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Abstract

While it is widely assumed that the long-range horizontal con-

nections in V1 are present to support contour integration, there has

been only limited consideration of other possible relationships between

anatomy and physiology (the horizontal connections) and visual func-

tion beyond contour integration. We introduce the possibility of other

relationships directly from the perspective of computation and di�er-

ential geometry by identifying orientation columns in visual physiology

with the (unit) tangent bundle in di�erential geometry. This suggests

abstracting early vision in a space that incorporates both position

and orientation, from which we show that the physiology is capable

of supporting a number of functional computations beyond contour

integration, including texture-
ow and shading-
ow integration, as

well as certain relationships between them. The geometric abstrac-

tion emphasizes the role of curvature, which necessitates a coupled

investigation into how it might be estimated. The result is an elabo-

ration of layer-to-layer interactions within an orientation column, with

nonlinearities possibly implemented by shunting inhibition. Finally,

we show how the same computational framework naturally lends itself

to solving stereo correspondence, with binocular tangents abstracting

curves in space.

�Current address: Arti�cial Intelligence Lab., MIT, Cambridge MA
yCorresponding author. Research supported by AFOSR and DARPA. We thank S.

Alibhai for the stereo computations.

1



L R

Layer 1

Layer 6

Figure 1: The standard Hubel-Wiesel \ice cube cartoon" shows how cortex

is organized so that each local retinotopic area is covered by receptive �elds

spaning orientations(tangential penetration), size (normal penetration), and

eye-of-origin.

1 Introduction

Orientation provides the basis for organizing much of visual cortex and

provides the foundation for visual information processing. An examina-

tion of receptive �eld structure shows how the neurons in V1 form a posi-

tion+orientation map of the visual �eld [HW77]. Roughly speaking, record-

ings along a short tangential (interblob) penetration reveal a collection of

cells with about the same receptive �eld centers but with shifts in orientation

preference, while normal penetrations reveal cells with similar orientation and

position preferences but di�erent receptive �eld sizes (or spatial frequency

selectivity). Taken together these observations de�ne an array of orientation

columns which, combined with eye of origin, provide a basic representation

for visual information processing; see Fig. 1.

The resulting hypercolumns are not independent. There exist long-range

horizontal interactions between them, which greatly enlarges the domain of

possibilities for information processing. The basic question is: which early

visual information processing tasks take place within columns, and which

between?

One such task is edge detection, and it is widely believed that the long-

range horizontal connections support the sensory integration necessary for

this. The nature of the evidence supporting this belief is reviewed in the

next section. However, less analysis has been applied to the question of

determining which tasks comprise sensory integration, and it is on this latter

question that we concentrate in this paper. Assembling estimates of local

orientation (within columns) into long curves (between columns) is clearly

one such task, but this is not unique; there are several other tasks that also
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arise naturally in early vision, all of which, we shall show, are consistent with

the available data on long-range horizontal integration.

This paper is primarily computational. We �rst develop a computational

theory of curve detection to illustrate that there is more to this task than is

normally presupposed. We also use this opportunity to introduce the con-

ceptual thread that runs through the paper: the use of di�erential-geometric

ideas to articulate theories of sensory integration. We then sketch how these

ideas can be extended for the analysis of texture, shading, and binocular

information. Particular types of sensory integration arise for each of these

tasks, although the general form remains invariant.

The computational ideas have a natural expression in physiological terms,

and we will use the intra-columnar processing to develop local representations

and inter-columnar processing to integrate them into coherent wholes. Some

of the functional roles in which the long-range horizontal connections could

be involved are quite unexpected, in that they do not appear related to curve

integration without the analysis provided.

More detailed issues arise throughout the discussion, such as the role

of certain nonlinearities in information processing. We also relate these to

biology, at both a biophysical level (implementing the nonlinearities with

shunting inhibition) and at a detailed anatomical level (elaborating intra-

columnar processing across layers).

While evidence is provided to demonstrate that the above claims are well-

founded computationally, in our current state of understanding any attempt

to reduce such abstract models to physiological circuits must necessarily in-

volve a degree of speculation. This said, we feel the time is right to start

contributing such ideas to the neurophysiological community. Our hope is

that they will broaden both the discussion around, and the experimental

perspective on, sensory integration.

1.1 Background: Co-linear Facilitation and Curve In-

tegration

Finding the boundaries of objects is one of the central problems of early

visual information processing (Fig. 2), and cells with oriented receptive �elds

are often interpreted as local edge detectors, or at least as components of

a system for local edge detection. That a system is required follows from

the fact that many of the local responses are noisy or ambiguous: they may

3



Figure 2: Two sample images suggest the range of problems for early vi-

sion, even when the task is limited to static, monocular, monochrome im-

agery. Both the sheet and the duck illustrate the importance of boundary

and shading information for supporting 3-dimensional interpretations, but

closer examination reveals how subtle the questions can become. Where, for

example, should the boundaries be drawn on the sheet? Or how can edge

and shading information combine to indicate that the duck's neck occludes

its back rather than the other way around?

arise from an accidental alignment of viewing geometry and lighting, from

a specularity, from noise in the sensory process, or from a myriad of other

causes. The resolution of these noisy, ambiguous responses is sought from

context, with those cells responding consistently along an edge facilitating

one another to enhance the correct responses while eliminating the noisy,

random ones.

This is perhaps the most basic type of contour integration, and it is

classical. The Gestalt psychologists argued for a form of orientation good

continuation nearly 75 years ago [Wer55], and it was suggested nearly 20

years ago that the anatomical substrate for such facilitation could be the

long-range horizontal connections [MC82].

The long-range horizontal axons e�ectively connect cells in the super�-

cial layers of nearby orientation columns, so to test the above hypothesis the

orientation preferences of the cells involved must be known. Two experi-

mental paradigms have been developed. First, to test for contextual e�ects,

one can isolate a target unit with a particular orientation preference, and

then plot how its activity is modulated by stimuli in the surround. This

paradigm was �rst used to demonstrate in
uences from beyond the classical

receptive �eld [MF76, AME85], and is still being applied in technically ad-

vanced ways [KIGW95b, KWG99]. Many such studies show that the target
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Figure 3: A cartoon of the relationship between orientation columns and

long range horizontal connections as revealed in optical imaging combined

with anatomical tracing. Di�erent colours represents the di�erent orientation

columns. The white dots represent the region where an anatomical tracer is

injected. The black dots represent axonal terminals coloured by this process.

As is typically found, short range interactions span all possible orientations,

while long range interactions tend to concentrate in cortical regions that

share similar orientation speci�city with the injection site.

cell's �ring is facilitated by surround stimuli that have about the same ori-

entation as the one preferred by the target cell. While this technique can

provide detailed characterization of the in
uences on an individual cell, it is

not suitable for gathering population distributions, it is stimulus dependent,

and the system-wide functional links it reveals are more diÆcult to interpret

in terms of the physical connections between neurons.

Alternatively, studies that are more suitable for population statistics have

used optical imaging and anatomical tracing to reveal the entire connectiv-

ity structure of cells (Fig. 3). Here optical imaging techniques are used to

\colour" (an image of) the cortex with the approximate orientation prefer-

ence of the underlying cells. Tracers are then injected into a cell and mark

its terminals. The distribution of these terminals can then be plotted against

the \colour" (or rough orientation preference) of the domain in which they

terminate to yield a complete characterization of cells connectivity structure

in the orienation domain [MAHG93, BZBF97].

Physiological evidence of both types is accumulating, and a summary

of the evidence is that the majority of such facilitory interactions are iso-

orientational; i.e., between cells with similar orientation preferences [KIGW95a,

MAHG93, TGW86]. Taken back to the edge detection problem, many re-

searchers observe that this is essentially what the orientation good contin-
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uation hypothesis would predict, and it suggests that a form of co-linear

facilitation underlies edge detection.

This basic model for edge detection { �ltering by operations analagous

to linear, oriented receptive �elds followed by co-aligned facilitation { can be

implemented and tested on natural images. Thus far this is only an outline

of an approach, however, because variations in �lters, their interactions, and

the detection process remain unspeci�ed. Researchers in computer vision

have considered these issues, and one of the most widely used edge detectors

is that of Canny [Can86]. This system e�ectively implements the above

outline, and consists of an initial �ltering stage, with �lters very similar in

form to simple-cell receptive �elds, followed by a facilitory (hysteresis) stage

that implements a type of co-aligned facilitation. Allowing an analogy to

driving a car along the edge, the output of the detector is essentially the

strongest set of initial edge detector responses that continue the edge in the

same orientation in which it was (recently) going. Of course, the continuation

can be adjusted by several parameters, intuitively varying the \inertia" with

which an edge continues. Both the \driving history" and the strength of

responses a�ect the �nal result.

The Canny detector can be evaluated on an image to assess performance,

and researchers unfamiliar with computer vision are often surprised at the

results. However, edge detection is not an easy problem as it may initially

appear. Di�erent values of the parameters illustrate the variations that typ-

ically occur, and it is instructive to examine them (Fig. 4). Among the

problems that emerge: boundaries can be broken apart or, what is perhaps

worse, proper but physically disconnected boundary segments can be inap-

propriately connected. Note in particular how di�erent values can bridge

between nearby (but totally di�erent) parts of edges by stressing how the

inertia parameter jumps across gaps. Unfortunately, there is no agreement

on how to select the parameters so that these problems do not arise.

The experience with edge detection in computer vision reveals some of the

types of questions that can arise from an information processing perspective.

First, for the initial operators, there is the question of how to obtain local

estimates of orientation that provide a consistent bridge between the image

and the scene. This must not induce incorrect linkages between disparate

curves, even when they are close in the image, because this implies incorrect

physical structure for objects in the world. Second, there is the question of

orientation good continuation: What does this mean in terms of physical

object properties and how should nearby oriented responses facilitate one
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Figure 4: Geometric problems in edge detection using the Canny operator

(Matlab implementation). The di�erent edge maps depict the results of the

edge detection process using di�erent parameter values. Not only that at

some levels non-boundaries are signaled as edges while at others levels gen-

uine edges are missed or broken, but oftentimes proper but distinct bound-

aries are inappropriately connected (e.g., the boundary of the duck's back

and the one of its neck).
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another so that they induce precisely the right amount of facilitation, co-

linear when appropriate and curved when not?

Thirdly, di�erent types of questions arise from physiology. For example,

if the the majority (as opposed to the entirety) of connections are between

(approximately) iso-oriented cells, are the \outliers" to this simply noise? Is

the correct abstraction for the majority co-linear facilitation, or is something

else going on? And, how should the majority be de�ned; in particular, what

is the proper spread in the distribution of connections in the orientation

domain?

Finally, there are questions that arise from the interface between physi-

ology and computer vision: are horizontal facilitations only participating in

edge detection, or might they also be implementing other functional roles?

If so, what might these be and are they consistent with the given data about

connections?

We shall consider each of these groups of questions in this paper. To set

the stage, we note that a closer examination of the physiological data suggests

the story is more complex than co-aligned contour facilitation (Fig. 5). For

example, while Kapadia et al. [KIGW95b] stress iso-orientation facilitation,

they also provide examples of facilitation between cells with up to 50 deg

orientation di�erence (their Fig. 10). The distributions provided by Bosking

et al. [BZBF97] clearly show non negligible portion of anatomical connections

even between cross orientations (their Fig. 6). And from the �ndings of Ts'o

et. al. [TGW86] it is evident that there are facilitory functional interactions

between iso-oriented cells whose receptive �elds are parallel to one another,

rather than co-aligned (see top pair in their Fig. 5). Interpreting such pairs

as participating in contour facilitation is awkward. Instead, we shall argue

that such exceptions are naturally explained from a series of computational

tasks, including (curved) contour integration, texture, shading, and stereo

processing.

To develop this argument, we shall have to consider how early visual in-

formation processing can be structured on orientation hypercolumns. We do

this in two stages. First, we brie
y review a model that captures enough of

the structure of the columnar architecture that it can be related to neuro-

physiology and neuroanatomy, but is suÆcently abstract that it can be ana-

lyzed mathematically and computationally. We then proceed to the analysis

of curves, textures, shading, and stereo in it, and how these relate back to

(certain aspects of) scene structure. As we show, facilitory interactions can

be involved in all of them, but co-aligned facilitation by itself is insuÆcent.
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Figure 5: The fact that the majority of connections are between iso-

orientation columns does not necessarily imply co-aligned facilitation; sim-

ilarly, orientation good continuation does not necessarily imply only iso-

orientation interactions. Three di�erent pairs of cells are shown, with po-

sition corresponding to the relative placement of receptive �elds and the

short bar corresponding to the preferred orientation of the cell. (LEFT)

Co-aligned facilitation is a natural implication of boundary detection and

a common interpretation of iso-orientation interactions.. (CENTER) An

\outlier" to co-aligned facilitation, with about a 50 degree rotation over a

short (retinotopic) distance. This example is not iso-orientation facilitation

although it re
ects a possible receptive �eld arrangement along a coherent

boundary curve. (RIGHT) An \outlier" to co-aligned facilitation that is iso-

orientation facilitation. While this example may contribute to the majority

of iso-orientation interactions, it cannot be interpret as serving curve inte-

gration. The question is whether this and other \outliers" can support useful

visual information processing.

Di�erential geometry, and curvature in particular, is necessary to understand

why co-aligned facilitation is dominant but not unique; there are an impor-

tant (and predictable) number of non-co-aligned facilitory in
uences that

play key processing roles.

2 The Columnar Machine

We begin by re-drawing the ice-cube model to illustrate the possibility of geo-

metric information processing. We focus on columns with the same monocu-

lar speci�city and drop deep layers. We depict the orientation hypercolumns

as vertical �bres distributed over a retinotopic array (the tilted plane) and

we display the orientation preference of cells within each hypercolumn as ori-

ented segments (Fig. 6). When organized in this fashion, a geometric view of

processing emerges, in which the �bre of orientations at each position in the
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retinotopic array abstracts the orientation hypercolumn, and the arrange-

ment of neighbouring �bres suggests an architecture that is specialized to

support interaction between orientations. All orientations in nearby columns

are clearly in a position to interact.

Mathematically we conceptualize this interaction by thinking of the dif-

ferent orientations at each position as \labels" and the measure of activity

of each neuron as the probability that the neuron is signaling the correct

orientation for that retinotopic position. Interactions are modeled as a com-

patibility function (rij(�1; �
0) in the top right of Fig. 6) between orientation

�
0 at position j with orientation �1 at nearby position i. In game-theoretic

terms, one can think of this function as representing the payo� that player i

gets by choosing strategy (label) �1 when player j plays strategy �
0. The goal

is to seek an equilibium for this game. Diagramatically we illustrate this with

the thickness of the orientated bars, with thicker bars denoting more activity

or higher probability (bottom of Fig. 6). Note that this can be viewed as a

selection process. The initial values are spread out along each �bre (bottom

left, Fig. 6), but the �nal values concentrate on a single, or a small number,

of distinct orientations (bottom right, Fig. 6).

Dynamics are not shown in this diagram, but are key to specifying the

manner in which abstract computations map onto networks of real neurons.

We have developed one way to do this, which is consistent with biophysics

at least to low-order. Imagine neurons as players in the above game, with

pure strategies being whether the neuron should depolarize (spike) or hy-

perpolarize [MZ92, MZ99]. Modeling neurons as piecewise-linear ampli�ers,

synapses (compatibilities) as conductances, etc., they can be placed in the

above form. The key idea behind our model is to consider groups of tightly

interconnected excitatory neurons capable of bringing themselves to satura-

tion feedback response following a modest initial a�erent bias current. We

refer to each such group of neurons as a clique, and for this the connections

can involve both short-range and long-range interactions.

The basic computation is in two phases, and builds upon the observed

regular spiking behavior of pyramidal cells. Consider a patch of cortex, con-

sisting of hundreds of thousands of cells. We view this as being further

organized into many times that number of cliques of densely-interconnected

neurons, with order-of-magnitude tens of cells per clique. (Miller and Zucker

calculate 33 cells/clique for orientation hyperacuity computations.) Initially

the cells in this patch are quiescent. A computation amounts to activating

all the cells in a single clique to saturation levels, but no others. This begins,
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Figure 6: Two re-drawings of the ice-cube model, emphasizing (TOP) the

functional anatomy and (BOTTOM) the processing. A retinotopic array

(the tilted plane) and a sampling of super�cial-layer cells drawn (scale not

included) on �bres representing hypercolumns. (TOP LEFT) Inter-columnar

connections are not only between iso-orientation cells. (TOP RIGHT) No-

tation for a game theoretic intepretation of inter-columnar processing; see

text for details. (BOTTOM) Here cells are drawn as oriented segments to

show their orientation preference. The thickness of the orientated bars de-

notes activity of cells; initial values in time (BOTTOM LEFT) and then later

(BOTTOM RIGHT) denote processing in time, which may be viewed as a

selection process along each �bre. Dynamics are not shown.
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in Phase I, when a�erent stimulation produces single spikes in a majority of

the cells in one clique (those cells can be distributed among many di�erent

iso-orientation areas), as well as a certain number of other cells outside the

clique (noise). Because the clique has a suÆcient level of excitatory intercon-

nections, all its cells drive themselves to saturation response levels of about 5

spikes in about 25 msec (end of Phase I), whereas the initially activated cells

outside the clique return to their resting membrane potentials and do not

spike further (end of Phase II). Thus the clique has been \retrieved", or the

orientation speci�ed, at each position, and it is these cliques that de�ne the

equilibrium of the game. See [MZ00] for further motivation, development,

and analysis.

This model of an abstract machine provides a framework for specifying

computations. Given that the labels at each position represent orientation,

what remains is to specify the \payo�s" for having, say, a vertical label at

one position, and another vertical label at the co-aligned position. Specifying

such payo�s requires building an abstraction for the curve detection prob-

lem, starting with the geometry underlying connections between columns in

the super�cial layers. This is followed with discussions of inter-layer intra-

columnar processing, stressing �rst some of the non-linearities that are moti-

vated by our earlier computational demonstrations of Canny edge detection.

We then build upon this foundation by developing the geometry and the

corresponding connections for texture and shading analysis, and for stereo.

3 The Curve Inference Problem

Assume that orientation selectivity de�nes a substrate for representing those

tangents that approximate the curves that bound objects in the scene and

that de�ne highlights and other surface markings. We now analyze how

long-range horizontal interactions can reduce the errors inherent in locally

estimating tangent orientation. Orientation change can be used to localize

corners and junctions (as may occur at the point where one object occludes

another in depth), and for the perceptual integration necessary to connect

fragments of the same contour, e.g., as a result of occlusion or specularities

[ZDI89b]. Orientation change is also essential for curve detection: it enables

us to establish good orientation continuation and it is the connection between

tangents and curves. The mathematical theory of how tangents interact with

one another is provided by di�erential geometry.
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Figure 7: The problem of receptive �eld interaction. Which tangent (recep-

tive �eld) continues the curve? Here strict co-aligned facilitation is clearly

inappropriate.

The interaction between receptive �elds for curve detection is illustrated

in Fig. 7. Di�erential geometry dictates that the interactions must involve

curvature [DC76]. The formal question is how to transport a tangent at one

location to a nearby location. The analysis is not unlike driving a car, in the

following sense. At each instant of time (that is, position along the curve) the

axis of the car de�nes its (tangent) orientation, and the relationship between

the orientation of the car at one instant with that at the next depends on

how much the road bends; in operational terms, it depends on how much the

steering wheel has to be turned during transport.

The endstopping property of visual cortical neurons is suÆcent for repre-

senting curvature [DZC87]. (We shall return to the issue of how this might

be developed by intracolumnar circuitry shortly.) The majority of super�-

cial, interblob orientation selective cells in V1 are also endstopped to some

extent, and these bi-selective dimensions of orientation and endstopping are

precisely what is required to represent tangent and curvature.

We have used such notions of transport to derive the horizontal inter-

actions [PZ89b, ZDI89a]; see Fig. 8 . Observe that they agree with avail-

able data that emphasize co-aligned facilitation [NF85, MAHG93, TGW86]

as well as outliers [KIGW95a]. That is, most interactions are between cells

with approximately the same orientation preference, but some (for the higher

values of curvature) involve 50 - 60 degree shifts. A demonstration of the

performance for this curvature-based system is in Figs. 9 and 10.
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While it may seem counterintuitive at �rst, it is important to realize that

building curvature directly into the system predicts a dominance of roughly

co-aligned facilitation as well as the the spread of the distribution. Other

models [YF97] adopt only the curvature = 0 case, and do not predict the non-

co-linear data. Such results also question the interpretation of psychophysical

data (e.g., [FHH93]).

Rather than make comparisons with \intuitive" notions of edge, as we

did earlier, this example lets us appeal to the basic mathematics of the situa-

tion. Whitney has classi�ed maps from smooth surfaces into smooth surfaces

[GG73], and has shown that only two types of boundary points can occur

generically (i.e., without changing under small changes in viewpoint): the

fold and the cusp (the position where the fold disappears into the surface).

Folds clearly indicate boundaries when viewed from a given position; in fact,

the word implies that the tangent plane to the surface \folds" away from

the viewer's line of sight. It is in this sense that they become singular (the

two-dimensional tangent space collapses to a 1D tangent) and it is in this

sense that boundaries are signalled. These ideas are illustrated in Fig. 11.

4 Intracolumnar Processes

The above example shows that boundaries need not be (in fact, are rarely)

straight. Viewed locally, then, an approximation to a boundary over a very

short distance is the tangent to the (boundary) curve. Viewed over a slightly

larger neighbourhood, curvature begins to matter. Thus there are two prob-

lems that need to be addressed: (i) estimating tangents and (ii) estimating

curvature.

Determining tangent directions with linear operators can be diÆcult, be-

cause di�erent types of structure may fall within a single receptive �eld which

would then be (inappropriately) averaged together. Thus we �rst consider

the logical subunits of receptive �elds and a mechanism to implement the

non-linearities among them. The goal of these non-linearities is to prevent

inappropriate types of structure from being combined into erroneous tangent

estimates.

These local tangents are then combined to provide a curvature responses,

based on the idea that curvature can be viewed geometrically as \deviation

from straightness". Measurements over di�erent spatial scales are utilized in

this case. The result is two local circuits that illustrate the elaboration of
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function across layers within a single orientation column. We now sketch each

in turn, including new simulation results for the non-linearities in tangent

estimation.

4.1 Logical Subunits and Shunting Inhibition

Boundaries that arise from surface folds, as discussed above, usually imply an

intensity di�erence in the direction normal to the edge, with a generic dropo�

in contrast in a neighbourhood around the edge (we shall consider this dropo�

in detail in Sec. 6). Cracks appear as dark lines, with a bright-dark-bright

contrast variation normally; while extended highlights can appear oppositely

in contrast. Clearly, around \edges", there are di�erent photometric events

in in the direction normal to the edge [IZ95b].

In the tangential direction along an edge, continuity conditions arise.

For the edge to be part of a boundary curve, locally its tangent must exist

(almost everywhere) which implies that the limit as one point approaches

another along it must exist. This can be realized as similar contrast signs

along an edge element, for example.

Linear operators (or cells that combine receptive �eld sub-units linearly)

would respond similarly to various contrast situations. They would respond

to both cracks and edges, and low-contrast edges and complicated distribu-

tions of intensities would all give intermediate responses. In e�ect, all of

these di�erent physical situations would be mapped into a single response,

making the inverse problem of labeling the type of physical situation from

which the contrast di�erence arises untenable.

We have developed a class of non-linear local operators, called logical/linear

operators [IZ90] to con�rm such conditions operationally. Sub-unit combina-

tors are de�ned with Boolean conditions testing for the above photometric

and continuity conditions. If the structural conditions are met, they return

the average; if not, they veto to zero. \Edge operators" are separated from

\line operators", and edge patterns from multiple curves do not combine to

give an artifactual response. These non-linearities are di�erent from the com-

patibility �elds above, because they are taking place at much smaller spatial

scales.

We illustrate some of these cases below, but �rst set up the question of

whether this type of non-linear response could be found in visual cortical cir-

cuits? We now illustrate one physiologically plausible possibility, beginning

with the sub-unit interactions and then introducing the non-linearity.
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The receptive �elds of pyramidal neurons in layer VI are comprised of a

number of zones, each of which may correspond, at least conceptually, to the

receptive �eld of a layer V cell which synapses onto the layer VI cell. This

view is supported by a Bolz and Gilbert experiment [BG86]: when one of

the presynaptic layer V cells is pharmacologically inactivated, the layer VI

cell shows no response to stimuli presented in the corresponding part of its

receptive �eld. When the layer V neuron is re-activated, the receptive �eld

of the layer VI cell returns to its original size.

This composite receptive �eld structure is a natural substrate for logi-

cal/linear operator construction. Both the tangential and the normal compo-

nents consist of displaced linear operators joined together using logical/linear

combinators. This is analogous to a number of layer V pyramidal cells send-

ing axonal projections onto a layer VI neuron.

With the component construction now in place, logical/linear responses

need a veto mechanism to assure no output response when at least one of the

input conditions is not satis�ed. Motivated by the demonstration of shunting

inhibition in visual cortex [LBG98], and after considering several possibilities

in simulation, we exploit this non-linear mechanism to dramatically decrease

the eÆcacy of excitatory post-synaptic potentials, and thereby implement the

veto. In simulations we approximated shunting inhibition by decreasing the

passive conductance of the cell membrane [Koc99]. Following Borg-Graham

et al [LBG98], we used a GABA type A synaptic model that was modi�ed

to increase the post-synaptic passive conductance by 200% for the duration

of spiking and a short period of time (approximately 10ms) after each spike.

This refractory period corresponded to the reuptake of the neurotransmitter

and the closing of the ionic channels. Since we are working within the clique

model for the columnar machine (Sec. 2), it is necessary for the post-synaptic

conductance to remain increased between the spikes of the interneuron as it

was �ring at a high rate during the 3-5 spike burst. Since the soma of every

cell in our model consisted of a single compartment [MS96], the post-synaptic

conductance increase was a global change. Note that this does not make the

model less realistic: the two excitatory synapses could easily be proximal to

each other as well as proximal to the single inhibitory synapse.

We now illustrate the construction of a logical/linear edge operator over

a receptive �eld with four subzones, Response to di�erent input cases varies

with the photometric con�guration (Fig. 12). In cases B and C the operator

should show no response due to the lack of an intensity edge. Case D is the

optimal case, so the operator to respond maximally to this case. Case E
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should generate a weak response because only the left side of the receptive

�eld contains the optimal stimulus. In case F, a weak response should be

observed because the edge has opposite contrast. Finally, case G should

generate an intermediate response due to the weak edge in the right half of

the receptive �eld.

While shunting inhibition provides us with a useful mechanism to imple-

ment the non-linear decision step of the logical/linear operator, the tricky

design issue is how to activate the inhibitory interneuron when some of the

conditions necessary for the operator to respond are not met. After experi-

menting with di�erent con�gurations, a natural solution emerged by consid-

ering both the positive and negative contrast logical/linear edge operators at

the same time and connecting them in a push-pull architecture that would

enable each of the operators to inhibit its complement. This idea led to

the circuit design shown in Fig 13. It is pleasing to observe this interaction

between the photometric characterizations at the functional level and the

neuronal characterizations at the implementation level.

The circuit consists of four layer V pyramidal cells, two layer VI pyramidal

cells and two inhibitory interneurons. Each of the layer V cells corresponds

to a subzone of the composite receptive �eld. The two layer VI cells represent

the responses of the two opposite logical/linear edge operators. The perfor-

mance of this circuit is perhaps best described using an example. Suppose

that the input to the visual �eld is an ideal positive contrast edge, as in Fig.

13D. Given such input, the layer V cells corresponding to the top two sub-

zones of the receptive �eld (subzones 1 and 2 in Fig. 12) will burst, exciting

the top layer VI cell and causing it to burst as well. At the same time, the

activity of these layer V cells will also excite the left inhibitory interneuron,

which will in turn inhibit the lower layer VI cell. Since, however, the layer V

pyramids corresponding to the bottom half of the receptive �eld are inactive,

the lower layer VI cell shows minimal activity regardless of the inhibition.

A much more interesting case to examine is the input pattern shown in Fig.

13G Since this is not an ideal edge, the cells monitoring the bottom half of

the receptive �eld will burst, though with a lower frequency than the cells

corresponding to the top half of the �eld.

Fig. 14 shows the results of our simulations. The top left of Fig. 14

corresponds to the optimal positive contrast edge input discussed above. As

we can see, the top layer VI cell responds by bursting at a frequency much

higher than baseline while the bottom layer VI pyramid shows only baseline

activity.
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The top right of Fig. 14 shows the results of a simulation, in which

the input was a non-ideal edge such as in �gure 13G. We simulated this by

exciting the top two layer V cells with a strong current clamp (cca 1.2mA)

and injecting the bottom right layer V cell with a weaker but still substantial

current clamp (cca. 0.8mA). The high frequency activity of the top two layer

V cells excited the left interneuron, which in turn inhibited the bottom layer

VI cell. Had the inhibition not been in place, the bottom right layer V cell

would have driven the bottom layer VI pyramid to �re at a higher than

baseline rate. The top layer VI cell was excited by the top layer V cells and

�red at a rate substantially higher than baseline.

In the bottom left of Fig. 14, we can see the results of a simulation with

input similar to the pattern in �gure 13E. The top left and the bottom right

layer V cells were injected with a strong current clamp (1.2mA). The bottom

right of Fig. 14 shows the results of stimulating all four layer V cells with a

strong input (Fig. 13B).

The simulations illustrate how one cortical circuit can exhibit logical/linear-

like response patterns. The compact push-pull circuit that gave the two con-

trasting logical/linear responses is natural and simple, and is intended as a

�rst demonstration of concept. The e�ects of synaptic plasticity must also

be considered in more realistic models, however, since facilitation and de-

pression can profoundly a�ect the behavior of a cell. Many di�erent types of

such synapses have been found in the striate cortex, e.g., certain tufted layer

V pyramidal cells that exhibit relatively fast frequency dependent depression

[Mar97].

We now show how these operators can form the basis for the curvature

response; again the di�erences between \edge" and \line" con�gurations will

play a key role.

4.2 Building Up The Curvature Response

Our earlier scheme for integrating the information available from nearby tan-

gent estimates is a function of curvature, but direct measurements of curva-

ture are not common in the vocabulary of V1 functionality. Nevertheless, it is

widely accepted that the (interblob) super�cial layer neurons in V1 are often

endstopped to some extent, and these bivariate selectivities for orientation

and endstopping are precisely what we shall utilize in this sub-section.

Dobbins et al [DZC87] has developed a theory of endstopping which

equates it to curvature. In its simplest form, an endstopped operator is
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constructed by taking the di�erence between the responses of excitatory and

inhibitory component cells. Matching these component cells for position,

receptive-�eld pro�le, and orientation tuning, but not with size, results in

a response that is sensitive to curvature. In particular, when the inhibitory

component covers a larger spatial scale than the excitatory compent the

combined response will peak for a speci�c, typically non-zero curvature.

While Dobbins' analysis assumes that the component operators are linear

(combined via a \positive part" non-linearity to model the base �ring rate

and to prevent negatives from combining incorrectly), we now see the central

role of the logical/linear non-linearities - to guarantee that receptive �elds

respond to tangents if and only if they properly exist within the component

receptive �elds. The large \surround" operator component in the curvature

response must arise from a long curve for it to be meaningful; not from

an unrelated series of fragments. Furthermore, Dobbins et al [DZC89] have

found that even-symmetry (large) receptive �elds provide an estimate of the

magnitude of the curvature, while odd-symmetry surround operators provide

information about the sign of curvature.

4.3 The Position-Orientation Representation

We now take a step back from the circuitry, to illustrate how this geometry

is represented in the columnar machine sketched earlier (Fig. 6). As in that

�gure, the di�erent orientation possibilities can be viewed as a structure \on

top of" the image, with retinotopic (x,y) retinotopic coordinates extended

into a third dimension (\height") corresponding to orientation. This ori-

entation axis is di�erent from the x and y axes, because orientation wraps

around 2� with the circle S
1 being its domain. Thus this (position, orienta-

tion) space is not modeled as (x,y,z), but as (x,y,�), where � is the tangent

angle. A point in this space is a point in R
2
� S

1.

It is instructive to consider how di�erent curves in the (x; y) plane lift

into R
2
�S

1, to understand some of its advantages for the cortical columnar

machine. Not much happens for a straight line in the plane, which lifts to

a \horizontal" straight line in R
2
� S

1 at a \height" dependant only on the

angle �. A smooth, closed curve in the plane lifts into a smooth, closed

curve in R
2
� S

1. A real di�erence arises when we consider curves that

are continuous but with corners. Such events are important because they

could signal a monocular occlusion cue and as we mentioned earier, all these

discontinuities in orientation lift into broken curves in R
2
� S

1 (Fig. 15). In
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the following we denote it as the (x; y; �) space.

5 The Geometry of Texture Flows

With this understanding of the inference of tangent maps for individual

curves, we move to patterns of multiple curves. Examples include pinstriped

material and artist's etchings, animal coats and zebra's stripes. For such

patterns orientation is distributed over two-dimensional regions, and as the

requirement for perfect continuations is relaxed we obtain texture 
ows.

The importance of locally (almost) parallel structure has been observed

psychologically [Kan79, Gla69, TR90]. In particular, the human visual sys-

tem has the tendency to organize and group parallel structure into coherent

units. Examples include Kanizsa's \social conformity of a line" [Kan79,

GZ31], and Glass's random dot moire patterns [Gla69, Pra86]. In all cases,

this organization drastically a�ect the interpretation of a scene bothin in 2D

and in 3D (e.g., [TR90]).

Informally, texture 
ows are de�ned by their orientation content - a dense

visual percept characterized by local parallelism and slowly varying dominant

local orientation. However, texture 
ows are not simply a matter of com-

pleting a number of almost \parallel" curves, but rather involve dense inter-

polation of a �eld of orientations (Fig. 16). This should be compared with

the gap-completion property for curves (e.g., [KFP99, WJ97, HvdHK94]).

Represented as a scalar orientation function, the local behavior of the


ow is governed to �rst-order by its gradient. Unfortunately, this quantity

does not capture all of the relevant geometry. As with curves, psychophysical

evidence suggests that texture 
ow perception is linked to curvature [LZ85,

HOZ90].

We model the di�erential geometry of texture 
ows by applying the frame

�eld representation [BSZ01a, BSZ01b]. A frame is essentially a local coor-

dinate system attached to each point in the 
ow in a natural way; one axis

points in the direction tangential to the 
ow and the other in the normal

direction. It is this frame that serves as a local \piece" of a texture 
ow in

the sense that it generalizes the tangent (which we earlier used as a local

\piece" of a curve). It remains to develop an analog to the osculating circle,

or the local curvature, which was used to transport tangents, and to deter-

mine what needs to be measured locally. (Recall previously, for curves, local

orientation and curvature were measured.)

20



The geometry of a texture 
ow is given by the rotation of the Frenet

frame as it is displaced a small distance in an arbitrary direction within the


ow. The resulting structure is modeled by the Cartan connection equa-

tion [O'N66]. Since the rotation may vary for di�erent displacment direc-

tions, and since two coordinates are required to specify this displacement,

it follows from the connection equation that the local behavior of a texture


ow patch can be fully approximated by two scalars { two curvatures { which

describe the rate of rotation along two independent directions. Since the tan-

gential and normal directions are the natural local basis, we de�ne both the

tangential curvature and the normal curvature at each point; they represent

the generalization of curvature (for curves) to texture 
ows and fully specify

the behavior of the 
ow to �rst order approximation. To illustrate: for the

case of strictly parallel straight lines there is no di�erence in the orientation

for a displacement in either the tangential or the normal directions, while a

texture 
ow composed of nested circles having the same center the orienta-

tion changes with displacement only in the tangential but not in the normal

direction. On the other hand, a texture 
ow composed of straight line all

converging and meet at the same point has zero tangential curvature but

non-zero normal curvature everywhere.

Following the discussion in the introduction, it is now clear that the bi-

ological machinery of the primary visual cortex is capable of measuring the

tangential direction, and thus the normal one as well. Hence the basic com-

ponents for representing texture 
ow curvatures do exists in V1. While it

was argued that endstopping relates to (tangential) curvature, the represen-

tation of normal curvature in V1 is still a matter of speculation. From a

computational point of view, however, we end up with a natural representa-

tion for texture 
ow based on the tangent, the tangential curvature, and the

normal curvature. Unfortunately, earlier computational e�orts have omitted

the normal curvature altogether (e.g., [VvVvdW98]).

If the local behavior of the 
ow is characterized (up to Euclidean trans-

formation) by a pair of curvatures, it is natural to conclude that nearby local

measurements of texture 
ow orientation should relate to each other based

on these curvatures. Put di�erently, measuring a particular curvature pair at

a point should induce a �eld of coherent measurements (i.e., an orientation

function) in the neighbourhood of that point. This �eld, which we call the

texture 
ow osculating object, generalizes the osculating circle for curves, and

coherence of local measurements of texture 
ow can then be determined in a

manner analogous to co-circularity for tangents to a curve [PZ89a] (Fig. 17).
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For that purpose, we have developped a unique texture 
ow osculating ob-

ject based on formal notions of good continuations. In (x; y; �) space this

object takes the form of a right helicoid [BSZ01b, BSZ01a] and it is the only

geometrical object that does not prefer either of the two curvatures over the

other. Using this object we then designed compatibility structures to be

used in the columnar machine (Section 2), examples of which are illustrated

in Fig. 18. The same \neural" machinery equipped with this new set of \long

range horizontal connections" is now able to integrate and infer 2D coherent

texture 
ows, as is exempli�ed in Fig. 19.

6 Shading Flows and Fold-type Edges

While texture 
ows are a generalization of perceptual organization beyond

curves, they are still a somewhat special class of patterns. It is therefore dif-

�cult to understand why the cortex might have evolved specialized circuitry

for them. We believe an important part of the answer to this question is

that there are other, more universal perceptual features that share the basic

structural properties of texture 
ows. Prominent among these features is the

shading 
ow �eld - the vector �eld of tangents to the iso-brightness contours

(or intensity level sets) of the gray level image of smooth surfaces [BZ96].

Measured from shading distribution as opposed to surface markings, the

shading 
ow is directly analagous to the texture 
ow discussed earlier. Its

geometry is a precursor to shape [HB89], and its interaction with edge ge-

ometry provides useful information for edge classi�cation [HZ01].

When applied to shading 
ow �elds instead of textures, a successful orga-

nization of coherent 
ow structure constrains the geometry of the smoothly

curved surface which gives rise to the scene. The singularities of the shading


ow �eld can arise from shape discontinuities and spectral highlights, and

thus its reliable recovery, while preserving its discontinuities and singular-

ities, is an important step toward the robust interpretation of shape from

shading.

The shading distribution takes on a particular form in the neighbourhood

around an edge. Recall that we earlier discussed how edges which correspond

to object boundaries arise when the tangent plane to a surface \folds" out

of sight. Such edges are distinct in appearance in that they enjoy a stable

pattern of shading with respect to the edge. This shading pattern is illus-

trated in Fig. 20. As smooth surfaces fold away from the viewer, the shading
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ow �eld becomes tangent to the edge. At the same time, the fold side of

the edge \cuts" the background scene, which implies that the background

cannot exhibit this regularity in general. Cuts, therefore, are those kinds of

boundaries in which the shading distribution is transverse to the edge. This

is fortunate as it naturally suggests a type of \�gure" boundary, because

it shows which is the occluding side and which is the occluded side of an

edge [HZ01]. This complements earlier work which classi�ed shadow edges

on the basis of the shading 
ow �eld [BZ96].

Since shading information shares the same geometrical characteristics of

texture 
ow, it opens up the possibility that shading 
ows may be signaled

by cells that are orientation selective and tuned to low spatial frequencies

(those tuned to higher spatial frequences would localize edges, as before).

The geometrical analysis described in this section thus suggests two addi-

tional kind of computations and orientation-based interactions in the colum-

nar machine. Firstly, the computation of coherent shading 
ow can be done

through texture-
ow-like interactions (see Section 5) between orientation-

selective cells of low frequency, and the result can be used for the interpre-

tation of shape from shading. Secondly, the interaction between shading

and boundaries for edge classi�cation may be achieved though interaction

between low spatial frequency cells and high spatial frequency cells. Thus,

following the ideas above, signaling a fold-type edge could follow from an

iso-orientation interaction between low spatial frequency (shading) and high

spatial frequency (edge) cells, while cut-type edges requires interactions be-

tween cells of di�erent orientations. This is illustrated in Fig. 21.

7 The Geometry of Stereo Correspondence

As our �nal example of interactions between orientations we turn to stereo.

Thus far we have been considering interactions between orientations within

cells driven by one eye; we now consider both of the ocular dominance bands.

Abstractly this implies an important construction for the columnar machine:

the \product" of two machines, one for the left eye and the other for the right

eye. Mathematically this suggests working in the product space (R2
� S

1)�

(R2
�S

1) and designing compatability structures that also take a \product"

form.

We have developed such a product structure and an algorithm for com-

puting stereo correspondences [AZ00] that generalizes the tangent �elds for
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plane curves to those for general space curves. A curve in three space can

be described by the relationships between its tangent, normal and binor-

mal [DC76]. As the curve moves across depth planes, there exists a positional

disparity between the projection of the curve in the left image and the pro-

jection in the right image. However, there also exist higher order disparities,

in particular ones in orientation. It is these types of relationships that can

be capitalized upon when solving the correspondence problem. Rather than

correlating left/right image pairs, we require that there exists a curve in three

space whose projection in the left and right image planes is commensurate

with the locus of tangent pairs, and their orientation, in a neighbourhood of

the proposed match.

For the stereo correspondence problem, we are given two edge maps (one

for the left camera and one for the right); each of these will be consistent

(in the sense that they satisfy the monocular transport constraint); our goal

now is to make them consistent with a local approximation to the space

curve from which they project. Again, an osculating object is required and

the one that we have derived [AZ00] takes the form of a helix in (x; y; z).

Based in this model it is possible to construct the compatibility �elds that

are required to facilitate responses of tangent pairs that are consistent with

the same space curve. Examples of two compatibility �elds are shown in

Fig. 22 while the computation that results in using these structure in the

columnar machine is illustrated in Fig. 23.

To conclude this section we observe that once again an early vision

task, this time stereopsis, can be computed using the columnar machine

when equipped with the appropriate orientation-based connectivity struc-

ture. Once again, these structures suggest a majority of connections between

cells of similar orientations. Yet, connections between cells of signi�cantly

di�erent orientations are intrinsic, not accidental. The only new aspect in

connectivity that is required by the stereo compatibilities is links between

monocular cells to binocular ones. Interestingly, some evidence showing such

interactions already exist in the literatire [MAHG93].

8 Conclusions

We have argued for a di�erential geometric approach to vision, and have

shown how this can be supported by the columnar architecture of visual cor-

tex. Our computational model comprises non-linear local orientation mea-
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surements and the re�nement of these measurements using context, provided

by curvature, through a cooperative network. We have demonstrated how

the local orientation measurements could be computed by intra-columnar

neural circuitry, via shunting inhibition. The observed physiology of inter-

columnar connections suggests a more complex model for contour integration

than co-aligned facilitation; we hypothesize that the connections implement

curvature, which follows from the computational considerations of our model.

Finally, we have shown how the di�erential geometric framework naturally

extends to handle the analysis of texture, shading, and stereo correspon-

dence, all using the same basic columnar architecture. We hope that these

developments will provide a basis for future neurophysiological experiments.
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Figure 8: The geometry of inter-columnar interactions for curves. Co-

circularity indicates how consistent a neighbouring tangent is with a given

tangent at the origin (center of display). Since the analysis is local, smooth

edge curves can be approximated by their osculating circle, and neighbouring

tangents can be transported along it to �x a measure of mis-match. Our net-

works select those tangents that minimize such mismatches [HZ83, MZ99].

In network implementations, the transport results are precomputed and em-

bedded in the connections. A very small mismatch results in an excitatory

connection, and a larger mismatch in an inhibitory one. Three examples of

the compatibilities derived from co-circularity are shown. The bars indicate

orientation preference, and all compatibility �elds are with respect to the

central neuron (shown at maximal brightness). The brightness for each bar

is the strength of the synapse with the central tangent, white indicating exci-

tatory connections, black indicating inhibitory connections. Multiple bars at

the same position indicate several cells in the same orientation hypercolumn.

The connections are intended to model long-range horizontal interactions.

Three cases are shown: co-aligned facilitation, curved a large amount in the

negative sense and, curved a small amount. Notice in particular that most

of the excitatory connections are between co-aligned cells, given the loose

de�nition of alignment commonly used in the physiological literature (e.g.,

�15Æ); however, in the high curvature example there are cases of excitatory

connections with approx. 50 deg relative orientation.
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Figure 9: Results of curve detection using our network, with curvature-based

connections (see Fig. 8). (LEFT) Original image, (CENTER) intial edge

tangent measurements, (RIGHT) �nal edge tangents.

Figure 10: Performance of our cooperative model for boundary and edge de-

tection and localization. (LEFT) the sheet edge map and a region of interest.

(MIDDLE) Zoom on the ininitial edge measurements [IZ95b] in the region

of interest. (RIGHT) Result of 5 iterations of relaxation labeling [HZ83]

with Co-circularity compatibilities. Note the localization of the edge and the

elimintion of sparious mesaurements.
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Figure 11: The motivation from di�erential topology for early vision. (LEFT)

The image of the Klein bottle shows how \T"-junctions can arise from occlu-

sion relationships (e.g., at the top and center of the �gure), and how certain

interior edges can end (e.g., where the fold smoothly joins the body). (MID-

DLE) The Canny edge structure is inconsistent with both of these topological

observations. Notice how the boundary \T"-junction is not connected, how

it smooths the outline, and how the interior folds are blurred into the shad-

ing. (RIGHT) Output of the logical/linear operator [IZ95a]. Notice how the

\T"-junctions are maintained, and how the contours end at cusps.

Figure 12: Logical/linear receptive �eld subunits and experimental stimuli

used in our simulations.
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Figure 13: A neural circuit implementing a logical/linear operator.
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Figure 14: Simulation results on the logical/linear circuit shown in Fig. 12.

See text for details.
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Figure 15: An illustration of the lift into position (x,y), orientation (�) space.

Three contour fragments from the tangent map in Fig. 5(right) are high-

lighted. Notice how the discontinuity in orientation at the 1-2 T-junction is

separated, highlighting multiple orientations at the same position, the natu-

ral columnar representation for orientation discontinuities.

Figure 16: Example of a texture 
ow and it's perceptual completion qual-

ity. The wavy surface appears to form a single coherent unit behind the

occluders, even though there are a di�erent number of line segments in each

visible region. This demonstrates that orientation is distributed densely over

a region, and that computing texture 
ows is not simply the simultaneous

completion of a number of "parallel" curves.
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Receptive field

Curvature−based
local model for

good continuation

Compatible nonoverlapping RF

Incompatible RF

Figure 17: The problem of infering coherent texture 
ow both in the image

plane (LEFT) and in the lifted space of (x; y; �) (RIGHT). Given two nearby

texture 
ow patches of given curvatures they may or may not be part of the

same coherent structure. What a�ects this coherence is not only the local

orientation of the patches, but their curvatures as well. In (x; y; �) this task

can be visualized as associating both texture patches, now represented as 3D

points, to the same surface (whose height represents orientation). Here, the

two blue patches are coherent and should facilitate each other while the red

one is incompatible to both.

Figure 18: Three examples of texture 
ow compatibility structures for vari-

ous tuning values for orientation and curvatures. Bright/dark indicates ex-

citatory/inhibitory connections. (LEFT) Horizontal orientation tuning with

both curvatures equal zero. (CENTER) Vertical orientation tuning positive

normal curvature. (RIGHT) Vertical orientation tuning positive tangential

curvature.
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Figure 19: Example of texture 
ow computation with the columnar machine.

In this piece of a �ngerprint image the perceptual structure is overwhelmed

by the noisy measurements of local orientation (LEFT). Based on the right

helicoidal model for good continuation discussed in the text (see [BSZ01b]

for details), the columnar machine can extract the perceptually coherent

structure (RIGHT) in few iterations of relaxation labeling.
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Figure 20: Illustration of shading 
ow in the neighbourhood of an edge.

When a shaded surface (LEFT) is viewed such that an edge appears, the

shading 
ow �eld (right) takes on di�erent appearances depending on the

nature of the edge. A fold occurs (TOP) when the surface bends smoothly

away from the viewer (the typical occlusion case), and the shading 
ow �eld

appears tangent to the edge. At a cut, the surface is discontinuous (or

occluded), and shading 
ow is generally non-tangent to the edge.
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Figure 21: Example of shading 
ow relaxation and the possible interaction

between the 
ow and the edges to signal either fold- or cut-type edges. Note

how the initial shading 
ow (LEFT) of the marked region of interest (CEN-

TER) becomes fully coherent after few iterations of relaxation labeling based

on the texture 
ow compatibilities (RIGHT), and how the relationship of the

relaxed shading to the active high frequency cells (in white) indicates a fold

on the left and a cut to the right. Indeed, the surface to the left of the edge

occludes the one to its right, as is clearly seen in the image itself.
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Figure 22: Two examples of facilitory compatibility structures for stereo are

shown. Note how they incorporate both position and orientation disparity;

this is especially evident in the lower pair of compatibility �elds which are

tuned for non zero values of curvature.
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Figure 23: Example of a depth map computation using the stero compatibil-

ity structures in the columnar machine. The edge depth map is color coded

(see bar on the right) and for clarity we show a magni�ed detail.
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