Why data mining?

Edo Liberty
Old programing paradigm

- The input is small and the program can store/read it many times
- There is a lot of domain intelligence built into the program
A short sentence is given to a grammar correction software.

Programers and linguists produced code which is highly specialized.
Edo Liberty: Why data mining?

Old programming paradigm

Part of a stemming module (tiny fraction of the whole process)
There is a huge (virtually infinite) amount of data

The “brain” is the data and not the program
“I is a lawyer” appeared 800,000 times usually like “i) is a lawyer ...” or “George I. is a lawyer” etc.

“I am a lawyer” appeared as is 1,200,000 in respected sources.
New programing paradigm

- “I is a letter” appeared 5,000,000 times
- “I am a letter” appeared only 200,000 times
New programing paradigm

Michele Banko, Eric Brill: Scaling to Very Very Large Corpora for Natural Language Disambiguation.

![Test Accuracy vs Millions of Words Graph](image_url)
New programming paradigm

Clearly, some algorithms perform better than others.
New programing paradigm

But, having more data is sometime more important than the algorithm...
Other examples where the data is “everything”

- Ranking / sorting search results
- Web advertising
- Text and image search
- Recommendation engines
- Fighting web abuse (spam, malware etc...)
- Spelling, Suggesting
- many many more...
So, you want more data?

Careful what you wish for!

- **King James Bible** - **1.4 MB**
- Only text on **Wikipedia** - **6.1 GB** (1GB = 1000MB)
- All **.gov domain** on the web - **1 TB** (1TB = 1000GB)
- Incoming **daily emails**\(^1\) to Yahoo! - **1-10 PB** (1PB = 1000GB)
- Size of the **internet**\(^2\) - **10 Exa-byte** (1EB = 1000 PB)

“Simply counting” doesn’t sound so easy any more....

\(^1\) This number depends on whether you count spam, forwards, attachments and so on. The number I give is a conservative (and intentionally obfuscated) estimate of the amount of new raw text.

\(^2\) The size of the internet is not really known, and it is even unclear what the word “size” means exactly in this context. However, 10EB is, to the best of my knowledge, a conservative estimate of the amount of text in publicly accessible static pages.
New paradigms for dealing with data

So, we need data mining...

- Specialized data structures, for example: bloom filters, tries and search indexes.
- New algorithmic tools like sampling, hashing, and sketching
- Streaming online algorithms, e.g., online linear regression, online classification
- Massively distributed computation like map-reduce or message passing.
Massively distributed systems (map-reduce)
from pymapred import MapReduce, arg, hadoop, MR_main

import re

word_split = re.compile(r'\W+')

class WordCount(MapReduce):
 nreduce=1

 def Map(self, record):
 s = word_split.split(record[0])
 for w in s: print w

 def Reduce(self, key, records):
 n = 0
 for r in records: n += 1
 print "%s\t%s" % (key, n)

MR_main(WordCount)
What is the goal of this class?

It turns out the a rather small set of simple tools give us many and wonderful abilities. Most of these are randomized in nature:

- Sampling
- Hashing
- Streaming
- Estimating
- Embedding
- and Indexing and mapping

The goal of this class to make you as comfortable with these ideas as possible by learning many different manifestations of them.
What do we do today?

1. Intro presentation (this one)
2. Recup of basic probability, Markov’s and Chebyshev’s inequalities
3. Example problem; estimating set sizes