Lecture 1: Mark and Recapture

Suppose you are a marine biologist (Although you prefer to pretend to be an architect), and suppose you are tasked with counting the number of individuals in a huge school of tune fish in the middle of the atlantic ocean. How would you go about doing that? One possible approach is called Mark and recapture. Start by catching \(k \) fish. Then, mark them somehow and release them. Then catch another group of \(k \) fish and count the number of fish that are already marked, \(Z \). You can now guess that the number of fish in the entire school is roughly \(\frac{k^2}{Z} \).

Mark and recapture

Given a set of \(n \) elements, sample \(k \) elements without replacement twice. Count the number of identical elements in both groups, \(Z \). Define a random variable \(z_{i,j} \) which indicates that element \(i \) in the first group is the same as element \(j \) in the second. The value of \(Z \) is therefore \(Z = \sum_{i,j} z_{i,j} \). Let’s compute the expectation of \(Z \) using linearity of expectation. Note that the \(z_{i,j} \) variables are not independent!

\[
E[Z] = E[\sum_{i,j} z_{i,j}] = \sum_{i,j} E[z_{i,j}] = \sum_{i,j} 1/n = k^2/n
\]

(1)

Let’s compute the standard deviation of \(Z \). Recall:

\[
\]

We need the use the linearity of expectation again to compute \(E[Z^2] \):

\[
E[Z^2] = E[\left(\sum_{i,j} z_{i,j} \right) \left(\sum_{i',j'} z_{i',j'} \right)]
\]

(2)

\[
= \sum_{i=i',j=j'} E[z_{i,j}z_{i',j'}] + \sum_{i=i',j\neq j'} E[z_{i,j}z_{i',j'}] + \sum_{i\neq i',j=j'} E[z_{i,j}z_{i',j'}] + \sum_{i\neq i',j\neq j'} E[z_{i,j}z_{i',j'}]
\]

(3)

\[
= \frac{k^2}{n} + 0 + \frac{k^2(k-1)^2}{n(n-1)}
\]

(4)

Using the expression for variance \(\sigma^2[Z] = E[Z^2] - (E[Z])^2 \) we get:

\[
\sigma^2[Z] = \frac{k^2}{n} + \frac{k^2(k-1)^2}{n(n-1)} - \left(\frac{k^2}{n} \right)^2
\]

(5)

\[
\leq \frac{k^2}{n} \quad \text{(for } k \leq n) \]

(6)
Now we invoke Chebyshev’s inequality.

\[\Pr[|Z - \frac{k^2}{n}| > t] \leq \frac{\sigma^2}{t^2} \leq \frac{k^2}{nt^2} \]

(9)

Choosing \(t = 10k/\sqrt{n} \) we get that with probability at least 0.99

\[|Z - \frac{k^2}{n}| \leq 10k/\sqrt{n} \]

(10)

Which gives:

\[n \leq \frac{k^2}{Z}(1 + \frac{10\sqrt{n}}{k}) \]

(11)

\[n \geq \frac{k^2}{Z}(1 - \frac{10\sqrt{n}}{k}) \]

(12)

This gives us the following procedure: First, sample 2 groups of size \(k \geq 50\sqrt{n} \) each. Count the number of collision \(Z \). Estimate the size of the set as \(n_{\text{alg}} = \frac{k^2}{Z} \). We are guarantied that with probability 0.99 our estimate is within 20% accuracy.

\[\frac{5}{6} n \leq n_{\text{alg}} \leq \frac{5}{4} n \]

(13)