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Abstract

The denoising of color images is an increasingly studied prob-
lem whose state-of-the-art solutions employ a variety of diffusion
schemes. Specifying the correct diffusion is difficult, however, in
part because of the subtleties of color interactions. We address
this difficulty by proposing a perceptual organization approach
to color denoising based on the principle of good continuation.
We exploit the periodic chromatic (hue) component of the color
in its representation as a frame field. We derive two hue curva-
tures and use them to construct a local model for the behavior of
the color, which in turn specifies consistency constraints between
nearby color measurements. These constraints are then used to
replace noisy pixels by examining their spatial context. Such a
contextual analysis (combined with standard methods to handle
the scalar channels, saturation and lightness), results in a robust
noise removal process that preserves discontinuities, singularities,
and fine chromatic structures, including those that diffusion pro-
cesses are prone to distort. We demonstrate our approach on a
variety of synthetic and natural images.

1. Introduction
While much of computer vision and image processing re-
search focuses exclusively on the luminance domain, the
analysis of color images has gained increasing interest in
recent years. An important problem in the processing of
color images is that of enhancement and denoising. We at-
tempt a unification of these tasks by exploiting the geometry
of color in a perceptual organization framework.

Following early attempts to denoise color images
through independent smoothing of the RGB channels, prac-
tically all contemporary approaches focus on a variety of
filtering processes applied appropriately to the color vecto-
rial data. While some studies explore vector median and
directional filters [1, 26], most color image enhancement
approaches are based on some form of anisotropic diffu-
sion [20, 27, 25], either on an explicit vectorial representa-
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tion of the color, or based on differential geometrical prop-
erties of a manifold representation in a higher dimensional
space [24, 21, 22, 12].

Many of these efforts, as well as other related ap-
proaches [6, 5, 7], use the perceptually-motivated HSV
color representation in which the achromatic (lightness, or
value) and chromatic components of the color image are
explicitly separated, and the latter is further described with
two independent variables for hue and saturation. This rep-
resentation has deep roots in the psychology of perception
and the subjective experience of color, from Hering’s op-
ponent hues theory [9] and Munsell’s book of colors [15],
to accumulating psychophysical evidence on color sensi-
tivity [8]. Combined with neurophysiological findings for
color opponent cells, color specificity in V4, and perceptual
impairments such as achromatopsia [14], it is now com-
monly speculated that neural structures that explicitly en-
code the hue, saturation, and lightness do exist and will
eventually be found [17, p. 120].

Of the three perceptual dimensions of HSV, the hue is pe-
riodic and can be represented as an angle. Although it is not
spatial in nature, this angle associates a geometric meaning
to the hue component of the color (or alternatively, to the
chromatic component as a whole) and thus suggests a geo-
metrical treatment. Although this idea is not new and has
been exploited in the color diffusion literature through the
diffusion of orientations (e.g., [24, 7]), here we propose a
different approach that treats the angular hue component in
the context of perceptual organization and the principle of
good continuation. The basic idea is the following: if hue
behaves like orientation, two nearby color patches should
be mutually coherent if their hue orientations posses mutual
geometrical good continuation. This amounts to assessing
the degree to which each hue measurement is geometrically
compatible with the context in which it is embedded, and
whether or not that context is part of a single whole. Most
importantly, this is done while making explicit the obser-
vations that (1) the hue is typically piecewise smooth over
the image, and (2) that it may vary greatly, albeit smoothly,
even within perceptually coherent objects (Fig 1). In noisy
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Figure 1: Color images, and their hue fields, are typically piecewise smooth. Most importantly, their hue can vary smoothly
even within perceptually coherent objects. Thus, a representation that makes these variations explicit is necessary. (A) A
natural image of an apple with varying hue. (B) The corresponding hue field (see Section 2). Note how it changes smoothly
across the apple’s surface. (C) A 3D representation of the hue filed, where hue is represented as height. Identifying the top

face with its bottom one leads to the space XYH
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1 in which the image’s hue is a submanifold. (D) A natural image
of peppers with a region of interest (ROI). (E) The hue field of the peppers image in the ROI is piecewise smooth. In general,
occlusion boundaries between objects in the world induce hue singularities (up to some blurring from the imaging process)
that must be preserved while noisy images are denoised.

color images, the noisy pixels do not posses the required
good continuation with their context, thus can be detected,
suppressed, and replaced with better ones.

The rest of this paper addresses color denoising through
geometrical good continuation of hue while treating the
noise in the other two linear dimensions (saturation and
lightness) through independent scalar anisotropic diffu-
sion [20, 4]. Since diffusion processes are now well estab-
lished, and for lack of space, we do not discuss it further in
this paper. Rather, we first analyze the geometrical content
of the hue and show how it necessarily results in a notion
of hue curvatures. We then use these curvatures to devise
a local, curvature-tuned model of coherent hue variations
and study its properties. This model is subsequently used to
devise consistency constraints between nearby pixels which
we use in a relaxation labeling network to denoise color im-
ages. We conclude with experimental results on both syn-
thetic and natural images and a short discussion of our fu-
ture work in this area.

2. Color, hue, and hue curvatures
Consider the HSV color space, in which a color image is
a mapping C : R2 ! S1 � [0; 1]2, where S1 is the unit
circle. The hue component across the image is a mapping
H : R2 ! S1 and thus can be represented as a unit length
vector field over the image plane, henceforth called the hue
field. In many natural images, as well as visual artifacts, this
hue field is typically piecewise smooth (Fig. 1) with orien-
tation singularities that correspond to significant events in
the scene (e.g., occlusion). Denoising color images requires
suppressing spurious measurements within the smooth seg-
ments while preserving the boundaries between them. To
achieve this goal, we first develop the notion of color coher-

ence as expressed through the smoothness of the hue field.
An extension of the vector field representation that

makes tools from differential geometry readily available is
that of the frame field [16]. More specifically, by attaching
a frame field fHT ;HNg to each point in the image domain,
we now not only represent the hue vector itself, but also pro-
vide a local coordinate system in which all other vectors can
be represented in a natural, object centered view (Fig. 2).
Perhaps the most important vectors (other than the frame
vectors themselves) are the covariant derivatives ofHT and
HN . These covariant derivatives represent the initial rate
of change of the frame in any given direction ~V, a quantity
which in the fHT ;HNg coordinates is captured by Cartan’s
connection equation [16]:�
rVHT

rVHN

�
=

�
0 w12(V )

�w12(V ) 0

��
HT

HN

�
(1)

The coefficient w12(V ) is a function of the tangent vector
V , which represents the fact that the local behavior of the
flow depends on the direction along which it is measured.
Fortunately, w12(V ) is a 1-form and thus linear. This allows
us to fully represent it with two scalars at each point since

w12(V ) = w12(a H1 + b H2) = a w12(H1) + b w12(H2):

The freedom in selecting a basis fH1;H2g for the represen-
tation of the tangent vectors V is naturally resolved by mak-
ing, once again, the choice of H1 = HT and H2 = HN .
This yields the following two scalars:

�T
4
= w12(HT )

�N
4
= w12(HN ) :

(2)

We call �T the hue’s tangential curvature and �N the hue’s
normal curvature - they represent the rate of change of the
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Figure 2: Any smooth hue field (depicted here with the set
of locally parallel lines), can be represented as a differen-
tiable frame field which is everywhere tangent and normal
to the streamlines of the flow. An infinitesimal translation
of the frame in a direction V rotates it by some angle de-
termined by the connection form of the frame field. Since
HT ;HN are unit length, their covariant derivative lies in
a normal direction, regardless of V . Since the connection
form is a linear operator, it is fully characterized by two
numbers obtained by orthogonal expansion. The natural ex-
pansion based on the frame itself yields the two hue curva-
tures �T and �N . This diagram also suggests a relationship
between hue fields and texture flows [3],

hue in the tangential and normal directions, respectively.
Since HT and HN are rigidly coupled, we can rewrite the
two curvatures directly in terms of the hue field (HT ) using
the standard curl (r�) and divergence (r�) operators:

�T = jjr�HT jj

�N = r � HT :
(3)

However, more useful is the expression of the hue curva-
tures in terms of the hue itself and its gradient (relative to a
fixed coordinate system):

�T = rH � (cosH; sinH)

�N = rH � (� sinH; cosH):
(4)

Viewed this way, it is clear that if �T and �N were known
functions of position q, Eq. 4 could be viewed as a PDE and
be solved forH(q). This of course raises the question of the
degree to which �T and �N are independent, which indeed
leads to the following observation (proofs omitted for space
considerations):

Proposition 1 Unless �T and �N both equal zero, they
cannot be simultaneously constant in a neighborhood
around q, however small, or else the induced hue function
will be nonintegrable.

This observation has an important implication: Unless
the hue function is constant, at least one of its curvatures
must vary, or the two curvatures need to covary in any

neighborhood of the color image. More generally, this is
characterized by the following constraint:

Proposition 2 Given any hue field fHT ;HNg, its curva-
ture functions �T and �N must satisfy the relationship

r�T � HN �r�N � HT = �2T + �2N :

3. A model for hue coherence

Since the local behavior of the hue is characterized (up to
Euclidean transformation) by a pair of curvatures, it is natu-
ral to conclude that nearby measurements of hue should re-
late to each other based on these curvatures. Put differently,
measuring a particular curvature pair (�T (q); �N (q)) at a
point q should induce a field of coherent measurements, i.e.,
a hue function ~H(x; y), in the neighborhood of q. Coher-
ence of H(q) to its spatial context can then be determined
by examining how wellH(x; y) fits ~H(x; y) around q.

Clearly, the local coherence model ~H(x; y) should be
a function of the local hue curvatures (�T (q); �N (q)), it
should agree with these curvatures at q, and it should ex-
tend around q according to some variation in both curva-
tures (as a consequence of the propositions above). While
many such models are possible, the fact that the hue field
is a unit length vector field over the image plane implies
that it takes the form of a texture flow [3]. Consequently,
we adopt the same curvature-tuned local model developed
recently for texture flows. Viewed as a surface in a three
dimensional space whose Z axis represents the hue (as in
Fig. 1C), this model takes the form of a right helicoid 1:

H(x; y) = tan�1
�

�T (q)x + �N (q)y

1 + �N(q)x � �T (q)y

�
: (5)

This local model possesses many properties that suit good
continuation, an in particular it is both a minimal surface
in the (x; y; ~H(x; y)) surface representation, and a critical
point of the p-harmonic energy for all p. It is also the only
local model that does not bias the changes in one hue cur-
vature relative to the other, i.e., it satisfies

�T (x; y)

�N (x; y)
= const =

�T (q)

�N (q)
:

Examples of the model for different curvature tuning is il-
lustrated in Fig 3. A detailed technical account on the de-
velopment of the model in the texture flow domain can be
found in [3].

1Unlike texture flows, the local model for the hue function is not a
double helicoid since the hue function is 2�-periodic while texture flows
are �-periodic. The basic proofs carry through, however.
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Figure 3: A local model for coherent local behavior of the hue can be depicted both as (A) a height function that wraps itself
to [��; �) (hence the apparent discontinuity), and as (B-D) a unit length vector field in the image plane. Different orientation
and curvature tunings at the central pixel (marked with red) yield different local behaviors around it, and the three variations
shown correspond qualitatively to (B) �T > 0 and �N > 0, (C) �T > 0 and �N = 0, (D) �T = 0 and �N = 0. All three
fields are tuned to the same hue value ofH = 45Æ.

4. A contextual approach to color de-
noising

The advantage of having a model for the local behavior of
“good” hue flows lies in the ability to assess the degree to
which a particular pixel is compatible, or consistent, with
the context in which it is embedded. This, in turn, can be
used to remove spurious measurements and replace them
with consistent ones such that local ambiguity is reduced
and global structures become coherent.

There are a few different frameworks in which one can
pursue this task while maximizing some measure of global
consistency or coherence over a domain of interest. Such
frameworks include relaxation labeling [11, 13], recurrent
neural networks [10], and belief propagation networks [18].
Here we present results using a relaxation labeling network
whose nodes i = (x; y) are the image pixels, its labels at
each node are drawn from the set � = f(H; �T ; �N ) j H 2

[��;�) ; �T ; �N 2 [�K;K]g (after it has been quantized
appropriately), and each label is assigned a confidence, or
probability pi(�) such that at each node

P
�2� pi(�) = 1.

The relaxation process itself drives an initial confidence dis-
tribution p0i (�) to a final (possibly ambiguous) distribution
p1i (�). What governs the dynamics of this process, and ul-
timately its convergence state, is the compatibility relation-
ships rij(�; �0) between different labels at different nodes.
In our case, these compatibilities represent the degree to
which two nearby pixels have consistent hue values. View-
ing the problem from a geometrical point of view we de-
rive these compatibilities from the geometrical (helicoidal)
model described above. Examples of a variety of compat-
ibility fields for a single hue value and different combina-
tions of hue curvatures are illustrated in Fig. 4. Note in
particular the relationship between curvature tuning and the
rotational organization in the hue domain.

With the network structure, labels, and compatibilities
all designed, one can compute the support s i(�) that label

� at node i gathers from its neighborhood. We define s i(�)
to be si(�) =

P
j

P
�0 rij(�; �

0)pj(�
0) and use it to up-

date the confidence pi(�) by gradient ascent followed by a
confidences normalization �

pt+1i (�) �
�
pti(�) + Æsti(�)

�
(6)

where Æ is the gradient ascent step size. The relaxation la-
beling theory [11, 19] ensures that such a rule will converge
to a consistent labeling while extremizing the average local
consistency over the entire image.

5. Experimental results
We applied the proposed model for hue good continuation
and the corresponding relaxation labeling network for de-
noising images on a variety of synthetic and natural inputs.
In all cases we quantized the hue uniformly to 32 equiva-
lence classes and curvatures to 5 (as in Fig. 4). Step size
was set to Æ = 0:5.

Fig. 5 illustrates the relaxation behavior around differ-
ent kinds of synthetic color edges. Since our approach ef-
fectively considers only the coherent context (as defined
through the geometrical model and the derived compatibil-
ities) of each pixel, neither noisy pixels, nor information
across edges, affect the support gathered by each label. This
ensures not only the reliable elimination of noisy labels (or,
as is necessarily true due to confidence normalization, their
replacement with coherent ones), but also the robust preser-
vation of edges. In this sense, the performance on the image
in 5E-J is of particular interest because the input represents
an edge configuration that a typical nonlinear diffusion is
likely to distort. More specifically, note how the hue profiles
along the two sides of the perceptual edge create a cross-
like configuration in the hue domain (best seen in Fig. 5H).
Since in the proximity of the cross point the hue gradient is
very small the diffusion conduction increases and smooth-
ing is encouraged. In practice this leads to the collapse of
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Figure 4: A collection of 9� 9 hue compatibility fields forH = 0Æ (the red color), where both �T and �N are selected from
the set f�0:2;�0:1; 0:0; 0:1; 0:2g. Each field represents all compatible hue values in the neighborhood of the central label;
on the left these compatible values are depicted as color pixels while on the right they are depicted as hues fields. Due to
quantization, especially that of curvatures, a given label at the center may be compatible with more than one label at the same
nearby location in its neighborhood, an outcome depicted by multiplicity of vectors at certain positions in the fields. Since
this aspect of the compatibilities cannot be depicted with the color representation, the fields on the left show only the most
compatible hue value at each position. Note how higher curvature values introduce more variations into the fields, and how
changing the curvature tuning while keeping constant the “total variation” amounts to a rotational transformation of the field.

the edge from the inside out and to a distortion of the under-
lying structure. As is illustrated in the figure, this does not
happen with our approach.

Fig. 6 illustrates the results of our denoising approach on
the Apple image from Fig. 1. To emphasize the contribu-
tion of our method, which currently acts on the hue channel,
here we show the result for a corruption along the hue di-
mension. In this, as well in all other images we tested, full
reconstruction was achieved after 30 iterations or less. Un-
like typical diffusion processes, which contain no natural
indicators for stopping the progress along the scale space,
in our approach convergence is readily signaled by conver-
gence of the average local consistency (c.f. Fig. 5D). The
stability of the process once convergence has been achieved
is demonstrated in Fig. 7.

Finally, Fig. 8 demonstrates the result of using our ap-
proach on a variety of natural images. In all cases the noise
was completely removed, and convergence achieved, after
30 iterations of relaxation labeling or less.

6. Summary
We have presented an alternative approach for the denois-
ing of color images. Our approach is based on principles of
perceptual organization, and in particular the application of
good continuation to the two dimensional orientation field

of the hue channel. Based on a notion of hue curvature,
we derived a model for the local behavior of coherent hue.
Subsequently, we developed a contextual method in which
every pixel reinforces, or suppresses, the confidence in its
color through examination of its spatial context. Imple-
mented as a relaxation labeling network, this allows for a ro-
bust noise removal while maintaining the underlying struc-
tures in the color image. As we have argued, our approach
is able to preserve not only step like edges in color space
but more delicate structures as well, including those which
orientation diffusion is prone to distort.

Since it is represented as orientation, the hue dimension
of the color is a natural candidate for an application the prin-
ciple of good continuation, and the experimental results we
obtained indicate the usefulness in such an approach. While
thus far we have treated the saturation and lightness chan-
nels with scalar anisotropic diffusion, an integrated good-
continuation approach is in place. In particular, the combi-
nation of hue and saturation (sometimes called the chroma)
yield yet another orientation-like representation and while
this representation resides on S 2 (as opposed to S1), the
same curvature-based principle of good continuations is ap-
plicable there as well. Although the lightness channel does
not encode direction directly, the behavior of its levelsets
does so indirectly and considering this information in color
denoising may prove critical in preserving important visual
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Figure 5: Color denoising of synthetic color images. (A) A color step edge. (B) A noisy step edge. (C) The result of 20
iterations of relaxation labeling. The noise is completely eliminated while the edge structure is preserved. (D) is the graph of
the average local consistency as a function of iteration. it illustrates that convergence on this input was effectively achieved at
the 12th iteration, when the assignments pi(�) reached a steady state. (E-G) Denoising result on a different configuration of
color edge. This time steady state (panel G) was achieved after 30 iterations. This example is particularly important because
most anisotropic diffusion schemes are likely to fail on its cross-like edge configuration. This cross configuration is most
apparent in panel H, where the hue values are represented as height (and the top face of the cube should be identified with
its bottom). Since around the cross the hue gradient is very small, the diffusion is not suppressed and the edge collapses.
Thus even without noise (shown again in panel I), diffusion of such a configuration yields an undesired distortion of the
structure, as shown in panel J (compare to panel G with the result of our approach). Here we used the Beltrami flow for color
images [22, 12], but similar results were obtained with other orientation diffusion schemes (e.g., [23, 21]).

structures (e.g., roof edges). Thus, color as a whole can be
treated geometrically with a good continuation approach, a
possibility which we study in our current research.

Finally, the approach proposed in this paper may have
intriguing consequences for other vision sciences. Psy-
chophysically, it suggests an examination of color segmen-
tation and filling-in phenomena (Fig. 9) from a geometri-
cal point of view, similar to recent findings for orientation-
based texture segmentation [2]. Physiologically, it suggests
to search for long range interactions between color sensitive
cells (either in V1 cytochrome oxidase blobs or perhaps in
V4) which facilitates coherent color perception. All these
directions are part of our future research in this area.
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noisy hue field. (C) The result of 20 iterations. (D) The result of 50 iterations. (E) The denoised color image.
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Figure 8: Color denoising of the Vermeer, Lena, Sidney, and Peppers images. (A) Original image. (B) Noisy image. (C)
Convergence state of the relaxation process. We are grateful to Pamela Davis for the permission to use the Sidney image.


