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Active Vision for Sociable Robots
Cynthia Breazeal, Aaron Edsinger, Paul Fitzpatrick, and Brian Scassellati

Abstract—In 1991, Ballard described the implications of having
a visual system that could actively position the camera coordinates
in response to physical stimuli. In humanoid robotic systems, or
in any animate vision system that interacts with people, social
dynamics provide additional levels of constraint and provide
additional opportunities for processing economy. In this paper,
we describe an integrated visual-motor system that has been im-
plemented on a humanoid robot to negotiate the robot’s physical
constraints, the perceptual needs of the robot’s behavioral and
motivational systems, and the social implications of motor acts.

Index Terms—Active vision, robots, social interaction with hu-
mans.

I. INTRODUCTION

A NIMATE vision introduces requirements for real-timepro-
cessing, removes simplifying assumptions of static camera

systems,andpresentsopportunities forsimplifyingcomputation.
This simplification arises through situating perception in a be-
havioral context, by providing for opportunities to learn flexible
behaviors, and by allowing the exploitation of dynamic regulari-
ties of the environment [1]. These benefits have been of critical
interest to a variety of humanoid robotics projects [2]–[5], and
to the robotics and artificial intelligience (AI) communities as a
whole. On a practical level, the vast majority of these systems are
still limited by the complexities of perception and thus focus on a
singleaspectofanimatevisionorconcentrateontheintegrationof
two well-known systems. On a theoretical level, existing systems
oftendonotbenefit fromtheadvantagesthatBallardproposedbe-
cause of their limited scope.

In humanoid robotics, these problems are particularly evi-
dent. Animate vision systems that provide only a limited set of
behaviors (such as supporting only smooth pursuit tracking) or
that provide behaviors on extremely limited perceptual inputs
(such as systems that track only very bright light sources) fail
to provide a natural interaction between human and robot. We
propose that in order to allow realistic human–machine inter-
actions, an animate vision system must address a set ofsocial
constraintsin addition to the other issues that classical active
vision has addressed.

It is useful to view social constraints not as limitations, but
opportunities. They induce a natural “vocabulary” to make the
robot’s behavior and state readable by a human. This in turn
can provide a framework for the robot to negotiate a change in a
human’s behavior. For example, Section XI-A discusses a pro-
cedure the robot can use to control the “interpersonal” distance
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a human assigns to it. Having this control means that in social
situations, the robot can get quite far with a simple vision system
that is tuned to a particular distance.

II. SOCIAL CONSTRAINTS

For robots and humans to interact meaningfully, it is impor-
tant that they understand each other enough to be able to shape
each other’s behavior. This has several implications. One of the
most basic is that robot and human should have at least some
overlapping perceptual abilities. Otherwise, they can have little
idea of what the other is sensing and responding to. Vision is
one important sensory modality for human interaction, and the
one we focus on in this paper. We endow our robots with visual
perception that is human-like in its physical implementation.

Similarity of perception requires more than similarity of sen-
sors. Not all sensed stimuli are equally behaviorally relevant. It
is important that both human and robot find the same types of
stimuli salient in similar conditions. Our robots have a set of per-
ceptual biases based on the human preattentive visual system.
These biases can be modulated by the motivational state of the
robot, making later perceptual stages more behaviorally rele-
vant. This approximates the top–down influence of motivation
on the bottom–up pre-attentive process found in human vision.

Visual perception requires high bandwidth and is computa-
tionally demanding. In the early stages of human vision, the
entire visual field is processed in parallel. Later computational
steps are applied much more selectively, so that behaviorally
relevant parts of the visual field can be processed in greater de-
tail. This mechanism of visual attention is just as important for
robots as it is for humans, from the same considerations of re-
source allocation. The existence of visual attention is also key
to satisfying the expectations of humans concerning what can
and cannot be perceived visually. We have implemented a con-
text-dependent attention system that goes some way toward this.

Human eye movements have a high communicative value. For
example, gaze direction is a good indicator of the locus of visual
attention. Knowing a person’s locus of attention reveals what
that person currently considers behaviorally relevant, which is
in turn a powerful clue to their intent. The dynamic aspects of
eye movement, such as staring versus glancing, also convey in-
formation. Eye movements are particularly potent during social
interactions, such as conversational turntaking, where making
and breaking eye contact plays an important role in regulating
the exchange. We model the eye movements of our robots after
humans, so that they may have similar communicative value.

Our hope is that by following the example of the human vi-
sual system, the robot’s behavior will be easily understood be-
cause it is analogous to the behavior of a human in similar cir-
cumstances (see Fig. 1). For example, when an anthropomor-
phic robot moves its eyes and neck to orient toward an object,
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Fig. 1. Kismet, which is a robot capable of conveying intentionality through
facial expressions and behavior. Here, the robot’s physical state expresses
attention to and interest in the human beside it. Another person—for example,
the photographer—would expect to have to attract the robot’s attention before
being able to influence its behavior.

an observer can effortlessly conclude that the robot has become
interested in that object. These traits lead not only to behavior
that is easy to understand but also allows the robot’s behavior to
fit into the social norms that the person expects.

There are other advantages to modeling our implementation
after the human visual system. There is a wealth of data and pro-
posed models for how the human visual system is organized.This
data provides not only a modular decomposition but also mech-
anisms for evaluating the performance of the complete system.
Another advantage is robustness. A system that integrates action,
perception,attention,andothercognitivecapabilitiescanbemore
flexible and reliable than a system that focuses on only one of
these aspects. Adding additional perceptual capabilities and ad-
ditional constraints between behavioral and perceptual modules
can increase the relevance of behaviors while limiting the com-
putational requirements [6]. For example, in isolation, two dif-
ficult problems for a visual tracking system are knowing what to
trackandknowingwhentoswitchtoanewtarget.Theseproblems
can be simplified by combining the tracker with a visual attention
system that can identify objects that are behaviorally relevant and
worth tracking. Inaddition, the trackingsystembenefits theatten-
tionsystembymaintainingtheobjectof interest inthecenterof the
visual field. This simplifies the computation necessary to imple-
ment behavioral habituation. These two modules work in concert
to compensate for the deficiencies of the other and to limit the re-
quired computation in each.

III. PHYSICAL FORM

Currently, the most sophisticated of our robots in terms of vi-
sual-motor behavior is Kismet. This robot is an active vision
head augmented with expressive facial features (see Fig. 2).
Kismet is designed to receive and send human-like social cues
to a caregiver, who can regulate its environment and shape its
experiences as a parent would for a child. Kismet has 3 degrees
of freedom (DOF) to control gaze direction, 3 DOF to control
its neck, and 15 DOF in other expressive components of the face
(such as ears and eyelids). To perceive its caregiver Kismet uses
a microphone, worn by the caregiver, and four color charge cou-

Fig. 2. Kismet has a large set of expressive features—eyelids, eyebrows, ears,
jaw, lips, neck, and eye orientation. The schematic on the right shows the degrees
of freedom relevant to visual perception (omitting the eyelids). The eyes can
turn independently along the horizontal (pan) but turn together along the vertical
(tilt). The neck can turn the whole head horizontally and vertically and can also
crane forward. Two cameras with narrow “foveal” fields of view rotate with the
eyes. Two central cameras with wide fields of view rotate with the neck. These
cameras are unaffected by the orientation of the eyes.

pled device (CCD) cameras. The positions of the neck and eyes
are important both for expressive postures and for directing the
cameras toward behaviorally relevant stimuli.

The cameras in Kismet’s eyes have high acuity but a narrow
field of view. Between the eyes, there are two unobtrusive cen-
tral cameras fixed with respect to the head, each with a wider
field of view but correspondingly lower acuity. The reason for
this mixture of cameras is that typical visual tasks require both
high acuity and a wide field of view. High acuity is needed
for recognition tasks and for controlling precise visually guided
motor movements. A wide field of view is needed for search
tasks, for tracking multiple objects, compensating for involun-
tary egomotion, etc. A common trade-off found in biological
systems is to sample part of the visual field at a high enough
resolution to support the first set of tasks and to sample the rest
of the field at an adequate level to support the second set. This
is seen in animals with foveate vision, such as humans, where
the density of photoreceptors is highest at the center and falls
off dramatically toward the periphery. This can be implemented
by using specially designed imaging hardware [7], space-variant
image sampling [8], or by using multiple cameras with different
fields of view, as we have done.

The designs of our robots are constantly evolving. New de-
grees of freedom are added, old degrees of freedom are reor-
ganized, sensors are replaced or rearranged, and new sensory
modalities are introduced. The descriptions given here should
be treated as a fleeting snapshot of the current state of the robots.
Our hardware and software control architectures have been de-
signed to meet the challenge of real-time processing of visual
signals (approaching 30 Hz) with minimal latencies. Kismet’s
vision system is implemented on a network of nine 400 MHz
commercial PCs running the QNX real-time operating system.
Kismet’s motivational system runs on a collection of four Mo-
torola 68 332 processors. Machines running Windows NT and
Linux are also networked for speech generation and recogni-
tion, respectively. Even more so than Kismet’s physical form,
the control network is rapidly evolving as new behaviors and
sensory modalities come online.

IV. L EVELS OFVISUAL BEHAVIOR

Visual behavior can be conceptualized on four different levels
(as shown in Fig. 3). These levels correspond to thesocial level,
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Fig. 3. Levels of behavioral organization. The primitive level is populated
with tightly coupled sensorimotor loops. The skill level contains modules
that coordinate primitives to achieve tasks. Behavior level modules deal with
questions of relevance, persistence, and opportunism in the arbitration of tasks.
The social level comprises design–time considerations of how the robot’s
behaviors will be interpreted and responded to in a social environment.

thebehavior level, theskills level, and theprimitives level. This
decomposition is motivated by distinct temporal, perceptual,
and interaction constraints that exist at each level. The temporal
constraints pertain to how fast the motor acts must be updated
and executed. These can range from real-time vision rates (30
Hz) to the relatively slow time scale of social interaction (po-
tentially transitioning over minutes). The perceptual constraints
pertain to what level of sensory feedback is required to coordi-
nate behavior at that layer. This perceptual feedback can orig-
inate from the low-level visual processes such as the current
target from the attention system, to relatively high-level multi-
modal percepts generated by the behavioral releasers. The inter-
action constraints pertain to the arbitration of units that compose
each layer. This can range from low-level oculomotor primitives
(such as saccades and smooth pursuit) to using visual behavior
to regulate human–robot turntaking.

Each level serves a particular purpose for generating the
overall observed behavior. As such, each level must address a
specific set of issues. The levels of abstraction help simplify the
overall control of visual behavior by restricting each level to
address those core issues that are best managed at that level. By
doing so, the coordination of visual behavior at each level (i.e.,
arbitration), between the levels (i.e., top–down and bottom–up),
and through the world is maintained in a principled way.

• Social Level:The social level explicitly deals with issues
pertaining to having a human in the interaction loop. This
requires careful consideration of how the human interprets
and responds to the robot’s behavior in a social context.
Using visual behavior (making eye contact and breaking
eye contact) to help regulate the transition of speaker turns
during vocal turntaking is an example.

• Behavior Level:The behavior level deals with issues
related to producing relevant, appropriately persistent,
and opportunistic behavior. This involves arbitrating
between the many possible goal-achieving behaviors that
the robot could perform to establish the current task.
Actively seeking out a desired stimulus and then visually
engaging it is an example.

• Motor Skill Level:The motor skill level is responsible for
figuring out how to move the motors to accomplish that
task. Fundamentally, this level deals with the issues of
blending of and sequencing between coordinated ensem-
bles of motor primitives (each ensemble is a distinct motor
skill). The skills level must also deal with coordinating
multimodal motor skills (e.g., those motor skills that
combine speech, facial expression, and body posture).
Fixed action patterns such as a searching behavior is an
example where the robot alternately performs ballistic
eye–neck orientation movements with gaze fixation to
the most salient target. The ballistic movements are
important for scanning the scene, and the fixation periods
are important for locking on the desired type of stimulus.

• Motor Primitives Level:The motor primitives level im-
plements the building blocks of motor action. This level
must deal with motor resource allocation and tightly cou-
pled sensorimotor loops. For example, gaze stabilization
must take sensory stimuli and produce motor commands
in a very tight feedback loop. Kismet actually has four dis-
tinct motor systems at the primitives level:

a) theaffective vocal system;
b) thefacial expression system;
c) theoculomotor system;
d) thebody posturing system.

Because this paper focuses on visual behavior, we only
discuss the oculomotor system here.

We describe these levels in detail as they pertain to Kismet’s
visual behavior. We begin at the lowest level (motor primitives
pertaining to vision) and progress to the highest level where we
discuss the social constraints of animate vision.

V. VISUAL MOTOR PRIMITIVES

Kismet’s visual-motor control is modeled after the human oc-
ular–motor system. The human system is so good at providing
a stable percept of the world that we have no intuitive apprecia-
tion of the physical constraints under which it operates. Humans
have foveate vision. The fovea (the center of the retina) has a
much higher density of photoreceptors than the periphery. This
means that to see an object clearly, humans must move their eyes
such that the image of the object falls on the fovea. Human eye
movement is not smooth. It is composed of many quick jumps,
called saccades, which rapidly reorient the eye to project a dif-
ferent part of the visual scene onto the fovea. After a saccade,
there is typically a period of fixation, during which the eyes are
relatively stable. They are by no means stationary, and continue
to engage in corrective microsaccades and other small move-
ments. If the eyes fixate on a moving object, they can follow
it with a continuous tracking movement called smooth pursuit.
This type of eye movement cannot be evoked voluntarily, but
only occurs in the presence of a moving object. Periods of fix-
ation typically end after some hundreds of milliseconds, after
which a new saccade will occur [9].

The eyes normally move in lock-step, making equal, conjunc-
tive movements. For a close object, the eyes need to turn toward
each other somewhat to correctly image the object on the foveae
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Fig. 4. Humans exhibit four characteristic types of eye motion. Saccadic
movements are high-speed ballistic motions that center a target in the field
of view. Smooth pursuit movements are used to track a moving object at
low velocities. The vestibulo–ocular and optokinetic reflexes act to maintain
the angle of gaze as the head and body move through the world. Vergence
movements serve to maintain an object in the center of the field of view of both
eyes as the object moves in depth.

of the two eyes. These disjunctive movements are called ver-
gence and rely on depth perception (see Fig. 4). Since the eyes
are located on the head, they need to compensate for any head
movements that occur during fixation. The vestibulo–ocular re-
flex uses inertial feedback from the vestibular system to keep
the orientation of the eyes stable as the eyes move. This is a
very fast response but is prone to the accumulation of error over
time. The optokinetic response is a slower compensation mech-
anism that uses a measure of the visual slip of the image across
the retina to correct for drift. These two mechanisms work to-
gether to give humans stable gaze as the head moves.

Our implementation of an ocular–motor system is an approx-
imation of the human system. The motor primitives are orga-
nized around the needs of higher levels, such as maintaining and
breaking mutual regard, performing visual search, etc. Since our
motor primitives are tightly bound to visual attention, we will
first discuss their sensory component.

VI. PREATTENTIVE VISUAL PERCEPTION

Human infants and adults naturally find certain perceptual
features interesting. Features such as color, motion, and
face-like shapes are very likely to attract our attention [10].
We have implemented a variety of perceptual feature detectors
that are particularly relevant to interacting with people and
objects. These include low-level feature detectors attuned to
quickly moving objects, highly saturated color, and colors
representative of skin tones. Examples of features we have
used are shown in Fig. 5. Looming objects are also detected
pre-attentively, to facilitate a fast reflexive withdrawal.

A. Color Saliency Feature Map

One of the most basic and widely recognized visual features is
color. Our models of color saliency are drawn from the comple-
mentary work on visual search and attention from Ittiet al.[11].
The incoming video stream contains three 8-bit color channels
( , , and ) which are transformed into four color-opponency
channels ( , , , and ). Each input color channel is first

Fig. 5. Overview of the attention system. The robot’s attention is determined
by a combination of low-level perceptual stimuli. The relative weightings of
the stimuli are modulated by high-level behavior and motivational influences.
A sufficiently salient stimulus in any modality can preempt attention, similar to
the human response to sudden motion. All else being equal, larger objects are
considered more salient than smaller ones. The design is intended to keep the
robot responsive to unexpected events, while avoiding making it a slave to every
whim of its environment. With this model, people intuitively provide the right
cues to direct the robot’s attention (shake object, move closer, wave hand, etc.).
Displayed images were captured during a behavioral trial session.

normalized by the luminance(a weighted average of the three
input color channels)

(1)

These normalized color channels are then used to produce four
opponent-color channels

(2)

(3)

(4)

(5)

The four opponent-color channels are clamped to 8-bit values by
thresholding. While some research seems to indicate that each
color channel should be considered individually [10], we choose
to maintain all of the color information in a single feature map
to simplify the processing requirements (as does Wolfe [12] for
more theoretical reasons).

B. Motion Feature Map

In parallel with the color saliency computations, a second pro-
cessor receives input images from the frame grabber and com-
putes temporal differences to detect motion. Motion detection
is performed on the wide field of view (FoV) camera, which is
often at rest since it does not move with the eyes. The incoming
image is converted to grayscale and placed into a ring of frame
buffers. A raw motion map is computed by passing the abso-
lute difference between consecutive images through a threshold
function

(6)
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Fig. 6. Skin tone filter responds to 4.7% of possible(R;G;B) values. Each
grid in the figure to the left shows the response of the filter to all values of
red and green for a fixed value of blue. The image to the right shows the filter
in operation. Typical indoor objects that may also be consistent with skin tone
include wooden doors, cream walls, etc.

This raw motion map is then smoothed with a uniform 78
field. The result is a binary two-dimensional (2-D) map where
regions corresponding to motion have a high intensity value.
The motion saliency feature map is computed at 25–30 Hz by a
single 400 MHz processor node. Fig. 5 gives an example of the
motion feature map when the robot looks at a toy block that is
being shaken.

C. Skin Tone Feature Map

Colors consistent with skin are also filtered for. This is a com-
putationally inexpensive means to rule out regions that are un-
likely to contain faces or hands. Most pixels on faces will pass
these tests over a wide range of lighting conditions and skin
color. Pixels that pass these tests are weighted according to a
function learned from instances of skin tone from images taken
by Kismet’s cameras (see Fig. 6). In this implementation, a pixel
is not skin-toned if

• (red component fails to dominate green suffi-
ciently);

• (red component is excessively dominated by
blue);

• (red component completely dominates
both blue and green);

• (the red component is too low to give good esti-
mates of ratios);

• (the red component is too saturated to give a good
estimate of ratios).

VII. V ISUAL ATTENTION

We have implemented Wolfe’s model of human visual search
and attention [12]. Our implementation is similar to other
models based in part on Wolfe’s work [11] but additionally op-
erates in conjunction with motivational and behavioral models,
with moving cameras, and addresses the issue of habituation.
The attention process acts in two parts. The low-level feature
detectors discussed in the previous section are combined
through a weighted average to produce a single attention map.
This combination allows the robot to select regions that are
visually salient and to direct its computational and behavioral
resources toward those regions. The attention system also
integrates influences from the robot’s internal motivational and
behavioral systems to bias the selection process. For example, if

Fig. 7. Schematic of behaviors relevant to attention. The activation of a
particular behavior depends on both perceptual factors and motivation factors.
The perceptual factors come from postattentive processing of the target
stimulus into behaviorally relevant percepts. The drives within the motivation
system have an indirect influence on attention by influencing the behavioral
context. The behaviors at Level 1 of the behavior system directly manipulate
the gains of the attention system to benefit their goals. Through behavior
arbitration, only one of these behaviors is active at any time. These behaviors
are further elaborated in deeper levels of the behavior system.

the robot’s current goal is to interact with people, the attention
system is biased toward objects that have colors consistent
with skin tone. The attention system also has mechanisms for
habituating to stimuli, thus providing the robot with a primitive
attention span. The state of the attention system is usually re-
flected in the robot’s gaze direction, unless there are behavioral
reasons for this not to be the case. The attention system runs
all the time, even when not controlling gaze. This is because
it must always determine the most interesting perceptual input
for the robot to respond towards.

A. Task-Based Influences on Attention

For a goal achieving creature, the behavioral state should also
bias what the creature attends to next. For instance, when per-
forming visual search, humans seem to be able to preferentially
select the output of one broadly tuned channel per feature (e.g.,
“red” for color and “shallow” for orientation if searching for red
horizontal lines).

In our system these top–down, behavior-driven factors
modulate the output of the individual feature maps before
they are summed to produce the bottom–up contribution. This
process selectively enhances or suppresses the contribution of
certain features but does not alter the underlying raw saliency
of a stimulus. To implement this, the bottom–up results of each
feature map are passed through a filter (effectively a gain). The
value of each gain is determined by the active behavior. For
instance, as shown in Fig. 7, the skin-tone gain is enhanced
when the behavior is active and is suppressed
when the behavior is active. Similarly, the
color gain is enhanced when the behavior is active
and suppressed when the behavior is active.
Whenever the or behaviors
are active, the face and color gains are restored to their default
values, respectively.

These modulated feature maps are then summed to compute
the overall attention activation map, thus biasing attention in a
way that facilitates achieving the goal of the active behavior.
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Fig. 8. Effect of gain adjustment on looking preference. Circles correspond
to fixation points sampled at 1 s intervals. On the left, the gain of the skin-tone
filter is higher. The robot spends more time looking at the face in the scene (86%
face, 14% block). This bias occurs despite the fact that the face is dwarfed by
the block in the visual scene. On the right, the gain of the color saliency filter is
higher. The robot now spends more time looking at the brightly colored block
(28% face, 72% block).

For example, if the robot is searching for social stimuli, it be-
comes sensitive to skin tone and less sensitive to color. Behav-
iorally, the robot may encounter toys in its search but will con-
tinue until a skin-toned stimulus is found (often a person’s face).
Fig. 8 shows the results of two such experiments. The left figure
shows a looking preference to a person despite a lesser “raw”
saliency when the robot is seeking out people. Conversely, when
the robot is actively searching for a toy, it demonstrates a looking
preference to the colorful block despite the dominant presence
of a person’s face in the visual field.

B. Habituation Effects

To build a believable creature, the attention system must also
implement habituation effects. Infants respond strongly to novel
stimuli, but soon habituate and respond less as familiarity in-
creases. This acts both to keep the infant from being contin-
ually fascinated with any single object and to force the care-
taker to continually engage the infant with slightly new and in-
teresting interactions. For a robot, a habituation mechanism re-
moves the effects of highly salient background objects that are
not currently involved in direct interactions as well as placing re-
quirements on the caretaker to maintain interaction with slightly
novel stimulation.

To implement habituation effects, ahabituation filter is ap-
plied to the activation map over the location currently being at-
tended to. The habituation filter effectively decays the activation
level of the location currently being attended to, making other
locations of lesser activation bias attention to a stronger degree.

C. Consistency of Attention

In the presence of objects of similar salience, it is useful to
be able to commit attention to one of the objects for a period
of time. This gives time for postattentive processing to be car-
ried out on the object and for downstream processes to organize
themselves around the object. As soon as a decision is made that
the object is not behaviorally relevant (for example, it may lack
eyes, which are searched for postattentively), attention can be
withdrawn from it and visual search may continue. Committing
to an object is also useful for behaviors that need to be atomi-
cally applied to a target (for example, a calling behavior where
the robot needs to stay looking at the person it is calling).

To allow such commitment, the attention system is aug-
mented with a tracker. The tracker follows a target in the visual
field, using simple correlation between successive frames.
Usually, changes in the tracker target will be reflected in
movements of the robot’s eyes, unless this is behaviorally
inappropriate. If the tracker loses the target, it has a very good
chance of being able to reacquire it from the attention system.

D. Experiments with Directing Attention

The overall attention system runs at 20 Hz on several
400-MHz processors. In Section VII-A, we presented Kismet’s
looking preference results with respect to directing its attention
to task-relevant stimuli. In this section, we examine how easy it
is for people to direct the Kismet’s attention to a specific target
stimulus and to determine when they have been successful in
doing so.

Three naïve subjects were invited to interact with Kismet. The
subjects ranged in age from 25 to 28 years old. All used com-
puters frequently but were not computer scientists by training.
All interactions were video recorded. The robot’s attention gains
were set to their default values so that there would be no strong
preference for one saliency feature over another. The subjects
were asked to direct the robot’s attention to each of the target
stimuli. There were seven target stimuli used in the study. Three
were saturated color stimuli, three were skin-toned stimuli, and
the last was a pure motion stimulus. Each target stimulus was
used more than once per subject. These are listed below.

• A highly saturated colorful block.
• A bright yellow stuffed dinosaur with multicolor spines.
• A bright green cylinder.
• A bright pink cup (which is actually detected by the

skin-tone feature map).
• The person’s face.
• The person’s hand.
• A black and white plush cow (which is only salient when

moving).
The video was later analyzed to determine which cues the

subjects used to attract the robot’s attention, which cues they
used to determine when they had been successful, and the length
of time required to do so. They were also interviewed at the end
of the session about which cues they used, which cues they read,
and about how long they thought it took to direct the robot’s
attention. The results are summarized in Table I.

To attract the robot’s attention, the most frequently used cues
include bringing the target close and in front of the robot’s face,
shaking the object of interest, or moving it slowly across the
centerline of the robot’s face. Each cue increases the saliency
of a stimulus by making it appear larger in the visual field, or
by supplementing the color or skin-tone cue with motion. Note
that there was an inherent competition between the saliency of
the target and the subject’s own face as both could be visible
from the wide FoV camera. If the subject did not try to direct
the robot’s attention to the target, the robot tended to look at the
subject’s face.

The subjects also effortlessly determined when they had suc-
cessfully redirected the robot’s gaze. Interestingly, it is not suf-
ficient for the robot to orient to the target. People look for a
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TABLE I
SUMMARY FROM ATTENTION MANIPULATION INTERACTIONS

changein visual behavior, from ballistic orientation movements
to smooth pursuit movements, before concluding that they had
successfully redirected the robot’s attention. All subjects re-
ported that eye movement was the most relevant cue to de-
termine if they had successfully directed the robot’s attention.
They all reported that it was easy to direct the robot’s attention
to the desired target. They estimated the mean time to direct the
robot’s attention at 5 to 10 s. This turns out to be the case; the
mean time over all trials and all targets is 5.8 s.

VIII. POST-ATTENTIVE PROCESSING

Once the attention system has selected regions of the visual
field that are potentially behaviorally relevant, more intensive
computation can be applied to these regions than could be ap-
plied across the whole field. Searching for eyes is one such task.
Locating eyes is important to us for engaging in eye contact, and
as a reference point for interpreting facial movements and ex-
pressions. We currently search for eyes after the robot directs its
gaze to a locus of attention so that a relatively high-resolution
image of the area being searched is available from the foveal
cameras (see Fig. 9). Once the target of interest has been se-
lected, we also estimate its proximity to the robot using a stereo
match between the two central-wide cameras. Proximity is im-
portant for interaction as things closer to the robot should be
of greater interest. It is also useful for interaction at a distance,
such as a person standing too far for face-to-face interaction but
is close enough to be beckoned closer. Clearly, the relevant be-
havior (beckoning or playing) is dependent on the proximity of
the human to the robot.

Eye-detection in a real-time, robotic domain is computation-
ally expensive and prone to error due to the large variance in
head posture, lighting conditions, and feature scales. We devel-
oped an approach based on successive feature extraction, com-
bined with some inherent domain constraints, to achieve a robust
and fast eye-detection system for Kismet. First, a set of feature
filters are applied successively to the image in increasing feature
granularity. This serves to reduce the computational overhead
while maintaining a robust system. The successive filter stages
include the following.

• Detect skin colored patches in the image (abort if this does
not pass above threshold).

• Scan the image for ovals and characterize its skin tone for
a potential face.

Fig. 9. Eyes are searched for within a restricted part of the robot’s field of
view. The eye detector actually looks for the region between the eyes. It has
adequate performance over a limited range of distances and face orientations.

• Extract a subimage of the oval and run a ratio template
[13], [14] over it for candidate eye locations.

• For each candidate eye location, run a pixel-based multi-
layer perceptron on the region. The perceptron is previ-
ously trained to recognize shading patterns characteristic
of the eyes and bridge of the nose.

By doing so, the set of possible eye locations in the image is
reduced from the previous level based on a feature filter. This
allows the eye detector to run in real-time on a 400-MHz PC.
The methodology assumes

1) that the lighting conditions allow the eyes to be distin-
guished as dark regions surrounded by highlights of the
temples and the bridge of the nose;

2) that human eyes are largely surrounded by regions of skin
color;

3) that the head is only moderately rotated;
4) that the eyes are reasonably horizontal;
5) that people are within interaction distance from the robot

(3 to 10 ft).

IX. EYE MOVEMENTS

Kismet’s eyes periodically saccade to new targets chosen by
an attention system, tracking them smoothly if they move and
the robot wishes to engage them. Vergence eye movements are
more challenging to implement in a social setting, since errors
in disjunctive eye movements can give the eyes a disturbing ap-
pearance of moving independently. Errors in conjunctive move-
ments have a much smaller impact on an observer since the eyes
clearly move in lockstep. A crude approximation of the optoki-
netic reflex is rolled into our implementation of smooth pursuit.
An analog of the vestibular–ocular reflex has been developed
using a three-axis inertial sensor but has yet to be implemented
on Kismet (it currently runs on other humanoid robots in our
lab). Kismet uses an efferent copy mechanism to compensate
the eyes for movements of the head. An overview of the oculo-
motor control system is shown in Fig. 10.

The attention system operates on the view from the central
camera (see Fig. 2). A transformation is needed to convert pixel
coordinates in images from this camera into position setpoints
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Fig. 10. Organization of Kismet’s eye/neck motor control. Many cross level
influences have been omitted. The modules in gray are not active in the results
presented in this paper.

for the eye motors. This transformation in general requires the
distance to the target to be known since objects in many lo-
cations will project to the same point in a single image (see
Fig. 11). Distance estimates are often noisy, which is problem-
atic if the goal is to center the target exactly in the eyes. In
practice, it is usually enough to get the target within the field
of view of the foveal cameras in the eyes. Clearly, the narrower
the field of view of these cameras is, the more accurately the
distance to the object needs to be known. Other crucial factors
are the distance between the wide and foveal cameras, and the
closest distance at which the robot will need to interact with ob-
jects. These constraints determined the physical distribution of
Kismet’s cameras and choice of lenses. The central location of
the wide camera places it as close as possible to the foveal cam-
eras. It also has the advantage that moving the head to center
a target as seen in the central camera will in fact truly orient
the head toward that target—for cameras in other locations, ac-
curacy of orientation would be limited by the accuracy of the
measurement of distance.

Higher level influences modulate eye and neck movements
in a number of ways. As already discussed, modifications to
weights in the attention system translate to changes of the locus
of attention about which eye movements are organized. The
regime used to control the eyes and neck is available as a set of
primitives to higher level modules. Regimes include low-com-
mitment search, high-commitment engagement, avoidance, sus-
tained gaze, and deliberate gaze breaking. The primitive per-
cepts generated by this level include a characterization of the
most salient regions of the image in terms of the feature maps,
an extended characterization of the tracked region in terms of the
results of postattentive processing (eye detection, and distance
estimation), and signals related to undesired conditions, such as
a looming object, or an object moving at speeds the tracker finds
difficult to keep up with.

X. VISUAL MOTOR SKILLS

Given the current task (as dictated by the behavior system),
the motor skills level is responsible for figuring out how to
move the actuators to carry out the stated goal. Often this re-
quires coordination between multiple motor modalities (speech,

Fig. 11. Without distance information, knowing the position of a target in the
wide camera only identifies a ray along which the object must lie, and does not
uniquely identify its location. If the cameras are close to each other relative to the
closest distance at which the object is expected to be, at the foveal cameras can
be rotated to bring the object within their narrow field of view without needing
an accurate estimate of its distance. If the cameras are far apart, or the field of
view is very narrow, the minimum distance the object can be at becomes large.

body posture, facial display, and gaze control). Requests for
these modalities can originate from the top–down (e.g., from
the emotion system or behavior system), as well as from the
bottom–up (the vocal system requesting lip and jaw movements
for lip synching). Hence, the motor skills level must address the
issue of servicing the motor requests of different systems across
the different motor resources.

Furthermore, it often requires a sequence of coordinated
motor movements to satisfy a goal. Each motor movement is
a primitive (or a combination of primitives) from one of the
base motor systems (the vocal system, the oculomotor system,
etc.). Each of these coordinated series of motor primitives is
called askill, and each skill is implemented as a finite state
machine (FSM). Each motor skill encodes knowledge of how
to move from one motor state to the next, where each sequence
is designed to bring the robot closer to the current goal. The
motor skills level must arbitrate among the many different
FSMs, selecting the one to become active based on the active
goal. This decision process is straight forward since there is an
FSM tailored for each task of the behavior system.

Many skills can be thought of as afixed action pattern(FAP),
as conceptualized by early ethologists. Each FAP consists of two
components: theactioncomponent and thetaxis (or orienting)
component. For Kismet, FAPs often correspond to communica-
tive gestures where the action component corresponds to the fa-
cial gesture, and the taxis component (to whom the gesture is
directed) is controlled by gaze. People seem to intuitively un-
derstand that when Kismet makes eye contact with them, they
are the locus of Kismet’s attention and the robot’s behavior is
organized about them. This places the person in a state of action
readiness where they are poised to respond to Kismet’s gestures.

A simple example of a motor skill is Kismet’s “calling” FAP.
When the current task is to bring a person into a good interaction
distance, the motor skill system activates the FSM.
The taxis component of the FAP issues a request to
the oculomotor system. This serves to maintain the robot’s gaze
on the person to be hailed. In the first state of the gestural com-
ponent, Kismet leans its body toward the person (a request to
the body posture motor system). This strengthens the person’s
perception that the robot has taken a particular interest in them.
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The ears also begin to waggle exuberantly (creating a significant
amount of motion and noise) which further attracts the person’s
attention to the robot (a request to the face motor system). In ad-
dition, Kismet vocalizes excitedly which is perceived as an initi-
ation of engagement. At the completion of this gesture, the FSM
transitions to the second state. In this state, the robot “sits back”
and waits for a bit with an expecting expression (ears slightly
perked, eyes slightly widened, and brows raised). If the person
has not already approached the robot, it is likely to occur during
this “anticipation” phase. If the person does not approach within
the allotted time period, the FSM transitions to the third state in
which the face relaxes, the robot maintains a neutral posture,
and gaze fixation is released. At this point, the robot is likely
to shift gaze. As long as this FSM is active (determined by the
behavior system), the hailing cycle repeats. It can be interrupted
at any state transition by the activation of another FSM (such as
the “greeting” FSM when the person has approached).

We now move up another layer of abstraction, to the behavior
level in the hierarchy that was shown in Fig. 3.

XI. V ISUAL BEHAVIOR

The behavior level is responsible for establishing the cur-
rent task for the robot through arbitrating among Kismet’s goal-
achieving behaviors. By doing so, the observed behavior should
be relevant, appropriately persistent, and opportunistic. Both
the current environmental conditions (as characterized by high-
level perceptual releasers, as well as motivational factors (emo-
tion processes and homeostatic regulation) contribute to this de-
cision process.

Interaction of the behavior level with the social level occurs
through the world as determined by the nature of the interac-
tion between Kismet and the human. As the human responds to
Kismet, the robot’s perceptual conditions change. This can acti-
vate a different behavior, whose goal is physically carried out by
the underlying motor systems. The human observes the robot’s
ensuing response and shapes their reply accordingly.

Interaction of the behavior level with the motor skills level
also occurs through the world. For instance, if Kismet is looking
for a bright toy, then the behavior is active. This task
is passed to the underlying motor skills which carry out the
search. The act of scanning the environment brings new per-
ceptions to Kismet’s field of view. If a toy is found, then the

behavior is successful and released. At this point, the
perceptual conditions for engaging the toy are relevant and the

behaviors become active. A new set of motor skills
become active to track and smoothly pursue the toy.

A. Social Level

Eye movements have communicative value. As discussed
previously, they indicate the robot’s locus of attention. The
robot’s degree of engagement can also be conveyed, to commu-
nicate how strongly the robot’s behavior is organized around
what it is currently looking at. If the robot’s eyes flick about
from place to place without resting, that indicates a low level of
engagement, appropriate to a visual search behavior. Prolonged

Fig. 12. Regulating interaction. People too distant to be seen clearly are called
closer; if they come too close, the robot signals discomfort and withdraws. The
withdrawal moves the robot back somewhat physically but is more effective in
signaling to the human to back off. Toys or people that move too rapidly cause
irritation.

fixation with smooth pursuit and orientation of the head
toward the target conveys a much greater level of engagement,
suggesting that the robot’s behavior is very strongly organized
about the locus of attention.

Eye movements are the most obvious and direct motor actions
that support visual perception, but they are by no means the only
ones. Postural shifts and fixed action patterns involving the en-
tire robot also have an important role. Kismet has a number of
coordinated motor actions designed to deal with various limita-
tions of Kismet’s visual perception (see Fig. 12). For example,
if a person is visible, but is too distant for their face to be imaged
at adequate resolution, Kismet engages in a calling behavior to
summon the person closer. People who come too close to the
robot also cause difficulties for the cameras with narrow fields
of view, since only a small part of a face may be visible. In this
circumstance, a withdrawal response is invoked, where Kismet
draws back physically from the person. This behavior, by itself,
aids the cameras somewhat by increasing the distance between
Kismet and the human, but the behavior can have a secondary
and greater effect through social amplification—for a human
close to Kismet, a withdrawal response is a strong social cue
to back away, since it is analogous to the human response to in-
vasions of “personal space.”

Similar kinds of behavior can be used to support the visual
perception of objects. If an object is too close, Kismet can lean
away from it; if it is too far away, Kismet can crane its neck to-
ward it. Again, in a social context, such actions have power be-
yond their immediate physical consequences. A human, reading
intent into the robot’s actions, may amplify those actions. For
example, neck-craning toward a toy may be interpreted as in-
terest in that toy, resulting in the human bringing the toy closer to
the robot. Another limitation of the visual system is how quickly
it can track moving objects. If objects or people move at exces-
sive speeds, Kismet has difficulty tracking them continuously.
To bias people away from excessively boisterous behavior in
their own movements or in the movement of objects they ma-
nipulate, Kismet shows irritation when its tracker is at the limits
of its ability. These limits are either physical (the maximum rate
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at which the eyes and neck move) or computational (the max-
imum displacement per frame from the cameras over which a
target is searched for).

Such regulatory mechanisms play roles in more complex so-
cial interactions, such as conversational turntaking. Here con-
trol of gaze direction is important for regulating conversation
rate [15]. In general, people are likely to glance aside when they
begin their turn and make eye contact when they are prepared to
relinquish their turn and await a response. Blinks occur most fre-
quently at the end of an utterance. These and other cues allow
Kismet to influence the flow of conversation to the advantage
of its auditory processing. The visual-motor system can also
be driven by the requirements of a nominally unrelated sensory
modality, just as behaviors that seem completely orthogonal to
vision (such as ear-wiggling during the call behavior to attract a
person’s attention) are nevertheless recruited for the purposes of
regulation. These mechanisms also help protect the robot. Ob-
jects that suddenly appear close to the robot trigger a looming
reflex, causing the robot to quickly withdraw and appear star-
tled. If the event is repeated, the response quickly habituates,
and the robot simply appears annoyed, since its best strategy for
ending these repetitions is to clearly signal that they are unde-
sirable. Similarly, rapidly moving objects close to the robot are
threatening and trigger an escape response. These mechanisms
are all designed to elicit natural and intuitive responses from
humans, without any special training, but even without these
carefully crafted mechanisms, it is often clear to a human when
Kismet’s perception is failing, and what corrective action would
help, because the robot’s perception is reflected in behavior in a
familiar way. Inferences made based on our human preconcep-
tions are actually likely to work.

B. Evidence of Social Amplification

To evaluate the social implications of Kismet’s behavior, we
invited a few people to interact with the robot in a free-form ex-
change. There were four subjects in the study: two males (one
adult and one child) and two females (both adults). They ranged
in age from 12 to 28 years. None of the subjects were affili-
ated with the Massachusetts Institute of Technology (MIT). All
had substantial experience with computers. None of the subjects
had any prior experience with Kismet. The child had prior ex-
perience with a variety of interactive toys. Each subject inter-
acted with the robot for 20 to 30 min. All exchanges were video
recorded for further analysis.

We analyzed the video for evidence of social amplification.
Namely, did people read Kismet’s cues and did they respond
to them in a manner that benefited the robot’s perceptual pro-
cessing or its behavior? We found several classes of interactions
where the robot displayed social cues and successfully regulated
the exchange.

1) Establishing a Personal Space:The strongest evidence
of social amplification was apparent in cases where people came
within very close proximity of Kismet. In numerous instances
the subjects would bring their face very close to the robot’s face.
The robot would withdraw, shrinking backward, perhaps with an
annoyed expression on its face. In some cases the robot would
also issue a vocalization with an expression of disgust. In one
instance, the subject accidentally came too close and the robot

withdrew without exhibiting any signs of annoyance. The sub-
ject immediately queried, “Am I too close to you? I can back
up” and moved back to put a bit more space between himself
and the robot. In another instance, a different subject intention-
ally put his face very close to the robot’s face to explore the
response. The robot withdrew while displaying full annoyance
in both face and voice. The subject immediately pushed back-
ward, rolling the chair across the floor to put about an additional
3 ft between himself and the robot, and promptly apologized to
the robot.

Overall, across different subjects, the robot successfully es-
tablished a personal space. This benefits the robot’s visual pro-
cessing by keeping people at a distance where the visual system
can detect eyes more robustly. This behavioral response was
added to the robot’s repertoire because previous interactions
with naïve subjects illustrated the robot was not granted any per-
sonal space. This can be attributed to “baby movements” where
people tend to get extremely close to infants, for instance.

2) Luring People to a Good Interaction Distance:People
seem responsive to Kismet’s calling behavior. When a person
is close enough for the robot to perceive his/her presense, but
too far away for face-to-face exchange, the robot issues this so-
cial display to bring the person closer. The most distinguishing
features of the display are craning the neck forward in the di-
rection of the person, wiggling the ears with large amplitude,
and vocalizing with an excited affect. The function of the dis-
play is to lure people into an interaction distance that benefits
the vision system. This behavior is not often witnessed as most
subjects simply pull up a chair in front of the robot and remain
seated at a typical face-to-face interaction distance.

The youngest subject took the liberty of exploring different
interaction ranges, however. Over the course of about 15 min he
would alternately approach the robot to a normal face-to-face
distance, move very close to the robot (invading its personal
space), and backing away from the robot. Upon the first ap-
pearance of the calling response, the experimenter queried the
subject about the robot’s behavior. The subject interpreted the
display as the robot wanting to play, and he approached the
robot. At the end of the subject’s investigation, the experimenter
queried him about the further interaction distances. The sub-
ject responded that when he was further from Kismet, the robot
would lean forward. He also noted that the robot had a harder
time looking at his face when he was farther back. In general, he
interpreted the leaning behavior as the robot’s attempt to initiate
an exchange with him. We have noticed from earlier interactions
(with other people unfamiliar with the robot) that a few people
have not immediately understood this display as a “calling” be-
havior. The display is flamboyant enough, however, to arouse
their interest to approach the robot.

XII. L IMITATIONS AND EXTENSIONS

There are a number of ways the current implementation could
be improved and expanded upon. Some of these recommenda-
tions involve supplementing the existing framework, others in-
volve integrating this system into a larger framework.

Kismet’s visual perceptual world only consists of what is in
view of the cameras. Ultimately, the robot should be able to con-
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struct an egocentered saliency map of interaction space. In this
representation, the robot could keep track of where interesting
things are located, even if they are not currently in view. Human
infants engage in social referencing with their caregiver at a very
young age. If some event occurs that the infant is unsure about,
the infant will look to the caregiver’s face for an affective as-
sessment. The infant will use this assessment to organize its be-
havior. For instance, if the caregiver looks frightened, the infant
may become distressed and not probe further. If the caregiver
looks pleased and encouraging, the infant is likely to continue
exploring. With respect to Kismet, it will encounter many situ-
ations that it was not explicitly programmed to evaluate. How-
ever, if the robot can engage in social referencing, it can look to
the human for the affective assessment and use it to bias learning
and to organize subsequent behavior. Chances are, the event in
question and the human’s face will not be in view at the same
time. Hence, a representation of where interesting things are in
egocentered interaction space is an important resource.

The attention system could be extended by adding new fea-
ture maps. A depth map from stereo would be very useful—cur-
rently distance is only computed postattentively. Another inter-
esting feature map to incorporate into the system would be edge
orientation. Wolfe [12] and Triesman [16] among others argue
in favor of edge orientation as a bottom–up feature map in hu-
mans. Currently, Kismet has no shape metrics to help it distin-
guish objects from each other (such as its toy block from its toy
dinosaur). Adding features to support this is an important exten-
sion to the existing implementation.

There are no auditory bottom–up contributions. A sound lo-
calization feature map would be a nice multimodal extension.
Currently, Kismet assumes that the most salient person is the
one who is talking to it. Often, there are multiple people talking
around and to the robot. It is important that the robot knows who
is addressing it and when. Sound localization would be of great
benefit here.

XIII. C ONCLUSION

Motor control for a social robot poses challenges beyond is-
sues of stability and accuracy. Motor actions will be perceived
by human observers as semantically rich, regardless of whether
the imputed meaning is intended or not. This can be a powerful
resource for facilitating natural interactions between robot and
human, and places constraints on the robot’s physical appear-
ance and movement. It allows the robot to be readable—to make
its behavioral intent and motivational state transparent at an in-
tuitive level to those it interacts with. It allows the robot to regu-
late its interactions to suit its perceptual and motor capabilities,
again in an intuitive way with which humans naturally coop-
erate. These social constraints give the robot leverage over the
world that extends far beyond its physical competence, through
social amplification of its perceived intent. If properly designed,
the robot’s visual behaviors can be matched to human expecta-
tions and allow both robot and human to participate in natural
and intuitive social interactions.
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