MOTHER: You didn’t get it.
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Figure 2: Success rates for learning “I” with simu-
lated speaker identification errors.

MOTHER: Mommy got it. [19]

It is also worth noting that these trials produced very few
erroneous associations. In the 6 dynamic variables case, only
two words were given new associations: “I” was associated
with speaking, and “it” was associated with catching (pre-
sumably because of the frequency of the phrase “I got it”
in the script). Even in the 40 dynamic variable case, only
10 (25%) of the trials produced more associations than this,
associating “you” or “the” with arbitrary dynamic variables.

But what if there is some confusion about who did the speak-
ing? Though this may not be a problem for the human per-
ceptual system, tolerance of such error may be a real concern
for the roboticist. To simulate error in speaker identifica-
tion, we added a chance for each statement that it would be
attributed to the wrong person in the exchange. As figure
2 shows, even for small error rates, the chance of correctly
learning the meaning of “I” falls off dramatically. Thus,
even if our system is a good model of how humans learn the
meaning of “I”, we may expect some technical hurdles on
the way to implementing it in an artificial intelligence.

3.2 Learning “You”

In none of the above trials did the system correctly learn
the meaning of the word “you.” We hypothesized that this
was because statements about the observable properties of
others are much less frequent than questions about others’
non-observable properties — namely, their desires and mental
states. (In our script, the exclamation “you got it!” does
appear, but much less frequently than “I got it.”)

Therefore, we added to the system the knowledge that ques-
tions involving the word “want” are about the person being
asked. In terms of our model, this meant causing the word
“want” to add all addressees to the list of potential refer-
ents of the sentence; their properties would then become
associated with the remaining words in the sentence.

Our results are shown in Figures 3 and 4. The correct bind-
ing for “you” was correctly learned even for large numbers
of distractor variables, and its success rate was comparable
to that of “I” when speaker confusion occurred.

In addition, extraneous dynamic variables were not as detri-
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Figure 3: Success rates in learning “I” and “you”
when the system was allowed to infer that questions
about wants referred to the person being asked.
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Figure 4: As figure 3, but with varying rates of
speaker identification error.

mental to the learning of “I”, because the additional sen-
tences that could now be comprehended provided additional
statistical evidence for the “I” hypothesis, and evidence against
association with other dynamic variables. (The number of
words in sentences with at least one known word increased
from 372 to 417.) This suggests that as vocabulary size in-
creases, conversations can be used more efficiently to test
the meanings of words.

3.3 Pronoun Reversal

In the previous section, we added to the system the knowl-
edge that questions about wants generally refer to the ad-
dressee. Though we do not model how this knowledge would
be learned, we suspect that this process may be particu-
larly error-prone in the case of autistic or blind popula-
tions. While autistic individuals can understand the con-
cept of “want” regarding other individuals, they often have
difficulty understanding situations in which one party has
knowledge that the other doesn’t [23]. Congenitally blind
children do not perceive the head orientation and gaze di-
rection cues that would allow them to see who is being ad-
dressed, and thus may make mistakes in understanding who
is being asked. In either case, we might expect that these
populations may sometimes incorrectly learn that “want”
questions always refer to their own selves, since these are the
learning instances with the clearest feedback. What happens
to the meaning of “you” when this new rule is used for the
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Figure 5: Response of the system when it assumes
that questions about wants are always about itself.
Given the chance to associate “you” with a prop-
erty unique to itself, it does so; but if all attributes
are shared with at least one other party, as is the
case with small numbers of static variables, the word
“you” gets bound instead to the property of “listen-
ing.”

interpretation of “want”?

We added a third observer child that represented the learner
to our simulation. No changes were made to the script, but
the learner now assumed that the word “want” referred to
neither of the conversation’s participants, but to itself. In
addition, since there was now a distinction to be made be-
tween the addressee and other non-speakers, we added the
attribute “listening” that was true for both non-speakers,
while “addressee” was true only of the person being ad-
dressed. (Running this version on the previous experiment
still produced “addressee” as the binding of “you.”)

As Figure 5 shows, the correct learning of “you” dropped
dramatically. When the number of static variables was in-
creased to sufficiently high levels to ensure that at least one
was uniquely true of the observer, the observer assumed that
the word “you” referred to this property. In other words,
when the system assumed that “want” questions were al-
ways directed at itself, it learned that “you” always referred
to itself as well.

When there were no such unique properties, however, the
next best hypothesis was that the word “you” referred to
the “listening” property, which was true of anyone that was
not speaking. Despite some evidence to the contrary in the
script (e.g., “you got it,” which would still associate you
with only the catcher), none of the trials correctly associated
“you” with the addressee alone.

Increasing the number of static attributes had no effect on
the previous iterations of the experiment.

4. PHYSICAL IMPLEMENTATION

4.1 Methods

In this experiment, we tested whether a physical robot (Fig-
ure 6) could learn that “I” referred to the speaker by ob-
serving a game of catch, similar to the one described in the

Figure 6: The robot on which the system was im-
plemented.

simulations above. The robot is the same size and shape as
a one-year-old child, and is our platform for several avenues
of developmental robotics research.

For this experiment, we used one of our robot’s two high-
acuity foveal cameras and a two-channel microphone as sen-
sors. The camera ran at 320x240, and the resulting video
was processed by a pipeline of four nodes running the real-
time operating system QNX. These processed the image us-
ing the Intel OpenCV computer vision library [24] to find
faces. A module for detecting highly saturated color pixels
was co-opted for finding the ball; possession of the ball was
determined by which face was closest. Though this method
for sensing possession of the ball was decidedly tailored to-
ward the experiment, it serves the purpose of illustrating
the word learning model well enough.

The Sphinx 4 [14] speech recognition module ran on a Win-
dows XP computer across the room, connected to the robot
via a wireless connection. The Sphinx code was modified
so that in addition to returning the interpreted speech, the
speaker was also identified as being to the left or right of the
microphones, based on which microphone the speech sound
wave reached first. By matching the audio channels to the
visual image, the speaker of each utterance was identified
with very high accuracy — though this was partly because the
speakers needed to be within a few feet of the microphones
for the third-party speech recognition module to function.
Figure 7 summarizes the modules involved in the physical
implementation.

The words “got” and “caught” were given explicitly to the
system to refer to the property of possessing the ball. For the
Sphinx language model, we used a small (15-word) context-
free grammar that included statements of possession (“you
got it”), statements of desires (“I want the ball”), and some
miscellaneous exclamations (“you blew it”). The full context-
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Figure 7: The modules used in implementing the
word-learning method. An image grabber passed
video to a color-saliency filter and the OpenCV [24]
face-detection module, which then passed their re-
sults to the world model. Audio was first localized
based on the disparity between the two channels,
then passed to Sphinx [14] for speech recognition,
and finally to the word-learning module for associa-
tion with the properties of objects.

free grammar was as follows:

<S> := <catch> | <util>

<catch> := <subj> <verb> <obj>

<subj> := (Do you) | I | You | Kevin | Nico | Fred
<verb> := got | caught | blew | want

<util> := done | yes | no

<obj> := (the ball) | it

All processing occurred online and in real time, with a frame
rate of 30 FPS for the ball detector, roughly 1 FPS for the
face detector, an average delay of less than a second per
utterance for the Sphinx module, and a negligible amount
of time to calculate chi values.

To make up for the simplicity of the system, additional
dummy dynamic and static variables were added to the
sensed environment to bring the total number of each to
10.

Subjects were instructed to play catch in front of the robot
and comment on the action using relevant statements from
the grammar. They were given no guidelines as to how of-
ten each phrase should be spoken, nor on how long to wait
between utterances or throws. As a result, the experiment
encountered many of the difficulties involved in real conver-
sation environments, including overlapping speech and an
environment that changed as speech recognition was taking
place.

4.2 Results

After 50 interpreted utterances, the highest-ranked interpre-
tation of “I” was indeed “speaking,” but the results were far
from significant (x? = 0.25). It is difficult to say whether
this means that statistical significance is too high a hur-
dle for practical, human-like word-learning, or if instead
demonstrates the importance of these methods given the
unreliability of the data. (Though the uneven timing of the
speech samples made it difficult to match Sphinx’s interpre-
tations with ground truth, 14% of Sphinx’s interpretations
were clear errors in that they were never spoken by either
party.) In particular, the Sphinx transcript contained only

8 positive examples of “I” referring to the speaker. Run-
ning the experiment for 4 more trials showed that it was
still improving: the x? value for the association of “I” and
“speaking” increased to 0.52, while the association of “you”
with “listening” increased over these trials from 0.78 to 1.78
(p < 0.18). Thus, with time we would expect these figures
to achieve significance, and we are still in the process of
collecting data to confirm this intuition.

We have not yet integrated the interpretation of prosody
with Sphinx, so the robot cannot yet directly recognize when
a statement is a question. However, we can structure the
grammar so that beginning with “do” signals a question
(e.g., “do you want the ball?”). While this is not a prac-
tical means of detecting questions in general, we can use
this workaround to ask what happens when questions about
wants are assumed to be directed toward the robot. As
expected, performance does indeed worsen considerably: af-
ter 60 statements, neither “I” nor “you” were associated
correctly, but were instead non-significantly associated with
dummy dynamic variables. Because the “want” questions
did not outnumber the statements of observable fact as they
did in our simulation transcripts, the data supported neither
the hypothesis that “you” referred to the robot, nor the hy-
pothesis that it referred to the addressee.

5. CONCLUSIONS
5.1 Contributions

We see two major contributions that arise from this work.

First, this is a potentially powerful system for learning grounded

meanings for words in general — not just pronouns. Though
the current implementation requires some words to already
exist in the vocabulary in order to learn new ones, it should
be straightforward to add initial noun learning to the sys-
tem by means of an “object bias” that assumes the names
for nouns are taught first, and thus most statistically likely
upon presentation. (The “object bias” is a well-known em-
pirical finding in children’s language development; see [25]
for a review.) Our method’s use of context makes it more
powerful than strictly associationist methods, which have
been critiqued recently by Bloom [25]. We believe that ap-
proaches that combine statistical methods with pragmatic
rules for interpreting the intent of utterances will prove most
useful in robotic language learning.

Second, though it has historically been popular to attribute
pronoun reversal to fundamental flaws in representations of
the self [5] [7] [6], we hypothesize that this phenomenon is a
problem of language learning, and not the child’s underly-
ing model of the world. Our results indicate that if a child
assumes questions about wants are directed toward himself,
that child will probably learn that “you” refers specifically
to himself as well. This is not to suggest that autistic or
congenitally blind children are naturally selfish. In the ab-
sence of cues such as gaze direction, it may be a natural as-
sumption for a blind child that she is the default addressee.
Autistic children, on the other hand, may have no difficulty
determining who is being addressed, but may not make the
pragmatic leap that questions about mental states should
be directed toward the person in question, and not someone
else. In either case, we may expect a delayed understanding
that “you” can refer to others.



Our research further predicts that these populations could
learn to correctly use pronouns more quickly if those around
them were to use pronouns in sentences with clear refer-
ents. In particular, though mentalistic language appears to
be the most common context of the word “you,” using the
word “you” to describe others in physical terms may help
an autistic child to understand its meaning.

5.2 Future Work

Though the words in our simulation were already segmented,
the real world provides no such easy segmentation. The child
may assume that “I” is merely one syllable of another struc-
ture that has been repeated often. This appeared to be the
case with the normal child in our script, who ritualistically
said “I got it” no matter who caught the ball. The infant’s
mastery of the structure “I want” before the more general
use of “I” has also been noted in the literature [5]. Autistic
children may have more difficulty with this as well, as they
are known to repeat sentences verbatim without making use
of their constituent words [4].

To test these ideas, we plan to remove the context-free lan-
guage model from our speech recognizer, and deal with raw
phonemes instead. Though our oversimplification of speech-
as-text is still relevant if children learn to segment pronouns
before they learn what the words mean, we would like to
make our language learning model far more general. At the
early stages of word learning, segmentation may not even
be complete before associations occur. Thus, an important
next step for our model is to deal with this issue by working
directly with the phonemes themselves.

Finally, this work is a milestone along the way to the larger
goal of building a robot that has a grounded concept of self.
By connecting this model to our earlier work on identifying
the self in the visual image [26], we hope to make a robot
that can learn, reason, and communicate about its own phys-
ical properties. In doing so, we hope to better understand
how each of us comes to identify with the word “I.”
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