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IN HIS 1923 PLAY R.U.R.: ROSSUM’S
Universal Robots, Karel Capek coined robot
as a derivative of the Czech robota (forced
labor). Limited to work too tedious or dan-
gerous for humans, today’s robots weld parts
on assembly lines, inspect nuclear plants, and
explore other planets. Generally, robots are
still far from achieving their fictional coun-
terparts’ intelligence and flexibility.

Humanoid robotics labs worldwide are
working on creating robots that are one step
closer to science fiction’s androids. Building
a humanlike robot is a formidable engineer-
ing task requiring a combination of mechan-
ical, electrical, and software engineering;
computer architecture; and real-time control.
In 1993, we began a project aimed at con-
structing a humanoid robot for use in explor-
ing theories of human intelligence.1,2 In addi-
tion to the relevant engineering, computer
architecture, and real-time-control issues,
we’ve had to address issues particular to inte-
grated systems: What types of sensors should
we use, and how should the robot interpret
the data? How can the robot act deliberately
to achieve a task and remain responsive to
the environment? How can the system adapt
to changing conditions and learn new tasks?
Each humanoid robotics lab must address
many of the same motor-control, perception,
and machine-learning problems.

The principles behind our
methodology

The real divergence between groups stems
from radically different research agendas and
underlying assumptions. At the MIT AI Lab,
three basic principles guide our research

• We design humanoid robots to act auton-
omously and safely, without human con-
trol or supervision, in natural work envi-
ronments and to interact with people. We
do not design them as solutions for spe-
cific robotic needs (as with welding
robots on assembly lines). Our goal is to
build robots that function in many differ-
ent real-world environments in essentially
the same way.

• Social robots must be able to detect and
understand natural human cues—the

low-level social conventions that people
understand and use everyday, such as
head nods or eye contact—so that any-
one can interact with them without spe-
cial training or instruction. They must
also be able to employ those conventions
to perform an interactive exchange. The
necessity of these abilities influences the
robots’ control-system design and phys-
ical embodiment.

• Robotics offers a unique tool for testing
models drawn from developmental psy-
chology and cognitive science. We hope
not only to create robots inspired by bio-
logical capabilities, but also to help shape
and refine our understanding of those
capabilities. By applying a theory to a real
system, we test the hypotheses and can
more easily judge them on their content
and coverage.

ASIDE FROM THEIR TRADITIONAL ROLES, HUMANOID

ROBOTS CAN BE USED TO EXPLORE THEORIES OF HUMAN

INTELLIGENCE. THE AUTHORS DISCUSS THEIR PROJECT AIMED

AT DEVELOPING ROBOTS THAT CAN BEHAVE LIKE AND

INTERACT WITH HUMANS.
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Autonomous robots in a
human environment

Unlike industrial robots that operate in a
fixed environment on a small range of stim-
uli, our robots must operate flexibly under
various environmental conditions and for a
wide range of tasks. Because we require the
system to operate without human control, we
must address research issues such as behav-
ior selection and attention. Such autonomy
often represents a trade-off between perfor-
mance on particular tasks and generality in
dealing with a broader range of stimuli. How-
ever, we believe that building autonomous
systems provides robustness and flexibility
that task-specific systems can never achieve.

Requiring our robots to operate auton-
omously in a noisy, cluttered, traffic-filled
workspace alongside human counterparts
forces us to build systems that can cope with
natural-environment complexities. Although

these environments are not nearly as hostile
as those planetary explorers face, they are
also not tailored to the robot. In addition to
being safe for human interaction and recog-
nizing and responding to social cues, our
robots must be able to learn from human
demonstration.

The implementation of our robots reflects
these research principles. For example, Cog
(see Figure 1) began as a 14-degrees-of-free-
dom (DOF) upper torso with one arm and a
rudimentary visual system. In this first incar-
nation, we implemented multimodal behav-
ior systems, such as reaching for a visual tar-
get. Now, Cog features two six-DOF arms, a
seven-DOF head, three torso joints, and
much richer sensory systems. Each eye has
one camera with a narrow field of view for
high-resolution vision and one with a wide
field of view for peripheral vision, giving the
robot a binocular, variable-resolution view
of its environment. An inertial system lets the

robot coordinate motor responses more reli-
ably. Strain gauges measure the output torque
on each arm joint, and potentiometers mea-
sure position. Two microphones provide
auditory input, and various limit switches,
pressure sensors, and thermal sensors pro-
vide other proprioceptive inputs.

The robot also embodies our principle of
safe interaction on two levels. First, we con-
nected the motors on the arms to the joints in
series with a torsional spring.3 In addition to
providing gearbox protection and eliminat-
ing high-frequency collision vibrations, the
spring allows for a very accurate measure-
ment of the torque at the joint, making the
regulation of the applied force much more
reliable. Second, a spring law, in series with
a low-gain force control loop, causes each
joint to behave as if controlled by a low-
frequency spring system (soft springs and
large masses). Such control lets the arms
move smoothly from posture to posture with
a relatively slow command rate, and lets
them deflect out of any obstacle’s way
instead of dangerously forcing through
them, allowing safe and natural interaction.
(For discussion of Kismet, another robot
optimized for human interaction, see “Social
Constraints on Animate Vision,” by Cynthia
Breazeal, Aaron Edsinger, Paul Fitzpatrick,
Brian Scassellati, and Paulina Varchavskaia
in this issue.)

Interacting socially with
humans

Because our robots must exist in a human
environment, social interaction is an impor-
tant facet of our research. Building social
skills into our robots provides not only a nat-
ural means of human–machine interaction
but also a mechanism for bootstrapping
more complex behavior. Humans serve both
as models the robot can emulate and instruc-
tors that help shape the robot’s behavior. Our
current work focuses on four social-interac-
tion aspects: an emotional model for regu-
lating social dynamics, shared attention as a
means for identifying saliency, acquiring
feedback through vocal prosody, and learn-
ing through imitation.

Regulating social dynamics through an
emotional model. One critical component
for a socially intelligent robot is an emotional
model that understands and manipulates its
environment. A robot requires two skills to
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Figure 1. Our upper-torso development platform, Cog, has 22 degrees of freedom that we specifically designed to
emulate human movement as closely as possible.
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learn from such a model. First is the ability
to acquire social input—to understand the
relevant clues humans provide about their
emotional state that can help it understand
any given interaction’s dynamics. Second is
the ability to manipulate the environment—
to express its own emotional state in such a
way that it can affect social-interaction
dynamics. For example, if the robot is
observing an instructor demonstrating a task,
but the instructor is moving too quickly for
the robot to follow, the robot can display a
confused expression. The instructor naturally
interprets this display as a signal to slow
down. In this way, the robot can influence the
instruction rate and quality. Our current
architecture incorporates a motivation model
that encompasses these exchange types (see
Figure 2).

Identifying saliency through shared atten-
tion. Another important requirement for a
robot to participate in social situations is to
understand the basics of shared attention as
expressed by gaze direction, pointing, and
other gestures. One difficulty in enabling a
machine to learn from an instructor is ensur-
ing the machine and instructor both attend
to the same object to understand where new
information should be applied. In other
words, the student must know which scene
parts are relevant to the lesson at hand.
Human students use various social cues from
the instructor for directing their attention;
linguistic determiners (such as “this’’ or
“that’’), gestural cues (such as pointing or
eye direction), and postural cues (such as
proximity) can all direct attention to specific
objects and resolve this problem. We are

implementing systems that can recognize the
social cues that relate to shared attention and
that can respond appropriately based on the
social context.

Acquiring feedback through speech
prosody. Participating in vocal exchange is
important for many social interactions. Other
robotic auditory systems have focused on
recognition of a small hardwired command
vocabulary. Our research has focused on
understanding vocal patterns more funda-
mentally. We have implemented an auditory
system to let our robots recognize vocal affir-
mation, prohibition, and attentional bids. By
doing so, the robot obtains natural social
feedback on which actions it has and has not
executed successfully. Prosodic speech pat-
terns (including pitch, tempo, and vocal tone)

Low-level perceptual system

The
world

• Visual feature extraction
    ■ High color saturation filters
    ■ Skin-color filters
    ■ Motion processing
    ■ Edge detection
    ■ Disparity computation 
 • Auditory feature extraction
    ■ Pitch and energy
    ■ Cepstral filters
• Vestibular sensing
• Tactile and kinesthetic sensing

High-level perception system
• Face and eye detection
• Recognition of model's attentional state 
• Figure–ground segmentation
• Distinguishing social from nonsocial objects
• Recognition of self and other
• Gesture recognition
• Sound-stream segregation
• Recognizing affect through prosody
• Phoneme extraction
• Matching own behavior to observations

Motor system
• Visual-motor skills  (saccades, 
  smooth pursuit, vergence, 
  vestibulo-ocular reflex, 
  opto-kinetic nystigmus)
• Manipulation skills (reaching 
  and grasping)
• Body posture
• Expressive skills (facial 
  expressions and vocalizations)
• Lip-syncing

Attention system
• Habituation mechanisms
• Integration of low-level perceptual 
  features
• High-level motivation influences

Motivation system
• Basic drives (fatigue, pain, and so on)
• Homeostasis
• Basic emotional responses (anger, 
  and so on)
• Positive and negative reinforcement
• Affective assessment of stimuli

Behavior system
• High-level, goal-directed behavior
  selection
• Arbitration of competing behaviors
• Seeking, avoiding, orienting behaviors
• Generating vocalizations
• Turn-taking in imitative games
• Shared attention and directing attention

Figure 2. A generic control architecture under development for use on two of our humanoid robots. Under each large system, we list components that we either have implemented
or are developing. Also, many skills reside in the interfaces between these modules, such as learning visual-motor skills and regulating attention preferences based on motivational
state. We do not list machine learning techniques—an integral part of these individual systems—individually here.
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might be universal; infants have demon-
strated the ability to recognize praise, prohi-
bition, and attentional bids even in unfamil-
iar languages. Our robots do the same.

Learning through imitation. Humans
acquire new skills and new goals through
imitation. Imitation can also be a natural
mechanism for a robot to acquire new skills
and goals.4 Consider this example:

The robot is observing a person opening a
glass jar. The person approaches the robot
and places the jar on a table near the robot.
The person rubs his hands together and then
sets himself to removing the lid from the jar.
He grasps the glass jar in one hand and the
lid in the other and begins to unscrew the lid
by turning it counter-clockwise. While he is
opening the jar, he pauses to wipe his brow,
and glances at the robot to see what it is
doing. He then resumes opening the jar. The
robot then attempts to imitate the action.

Although classical machine learning
addresses some issues this situation raises,
building a system that can learn from this
type of interaction requires a focus on addi-
tional research questions. Which parts of the
action to be imitated are important (such as
turning the lid counter-clockwise), and
which aren’t (such as wiping your brow)?

Once the action has been performed, how
does the robot evaluate the performance?
How can the robot abstract the knowledge
gained from this experience and apply it to
a similar situation? These questions require
knowledge about not only the physical but
also the social environment.

Constructing and testing
human-intelligence theories 

In our research, not only do we draw inspi-
ration from biological models for our
mechanical designs and software architec-
tures, we also attempt to use our implemen-
tations of these models to test and validate
the original hypotheses. Just as computer
simulations of neural nets have been used to
explore and refine models from neuro-
science, we can use humanoid robots to
investigate and validate models from cogni-
tive science and behavioral science. We have
used the following four examples of biolog-
ical models in our research.

Development of reaching and grasping.
Infants pass through a sequence of stages in
learning hand-eye coordination.5 We have
implemented a system for reaching to a

visual target that follows this biological
model.6 Unlike standard kinematic manipu-
lation techniques, this system is completely
self-trained and uses no fixed model of either
the robot or the environment.

Similar to the progression observed in
infants, Cog first trained itself to orient visu-
ally to an interesting object. Cog moved its
eyes to acquire the target and then oriented
its head and neck to face the target. Then Cog
trained itself to reach for the target by inter-
polating between a set of postural primitives
that mimic the responses of spinal neurons
identified in frogs and rats.7 After a few hours
of unsupervised training, Cog executed
effective reaches to the visual targets.

Several interesting outcomes resulted from
this implementation. From a computer sci-
ence perspective, the two-step training
process was computationally simpler. Rather
than attempting to map the visual-stimulus
location’s two dimensions to the nine DOF
necessary to orient and reach for an object,
the training focused on learning two simpler
mappings that could be chained together to
produce the desired behavior. Furthermore,
Cog learned the second mapping (between
eye position and the postural primitives) with-
out supervision. This was possible because
the mapping between stimulus location and

Ballistic
map

Arm
kinematics
and optics

Saccade
map

Gaze
target

Gaze coordinates Arm primitive
 coordinates

Visual (pixel)
coordinates

Gaze coordinates

Reach
position

Reach
error

Reach
error

The World

Figure 3. Reaching to a visual target. Once the robot has oriented to a stimulus, a ballistic mapping computes the arm commands necessary to reach for that stimulus. The robot
observes its own arm’s motion. It then uses the same mapping that it uses for orientation to produce an error signal it can use to train the ballistic map.
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eye position provided a reliable error signal
(Figure 3). From a biological standpoint, this
implementation uncovered a limitation in the
postural primitive theory. Although the model
described how to interpolate between pos-
tures in the initial workspace, no mechanism
for extrapolating to postures outside the ini-
tial workspace existed.

Rhythmic movements. Kiyotoshi Mat-
suoka8 describes a model of spinal cord neu-
rons that produce rhythmic motion. We have
implemented this model to generate repeti-
tive arm motions, such as turning a crank.9

Two simulated neurons with mutually in-
hibitory connections drive each arm joint, as
Figure 4 shows. The oscillators take propri-
oceptive input from the joint and continu-
ously modulate the equilibrium point of that
joint’s virtual spring. The interaction of the
oscillator dynamics at each joint and the
arm’s physical dynamics determines the
overall arm motion.

This implementation validated Matsuoka’s
model on various real-world tasks and pro-
vided some engineering benefits. First, the
oscillators require no kinematic model of the
arm or dynamic model of the system. No a

priori knowledge was required about either
the arm or the environment. Second, the
oscillators were able to tune to a wide task
range, such as turning a crank, playing with
a Slinky, sawing a wood block, and swing-
ing a pendulum, all without any change in
the control system configuration. Third, the
system was extremely tolerant to perturba-
tion. Not only could we stop and start it with
a very short transient period (usually less
than one cycle), but we could also attach
large masses to the arm and the system would
quickly compensate for the change. Finally,
the input to the oscillators could come from
other modalities. One example was using an
auditory input that let the robot drum along
with a human percussionist.

Visual search and attention. We have
implemented Jeremy Wolfe’s model of
human visual search and attention,10 com-
bining low-level feature detectors for visual
motion, color saliency, and depth percep-

Figure 5. Attention system overview. Various visual-feature detectors (color, motion, and face detectors) combine with a habituation function to produce an attention activation map.
The attention process influences eye control and the robot’s internal motivational and behavioral state, which in turn influence the weighted feature-map combination. We captured
the images during a behavioral trial session.

Face detector Color detector Motion detector Habituation

W W W W

Eye motor controlMotivations, drives,
and emotions
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Figure 4. Neural oscillators. The oscillators attached to
each joint comprise a pair of mutually inhibiting
neurons. Black circles represent inhibitory connections;
open white circles are excitatory. The final output is a
linear combination of the neurons’ individual outputs.
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tion and innate perceptual classifiers (such
as face detectors) with a motivational and
behavioral model (see Figure 5). This atten-
tion system lets the robot selectively direct
computational resources and exploratory
behaviors toward objects in the environ-
ment that have inherent or contextual
saliency.

This implementation has let us demon-
strate preferential looking based both on top-
down task constraints and opportunistic use
of low-level features.11 For example, if the
robot is searching for social contact, the moti-
vation system increases the weight of the
face-detector feature. This produces a pref-
erence for looking at faces. However, if a very
interesting nonface object appeared, the
object’s low-level properties would be suffi-
cient to attract the robot’s attention. We are
incorporating saliency cues based on the
model’s focus of attention into this attention
model. We were also able to devise a simple
mechanism for incorporating habituation
effects into Wolfe’s model. By treating time-
decayed Gaussian fields as an additional low-
level feature, the robot will habituate to stim-
uli that are currently receiving attentional
resources.

Shared attention and theory of mind. One
critical milestone in a child’s development is
the recognition that others have beliefs, desires,
and perceptions independent of the child’s. The
abilities to recognize what another person can
see, know that another person maintains a false
belief, and recognize that another person likes
games differing from those the child enjoys are
all part of this developmental chain. Further-
more, the ability to recognize yourself in the
mirror, the ability to ground words in percep-
tual experiences, and the skills involved in cre-
ative and imaginative play might also be
related to this developmental advance. We are
implementing a model of social-skill develop-
ment that accounts for both normal develop-
ment and the developmental disorders associ-
ated with autism. We have implemented
systems that can detect faces and eyes in
unconstrained visual environments and are
working on detecting eye contact.

Although this work is still preliminary,
we believe that implementing a develop-
mental model on a robot will allow detailed
and controlled manipulations of the model
while maintaining the same testing envi-
ronment and methodology used on human
subjects. Researchers can vary internal
model parameters systematically as they

evaluate the effects of different environ-
mental conditions on each step of develop-
ment. Because the robot brings the model
into the same environment as a human sub-
ject, researchers can use similar evaluation
criteria (whether subjective measurements
from observers or quantitative measure-
ments such as reaction time or accuracy).
Also, researchers can subject a robot to test-
ing that’s potentially hazardous, costly, or
unethical to conduct on humans. 

ALTHOUGH SCIENTIFIC RESEARCH
usually takes credit as the inspiration for sci-
ence fiction, it’s possible that with AI and
robotics, fiction led the way. However, over
the past 10 years, humanoid robotics has
become the focus of many research groups,
conferences, and special issues. While out-
pacing the imagination of science-fiction
writers might be difficult, our work does
indicate one possible future. Robots will be
able to interact with humans in humanlike
ways, and people will find this normal and
natural. At the same time, we will continue
to learn more about the nature of our own
intelligence by building these systems.  
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