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Neurons in primary visual cortex respond selectively to oriented stimuli
such as edges and lines. The long-range horizontal connections between
them are thought to facilitate contour integration. While many physio-
logical and psychophysical findings suggest that collinear or association
field models of good continuation dictate particular projection patterns of
horizontal connections to guide this integration process, significant evi-
dence of interactions inconsistent with these hypotheses is accumulating.
We first show that natural random variations around the collinear and as-
sociation field models cannot account for these inconsistencies, a fact that
motivates the search for more principled explanations. We then develop a
model of long-range projection fields that formalizes good continuation
based on differential geometry. The analysis implicates curvature(s) in a
fundamental way, and the resulting model explains both consistent data
and apparent outliers. It quantitatively predicts the (typically ignored)
spread in projection distribution, its nonmonotonic variance, and the dif-
ferences found among individual neurons. Surprisingly, and for the first
time, this model also indicates that texture (and shading) continuation
can serve as alternative and complementary functional explanations to
contour integration. Because current anatomical data support both (curve
and texture) integration models equally and because both are important
computationally, new testable predictions are derived to allow their dif-
ferentiation and identification.

1 Introduction

The receptive fields (RFs) of neurons in visual cortex characterize their re-
sponse to patterns of light in the visual field. In primary visual cortex, this
response is often selective for stimulus orientation in a small region (Hubel
& Wiesel, 1977). The clustered long-range horizontal connections between
such cells (Rockland & Lund, 1982) link those with nonoverlapping RFs and
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are thought to facilitate contour integration (Field, Hayes, & Hess, 1993).
However, there is no direct physiological evidence that these connections
only support curve integration, while there also remains much ambiguity
about the precise connections required to support the integration of curves.
Our goal in this article is to address both of these concerns.

1.1 Biological Data and Integration Models. The argument that asso-
ciates long-range horizontal connections with curve integration begins with
the realization that the finite spatial extent of RFs and their broad orienta-
tion tuning lead to significant uncertainties in the position and the local
orientation measured from visual stimuli. This causes a further uncertainty
in determining which of the many nearby RFs signal the next section of a
curve (see Figure 1a).

All of these uncertainties underlying curve integration can be reduced
by interactions between neurons whose RFs are close in retinotopic coordi-
nates. Starting with Mitchison and Crick (1982) and their hypothesis about
interactions between iso-oriented RFs, physiological and anatomical find-
ings have been accumulating to suggest a roughly collinear interaction. The
main evidence supporting this conclusion is based on the distribution of an-
gular differences between preferred orientations of connected cells. These
distributions are computed by taking the orientation difference between a
target cell and every other cell it is connected to with a long-range horizon-
tal connection. Indeed, as is exemplified in Figure 1b, these distributions
have been shown to be unimodal on average, with maximal interaction
between iso-oriented RFs (Ts’o, Gilbert, & Wiesel, 1986; Gilbert & Wiesel,
1989; Weliky, Kandler, Fitzpatrick, Katz, 1995; Schmidt, Goebel, Löwel, &
Singer, 1997; Buzás, Eysel, Kisvárday, 1998; Bosking, Zhang, Schofield, &
Fitzpatrick, 1997; Malach, Amir, Harel, & Grinvald, 1993; Sincich & Blas-
del, 2001; Schmidt & Löwel, 2002). Furthermore, direct anatomical studies
reveal long-range interactions between coaxial cells (Bosking et al., 1997;
Schmidt et al., 1997) and indirect psychophysical experiments report a gen-
eral association field (Field et al., 1993; Kapadia, Ito, Gilbert, & Westheimer,
1995; Kapadia, Westheimer, & Gilbert, 2000) which emphasizes straight or
slowly varying continuations while allowing some support for more rapidly
varying continuations as well (see Figure 2a).

With the accumulation of these data, however, are a growing number of
observations that are difficult to reconcile with the intuition that neural spa-
tial integration is based on collinearity or that it serves only curve integra-
tion. Facilitory interaction between cells of significant orientation difference
(Kapadia et al., 1995) short-range coaxial inhibition (Polat & Sagi, 1993), iso-
orientation side facilitation (Adini, Sagi, & Tsodyks, 1997), and strong corre-
lations between iso-oriented, nonoverlapping, and parallel receptive fields
(Ts’o et al., 1986) are functionally inconsistent. Evidence of cross-orientation
(Matsubara, Cynader, Swindale, & Stryker, 1985; Kisvárday, Tóth, Rausch, &
Eysel, 1997) and nonaxial (Gilbert & Wiesel, 1989) connections, plus roughly
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Figure 1: Visual integration and the distribution of long-range projections. (a)
Broad tuning in orientation and position introduce uncertainty in curve integra-
tion even if a single curve model (thick red curve) is assumed through the RF.
Determining which nearby RF the curve continues through can be facilitated by
interaction between neurons with mutually aligned, retinotopically close RFs.
(b) A fundamental measurable property of long-range connection is their distri-
bution in the orientation domain, that is, the percentage of connections between
interconnected neurons as a function of preferred orientation (angular) differ-
ence. This graph shows the median distribution of lateral connections (distance
> 500µm) of seven cell clusters in primary visual cortex of tree shrew (redrawn
from Bosking et al., 1997, their Fig. 6c). Qualitatively similar (through coarser)
measurements are available on primates as well (Malach et al., 1993). (c) Con-
nectivity distribution of individual cell clusters reveals significant variability
and qualitiative differences between them. Shown here are distributions from
two injection sites from Bosking et al. (1997).
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Figure 2: Collinear facilitation, association fields, and their predicted distri-
bution of connections. (a) Informally, two visual integration or continuation
models are typically considered in the physiological and psychophysical liter-
atures. Collinearity, the predominant model, predicts only few possible curve
continuations (top). On the other hand, many possible continuations reveal an
association field (bottom), similar to those observed psychophysically (Field et
al., 1993). (b) The corresponding distribution derived from the collinearity and
association field models. Observe that collinearity predictis a very narrow distri-
bution, which is clearly at odds with the significant spread frequently measured
anotomically or electrophysiologically (compare to Figure 1b). The association
field leads to a wider spread, but like collinearity, it predicts a fixed distribution
for all cells, a hypothesis refuted in recent studies (see the text). The collinearity
distribution (solid) was calculated from the field depicted in Figure 8a, while the
association field distribution (dashed) was calculated from the field in Figure
8e. The dashed horizontal line depicts the uniform distribution.

isotropic retinotopic extent (Malach et al., 1993; Sincich & Blasdel, 2001),
suggest anatomical inconsistencies.

These inconsistencies prompt a closer examination of the interactions
within visual cortex and their population statistics. As the evidence sug-
gests, individual cells, or small collections of adjacent cells captured in tracer
injections, may have qualitatively different connectivity distributions (Bosk-
ing et al., 1997): some are narrow and high while others are very wide, as
is illustrated in Figure 1c. When averaged, the pooled distribution of long-
range connections (e.g., those extending beyond 500 µm in Bosking et al.,
1997) is (see Figure 3a):

• Unimodal.

• Peaks at zero orientation offset.
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• Indicates a nonnegligible fraction of connections linking cells of signifi-
cantly different orientation preferences (Malach et al., 1993; Kisvárday,
Kim, Eysel, & Bonhoeffer, 1994; Kisvárday et al., 1997; Bosking et al.,
1997).

• Crosses the uniform distribution at approximately ±40 degrees.1

• Has a nonmonotonically changing variance as the orientation difference
increases (Malach et al., 1993; Bosking et al., 1997).

Neither collinearity nor association field models predict all of these features.
While both models imply unimodal pooled distributions over orientation
differences (see Figure 2b), they also suggest a fixed projection field and
thus neither predicts any variance for the pooled distribution, let alone a
nonmonotonic one. Furthermore, collinearity is clearly at odds with the
significant spread in the distribution of connections over orientation differ-
ences, whether it is measured via extracellular injections (e.g., Bosking et
al., 1997) or the more elaborate intracellular protocol (Buzás et al., 1998).

The data in Bosking et al. (1997) contain one injection site of possibly
different connection distribution, which may substantially contribute to the
nonmonotonic nature of the variance. Since the variance will become central
to this article, we examined whether this statistical feature depends critically
on this one, possibly outlier, measurement. We reanalyzed the data from
Bosking et al. (1997) after removing the data from this injection site and
calculating the statistical properties of the rest. We further examined the
robustness of the nonmonotonicity by running two additional analyses:
one in which we removed the sample points (one from each orientation
bin) that contribute the most to the variance, and another in which we
removed those sample points (again, one from each bin) that maximized
local changes in the variance. In all these tests, including the last one, which
flattens the variance the most, the trimodal nonmonotonicity, and the two
local minima at ±30 degrees, were preserved. All these findings suggest
that the nonmonotonicity of the variance is a critical feature that deserves
attention from both biologists and modelers.

1.2 Integration Models and Random Physiological Variations. It is
tempting to explain the apparent anomalies and inconsistencies between the
predicted and measured distributions of long-range horizontal connections
as random physiological variations, for example, by asserting that anatomy
only approximates the correct connections. We tested this explanation by
applying different noise models to the collinearity and association field
connectivity distributions from Figure 2, and checked whether the resul-

1 This crossing point provides a reference for the bias of projection patterns toward
particular orientations; considering the offsets where the connection distribution crosses
the uniform line quantifies this bias in a way independent of scale or quantization level.
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tant pooled distributions possess the properties listed above. The results of
the most natural noise model are illustrated in Figure 3b. Under this model,
each long-range horizontal connection, ideally designated to connect cells
of orientation difference �θ , is shifted to connect cells of orientation differ-
ence �θ + εσ , where εσ is a wrapped gaussian (i.e., normally distributed
and wrapped on S1) random variable with zero mean and variance σ (see
the appendix for details). As the figure shows, it takes an overwhelming
amount of noise (s.d.≥ 35 degrees) to transform the collinear distribution to
one that resembles the measured data in terms of spread and peak height,
but the nonmonotonic behavior of the variance is never reproduced. (For
space considerations, we omit the results of other connection-based noise
models, or the noisy distributions based on the association field model, all
of which were even less reminiscent of the measured physiological data.)

A second possible source for the inconsistencies between the predicted
and measured distributions may be the extracellular injection protocol com-
monly in use by physiologists to trace long-range horizontal connections
(e.g., Gilbert & Wiesel, 1989; Malach et al., 1993; Kisvárday et al., 1994, 1997;
Bosking et al., 1997; Schmidt et al., 1997; Sincich & Blasdel, 2001). Due to
the site-selection procedure used, cells stained by these injections are likely
to have similar orientation preferences (e.g., Bosking et al., 1997, p. 2113, or
Schmidt et al., 1997, p. 1084). However, their orientation tuning may never-
theless be different, sometimes significantly (note such a cell in Bosking et
al., 1997, Fig. 4B). Consequently, the distribution of presynaptic terminals
(boutons) traced from the injection site may incorporate an artificial, random
spread relative to the single orientation typically assumed at the injection
site. Preliminary evidence from a recently developed single-cell protocol
(Buzás et al., 1998) suggests that leakage in the injection site cannot bridge
the gap between the predicted collinear distribution and those measured
anatomically. However, we also examined this possibility computationally
by modeling the leakage in the injection site as a wrapped gaussian ran-
dom variable of predefined variance.2 The base distributions (collinear or
association field) of the computational cells selected by this process were
then summed up and normalized, and the resultant (random) distribution
was attributed to the original cell representing the injection site. Repeating
this process many times yielded a collection of (different) distributions, for
which we calculated an average and variance (see the appendix for details).
The results are illustrated in Figure 3c. Similar to random variations at the
level of individual connections, here too it takes an overwhelming amount
of noise (s.d.≥ 35 degrees) to transform the colinear distribution to one that
resembles the measured data in terms of spread and peak height, but the
nonmonotonic behavior of the variance is never reproduced.

2 A wrapped gaussian model was particularly suitable here due to the injection site
selection protocol typically used in the extracellular injection protocol; see the appendix.
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Figure 3: Results of a statistical pertubation of collinear connectivity distribu-
tion. (a) Mean connection distribution computed from the data in Bosking et al.
(1997), shown here for reference. Error bars are ±1 standard deviation. Note the
unimodal distribution that peaks at approximately 11%, the wide spread, cross-
ing of the uniform distribution (dashed horizontal line) around ±40 degrees,
and the nonmonotonic variance. Can all these features be replicated by apply-
ing noise to the base distribution induced by the standard colinearity model? (b)
Result of simulating physiological deviation at the individual connection level.
The dashed line is the base collinear distribution. The gray region is the super-
position of individual applications of the noise model to the base distribution.
The solid graph is the expected distribution, and error bars are ±1 standard de-
viation. Permitting large enough developmental variations (shown here is the
result of wrapped gaussian independent and identically distributed noise of
s. d. = 35◦) in the connections to model the first-order statistics significantly vi-
olates the underlying connectivity principle of good continuation but still cannot
model the second-order statistics. (c) Results of simulating measurement errors
due to leakage in the injection site. All parts are coded as in b. Again, permitting
large enough injection spread to model the first-order statistics (shown here is
the result of gaussian noise of s.d. = 35◦ and assuming 20 cells per injection site;
(Bosking et al., 1997) cannot model the second-order statistics
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The thinking around long-range horizontal connections has been dom-
inated by their first-order statistics and its peak at zero orientation offset.
However, the nonmonotonicity of the variance was first reported almost a
decade ago (Fig. 3d in Malach et al., 1993) and we have further confirmed
it from the more detailed measurements in Bosking et al. (1997) as was
illustrated in Figure 3a. Since neither collinearity nor association field mod-
els can explain this aspect of the physiological data, even if much noise
is allowed, it is necessary to consider whether this and the other subtle
properties of the pooled data reflect genuine functional properties of long-
range horizontal connections. We therefore developed a geometric model
of projection patterns and examined quantitatively both pooled connection
statistics and connectivity patterns of individual cells generated by it. Since
many findings suggest that long-range horizontal connections are primar-
ily excitatory, especially those extending beyond one hypercolumn (Ts’o et
al., 1986; Gilbert & Wiesel, 1989; Kapadia et al., 1995; Kisvárday et al., 1997;
Buzás et al., 1998; Sincich & Blasdel, 2001), our model concentrates on this
class of connections.

2 From Differential Geometry to Integration Models

Curve integration, the hypothesized functional role ascribed to long-range
horizontal connections, is naturally based in differential geometry. The tan-
gent, or the local linear approximation to a curve, abstracts orientation pref-
erence, and the collection of all possible tangents at each (retinotopic) posi-
tion can be identified with the orientation hypercolumn (Hubel & Wiesel,
1977). Formally, since position takes values in the plane R

2 (think of image
coordinates x, y) and orientation in the circle S1 (think of an angle θ varying
between 0 and 2π ), the primary visual cortex can be abstracted as the prod-
uct space R

2 × S1 (see Figure 4). Points in this space represent both position
and orientation to abstract visual edges of given orientation at a particular
spatial (i.e., retinotopic) position. It is in this space that our modeling takes
place.

Since any single tangent is the limit of any smooth curve passing through
a given (retinotopic) point in a given direction, the question of curve inte-
gration becomes one of determining how two tangents at nearby positions
are related. (Collinearity, for example, asserts that the tangent orientation
hardly changes for small displacements along the curve.) In general terms,
the angular difference between RFs captures only one part of the relationship
between nearby tangents; their relative spatial offset also must be consid-
ered. Thus, in the mathematical abstraction, relationships between tangents
correspond to relationships between points in R

2×S1. Physiologically, these
relationships are carried by the long-range horizontal connections, with
variation in retinotopic position corresponding to R

2, and variation along
orientation hypercolumns corresponding to S1 (see Figure 5). Determining
them amounts, in mathematical terms, to determining what is called a con-
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Figure 4: Abstracting the primary visual cortex as R
2 × S1, or position × ori-

entation space. (a) The “ice cube” cartoon of visual cortex (Hubel & Wiesel,
1977) (cytochrome-oxidase blobs and distortions due to cortical magnification
factor are not shown). A tangential penetration in the superficial layers reveals
an orientiation hypercolumn of cells whose RFs have similar spatial (retino-
topic) coordinates. With cells of similar orientation tuning grouped by color,
the hypercolumn is cartooned as a horizontal cylinder. (b) With ocular domi-
nace columns omitted, the superficial layers of the primary visual cortex can be
viewed as a collection of (horizontally arranged) orientation hypercolumns. (c)
Drawing the cylinders vertically emphasizes that RFs of cells within a column
overlap in retinotopic coordinates (x, y) and makes explicit this aspect of thier or-
ganization. (d) Since different hypercolumns correspond to different retinotopic
positions, the set of all hypercolumns abstracts the visible subspace of R

2 × S1,
with each column corresponding to a different vertical fiber in that space. The θ -
axis in this space corresponds to a tangential penetration with V1 hypercolumns
(colors within the column represent different orientation tunings), and the XY
plane corresponds to retinotopic coordinates.
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nection structure. As we discuss in the rest of this article, the relationship
between these two types of connections, the mathematical and the physio-
logical, is more than linguistic.

2.1 The Geometry of Orientation in the Retinal Plane. Orientation in
the 2D (retinal) plane is best represented as a unit length tangent vector
Ê(
q) attached to point of interest 
q = (x, y) ∈ R

2. Having such a tangent
vector attached to every point of an object of interest (e.g., a smooth curve or
oriented texture) results in a unit length vector field (O’Neill, 1966). Assum-
ing good continuation (Wertheimer, 1955), a small translation 
V from the
point 
q results in a small change (i.e., rotation) in the vector Ê(
q). To apply
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techniques from differential geometry, a suitable coordinate frame {ÊT, ÊN}
is placed at the point 
q and the basis vector ÊT is identified with Ê(
q)—the
tangent vector at 
q (see Figure 6). Note that ÊT is drawn at an angle θ—
the local orientation measured relative to the horizontal axis in retinotopic
coordinates—such that (
q, θ) ∈ R

2 × S1. Nearby tangents are displaced
in both position and orientation according to the covariant derivatives of
the underlying pattern. These covariant derivatives, ∇
VÊT and ∇
VÊN, are
naturally represented as vectors in the basis {ÊT, ÊN} itself:

(
∇
VÊT

∇
VÊN

)
=
[

w11( 
V) w12( 
V)

w21( 
V) w22( 
V)

](
ÊT

ÊN

)
. (2.1)

The coefficients wij( 
V), known as 1-forms, are functions of the displacement
direction vector 
V, and since the basis {ÊT, ÊN} is orthonormal, they are skew
symmetric wij( 
V) = −wji( 
V). Thus, w11( 
V) = w22( 
V) = 0, and the system
reduces to:(

∇
VÊT

∇
VÊN

)
=
[

0 w12( 
V)

−w12( 
V) 0

](
ÊT

ÊN

)
. (2.2)

Figure 5: Facing page. Abstracting long-range horizontal connections as relation-
ships between points in R

2 × S1. (a) Since visual integration must involve not
only the relative orientation between RFs but their spatial offset as well, it is
more fully abstracted by relationships between points in R

2 × S1. The exact na-
ture of these relationships is determined by the underlying integration model.
(b) Redrawing R

2 × S1 fibers as orientation hypercolumns in V1 reveals the
connection between the integration model in R

2 × S1 and the distribution of
long-range horizontal connections between the hypercolumns. (c) Collapsing
the R

2 × S1 abstraction to a cortical orientation map (i. e., flattening each ori-
entation cylinder and redistributing its orentation-selective parts as orientation
columns in the superficial cortical layers), the integration model implies a par-
ticular set of long-range horizontal connections between orientation domains
(colors represent orientation tuning similar to panels a and b and Figure 4). Such
links have been identified and measured through optical imaging and anatom-
ical tracing (e.g., Malach et al., 1993; Bosking et al., 1997; Buzás et al., 1998) and
thus can be compared to the model’s predictions. (d) A real counterpart to the
schematic in panel c. Reproduced from Bosking et al. (1997), this image shows
an optical image of intrinsic signals combined with long-range horizontal con-
nections traced through extracellular injection of biocytin. The white dots at the
upper left corner represent the injection site, while the black dots represent la-
beled boutons. The white bar in the inset represents the orientation preference
at the injection site.
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This last system is known as Cartan’s connection equation (O’Neill, 1966),
and w12( 
V) is called the connection form. Since w12( 
V) is linear in 
V, it can be
represented in terms of {ÊT, ÊN}:

w12( 
V) = w12(a ÊT + b ÊN) = a w12(ÊT) + b w12(ÊN) .

The relationship between nearby tangents is thus governed by two scalars
at each point. We define them as follows,

κT
�= w12(ÊT)

κN
�= w12(ÊN),

(2.3)

and interpret them as tangential (κT) and normal (κN) curvatures, since they
represent a directional rate of change of orientation in the tangential and
normal directions, respectively.

While the connection equation describes the local behavior of orientation
for the general 2D case, it is equally useful for the 1D case of curves. Now,
only ∇ÊT

is relevant and equation 2.2 simplifies to

(
∇ÊT

ÊT

∇ÊT
ÊN

)
=
[

0 w12(ÊT)

−w12(ÊT) 0

](
ÊT

ÊN

)
. (2.4)

In its more familiar form, where T,N, and κ replace ÊT,ÊN, and κT, respec-
tively, this is the classical Frenet equation (O’Neill, 1966) (primes denote
derivatives by arc length):(

T′
N′

)
=
[

0 κ

−κ 0

](
T
N

)
. (2.5)

2.2 Integration Models and Projection Patterns of Horizontal Connec-
tions. The geometrical analysis discussed above and illustrated in Figure 6
shows how the relationship between nearby tangents depends on the co-
variant derivative: for curves, the connection is dictated by one curvature;
for texture flows, or oriented 2D patterns, two curvatures are required. By
estimating these quantities at a given retinal point 
q, it is possible to approx-
imate the underlying geometrical object, and thus a coherent distribution of
tangents, around 
q. This, in turn, can be used to model the set of horizontal
connections that are required to facilitate the response of a cell if its RF is
embedded in a visual context that reflects good continuation. Naturally, to
describe such a local approximation and to use it for building projection
patterns, the appropriate domain of integration must be determined. How-
ever, since RF measurements provide only the tangent, possibly curvature
(Dobbins, Zucker, & Cynader, 1987; Versavel, Orban, & Lagae, 1990), but not
whether the stimulus pattern is a curve (1D) or a texture (2D), it is necessary
to consider continuations for both.
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Figure 6: Visual integration under good continuation involves the question of
how a measurement of orientation at one retinal position relates to another
measurement of orientation at a nearby retinal position. Formally, this amounts
to specifying how a tangent (orientation measurement) at position 
q relates
to another nearby tangent displaced by a vector 
V. This tangent displacement
amounts to rotation, and as shown above, this rotation can differ for different
displacements. Formally, the rotation is specified locally by the covariant deriva-
tive � 
V, and the mathematical analysis is facilitated by defining an appropriate
coordinate frame. Shown is the Frenet basis {ÊT, ÊN}, where ÊT corresponding
to a unit vector in the orientation’s tangential direction and ÊN corresponds to a
unit vector in the normal direction. Associated with this frame is an angle θ de-
fined relative to external fixed coordinate frame (the black horizontal line). The
covariant derivative specifies the frame’s initial rate of rotation for any direc-
tion vector 
V. The four different cases in this figure illustrate how this rotation
depends on 
V both quantitiatively (i.e., different magnitudes of rotation) and
qualitatively (i.e., clockwise, counterclockwise, or zero rotation). Since displace-
ment is a 2D vector and � 
V is linear, two numbers are required to fully specify
the covariant derivative. These two numbers describe the initial rate of rotation
in two independent displacement directions. Using the Frenet basis once again,
two natural directions emerge. A pure displacement in the tangential direction
(ÊT) specifies one rotation component, and a pure displacement in the normal
direction (ÊN) specifies the other component. We call them the tangential curva-
ture (κT) and the normal curvature (κN), respectively. If visual integration based
on good continuation relates to 2D patterns of orientation, then both of these
curvatures are required. For good continuation along individual curves, only
the tangential curvature is required since displacement is possible only in the
tangential direction (that is, along the curve only).
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Since estimates of curvature at point 
q hold in a neighborhood contain-
ing the tangent, the discrete continuation for a curve is commonly obtained
by approximating it locally by its osculating circle (do Carmo, 1976) and
quantizing. This relationship, which is based on the constancy of curvature
around 
q, is known as co-circularity (Parent & Zucker, 1989; Zucker, Dob-
bins, & Iverson, 1989; Sigman, Cecchi, Gilbert, & Magnasco, 2001; Geisler,
Perry, Super, & Gallogly, 2001), and in R

2 × S1 it takes the form of a helix
(see Figures 7a and 7b). Different estimates of curvature give rise to dif-
ferent helices whose points define both the spatial position and the local
orientation of nearby RFs that are compatible with the estimate at 
q (see
Figure 7c). Together, these compatible cells induce a curvature-based field
of long-range horizontal connections (see Figures 7a through 7c and 8a
through 8d). While different curvatures induce different projection fields,
the “sum” over curvatures gives an association field (see Figure 8e) reminis-
cent of recent psychophysical findings (Field et al., 1993). Note, however,
that as a psychophysical entity, the association field is not necessarily a
one-to-one reflection of connectivity patterns in the visual cortex. In fact,
representing a “cognitive union” across displays of different continuations,
the association field is unlikely to characterize any single cell.

Similar considerations can be applied toward the local approximation of
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texture flows, although now the construction of a rigorous local model is
slightly more challenging. Unlike curves, this model must depend on the
estimate of two curvatures at the point 
q, KT = κT(
q) and KN = κN(
q), but
more important, these estimates cannot be held constant in the neighbor-
hood of 
q, however small; they must covary for the pattern to be feasible
(Ben-Shahar & Zucker, 2003b). Nevertheless, invariances between the cur-
vatures do exist, and formal considerations of good continuation have been
shown to yield a unique approximation that, in R

2 × S1, takes the form of
a right helicoid (see Figures 7c and 7d) and whose orientation function has

Figure 7: Facing page. Differential geometry, integration models, and horizontal
connections between RFs. (a) Estimate of tangent (light blue vector) and cur-
vature at a point 
q permits modeling a curve with the osculating circle as a
good-continuation approximation in its neighborhood. Given the approxima-
tion, compatible (green) and incompatible (pink) tangents at nearby locations
can be explicitly derived. (b) with height representing orientation (see the scale
along the θ -axis), the osculating circle lifts to a helix in R

2 × S1 whose points
define both the spatial location and orientation of compatible nearby tangents.
Color-coded as in a, the green point is compatible with the blue one, while
the pink points are incompatible with it. (c) The consistent structure in a and
b illustrated as RFs and their spatial arrangement. As an abstraction for visual
integration, the ideal geometrical model—the osculating circle—induces a dis-
crete set of RFs, which can facilitate the responce of the central cell. Shown here
is an example for one particular curvature tuning at the central cell. (d) For tex-
tures, determination of good continuation requires two curvatures at a point.
Based on these curvatures, a local model of good continuation can determine
the position, orientation, and curvatures of (spatially) nearby coherent points.
Given these two curvatures at a point, there exists a unique model of good con-
tinuation that guarantees identical covariation of the curvature functions. Given
the approximation, compatible (green) and incompatible (pink) flow patches at
nearby locations can be explicitly derived. (e) In R

2 × S1, our model for 2D ori-
entation good continuation lifts to a right helicoid, whose points define both the
spatial location and orientation of compatible (green) nearby flow tangents. (f)
As an abstraction for visual integration, the ideal geometric model—the right
helicoid—induces a discrete set of RFs, which can facilitate the responce of the
central cell. Shown here is an example for one particular curvature tuning at the
central cell. Note that broad RF tuning means that both the helix and the heli-
coid must be dilated appropriately, thus resulting in compatible “volumes” in
R

2 ×S1 and possibly multiple compatible orientations at give spatial positions.
This dilation should be reflected in the set of compatible RFs and the horizontal
links to them, but to avoid clutter, we omit it from this figure. The effect of this
dilation is illustrated in Figure 8 and consequently in all our calculations.
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the following expression:

θ(x, y) = tan−1
(

KTx + KNy
1 + KNx − KTy

)
. (2.6)

The unique property of this object is that it induces an identical covariation
of the two curvature functions κT and κN in the neighborhood of the point 
q.
The osculating helicoid is the formal 2D analog of the osculating circle and,
as with co-circularity for curves, the fields of connections between neurons
that this model generates (see Figures 8f through 8j) depend intrinsically on
curvature(s). Such connectivity structures can be used to compute coherent
texture and shading flows in a neural, distributed fashion (Ben-Shahar &
Zucker, 2003b). Two examples are shown in Figure 9.

3 Results

The computational connection fields generated above contain all the geo-
metrical information needed for predictions about long-range horizontal
connections of individual cells (or, after some averaging, that of tracer injec-
tion sites) in visual cortex. Thus, we now turn to the central question: How
well do these connectivity maps match the available data about projection
fields in visual cortex? In particular, do they make better predictions than
those arising from collinearity or association field models?

To answer these questions, we focused on anatomical studies that report
population statistics (Malach et al., 1993; Bosking et al., 1997) and compared
their data to predictions produced by performing “computational anatomy”
on our model.3 We randomly sampled the population of model-generated
fields analogous to the way anatomists sample cells, or injection sites, in
neural tissue and computed both individual and population statistics of
their connection distributions. To generate robust predictions, we repeated
these sampling procedures many times and calculated the expected values
and standard errors of the frequency distribution.

3.1 Computational Anatomy Predicts Biological Measurements. Fig-
ure 10 illustrates the main results computed from our models, and com-
pares them to the corresponding anatomical data reported in the literature
(Malach et al., 1993; Bosking et al., 1997). The agreement of the compu-
tational process to the biological data is striking qualitatively and quan-
titatively. As with the association field, our model correctly predicts the
spread of the pooled distribution with similar peak height (approximately

3 Anatomical studies such as Bosking et al. (1997) and Malach et al. (1993) were pre-
ferred to psychophysical or electrophysiological studies, which typically contribute no
population statistics and are generally more difficult to interpret directly in terms of the
structure of horizontal connections.
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Figure 8: Illustration of connection fields for curves (top, based on co-circularity,
Parent & Zucker, 1989) and textures (bottom, based on right helicoidal model,
Ben-Shahar & Zucker, 2003b). Each position in these fields represents one orien-
tation hypercolumn, while individual bars represent the orientation preference
of singe neurons, all of which are connected to the central cell in each field. Multi-
ple bars at any given point represent multiple neurons in the same hypercolumn
that are connected to the central cell, a result of the dilation of the compatible
structure due to broad RF tuning (see the caption of Figure 7). All fields assume
that orientation tuning is quantizied to 10 degrees and their radius of influence
is set to four to five nonoverlapping hypercolumns to reflect a 6 to 8 mm corti-
cal range of horizontal connections (Gilbert & Wiesel, 1989) and hypercolumn
diamater of 1.5 mm (to account for ocular dominance domains). (a–d) Examples
of co-circularity projection fields (Parent & Zucker, 1989) for cells with orien-
tation preference of 150 degrees (center bars) and different values of curvature
tuning based on the implementation by Iverson (1994). (a) κ = 0.0 (curvature
in units of pixels−1). (b) κ = 0.08. (c) κ = 0.16. (d) κ = 0.24. (e) The union of
all projection fields of all cells with same orientation preference (0 degrees in
this case) but different curvature tuning. Note the similarity to the shcematic
association field in Figure 6b. (f–j) Examples of the texture flow projection fields
(Ben-Shahar & Zucker, 2003b) for cells with horizontal orientation preference
(center bars) and different curvature tuning. Note the intrinsic dependency on
curvatures and the qualitatively different connectivity patterns that they in-
duce. (f)(κT, κN) = (0.0, 0.0). (g) (κT, κN) = (0.2, 0.0). (h) (κT, κN) = (0.0, 0.2).

(i) (κT, κN) = (0.1, 0.1). (j) (κT, κN) = (0.2, 0.2). Note that while the majority of
connections link cells of roughly similar orientation, some connect cells of large
orientation differences. The fields shown are just a few examples sampled from
the models, both of which contain similar (rotated) connection fields for each
of the possible orientation preferences in the central hypercolumn. The circles
superimposed on d and i are used to characterize retinotopic distance zones for
the predictions made in Figure 15.
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a b c d

gfe

Figure 9: Example of coherent texture (a–d) and shading (e–g) flow computa-
tion based on contextual facilitation with right helicoidal connectivity patterns
(Ben-Shahar & Zucker, 2003b). (a) Natural image of a tree stump with percep-
tual texture flow. (b) A manually drawn flow structure as perceived by a typical
observer. (c) Noisy orientation field reminiscient of RF responses. The computed
measurements are based on the direction of the image intensity gradient. (d) The
outcome of applying a contextual and distributed computation (Ben-Shahar &
Zucker, 2003b) which facilitates the response of individual cells based on their
interaction with nearby cells through the connectivity structures in Figure 8.
Compare to b and note how the measurements in the area of the knot, where no
RF is embedded in a coherent context, were rejected altogether. (e) An image of
a plane. (f) Measured shading flow field (white) and edges (black). In biological
terms, edges are measured by RFs of particular orientation preferences tuned
to high spatial frequencies. The shading field may be measured by cells tuned
to low frequencies. (g) Applying the right helicoidal-based computation on the
shading informaiton results in a coherent shading field on the plan’s nose and a
complete rejection of the incoherent shading information on the textured back-
ground. Such an outcome can be used to segment smoothly curved surfaces in
the scene (Ben-Shahar & Zucker, 2003b), to resolve their shape (Lehky & Se-
jnowski, 1988), to identify shadows (Breton & Zucker, 1996), and to determine
occlusion relationship underlying edge classification (Huggins et al., 2001).

11% for orientation resolution of 10 degrees) and a similar orientation offset
at which it crosses the uniform distribution (approximately ±40 degrees).
Unlike collinearity and association field models, however, ours predict qual-
itative differences between distributions of individual neurons, or injection
sites, similar to findings in the literature (see Figure 10c). Most important,
our model predicts the consistently nonmonotonic standard deviation. At
orientation resolution of 10 degrees, both the anatomical data and the com-
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putational models exhibit variance local minima at approximately ±30 de-
grees. This property holds for both a random sample of cells (see Figure 11)
and the computational population as a whole (not shown for space consid-
eration).

3.2 Curvature Quantization and Population Statistics. The geometri-
cal model discussed in this article must be quantized in both orientation and
curvature before projection patterns can be computed and computational
predictions can be made. We fixed the orientation quantization to the same
level used in Bosking et al. (1997). Curvature quantization, however, is not
addressed in the physiological literature, and thus it is necessary to examine
its effect on the resultant connectivity distributions. We note that even with
orientation represented to hyperacuity levels, there are sufficient numbers
of cells to represent such quantization (Miller & Zucker, 1999).

Broad orientation tuning implies discrete orientation quantization and
suggests even more discrete curvature quantization. The results presented
in Figures 10 and 11 are based on quantizing curvature into five classes.4

This is a likely upper bound, given the broad bandpass tuning of cortical
neurons that have been observed (Dobbins et al., 1987; Versavel et al., 1990)
and modeled (Dobbins, Zucker, & Cynader, 1989). However, to study the
effect of curvature quantization, we repeated the entire set of computations
with both a smaller (three) and a larger (seven) number of curvature classes.
Three is clearly the lower limit, which may correspond to the tree shrew
(Bosking et al., 1997) or other simple mammals, and seven is more than re-
quired computationally (Ben-Shahar, & Zucker, 2003b). We found that all of
the properties predicted initially remain invariant under these changes. In
particular, regardless of quantization level, the pooled distribution remains
unimodal, it peaks at zero orientation difference with approximately 11%,
it crosses the uniform distribution at ±40 degrees, and it has nonmono-
tonic variance with local minima at ±30 degrees (with somewhat increased
variance around zero orientation for higher quantization levels). Qualita-
tive differences between individual neurons are predicted regardless of the
number of curvature classes. All these results are illustrated in Figure 12.

3.3 Relationship Between Cells’ Distribution and Connections’ Distri-
bution. Since both anatomical and computational studies must sample the
population of (biological or computational) cells to measure the distribu-
tion of their horizontal connections, an important consideration is whether
the underlying distribution of cells (based on their curvature tuning) can
affect the pooled distribution of connections. For example, if most cells in

4 In the context of curves, these five classes may be labeled as straight, slowly curving
to the left, slowly curving to the right, rapidly curving to the left, and rapidly curving to
the right.
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Figure 10: Comparison of anatomical data and model predictions for the dis-
tribution of long-range horizontal connections in the orientation domain. In all
graphs, dashed horizontal lines represent the uniform distribution, and error
bars represent ±1 standard error. (a) Mean connection distribution of four in-
jection sites from Malach et al. (1993) versus the computational prediction from
our models (expected mean, N = 4, 100 repetitions). Note the dominant peak
around zero orientation difference and the considerable width of the histogram.
The asymmetry in the pooled distribution measured by Malach et al. (1993)
likely derives from a bias at the injection site (see their Fig. 4D) rather than be-
ing intrinsic. (b) Median distribution of seven injection sites from Bosking et al.
(1997) against the computational prediction from our models (expected median,
N = 7, 100 repetitions). Note in particular the similarity in peaks’ height and
in the orientation offset at which the graphs cross the uniform distribution, and
the strongly nonmonotonic behavior of the variance. (c) Two individual injec-
tion sites with qualitatively different connection distributions reproduced from
Bosking et al. (1997). The counterpart computational instances are sampled from
our models. Solid graphs correspond to the fields in Figures 8b and 8i. Dashed
graphs correspond to the fields in Figures 8c and 8j.
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Figure 11: Although both the computational and the physiologically measured
distributions of the mean are monotonically decreasing, their standard deviation
is consistently nonmonotonic. (a) While Bosking et al. (1997) used the populaiton
median, we further analyzed their published data (from seven injection sites) to
find its mean and standard deviation. It is evident that the standard deviation
is nonmonotonic, with two local minima at ±30 degrees (marked with arrows).
(b) Expected standard deviation for the texture model. (c) Expected standard
deviation for the curve model. Both graphs depict the expected standard de-
viation for seven randomly selected cells (N = 7, 100 repetitions). and both
show a similar nonmonotonic behavior with pronounced standard deviation
local minima at approximately ±30 degrees. Not how the computational local
minima coincide with the anatomical ones (arrows are copied from a and over-
laid on the computational graphs). Compare also to the standard deviation on
the median graphs in Figure 10b. Note that as with the distributions themselves,
both computational models produce quantitatively similar standard deviation
results.
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Figure 12: Different quantization levels of curvature tuning have little effect
on the expected median distribution and its standard deviation. (a) Anatom-
ical data from Bosking et al. (1997) shown for comparison with the computa-
tional predictions. (b) Computational predictions with three curvature classes.
(c) Computational predictions with five curvature classes. (d) Computational
predictions with seven curvature classes. In all cases, the left column depicts the
expected median for seven cells (bars are 1 s.d.), the middle column depicts the
expected standard deviation for seven cells, and the right column shows two
qualitatively different distributions from two different cells. For space consid-
erations, we show the results form the texture model only.
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the population are tuned for zero or very small curvature, the pooled con-
nection distribution may differ from that of a population dominated by high
curvature cells.

The results presented in Figures 10 and 11 are based on the assumption
that cells of different curvature tuning (or, put differently, of different con-
nectivity patterns) are distributed uniformly. Such an assumption follows
naturally from the mathematical abstraction that allocates the same number
of computational units to equal portions of R

2×S1. However, if this assump-
tion were wrong, would a bias in the distribution of cells affect significantly
the predictions made from our models?

Unfortunately, few data about such distributions are available, partially
because anatomists need not assume any particular cells’ distribution for
their measurements of projection fields, and partially because curvature
tuning is rarely considered. Some data available on the distribution of end-
stopped cells (Kato, Bishop, & Orban, 1978; Orban, 1984) in conjunction
with the functional equivalence of end stopping with curvature selectivity
(Orban, Versavel, & Lagae 1987; Dobbins et al., 1987, 1989; Versavel et al.,
1990), suggest that cells are distributed bimodally in the curvature domain,
with peaks at both zero and high curvature tuning. Alternatively, statistical
studies of edge correlations in natural images (Dimitriv & Cowan, 1998;
August & Zucker, 2000; Sigman et al., 2001; Kaschube, Wolf, Geisel, & Löwel,
2001; Geisler et al., 2001; Pedersen & Lee, 2002) show that collinear co-
occurrences are more frequent than others. Although these co-occurrence
measurements neither depend on curvature nor do they necessarily indicate
any particular distribution of cells at the computational level, implicitly they
may suggest that cells are distributed unimodally in the curvature domain,
with peak at zero curvature only.

Since our model raises the possibility of a curvature bias effect, we thus
redistributed the population of our computational cells by one or the other
of these nonuniform (bimodal and unimodal) distributions, and then re-
peated the computational anatomy process described in section 3.1. All
computations were done on the more general 2D (texture) model. The bi-
modal distribution was modeled as a radial two-gaussian mixture model

(GMM) parameterized by the total curvature κ =
√

κ2
T + κ2

N and parame-
ters µ0 = 0, σ0, µ1, and σ1. The unimodal distribution was modeled as a 2D
gaussian of zero mean and variances σT and σN in the κT and κN dimensions,
respectively.

Figure 13 illustrates one example of the resultant statistical measures for
the bimodal cell distribution. In this example, σ0 = 0.04 and σ1 = 0.05,
where the slight difference accounts for corresponding differences in the
two modes as reported in Kato et al. (1978) and Orban (1984). As is shown,
this nonuniform distribution hardly changes the expected median, while
further emphasizing the nonmonotonic nature of the variance (compared
to the statistics obtained with the same number of curvature classes and
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Figure 13: A statistical confirmation that the properties of our models persist
even when the population of cells is distributed bimodally (Kato et al., 1978; Or-
ban, 1984). Illustrated here is the result from a distribution modeled as a GMM
with µ0 = 0, σ0 = 0.04, µ1 = 0.2, and σ1 = 0.05. Since the bimodal nature of the
distribution is best represented with a higher number of curvature classes, pre-
sented here is the case of the texture model with curvatures quantizied to seven
classes each. (a) The (radially) bimodal distribution of cells in the curvature do-
main normalized for number of cells. The x- and y-axes represent tangential and
normal curvature tuning, respectively, and the z-axis represents the number of
such curvature-tuned cells for any given orientation tuning. (b) Expected me-
dian of seven cells. Error bars are ±1 standard deviation. (c) Expected standard
error for seven cells. Compare both graphs to Figure 12d.
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uniform cell distribution; see Figure 12d). Similar results were obtained with
other values of σ0 and σ1 and for the curvature quantized to five classes as
well.5

Figure 14 illustrates another example, this time using the unimodal cell
distribution mentioned above. In this example, σT = σN = 0.15 such that
cells with zero curvature tuning are eight times more frequent than cells
tuned to the maximum value of curvatures. As expected, this strongly
nonuniform distribution slightly elevated the peak of the population statis-
tics, but otherwise, all other features that were predicted from the uniform
cell distribution, and in particular the nonmonotonic variance, were fully
preserved. Similar results were obtained with other values of σT and σN,
and for all quantization levels of the curvatures (as in section 3.2).

In summary, we have shown that even if cells in primary visual cor-
tex were distributed nonuniformly in their curvature tuning, the pooled
distribution of long-range horizontal connections in the orientation domain
would preserve its fundamental properties, and in particular its wide spread
and nonmonotonic variance. Thus, our conclusions are not biased by an im-
plicit assumption about curvature-dependent distribution of cells.

4 Discussion

The findings presented from our computational anatomy support the func-
tional identification of the long-range horizontal connections with those
obtained mathematically. However, the question of why the texture model
is necessary becomes unavoidable, and we believe this issue is more than
just formal mathematics. Certain physiological and psychophysical find-
ings, such as iso-orientation side facilitation (Adini et al., 1997), functional
and anatomical connections between retinotopically parallel receptive fields
(Ts’o et al., 1986; Gilbert & Wiesel, 1989), and roughly isotropic retinotopic
extent of projection fields (Malach et al., 1993; Sincich & Blasdel, 2001) sug-
gest the perceptual integration of texture flows rather than curves. Although
this class of patterns may seem less important than curves as a factor in
perceptual organization, their perceptual significance has been established
(Glass, 1969; Kanizsa, 1979; Todd & Reichel, 1990). Furthermore, recent com-
putational vision research implicates them in the analysis of visual shading
(Lehky & Sejnowski, 1988; Huggins, Chen, Belhumeur, & Zucker, 2001), as
was demonstrated in Figure 9, and even color (Ben-Shahar & Zucker, 2003a).

Whether projection patterns of cells in primary visual cortex come in dif-
ferent flavors (i.e., curve versus texture or shading integration) is an open
question. To answer it, one is likely to exploit the many physiologically
measurable differences between these classes of projection patterns, as sug-

5 Quantization of curvature to three classes was irrelevant in this case because the
bimodality of the distribution could not be expressed using too few (three) samples.
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Figure 14: A statistical confirmation that the properties of our models persist
even when the population of cells is distributed normally (i.e., unimodally). Such
distribution is implicitly suggested by statistics of edges in natural images (Dim-
itriv & Cowan, 1998; August & Zucker, 2000; Sigman et al., 2001; Kaschube et
al., 2001; Geisler et al., 2001; Pedersen & Lee, 2002) in which collinear edges are
much more frequent. The case presented here (σT = σN = 0.15) induces a dis-
tribution in which cells of zero curvature tuning are eight times more frequent
than those of maximal curvature tuning. The graphs in this figure correspond
to the texture model with curvatures quantizied to three classes each. Similar
resutls were obtainded with other quantization levels as well. (a) The normal
distribution of cells in the curvature domain normalized for number of cells.
The x- and y-axes represent tangential and normal curvature tuning, respec-
tively, and the z-axis represents the number of such curvature-tuned cells for
any given orientation tuning. (b) Expected median of seven cells. Error bars are
±1 standard deviation. (c) Expected standard error for seven cells. Compare
both graphs to Figure 12b.
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gested by Figure 8. Unfortunately, the statistical data obtained so far do not
distinguish between the two (curve and texture) integration models; with-
out a spatial dimension, the statistical differences between the two models
in the orientation domain are too fine to measure relative to the accuracy of
current laboratory techniques.

Until full spatio-angular data are obtained, however, the inclusion of
even weak spatial information is sufficient to generate further testable pre-
dictions. In particular, incorporating the retinotopic distance between linked
cells into the statistics (or estimating it from their cortical distance) can pro-
duce predictions regarding the dependency of the distribution’s spread and
shape on the integration distance, as illustrated in Figure 15. Some verifica-
tion for these predictions can be seen in the measurements of Kisvárday et
al. 1997, top row in their Fig. 9 shows developing peaks resembling the ones
in Figures 15b, and 15c). Similar annular analyses, which focus on sectors
of the annuli in directions other than parallel to the RF’s preferred orienta-
tion, provide measurable differences between curve and texture projection
fields.

In summary, we have presented mathematical analysis and computa-
tional models that predict both the pooled distribution of long-range hor-
izontal connections and the distributions of individual cells and injection
sites. For the first time, the modeling goes beyond the unimodal first-order
data and falsifies a common conclusion from it. In particular, while co-
aligned facilitation entails the pooled first-order data, the converse is not
necessarily true: these data are also consistent with curvature-dependent
connections. The second-order (variance) data, however, remain consistent
with curvature-dependent connections but not with coaligned facilitation.

The explanatory force of our model derives from sensory integration,
and we observed in Section 1 that most researchers limit this to curve in-
tegration via collinearity. We conclude in an enlarged context: differential
geometry provides a foundation for connections in visual cortex that pre-
dicts both dependency on curvature(s) and an expanded functional capa-
bility, including curve, texture, and shading integration. Since the same
geometrical analysis applies to many other domains in which orientation
and direction fields are fundamental features, coherent motion processing
(Series, Georges, Lorenceau, & Frégnac, 2002) and coherent color percep-
tion (Ben-Shahar & Zucker, 2003a) might also have been included. Since all
follow from the geometry and all are important for vision, more targeted
experiments are required to articulate their neural realization.

Appendix: Noise Models

Two basic noise models are used in this article to examine whether variations
of the basic collinear distribution (see Figure 2) can produce a pooled statis-
tics with similar properties to the biological one. This appendix describes
both procedures in detail.
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Figure 15: Model predictions of connection distributions by a retinotopic annu-
lus. Left, middle, and right columns correspond to predictions based on small,
medium, and large annuli, respectively (circles in Figures 8d and 8i). All annuli
refer to distances beyond one orientation hypercolumn, thus, the small annulus
should not be confused with distances less than the diameter of one hypercol-
umn. In a and b the same sampling procedure and the same sample set sizes
described in Figure 10 were repeated. For lack of space, we omit the very similar
graphs of the mean and median of the entire population, and present predictions
from the texture model only. (a) Expected mean distribution and standard error
(N = 4, 100 repetitions). Note the spread with increased retinotopic distance. (b)
Expected median distribution and standard error (N = 7, 100 repetitions). Note
the developing symmetric peaks that further depart from the iso-orientation
domain as the spatial distance increases. The correspondece of these peaks to
the minima of the standard error is remarkable, thus designating them as sta-
tistical anchors suitable for empirical verification. (c) Individually tuned cells
show the qualitative difference between distributions of high and low curvature
cells. In particular, note how the distributions of medium and high curvature
cells (dashed graphs) are the ones that develop the peaks mentioned in b above.
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To examine natural random variations at the level of individual connec-
tions, each long-range horizontal connection, ideally designated to connect
cells of orientation difference �θ , is shifted to connect cells of orientation
difference �θ + εσ , where εσ is a wrapped gaussian noise with zero mean
and variance σ . To do this computation, the base distribution (collinear
or association field) from Figure 2, initially given as probabilities over 18
orientation bins of 10 degrees each, was normalized and quantized to a con-
nection histogram in the range [0, N], where N represents the total number
of connections a cell makes. To each such connection to orientation differ-
ence �θ we then added a wrapped gaussian noise εσ of zero mean and
variance σ , and the new (random) connection was accumulated at the bin
�θ + εσ of the resultant histogram. This process was repeated 200 times to
produce 200 different perturbations, from which both expected distribution
and variance were computed bin-wise. The parameter σ was set to the value
that produced an expected distribution of peak height and spread similar
to the biological one. Since different anatomical studies and protocols indi-
cate a different number of total connections (e.g., hundreds in Schmidt et al.
1997, approximately 3500 in Buzás et al., 1998 and up to 20,000 for injection
sites of approximately 20 cells in Bosking et al., 1997), we repeated this sta-
tistical test for normalizations in different ranges. As expected, changing N
only scaled the variance uniformly across the expected distribution but did
not affect its mean. Thus, for better clarity of its monotonicity, the result in
Figure 3b reflects a smaller number of total connections (N = 200), as in, for
example, Schmidt et al. (1997).

To examine random variations due to “leakage” of tracer from an in-
jection site of preferred orientation θ0 to nearby orientation columns, we
modeled such leakage by selecting i = 1, . . . , M cells of preferred orienta-
tion θi = θ0 + �θσ , where �θσ is a wrapped gaussian random variable of
zero mean and variance σ . A normalized- and quantized-based distribution
(collinear or association field) was then centered around each of θi, and all
were summed up and normalized to yield a resultant (random) distribution
of connections for the injection site at θ0. As before, we repeated this gener-
ation process 200 times to produce 200 different perturbations, from which
both expected distribution and variance were computed bin-wise. The pa-
rameter σ was again set to that value that produced an expected distribution
of peak height and spread similar to the biological one. The number of cells
in an injection was set to M = 20, approximately as reported in Bosking
et al. (1997) Unlike random variations at the level of individual connec-
tions, the range parameter N had no effect on the variance of the expected
distribution.
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Schmidt, K., Goebel, R., Löwel, S., & Singer, W. (1997). The perceptual group-
ing criterion of colinearity is reflected by anisotropies in the primary visual
cortex. Eur. J. Neurosci., 9, 1083–1089.
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