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Abstract. This paper presents a learning approach for a humanoid robot to reach for

objects in its environment. Instead of assuming that the exact forward kinematics of the

arm are given, we address the reaching problem by first learning the forward kinematics

with a radial basis function network (RBFN) through autonomously gathered training
samples. The learned forward model is subsequently used to construct Jacobian matrices

to incrementally generate straight reaching trajectory exhibited by humans. We show
that if the learning parameters are set appropriately, a RBFN trained on a small number
of samples corrupted by perception noise can still lead to high reaching accuracy. The
size of the training set can be further reduced without severe performance degradation
if limited visual feedback is used to aid reaching after the end effector has been moved
into the neighborhood of the desired object.

Keywords: Reaching; Forward kinematics; Inverse kinematics.

1. Introduction

Most robotic literature dealing with the reaching problem focuses almost exclu-

sively on the aspect of inverse kinematics. A large number of solutions to inverse

kinematics are based on the Resolved Motion Rate Control (RMRC) scheme pro-

posed by Whitney and its extension proposed by Liegeois, both of which require

the exact forward kinematics for the computation of local Jacobian matrices.1,2

Such a requirement does not present a problem for high-precision robotic assembly

systems, but for a research platform, or for most consumer goods, this requirement

is unrealistic due to wear and tear on typical systems.

Additionally, for a biological system, such as human, the parameters of the arm

are not readily available and change gradually over the lifespan of the individual.

Human infants typically start goal-directed reaches around 4 to 5 months of age.

Adult-level reaching proficiency cannot be achieved until they are 3 years old.3

Suggested models of how to learn reaching without prior knowledge of the arm

parameters can be grouped into two categories, both of which require a series of

random arm movements to be performed beforehand to build up a training set.

Models in the first category attempt to learn inverse kinematics without building

a forward model.4,5 After the learning, a direct mapping either from task space

vector x to joint vector θ or from ẋ to θ̇ is constructed. Such an approach is usually

complicated by the fact that inverse kinematics is a one-to-many mapping.6 Special

caution must be taken to ensure the accuracy of the learned inverse model.

Models in the second category use the training set to build a forward model and

then use this forward model to solve the inverse kinematics problem.7,8 Such an ap-

proach is inspired by adaptive control theory and usually requires the identification

of the underlying system before control can be performed.9

We have adopted this indirect learning approach to study reaching arm move-
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ments in a humanoid robot. First a radial basis function network (RBFN) is used to

learn forward kinematics of the arm from a training set consisting of autonomously

gathered samples. After the RBFN is trained, local Jacobian matrices are generated

through differentiation of the radial basis functions in the hidden layer. In this way,

the existing efficient and flexible solutions to inverse kinematics based on RMRC

and its extensions can be exploited to generate reaching trajectories.

Short learning time and high reaching accuracy despite perceptual noise are the

two most important factors that determine the applicability of our approach on a

physical robotic platform. Two contributions of this paper are a detailed description

of the parameter tuning process for the RBFN training and a characterization of the

influence of perceptual noise on the reaching accuracy. We show that with optimized

parameters, high reaching accuracy can be achieved with a small training set which

requires only a short time to construct, even if only proprioceptive feedback is

available during the reaching movement. The size of the training set can be further

reduced if we allow a one-time visual feedback to aid reaching after the end effector

has been moved into the neighborhood of the desired object.

This paper is organized as follows. Section 2 presents the hardware and software

platform of our humanoid robot and the system architecture for learning reaching.

Section 3 characterizes our approach to forward kinematics learning and describes

our solution to inverse kinematics. Section 4 presents the parameter tuning process

for forward kinematics learning and simulation results for reaching accuracy. Section

5 presents the experimental results for an implementation of this strategy on a

humanoid robot. The paper is concluded with a discussion.

2. Experiment Setting

2.1. Hardware and software platform

Nico is an upper-torso humanoid robot modelled after the body dimensions of a

one-year-old human child. The mechanical structure has a seven-DOF head, a six-

DOF arm and and a one-DOF waist. The other arm and an additional two DOFs

in the waist are under construction. Four of the seven DOFs in the head are neck

joints for the control of head orientation, which can be sensed by a 3-axis gyroscope

mounted on the top. The vision system of Nico consists of four miniature CCD

video-cameras divided into two sets, one for each eye. In each set, there is one

long focal length camera for fovial vision and one short focal length camera for

peripheral vision. The six-DOF arm with a total length of about 300mm from

shoulder to wrist has a motion range similar to a one-year-old. Currently, a 60mm

steel shaft is attached to the wrist plate with a φ19.05mm wooden ball at the tip

as the end-effector. Each joint of Nico is driven independently by a DC motor with

an integrated high-resolution optical encoder. All motors and sensors on Nico are

connected via extension cables and respective control units to a computer rack of

sixteen nodes running the QNX real-time operating system. Nodes are connected

through a 100Mbit backbone switch and a number of direct point-to-point network
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links.
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Fig. 1. (A) Mechanical design for Nico, an upper-torso humanoid designed to match the size of a
one-year-old child. (B) The kinematic structure of the robot’s arm with six degrees of freedom,

including two for the shoulder, two for the elbow and two for the wrist. (C) A detailed view of
the arm structure. A steel shaft with a wooden ball as finger tip is currently attached to the wrist
plate for easy detection of the end-effector.

A set of modular software components have been implemented on the robot,

ranging from low-level device drivers to selected higher-level cognitive functions.

During run-time, selected modules are instantiated on the same or different nodes

depending on their computation requirements. Active modules can selectively com-

municate with one another through a common communication interface. Whether

a data exchange takes place on the same node or across the network is totally

transparent to an individual module.

2.2. System architecture for reaching

The overall system architecture for learning to reach is shown in Fig. 2. A stereo

vision subsystem provides the target position, a training module constructs the

forward model and a reaching execution module generates the reaching trajectory.

The modules with dashed boundaries along with their respective data flows are

instantiated only during a training session. The training module and the reaching

execution module will be described in detail in the next two sections, so only the

stereo vision subsystem is treated here.

The stereo vision subsystem retrieves video data from the two short focal length

cameras as input. The two long focal length cameras prove to be impractical for the
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Fig. 2. System structure for learning to reach – The video frames grabbed from the eye cameras
are first corrected for radial distortion. The corrected frames are either filtered by color during a

training session or by a member from a filter repository selected by the attention system during

a test session. Information in the filtered stereo frame pair is subsequently used by the target

determination module to calculate the object position. This position is then used either by the

training manager for learning or by the trajectory generator for reaching. The latter module uses
the forward model constructed by the training manager to generate a reaching trajectory.

stereo vision needed for the reaching behavior, because their common vision field

has only a small overlap with the reachable space of the robot arm. The high radial

distortions of the two short focal length cameras are corrected by their respective

frame grabbers in real-time. The radial distortion coefficients K1 and K2 and other

camera parameters are measured for each camera through the Camera Calibration

Toolbox for Matlab developed by J.-Y. Bouguet.10 The pixel value of position (x, y)

in the corrected frame is filled with the pixel value of position (x′, y′) in the original

frame through the following equation11 —
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{

x′ = x(1 + K1r
2 + K2r

4)

y′ = y(1 + K1r
2 + K2r

4)
(1)

If values of x′ and y′ are not integers, they are substituted by their respective

integer parts. During the startup of the vision subsystem, a lookup table is built for

each camera consisting the mappings from (x, y) to (x′, y′) for all possible (x, y).

The pre-built lookup tables enable an efficient distortion correction in real time. We

currently use a resolution of 320x240 for both cameras.

(A) (B)

Fig. 3. Original image (A) and image (B) corrected for radial distortion through Eq. (1)

During a training session the video frames are filtered by color to identify the

blob representing the finger tip. During the test sessions, the grabber outputs are

fed into a filter repository module that implements a variety of filters. An attention

module dynamically determines the filter to be applied to the grabber outputs. A

subsequent target determination module uses the processed stereo frame pair to

output a spatial position. Its inputs are basically filtered frames, each of them con-

taining at most one blob representing the finger tip. At the current stage the target

determination module simply replaces each blob with its centroid and uses two cor-

responding centroid positions to calculate the target position to reach. Throughout

all experiments described in this paper, the two eye cameras are positioned parallel

to each other, so the calculation of a target position is trivial.12

3. Forward and Inverse Kinematics

3.1. Forward Kinematics Learning

Forward kinematics is defined as a mapping F : θ → x, where θ ∈ Rn is the joint

vector and x ∈ Rm is the task space vector. It has been known in neurophysiology

that the two shoulder joints and the two elbow joints move independently of the

wrist joints for the most part during a reaching movement performed by human

subjects.13 This suggests that a reaching movement can be decoupled into first

moving the hand into the vicinity of the desired object by actuating the shoulder and

elbow joints and then aligning the hand to the object through the wrist joints. At
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the current stage, we require our robot to touch a presented object without putting

any restriction on the orientation of its end effector. This requirement eliminates

the need for recruiting the wrist joints. Only the two shoulder joints and the two

elbow joints marked in Fig. 1(B) are used. The dimensionality of the task space is

reduced to three since only the spatial position is of concern. So the final form of

the forward kinematics to be learned is simplified to F : θ → x with θ ∈ R4 and

x ∈ R3.

Learning the forward kinematics using visual feedback is essentially a proce-

dure of approximating unknown function through training samples of the form

(θi, xi)i=1,2,...,n, where n is the total number of training samples available. The

actual reach location contains noise introduced by the stereo vision system. Neu-

ral networks such as multi-layer perceptron (MLP) and radial basis function net-

works (RBFN) are commonly used for such function approximation tasks. We have

adopted RBFN for the forward kinematics learning for a number of reasons. It has

been shown that RBFNs with a set of basis functions that have a common form

but different centers can approximate any continuous input-output mapping.14 The

study of empirical risk minimization shows that the complexity of the model gen-

erated by a learning algorithm from the training data determines its generalization

performance.15 Such complexity can be directly controlled for a RBFN through re-

stricting the number of nodes in its hidden layer. We use the orthogonal least squares

algorithm (OLS) introduced by Chen et al. to increase the size of the hidden layer

gradually until the approximation error falls below a predetermined limit.16 By ad-

justing the predetermined limit, the sensitivity of the learned function to the noise

in the training data can be reduced. Unlike MLP, the linear weights between the

hidden layer and the output layer of an RBFN can be determined by the linear least

square method. In this way, the problem of being stuck in local minima commonly

encountered in the training phase of MLP is avoided. Furthermore, it has been

suggested that RBFN could be the actual learning mechanism used by biological

entities for sensorimotor transformation.17,18,19

The training manager module shown in Fig. 2 generates one random joint vector

at a time that contains for each arm joint an angular value within its limit. The

joint vector is then sent to the motor daemon to initiate the actual arm movement.

After the movement, if the finger tip of the arm is detectable by both video cameras,

the training manager receives its spatial position from the stereo vision subsystem.

This position together with its associated joint vector forms a training sample. The

whole process repeats itself autonomously until enough samples are gathered. These

samples are subsequently used to train a RBFN. After the training, the resulting

RBFN is saved for future use. The algorithmic description of the training procedure

is summarized as follows —

begin initialize samples← {}, i← 0

while i < sample number needed

Randomly generate joint vector θ
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Send θ to the motor daemon

Wait until the arm movement is finished

x← output of the stereo subsystem

if x is empty

continue

else

samples← Union(samples, (θ, x))

i← i + 1

end

end

Use samples to train a RBFN to approximate forward kinematics.

Save the result.

end

3.2. Solution to Inverse Kinematics

3.2.1. Background

Inverse kinematics solves the problem inverse to the one forward kinematics deals

with. It maps an m-dimensional task space vector into an n-dimensional joint vector.

For a redundant manipulator with n > m, the inverse kinematics is a one-to-many

mapping. In this case, the problem becomes how to select one particular solution

from multiple solutions. The most popular approach to this problem is to set some

criteria and find the particular solution which optimizes these criteria. The criteria

to be optimized can either be global or local. Global optimization is usually too

computationally expensive to be calculated on-line. Local optimization is much

more flexible and computationally less expensive.

Most local optimization methods are based on the Resolved Motion Rate Control

(RMRC) proposed by Whitney in 1969.1 RMRC utilizes the following equation to

solve inverse kinematics —

ẋ = J(θ)θ̇, (2)

where J(θ) is the Jacobian matrix for the current joint vector θ, ẋ is the end-effector

velocity and θ̇ is the joint velocity. For a desired position xtarget and a start position

xstart, θ is incrementally adjusted such that ẋ moves the end-effector toward the

xtarget. In the ideal case, the end-effector position coincides with xtarget at the end

of the reaching movement. For a non-redundant manipulator, J is for the most part

invertable so that Eq. (2) can be solved through

θ̇ = J−1ẋ. (3)
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For redundant manipulators, J is not invertable. To address this problem, Liegois

proposed a method to solve Eq. (2) that can be expressed through

θ̇ = J#ẋ + α(J#J − In)∇H, (4)

where J# = JT (JJT )−1 is the pseudo-inverse of J ,2 H is an extra optimization

criterion to be minimized, and J#J − In is the null space of J . α(J#J − In)∇H

has no influence on ẋ and is used only to move the joint vector to a local minimum

of H. With H set to zero, Eq. (4) is simplified to a succinct form —

θ̇ = J#ẋ. (5)

The local optimization method proposed by Liegois is extremely flexible. It has

numerous extensions addressing problems such as singularity avoidance, obstacle

avoidance and optimization of multiple criteria.20,21,22 The optimization criterion

H can be changed during the run-time to satisfy different requirements during

different phases of the reaching movement. To facilitate the subsequent parameter

tuning and error analysis, we have adopted Eq. (5), Liegois’ method in its simplest

form, to solve the inverse kinematics problem based on the learned forward model.

The θ̇ obtained through Eq. (5) is the one among all possible solutions to Eq. (2)

with the minimum Euclidean norm.23

3.2.2. Incremental generation of reaching trajectories

Studies of physiology and neuroscience on human subjects have shown that Carte-

sian hand trajectories approximately follow the straight line connecting the start

position and the target position.24,25 To simulate this behavior, the end-effector is

moved from its starting position xstart toward the desired position xtarget through

a number of via-points x1, x2, ..., xn−1 on the straight line connecting xstart and

xtarget. xstart is selected from the training samples with small Z components. The

straight line between xstart and xtarget is divided into segments of a fixed length. The

last segment is of variable length. The endpoints of these segments are designated

as the via-points. Before the execution of the reaching movement, the sequence

of the joint vectors corresponding to the via-points and the xtarget is calculated

incrementally.

Eq. (5) is used to generate appropriate joint velocities over the course of the

reaching movement. In our case, the joint velocities are determined by the motor

controllers. Instead of doing velocity control, we use a modified form of Eq. (5)

shown below to calculate the joint vectors corresponding to the via-points and the

end point of the trajectory —

∆θ ≈ J#∆x. (6)



Reaching through Learned Forward Model 9

Eq. (6) provides a very good approximation for small ∆x, because inverse kine-

matics is locally linear despite its global nonlinearity. If the exact forward kinematic

function along with all associated parameters is known, there is a well-known pro-

cedure for calculating J . What we have at hand is only a RBFN representing an

approximation of forward kinematics designated as f̃ with x ≈ f̃(θ). Thanks to

the differentiability of the Gaussian basis function, we can easily get an approxi-

mation of J by replacing the basis functions in the hidden layer of the RBFN with

their appropriate partial derivatives. For instance, in order to get an approxima-

tion of [J11, J21, J31]
T for a certain θ = [θ1, θ2, θ3, θ4]

T , we simply replace the basis

functions by their partial derivatives with respect to x1 and use the output of the

network as the approximation result. In this way, an approximated Jacobian matrix

J̃ can be constructed. With J substituted by J̃ , Eq. (6) is transformed into

∆θ ≈ J̃#∆x. (7)

The algorithm for the incremental generation of a reaching trajectory is sum-

marized below. The array xi,i=1,2,...n specifies the trajectory for the reaching move-

ment. The x̃i,i=1,2,...n vector is the actual trajectory swept by the end-effector over

the course of the movement. xi and x̃i are not identical but should be close to

each other. θ̃i,i=1,2,...,n are the joint vectors corresponding to x̃i,i=1,2,...n. They are

incrementally generated according to Eq. (7) for i = 1, 2, ..., n.

begin

initialize xstart, θstart, xtarget, step length

dist←‖ xtarget − xstart ‖2, n← floor(dist/step length) + 1

for i← 1 to n− 1

x(i)← xstart + i ∗ step length/dist ∗ (xtarget − xstart)

end

x(n)← xtarget

x̃(0)← xstart

θ̃(0)← θstart

for i← 1 to n

∆x← x(i)− x̃(i− 1)

Calculate J̃ and J̃# for θ̃(i− 1)

θ̃(i)← θ̃(i− 1) + J̃#∆x

if i equal n

x̃(i)← f(θ̃(i))

else

x̃(i)← f̃(θ̃(i))

end

end
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Output θ̃(i)i=1,2,...,n to the motor daemon.

end

4. Parameter Tuning through Simulations

4.1. Simulation Settings

An existing implementation of RBFN training with OLS in Matlab called newrb

provides us with an efficient way to conduct simulations in order to tune the asso-

ciated parameters of the forward kinematic learning and evaluate its performance.

All simulations follow a common scheme shown in Fig. 4. Instead of being used to

initiate actual arm movements, the randomly generated joint vectors are mapped

into spatial positions of the end effector through standard homogenous transfor-

mations. The transformation matrices are constructed with the parameters in the

design specification of the arm. The original stereo vision system is replaced by a

simulated version using the parameters of the actual stereo camera system on the

robot head.

Fig. 4. Architecture of Matlab simulations for tuning the associated parameters of the forward

kinematics learning and evaluating its performance. In the simulations, actual arm movements and

stereo position measurements are replaced by their corresponding simulated versions. A separate

module evaluates the approximation accuracy and the resulted reaching accuracy of the forward

model.

Fig. 5 shows the scatter plots of a set of 4000 task space positions that fall

into the overlapped vision field of the two cameras. Each of them corresponds to

a randomly generated joint vector. The ranges of motion for the four joints are

θ1 ∈ [−20◦, 120◦], θ2 ∈ [−60◦, 15◦], θ3 ∈ [−60◦, 45◦] and θ4 ∈ [0◦, 120◦]. This figure

shows the approximate extent of the actual reachable space. No position outside
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this space can be reached, because it is either out of the overlapped vision field or

has no correspondent joint vector.

Fig. 5. The scatter plots of a set of 4000 reachable task space positions that fall into the overlapped
vision field of the stereo cameras. These positions are both plotted in 3-D and projected to the

X-Z, Y-Z and X-Y planes. They show the approximate extent of the actual reachable space. Part
of the boundary of the reachable space is determined by the joint limits of the arm. The rest is

determined by the boundary of common vision field of the cameras, which can be clearly seen from
the X-Z projection that shows a straight edge on the right side.

4.2. Error Classification

The errors from the motor control system and the stereo vision system prevent the

learning of an exact forward model. The error of the motor control system is mainly

the residual positioning error of the underlying PID controllers. The error of the

stereo vision system is the result of limited camera resolution. In our case, the latter

one is dominant so that it is incorporated into the stereo vision simulation module

to study its influence on the reaching accuracy. It is also referred to as StError

throughout this section.

The cause of StError is exemplified in Fig. 6(A). As can be seen from this

drawing, all positions in the shaded area falls to the same pixel on both the left and

the right image plane, so the stereo vision system maps all positions in this area to

one common position marked by the dot. For a position x = f(θ) in the reachable

space, the associated stereo error is defined through StError(x) = st(x)−x, where

st(x) is the output of the stereo vision system for x as the input. Both x and st(x)

are defined in the coordinate system shown in Fig. 6(B).
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Fig. 6. (A) exemplifies the error of the stereo vision system through exaggerating the pixel size on

the image planes. Only a small number of pixels are shown for each image plane. Any task space
position falling into the shadowed area extended by the same pixel on each image plane yields to
the same measurement which is calculated by the stereo vision system and marked with the dot
in the center. (B) shows the coordinate system used to measure the positions in the task space.

Its origin coincides with the focal point of the right camera. The X axis points to the focal point
of the left camera. The Z axis lies on the principle axis the right camera and points outwards. The
Y axis is determined by the X and Z axes through the right hand rule.

The task space vector in each training sample has a StError associated with

it, because after each random movement, the end effector position is measured

by the stereo vision system. The RBFN trained on these samples can provide us

with only an approximate forward model f̃ . For each joint vector θ, the RBFN

outputs a position vector f̃(θ). The position approximation error for θ is defined

through PosError(θ) = f(θ) − f̃(θ). The local Jacobian matrix J̃(θ) constructed

through the RBFN is also different from its true value J(θ). However, the difference

J(θ) − J̃(θ) is not a convenient measure for the Jacobian approximation error.

Instead, the Jacobian approximation error for θ is defined as JacobError(θ) =

f(θ) − x̃(n), where f(θ) is assigned to xtarget and the original algorithm is run

with line 17 substituted by x̃(i)← f(θ̃(i)) to calculate x̃(n). In this way, the effect

of approximated Jacobian matrices on the reaching accuracy is completely isolated

from the position approximation errors because f̃ is no longer used for the trajectory

generation.

The last error category we want to define here is the actual reaching er-

ror ReachError. This error is the compound effect of StError, PosError and

JacobError. Both PosError and JacobError affect ReachError because f̃ and J̃

are used for the calculation of the reaching trajectory. The direct effect of StError

on ReachError is caused by the position perception error of the desired object.

ReachError(θ) is defined as f(θ)− x̃(n), where in contrast to JacobError(θ), x̃(n)

is calculated by assigning st(f(θ)) to xtarget and then running the original trajectory

generation algorithm.
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Fig. 7. Relationship between StError, PosError, JacobError and ReachError. StError is the

result of limited camera resolution. PosError and JacobError are caused by the approximation

error in the learned forward model. They are influenced by StError and the values of learning

parameters. ReachError is the final position error of the end effector after the reaching movement.
Its magnitude is determined by StError, PosError and JacobError.

4.3. Parameter Tuning

Each radial basis function in the hidden layer of our RBFN can be expressed as

g(x) = exp(‖ x − c ‖ ∗0.8326/spread). x is the input vector to this function, c is

the adopted center of the function g. The parameter spread controls the extent of

g’s influence in its neighborhood. Another parameter error margin is used as the

stop criterion for the learning procedure. Learning is stopped if the mean square

error of the network output averaged over the dimension of the output vector falls

below error margin2. Both spread and error margin must be specified before

training. An additional parameter to be determined is the size of the training set

(size). Setting the values of spread and size appropriately makes it possible to use

only a small number of training samples to achieve a high reaching accuracy. The

error measures defined in Section 4.2 provide us with the criteria to determine the

appropriate values for spread, error margin and size. As can be seen from Fig.

7, ReachError is the compound effect of StError, PosError and JacobError.

Through parameter tuning, we can only influence PosError and JacobError. So

only these two error measures are used for the subsequent tuning process.

Since we only have three parameters to tune, simple exhaustive search en-

ables us to find appropriate values for them. During simulations, values for

spread, error margin and size are chosen from [20, 30, ..., 140, 150](degree),

[1, 2, ..., 7, 8](mm) and [40, 80, 120, 160, 200, 400] respectively. For each particular

value combination (sp, e, si), a random training set of size si is generated. A RBFN

is trained on this training set with learning parameters set to (sp, e). A test set

of 400 samples is used to measure the performance of the trained RBFN. Each

test sample is a joint vector θi. The corresponding end effector position associated

with each θi is within the common field of view of the stereo cameras. Calcula-

tion of PosError is straight forward for each θi. We use a fixed xstart to calculate

JacobError for each θi.

The PosError averaged over the test set and all possible error margin for each

particular combination of spread and size is shown in Fig. 8(A). The PosError

averaged over the test set and all possible spread for each particular combination of

error margin and size is shown in Fig. 8(B). From Fig. 8(A), it can be seen that
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Fig. 8. Simulation results for tuning of the three parameters - spread, error margin and size -
for the learning procedure. Refer to Section 4.2 for detailed discussions.

the change of spread has a relatively large influence on the averaged PosError

when spread is small. For spread larger than 100, the change of spread no long

has any noticeable influence on the averaged PosError regardless of the size of

the training set. From Fig. 8(B), it is clear that the averaged PosError reaches

its minimum at error margin = 3mm for almost all training sets of different sizes.

The averaged PosError skyrockets when error margin is reduced below 2, which

indicates that the newrb function is unable to construct a RBFN with a very small

approximation error within the given parameter space.

We use 110 and 3 as the optimal parameter values for spread and error margin

and measure the averaged PosError against different size. The result (see Fig.

8(C)) shows that the averaged PosError decreases dramatically at the beginning

but such decrease becomes much slower for size larger than 120.

For the actual experiments carried out on Nico, the error in the training set is

certainly not the same as the one used for the simulations. Uncertainties of camera

calibration, uneven illumination, using centroids for position determination all con-

tribute to a larger StError. From Fig. 8(B) we can see that if the error margin is

set too small or too large, the resulted network will deliver an averaged PosError

larger than the minimum. It is very hard to produce curves like those in Fig. 8(B)

through actual experiments. But the hidden layer size of the trained RBFN can
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give us a clue to select the optimal error margin. Fig. 9(A) and 9(B) show the

relationship of averaged PosError and hidden layer size versus error margin for

spread = 110, size = 400 and 320x240 video resolution. We can see that the optimal

error margin for PosError also corresponds to the transition point of the curve of

hidden layer size. Fig. 9(C) and 9(D) show the same relationship, only with video

resolution reduced to 160x120. Lower video resolution makes the average StError

larger and also shifts the optimal error margin to the right. But the new optimal

error margin still corresponds to the transition point of the curve of hidden layer

size. This heuristics is used to select the optimal value of error margin for the

experiments conducted on Nico.

Fig. 9. (A) and (B) show averaged PosError and hidden layer size versus error margin repre-

sented by the X-axis for spread=110, size=400 and 320x240 video resolution. (C) and (D) show

the same relationships, only with the video resolution reduced to 160x120. It can be seen that the
same error margin value corresponds to both the transition point of the curve of the hidden layer

size and the minimum point of the PosError curve.

It should be noted that we have only used PosError for parameter tuning

because the curves of JacobError versus spread, error margin and size display

very similar features to those of PosError. The only differences are that the curves

of JacobError are much flatter and JacobError is typically much smaller than

PosError.

4.4. Reaching Accuracy and Visual Feedback

Fig. 10 shows the histograms of the four different error types for spread =

110, error margin = 3, size = 120. The mean and standard deviation of

ReachError is 4.03mm and 3.94mm respectively. It can be observed that the

JacobError caused by Jacobian approximation is much smaller than PosError.
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Since the reaching trajectory is precalculated, no visual feedback is used during the

reaching movement.

Fig. 10. (A),(B),(C) and (D) show the histograms of the four types of error cal-
culated on a test set of 400 samples. It can be observed that the JacobError

is much smaller than PosError on average. mean(StError)=2.20, std(StError)=1.59,
mean(PosError)=3.37, std(PosError)=2.43, mean(JacobError)=0.75, std(JacobError)=0.84,

mean(ReachError)=4.03, std(ReachError)=3.94.

Fig. 11(A) shows the ReachError histogram for spread = 110, error margin =

3, size = 40. It can be seen that with less training samples, the histogram exhibits

significantly more outliers. According to the trajectory generation algorithm de-

scribed in Section 3.2.2., the final reaching error ReachError is caused in a large

part by the error in x̃(n−1). If we allow a one-time visual feedback at the (n−1)-th

step of the trajectory generation, which essentially delivers the perceived position of

the end effector at this time step, st(f(θ̃(n−1))) instead of f̃(θ̃(n−1)) is assigned to

x̃(n−1). Since the stereo error is smaller than the position approximation error, the

one-time visual feedback should improve the reaching accuracy. Simulation result

shown in Fig. 11(B) confirms this conjecture. It shows the histogram of ReachError

for the same parameter setting if a one-time visual feedback is allowed. It is visually

very close to Fig. 10(D).

5. Experiment Results on Nico

Experiments have been carried out on Nico to test the performance of the proposed

approach. 120 samples are gathered before the forward kinematics learning. It takes

only about 15 minutes to gather a training set of this size. spread is set to 110 as
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Fig. 11. The left histogram shows the distribution of ReachError when the reaching trajec-

tory is generated without visual feedback. The values of learning parameters are spread = 110,
error margin = 3 and size = 40. Because the training set is very small, the histogram of

ReachError is more spread out and exhibits quite a few outliers. The right histogram shows
the distribution of ReachError when a one-time visual feedback is allowed during the reaching
movement. It can be seen that ReachError is drastically reduced and the distribution is visually
almost identical to Fig. 10(D).

usual. Fig. 12 shows the plot of hidden layer size versus error margin. Using the

heuristics described in Section 4.3, we set the final value of error margin to be 3.8.

Fig. 12. The curve of hidden layer size versus error margin for a training set of 120 autonomously

gathered samples. It shows a salient transition point at error margin = 3.8. Using the heuris-

tics described in Section 4.3, we use this value for training the RBFN to evaluate the reaching
performance.

After the training, we use a wooden ball of the same size as the one attached

to the wrist plate of the robot as the reaching object. The ball is fixed on the tip

of a modified retractable TV antenna that allows flexible positioning of the object.

In a test session, the ball was put into 100 different positions for Nico to reach. If a

frontal contact took place at the end of the reaching movement, it was counted as a

success. The concept of frontal contact is illustrated in Fig. 13. No visual feedback

was used throughout all reaching movements. A sequence of images capturing the

course of one successful reach is shown in Fig. 14. The final success rate of the test

session is 92%. Most of the unsuccessful movements happened when the ball was

placed near the boundary of the reachable space of the robot.
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(A) (B)

Fig. 13. (A) shows an example of frontal contact, where Nico’s finger tip touches the object on
the surface part facing the eye cameras. Small overshoot or undershoot within 9mm also counts
as a frontal contact. (B) shows an example of Nico’s finger tip moving past the object. Although

at the end of this reaching movement the finger tip also touches the object, the result does not
count as a frontal contact.

(A) (B) (C)

Fig. 14. (A),(B),(C) and (D) show a sequence of images capturing the course of one successful
reach.

6. Discussion

Through this paper, we have proposed a procedure of learning to reach through

first learning a model of the arm forward kinematics and then using the learned

model to generate reaching trajectories. An error classification scheme and the de-

tailed parameter tuning process are included in this paper. We have shown through

simulations and actual experiments that a small training set for learning the for-

ward model allows accurate reaching movements relying solely on proprioceptive

feedback. The size of the training set can be cut back further if a one-time visual

feedback is used to aid reaching when the end effector is already moved into the

neighborhood of the desired object. The modular structure of the system devised

and implemented to evaluate our approach can be easily extended to allow the

robot to reach for different objects in its environment according to the focus of its
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attention.

Interestingly, some psychological studies on human reaching behavior reveal two

important features that are also present in our system. One study conducted by R.S.

Johansson and colleagues shows that adults almost never explicitly look at their

hands during reaching movements.26 Experiments by R.K. Clifton and colleagues

show that infants can reach glowing objects in the dark without visual feedback of

their hand position.27 Our study manifests that reaching without visual feedback is

indeed possible even an approximate forward model is learned on a small training

set. A study by von Hofsten shows that the arm movements of neonatal infants

consist of multiple segments.28 This work has been confirmed by other researchers.29

The multiple segments might be the results of incremental trajectory generation,

which is the approach we use to solve inverse kinematics.

Natural extensions to the work described in this paper include exploiting visual

feedback to a greater extent to improve reaching accuracy, investigating the perfor-

mance of our learning approach if the original version of Liegois’s method instead of

its simplified form is used for trajectory generation, and learning to use additional

DOFs for reaching while avoiding the curse of dimension.
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