
Yale University
Department of Computer Science

On Self Adaptive Routing in Dynamic Environments
— An Evaluation and Design Using a Simple, Probabilistic Scheme

Haiyong Xie
Yale University

Lili Qiu
Microsoft Research

Yang Richard Yang
Yale University

Yin Zhang
AT&T – Research

YALEU/DCS/TR-1289
May 2004

On Self Adaptive Routing in Dynamic Environments
— An Evaluation and Design Using a Simple, Probabilistic Scheme

Haiyong Xie
Yale University

Lili Qiu
Microsoft Research

Yang Richard Yang
Yale University

Yin Zhang
AT&T – Research

Abstract

Recently we have seen an emergent trend of self
adaptive routing in both Internet and wireless ad hoc
networks. Although there is previous work on study-
ing the traffic equilibria of self adaptive routing (e.g.,
selfish routing), the previous methods use computa-
tionally demanding algorithms and require that a pre-
cise analytical model of the network be given. Also,
it remains an open question how to design an adap-
tive scheme that ensures convergence to a traffic equi-
librium in practice. In this paper we propose a sim-
ple, distributed, probabilistic routing scheme for scal-
able, efficient, self adaptive routing in dynamic, real-
istic environments. Using both analysis and extensive
simulations, we show that our scheme can converge
to the desired traffic equilibrium (either user-optimal
or network-optimal) very quickly. We find that user-
optimal routing can achieve very close to optimal aver-
age latency in dynamic environments, but such perfor-
mance often comes at the cost of seriously overload-
ing certain links. To avoid link overloads, we improve
adaptive routing by optimizing average user latency
and link utilization simultaneously. Our evaluation
shows that there is a trade-off between optimizing dual
objectives, but the degradation in average latency is
only marginal for typical link utilization requirements.

1 Introduction

Recently we have seen an emergent trend of adap-
tive routing in both Internet and wireless ad hoc net-
works. In Internet, recent studies [34, 38] have shown
that there is inherent inefficiency in IP routing from
the user’s perspective. In response to these observa-
tions, we have seen a trend to allow end hosts to adap-
tively choose routes themselves either by using source

routing (e.g., Nimrod [14]) or by using overlay routing
(e.g., Detour [34] or RON [3]). Such end-to-end route
selection is self adaptive, in that it allows end users to
select routes to optimize their own performance with-
out considering system-wide ramifications [29]. In
wireless ad hoc networks, DSR [20] allows wireless
users to selfishly select low-latency routes (e.g., [19]),
thus resulting in self adaptive routing. This emergence
of adaptive routing, in particular, self adaptive rout-
ing, poses challenging research questions in both de-
sign and evaluation.

In terms of evaluation, a particular important and
challenging question is how to evaluate the perfor-
mance and impacts of self adaptive routing in a large
network. This question is particularly important given
the increasingly wide deployment of self adaptive traf-
fic and the theoretical work (e.g., [24, 33]) which
shows that the worst-case performance degradation
of self adaptive routing (also called selfish routing
or user-optimal routing in the literature) can be un-
bounded. Motivated by the theoretical worst-case
analysis, researchers start to study the performance of
self adaptive routing in Internet-like environments. In
order to carry out the evaluations, the authors of [29]
compute traffic equilibria using the Frank-Wolfe based
algorithms [16]. However, these algorithms are com-
putationally expensive, and cannot scale to large net-
works. In addition, the computational method requires
that a precise analytical model of the network, e.g.,
link latency functions, be known. However, analyti-
cal expressions may not be always available. For ex-
ample, there are no simple analytical expressions for
the queueing delay in wireless networks where delay
is due to MAC layer 802.11 contention and retransmis-
sion, or in the Internet with active queue management
schemes. Thus the performance of self adaptive rout-
ing in important scenarios cannot be evaluated. More-

1

over, the computational method can only capture the
equilibrium of a static environment. In reality, net-
works can be highly dynamic and routing works in a
distributed fashion. So far there is no model to capture
the dynamic process.

In terms of design, it remains an open research
question how to design an adaptive routing scheme
that ensures convergence to traffic equilibria in real-
istic settings. Although previous designs exist, some
fundamental design issues are still not addressed. In
particular, it is unclear how adaptive routing schemes
should probe the network in order to effectively dis-
cover efficient routes. If a protocol uses an ineffective
probing scheme, high-quality routes may not be dis-
covered. Furthermore, it is unclear how the routing
paths should be adjusted in a distributed way but still
converge to the optimal routing paths without causing
oscillations.

In this paper, we propose a routing scheme to
address both the evaluation and the design issues.
Our scheme has the following requirements. First,
viewed as a mechanism for computing equilibrium, the
scheme should be simple and efficient, and thus can
be used to evaluate large scale adaptive networks. It
should not require a precise network model, and thus
can be applied in various settings such as both the In-
ternet and wireless networks. It should also be able
to model adaptive routing in a dynamic environment,
and be able to capture the potential overhead of adap-
tive routing. Second, viewed as a protocol for comput-
ing network routes, the scheme should be distributed
and with low protocol overhead. The design should
provide insight in designing adaptive routing protocols
with different objectives (e.g., user optimal or network
optimal). The protocol should address the key issues
of how to probe networks and how to adjust routing
paths to guarantee provable convergence.

Specifically, the routing scheme we propose and
study in this paper is a probabilistic routing scheme.
On the data path, each packet is forwarded to a neigh-
bor picked according to a probability distribution. This
probability distribution is defined for each destination.
Our scheme keeps states only for destinations with ac-
tive traffic, and thus can be applied to many settings
(e.g., the direction diffusion approaches). On the con-
trol path, a protocol resembling distance-vector rout-
ing maintains these probabilities, i.e., routing neigh-

bors exchange aggregated routing updates. Upon re-
ceiving a routing update from a neighbor, a router
computes its new routing probabilities.

Our probability update scheme is motivated by the
two time-scale stochastic approximation scheme pro-
posed by Borkar and Kumar in [10] and the Q-routing
scheme proposed by Littman and Boyan in [28]. How-
ever, these two schemes use path-based per-packet
feedback and update; therefore their protocol overhead
can be high. In comparison, our scheme aggregates
routing updates; thus the overhead of our scheme is
comparable to that of a load-adaptive routing scheme
such as QoS routing. In a low-load environment (e.g.,
one where the latency of a link is not sensitive to the
amount of traffic), our update algorithm is equivalent
to the distributed Bellman-Ford algorithm.

Our update scheme is also motivated by the dis-
tributed gradient projection algorithms, e.g., see [8,
5, 18, 39]. However, these algorithms assume quasi-
static environments, namely, the effect of a routing up-
date can be observed immediately, while our scheme
allows the effects of routing updates to settle down
gradually. Thus our scheme captures network dynam-
ics, and can be both a computing scheme and a re-
alistic routing scheme. Also, our routing scheme is
probabilistic to reduce complexity while the previous
gradient projection algorithms are deterministic.

We use our scheme to implement two types of
adaptive routing: user-optimal routing and network-
optimal routing, where the former converges to the
Wardrop equilibria [40], and the latter converges to
the minimum latency. The user-optimal routing is
achieved by having neighbors exchange information
about link latency, while the network-optimal routing
is achieved by having neighbors exchange information
about marginal link latency.

We formally analyze the convergence of our scheme
and evaluate its dynamics through extensive simula-
tions. Our simulations show that our routing scheme
responds to traffic stimuli (whether in the form of im-
pulse, or step function, or linear function) and con-
verges to new equilibria very quickly.

Utilizing our efficient routing scheme, we study
how to choose routes to optimize end-user perfor-
mance and link utilization simultaneously. This is
an important problem in traffic engineering for adap-
tive networks [29], because optimizing end-user per-

2

formance alone sometimes results in overloaded links
(which is undesirable from network operators’ point
of view), while optimizing network utilization alone
may degrade end-user performance. To achieve good
user performance without overloading the network, we
introduce a link utilization threshold. We update the
routing probabilities as before when the utilization of
a link is below the threshold; on the other hand, when
the utilization of a link is above the threshold, we shift
traffic to less loaded links. We evaluate the trade-
off between user latency and link utilization and show
that the degradation in end-user performance is only
marginal for typical link utilization requirements.

In summary, our contributions are as follows.� First, we develop a routing scheme to achieve
user-optimal routing and network-optimal rout-
ing. This scheme can be used both as a simple,
efficient computing mechanism to compute traf-
fic equilibrium in a dynamic network without a
precise analytical model, and as a routing scheme
to determine network routes in a distributed way.� Second, we formally prove the convergence of
our routing scheme, and demonstrate its effi-
ciency and responsiveness using extensive simu-
lations.� Third, we extend the routing scheme to optimize
both end-user performance and link utilization si-
multaneously. Our evaluation shows that the rout-
ing scheme is able to achieve low link utilization
while maintaining good end-user performance.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe our routing scheme. In
Section 3, we analyze the convergence of our scheme
for implementing user-optimal routing and network-
optimal routing. In Section 4, we describe our eval-
uation methodology. We present extensive evalua-
tions on the performance and dynamics of the routing
scheme in Section 5. We examine how to optimize
end-user performance and link utilization simultane-
ously in Section 6. We discuss related work in Sec-
tion 7 and conclude in Section 8.

2 Routing Scheme

The routing scheme we consider consists of a data-
path component and a control-path component. The

data-path component is common while the control-
path component is different for different routing ob-
jectives.

2.1 Data path

We first present the data path. Consider node
�

in
the network. Assume that node

�
has ��� ��� neighbors,

represented by set ��� ��� .
jDest.

k pj
ik

Figure 1. Forwarding table of node
�
.

Similar to distance-vector routing, the routing
scheme we consider maintains a state for each active
destination. In other words, the forwarding table of
node

�
consists of one row for each active destination.

The active destinations may be all overlay nodes in an
overlay network or all active sinks in a wireless ad hoc
network. Below when we say destinations, we mean
active destinations. Figure 1 illustrates the forwarding
table of node

�
.

For destination 	 , node
�

maintains a routing prob-
ability
���� for each neighbor � . Note that � �
��������
and
 ������� . Whenever node

�
receives a packet to

destined to node 	 , it forwards the packet to neighbor� with probability
 ��� .
Note that this probabilistic routing scheme general-

izes the normal Internet routing. More specifically, if
only one neighbor has a positive routing probability,
the probability must be � , and thus we have the tradi-
tional single-path routing. We can also implement the
scheme of OSPF routing with equal-weight splitting
by assigning equal probabilities to the neighbor(s) on
the shortest path(s) to a given destination.

2.2 Control path

The forwarding table of a node is updated by the
control path. We consider two implementations of the
control path: the first one achieves user-optimal rout-
ing, while the second one achieves network-optimal
routing.

3

2.2.1 User-optimal routing

User-optimal routing is also called Wardrop rout-
ing [40, 4, 2], which is defined in the context of trans-
portation networks as follows [40]: “The journey times
on all the routes actually used are equal and less than
those which would be experienced by a single ve-
hicle on any unused route.” Wardrop routing is es-
pecially interesting since it achieves traffic equilib-
ria when each user individually optimizes the perfor-
mance of its traffic. In other words, at a Wardrop equi-
librium, users do not have incentives to unilaterally
change their routes.

In the context of computer networks, we define
user-optimal routing in a similar way. For a given
demand, i.e., a source-destination pair with a given
amount of traffic, the routes with positive traffic should
have equal latency, smaller than those of the routes not
used for this particular source-destination pair. As an
example, the demand in a sensor network running di-
rected diffusion may be the periodical reports gener-
ated at the specified rate. (Although user-optimal rout-
ing is a multi-path routing scheme, in this situation
the paths used have the same latency, so out-of-order
packet arrival is not very likely and therefore the po-
tential performance penalty at the transport layer, e.g.,
TCP, is small.)

To achieve user-optimal routing, we implement the
control path asynchronously, where each node sends
its updates to its neighbors after some delay. Note that
our protocol is asynchronous and there is no need for
clock synchronization. Below we describe the imple-
mentation at a given node

�
.

First, for destination 	 , node
�

maintains the follow-
ing data items for each neighbor � :� The internal probability � ��� from node

�
to desti-

nation 	 through neighbor � . This probability is
used mainly for internal update. As we will show
later, it is this set of probabilities that will con-
verge to Cesaro-Wardrop equilibrium.� The routing probability
 ��� from node

�
to desti-

nation 	 through neighbor � . Note that the rout-
ing probability will change after each update and
remain the same until next update.� The latency ���� of the link from node

�
to its neigh-

bor � . This latency is the average of the sum of

propagation delay and queuing delay during the
time between the previous update and the current
time.� The most recently reported latency � � from
neighbor � . Note that this report is generated by
node � at some time in the past.

After receiving the � -th update � � from neighbor� at time � ��� � � �
, node

�
first updates its delay estima-

tion of � ��� , i.e., the estimated delay to destination 	
through node � . This update has two steps. Node

�
first computes the value of a new sample:! ��� � � ��#" � � %$ (1)

Then it updates the new delay estimation as:� ��� � � �'&)(� � �*� � ���+" (� � � ! ���-, (2)

where (� � �/.�0 � , �21 is the delay learning factor. Note
that we take

! ��� as current delay sample with noise.
Therefore, we use (2) to adapt delay estimation and
make it robust in the presence of noise. When (� � �
is larger, delay estimation is more sensitive to noise;
however, (� � �

cannot be too small. Otherwise, de-
lay estimation is not responsive enough to network dy-
namics.

Node
�

then computes its overall delay estimation� �� to destination 	 as:� �� � 3�547698': �<;
 ��� 4 � � �54 , (3)

where �=� ��� represents the set of node
�
’s neighbors.

Node
�

reports � �� to its neighbors after some delay.
This delay is a random value between >'?9@ and > to
avoid routing update synchronization, where > is a
constant.

Node
�

then updates its internal routing probabili-
ties as follows. Suppose this is the �BA -th time node

�
updates its routing probabilities. For all neighbors � ,
node

�
computes:� ��� � � ��� "=C � � A �D0 � ��� ��� �� & � ��� � "�E ��� 1 , (4)

where C � � A �GF � is the routing learning factor for the�HA -th update, and E �� are i.i.d. random routing vec-
tors distributed uniformly on the unit ball of dimen-
sion �=� �I� . The objective of adding the i.i.d. uniform

4

random routing vectors is to add disturbance to avoid
non-Wardrop solutions. Note that we use C � �JA � and
(4) to smooth out the noise in estimations.

After computing the above routing probabilities,
node

�
projects the routing vector consisting of the

routing probabilities to the subspace of
0 � , �21 8/: �<; ,

where the sum of the routing probabilities is � . The
reason for the projection is to ensure that the vector is
a valid probability vector. That is, node

�
computes

the projected value of the new routing probability by
solving the following optimization problem:

minimize 3�K6L8/: �<; � M � & � ��� ��N
(5)

subject to 3�K6L8/: �<; M � �O� (6)

over �-P M � P � for all � $ (7)

The computed M � then becomes the new internal rout-
ing vector.

To ensure that the network probes all possible
neighbors, node

�
computes routing probabilities

from the just updated internal routing probabilities �
by adding uniform routing probabilities to them:
 ��� � � �'&)Q � � ��� " Q��� ��� , (8)

where Q is a small constant number.
Figure 2 summarizes the protocol at node

�
.R Assume
���� is routing probability to neighbor � .

repeat after some random delay in a range
send � �� to all neighbors

repeat after receiving an update � � from neighbor �
compute � ��� for neighbor � using (2)
compute � �� � � � 4 698': �<;
 ��� � ���54 using (3)
update � ���54 and
 ���S4 for all neighbors �TA

update � according to (4)
do projection on � as in (5)
compute
 as in (8)

Figure 2. Protocol to implement user-optimal
routing.

2.2.2 Network-optimal routing

Our second implementations is network-optimal rout-
ing, which minimizes total latency over all traffic. In
[4], Beckmann, McGuire, and Winsten showed that
the total latency is minimized if and only if all traf-
fic travels along paths with minimum marginal cost.
In network settings, marginal cost is equivalent to
marginal link latency, i.e., UWVX�� � � �� "ZY ��\[�� , where [�� is
the rate of change in the latency from node

�
to node �

at traffic amount Y �� . Compared with user-optimal rout-
ing where delays along different paths are minimized,
we replace � �� with UWV �� to minimize marginal link la-
tency and achieve network-optimal routing. Note thatUWV �� can be estimated without knowing the analytical
expressions.

3 Convergence Analysis

In this section we analyze the convergence of our
routing scheme.

3.1 Intuition

We first study Figure 3 to gain intuition. The figure
shows the phase diagram of a network with two nodes
connected by two direct links from the source to the
destination. The x-axis is the routing probability of
link 1 while the y-axis is the routing probability of link
2. Note that the only valid probability vector will be�L] �^� , � N �_� , and �9] " � N �`� .

In case (a), the latency of link 1 is lower while that
of link 2 is higher; thus the vertical dashed line points
to the updated routing probabilities before projection.
Then projection along the dotted line brings the rout-
ing probabilities back to a valid routing vector satisfy-
ing �] �a� , � N �b� , and �] " � N �c� . In case (b),
the latency of link 1 is higher than that of link 2; thus
the probabilities are adjusted and then projected back
to the space. In case (c), link 1 and 2 have the same la-
tency and therefore they stay on the line. Note that this
is a stable state, i.e., the state will no longer change. In
cases (d) and (e), link 1 has no traffic and all traffic
goes to link 2. Although this is a stable state according
to our update rule, a slight disturbance may or may not
change the state, depending on whether or not the state
is globally stable. If the latency of link 2 is smaller
than that of link 1 (case (d)), then a slight disturbance
will not change the state of the network. On the other

5

hand, if the latency of link 2 is higher than that of link
1 (case (e)), then the probability of link 1 is increased
and the network is on the correct trajectory to the final
state.

2(d) (e)
1

1 1

(a) (c)

(b)

q

q

Figure 3. Illustration of the update on routing
probabilities.

3.2 Assumptions

We make the following assumptions in our con-
vergence analysis. More technical assumptions on
the stochastic process, such as the continuity and the
Feller properties, can be found in the more completely
version of this paper [41]. Note that our assumptions
are similar to those by Borkar and Kumar in [10],
which are standard in the convergence analysis of two
time-scale stochastic iterative algorithms [9, 11, 37].
Our update delay assumption is similar to that of [39]
on asynchronous distributed gradient algorithms.

A1 We assume that the latency at each link is a con-
tinuous, non-decreasing, and bounded function of
the load on the link. In particular we assume
that the latency functions are chosen such that
both the user-optimal and network-optimal set-
tings satisfy the monotone condition; thus the net-
work has a unique Wardrop or optimal equilib-
rium. Note that although we make assumptions
about the properties of the link functions, our pro-
tocol does not need to know the analytical expres-
sions.

A2 We assume that the Feller property holds, i.e.,
the updates are frequent enough compared with
the change rate in the underlying network states.
In our protocol, the interval between two updates

sent by one node to each of its neighbors is ran-
domly distributed in

0 >'?9@ , > 1 , where > is a con-
stant. Also, we assume that the number of pack-
ets sent in each interval is finite with a constant
bound.

A3 We assume that the (� � �
factors used in delay

estimation satisfy the following conditions:d �ae (� � � � (� � " � �fF � ,3\gh(� � � �ji , 3\gk(� � ��Nml i ,
and 3 g �*� (� � � &n(� � " � �*� ? (� � �*�poql i
for some r � � .

A4 We assume that the C � � �
factors used in rout-

ing probability update satisfy the following con-
ditions: d �be C � � � � C � � " � �fF � ,3 g C � � � �ji , 3 g C � � � N l i ,
and 3 g � C � � � ? (� � �*�Istl i
for some [� � .

Note that the above assumptions are common for
most previous analyses. In particular, the last two as-
sumptions (A3 and A4) are essential to guarantee con-
vergence for stochastic iterative algorithms (see, e.g.,
[7]). Intuitively, delay learning factor (� � �

and routing
learning factor C � � �

represent the step sizes of updat-
ing delay estimation and routing probability, respec-
tively. The sum of step sizes (� g (� � �

or � g C � � �
)

should be unbounded in order to reach equilibrium. On
the other hand, the range of � g (N � � �

and � g C N � � �
guarantees that the variance of delay estimation and
probability update is bounded. Therefore, diminish-
ing step sizes satisfying the above assumptions guar-
antee that the stochastic iterative algorithms converge
to the solution almost surely. Furthermore, the range
of � g � C � � � ? (� � �*� s

guarantees that delay estimation

6

has larger step sizes. In other words, the delay esti-
mation should be relatively stabilized before the next
routing probability update occurs. Our algorithm uses
varying learning factors. It is possible to use constant
learning factors as well. For stochastic approximation
algorithms with constant learning factors, we refer in-
terested readers to [37].

3.3 Convergence analysis

Let u denote the set vXwbe-w ��� F ��x � ��� �� � 4 w ���S4 � ���S42y . Let u s denote the set vXw . uzeHw ��� F�qx � ��� �+{}|<~ �54 � ��� 4�y . Note that here we abuse nota-
tion a bit because we use � to denote the true function
instead of maintained states or samples. It is clear from
the definitions that u s is what we need while u is a
larger set. Figure 4 shows an example of network con-
figuration that is in u but not in u s . In this figure,
traffic originates from node 1 to node 4. Routing prob-
abilites,
 ��� � 0
 ���� 1 �2�]*� N � �2� � , � ��� , @ ,S��,*� , are labeled
along with nodes. Apparently, the state of the network
shown in the figure is in u but not in u s .

�
� �

�� ���� � � ���� �� �� � �� �� � �� � � �%� ����� � � �
� ���� � � � � �%� ������� � �

� � � �%� ��� � � � � � � � �%� ����� � � �
Figure 4. An example of network configura-
tion in u but not in u s .
We have the following convergence result:

Theorem 1 If the assumptions are satisfied, the pro-
tocol in Figure 2 converges to the set u . Furthermore,
the internal routing probabilities � converge in u s al-
most surely.

Please see the appendix for our complete proof of
the above theorem. The proof is motivated by [10] but
adapted to our link-based aggregated update scheme.
To give the readers some intuition about the proof, be-
low we present the major steps of the proof. The read-
ers can skip to the next section without loss of conti-
nuity.

In order to prove the above theorem, we need to
show that (1) routing probability converges; (2) delay

estimation converges under stationary routing proba-
bility; and (3) when routing probability and delay es-
timation converge, the internal routing probabilities
converge in u s almost surely. Thus, our proof con-
sists of three steps as follows.

In the first step of the proof, we show that the rout-
ing probabilities converge after the algorithm runs a
sufficiently long time. The major challenge in this step
is that we need find a converging sequence to bound
the difference of routing probabilities. By combin-
ing and rewriting delay estimation and routing prob-
ability update equations, we derive a function of the
two learning factors to bound the difference of routing
probabilities at different times in a given small time
interval. We then apply Borel-Cantelli Lemma and as-
sumptions A1-A4 to show the convergence. In particu-
lar, the assumption that the range of � g � C � � � ? (� � �*� s
is bounded is crucial to the proof by applying Borel-
Cantelli Lemma.

In the second step of the proof, we prove the conver-
gence of the expected delay with respect to stationary
routing probabilities (which is a result of the first step).
The intuition behind the proof is that routing proba-
bility update has smaller step sizes in order for delay
estimation to stabilize before the next routing proba-
bility update occurs. Again, the major challenge here
is to find a converging bound for the expected delay.
We consider delay estimation in a give small time in-
terval. By rewriting the delay estimation equation (2),
we derive a closed form expression for the difference
of delays, which consists of terms of martingales and
bounded delays. We then apply the convergence result
in the first step, martingale convergence theorem and
Gronwall Lemma to derive the convergence of delay
estimation.

In the last step of the proof, we derive the conver-
gence of internal routing probability in u s based on
the results of the previous two steps. Specifically, we
show that for any given demand, delays are equalized
along paths with positive traffic. The major challenges
in this step are to show that internal routing probabil-
ity converges and that the expected delays converge
to equalized delays along different paths with positive
traffic. In order to make the challenge more attack-
able and simplify the analysis, we adopt the standard
O.D.E. approach to projected stochastic approxima-
tion algorithms and consider the continuous version of

7

our discretized routing update scheme. We then prove
that internal routing probability converges by taking
the discrete routing update scheme (4) as an approxi-
mate of its continuous version in the O.D.E approach.
Similarly, we show that for any given demand, delays
with respect to the converged positive routing prob-
abilities converge to the same value; afterwards, we
prove by contradiction that the paths with zero traffic
have higher delay.

As for the network-optimal routing scheme, a simi-
lar proof can be constructed.

4 Evaluation Methodology

We implement the above routing schemes in ns-
2 [1] and evaluate their performance and dynamics
through extensive simulations. Below we describe the
network topologies, traffic demands, and performance
metrics used in our evaluation.

Network Topologies: Rocketfuel applies effective
techniques to obtain fairly complete ISP maps [35].
We use three POP-level topologies published by the
authors: ATT, Sprint, and Tiscali. Link capacities of
these topologies are derived by scaling up the OSPF
weights of the links by a constant factor. To focus
on the core of the network, we exclude all of the leaf
nodes (i.e., nodes with only one neighbor). Table 1
summarizes the three topologies.

ISP #Nodes #Edges
ATT 30 126

Sprint 19 100
Tiscali 32 140

Table 1. ISP topologies as measured by Rock-
etfuel.

Traffic Demands: We consider different ways of
generating synthetic traffic demands for our evalua-
tion. One possible approach is based on the gravity
model [42], which has been shown to provide a rea-
sonable approximation to real traffic demands.

However, we find that when using the gravity
model, the network becomes stabilized too quickly
to demonstrate its evolution dynamics (i.e., how con-
vergence is reached). In addition, under the gravity
model, we find it difficult to generate traffic demands
that stress the entire network to a sufficient level — in

most cases there are only a handful of congested links
while most links are under-utilized.

Therefore, in order to better demonstrate the evo-
lution dynamics of convergence, we use another way
of generating the synthetic traffic demands. We ran-
domly pick two nodes as the source and destination
and assign a Pareto traffic flow to them. The traffic
rate of flow from node

�
to � , r � � , is 20% of mini-

mum link bandwidth along the shortest hop-count path
from node

�
to � . We continue doing this until all of

the nodes are assigned with an outgoing traffic flow.
In our evaluation, the average link utilization ranges
from 10% to 20% under the three network topologies
we study.

Traffic Stimulus: To evaluate how a network con-
verges, we introduce traffic stimulus as follows. We
first feed a given demand matrix to a network to let it
converge. Then we introduce a traffic stimulus to the
network. The maximum traffic rate of flow from node�

to � during the traffic stimulus, � � � , is three times the
original rate r � � . When the traffic rates achieve their
maximum values, most of low-capacity links are satu-
rated and the average link utilization ranges from 20%
to 50% with the network topologies in our evaluation.
We consider the following three stimulus models com-
monly used in control theory.� Traffic spike: The traffic rate of each flow origi-

nating from node
�

to � increases suddenly to the
highest rate � � � and lasts for only a short period
of time; then it decreases to the original level r � � .
This represents a traffic burst and tests how the
system adapts to the disturbance.� Step function: The traffic rate of each flow origi-
nating from node

�
to � increases to � � � and re-

mains at that level afterwards. This represents
the transition of traffic levels in the network and
tests how the system responds and evolves ac-
cordingly.� Linear function: The traffic rate of each flow orig-
inating from node

�
to � increases linearly to the

maximum rate � � � over a relatively long period
of time, and remains at that maximum level after-
wards. This represents the gradual transitions of
traffic levels in the network and tests how the sys-
tem keeps up with the gradually changing traffic.

8

Performance Metrics: We consider the following
three performance metrics: average latency, average
convergence time, and link utilization.� The average latency reflects the end-to-end user

performance, which is the major concern for
both user-optimal and network-optimal routing
schemes. The average latency is computed for all
source-destination pairs, weighted by the amount
of traffic flowing from the source to destination.� The average convergence time reflects the speed
at which the network stabilizes. We con-
sider a network as converged at time � +1 when� ��� M � � �7�B] & M � � � � Pj�%� � ��� M � � � � where M � � � is
the routing matrix at node

�
during time � , and�S }� is ¡ N norm of matrix A. When the network

converges, the latency variance is small, and this
can be used as a criterion for convergence.� The link utilization reflects the objectives of net-
work operators, who want to avoid link overloads
in their networks.

5 Performance Evaluation: End-to-End La-
tency and Dynamics

5.1 User latency under self-similar traffic de-
mands

We first study the performance of adaptive routing
schemes under realistic self-similar traffic demands
and with links using drop-tail queues. Figure 5 shows
the average latency for the three topologies under user-
optimal and network-optimal routing. We make the
following observations.

First, both user-optimal and network-optimal rout-
ing converge quickly to stable states, with comparable
fluctuation during the learning stage.

Second, the performance of user-optimal routing is
similar to that of network-optimal routing. This result
further supports the observations in [29] that the per-
formance degradation of user-optimal routing is not
significant. Note that the conclusion in this paper is
based on realistic demands under realistic queuing,
while the result from [29] is based on simple analyt-
ical expressions.

Third, network topologies play an important role in
the speed of convergence. As shown in the figure, both

ATT and Sprint topologies hurtle through the learning
stage and converge almost immediately after the sim-
ulation starts. In contrast, the Tiscali network experi-
ences a short period of learning stage with high latency
before converging to a stable stage with fluctuating av-
erage latency.

Fourth, at stable states, the average latency of
both routing types has small fluctuation (within about
10%). The fluctuation after convergence in both rout-
ing schemes are comparable.

Because all three topologies exhibit similar conver-
gence properties, and the Tiscali topology has a dis-
tinct learning stage and stabilized stage, in the follow-
ing subsections we focus on evaluation using the Tis-
cali topology.

5.2 User latency under traffic stimulus

We now evaluate the responsiveness and stability of
the routing schemes under different traffic stimuli in
the forms of spike, step function, and linear function.

We apply the traffic stimulus to the network at
13 second after the network has converged. The high-
est traffic rate during the stimulus is 3 times the origi-
nal traffic rate. Both the spike and the step stimuli in-
crease the traffic level to the highest rate at time 13 sec-
ond. The spike stimulus maintains the highest traffic
rate for 2 seconds and then decreases to the original
level, while the step stimulus keeps the highest rate un-
til the simulation ends. Linear stimulus increases the
rate gradually to the highest rate from time 13 second
to 20 second (with an increase interval of 0.2ms) and
then maintains that rate to the end of simulation.

Figure 6 shows how the two routing schemes re-
spond to the stimuli in the Tiscali network topology.
As we can see, both the user-optimal and the network-
optimal routing schemes react to the stimuli and stabi-
lize very quickly. For traffic bursts such as spikes, the
network returns to the original stable state almost im-
mediately after the spike disappears. For a step stim-
ulus, the network begins to stabilize in a very short
time. For gradually increasing traffic levels (i.e., a lin-
ear function), the network follows the changing traffic
closely and starts to converge as soon as the traffic rate
stabilizes.

9

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) ATT

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Sprint

 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Tiscali

Figure 5. Dynamics User-optimal and Network-optimal Routing.

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) Spike stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Step stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Linear stimulus

Figure 6. Responsiveness of routing schemes.

5.3 Comparison with shortest hop-count routing

In this subsection, we compare the performance of
user-optimal with shortest hop-count routing (i.e., rt-
ProtoDV in ns-2) under both self-similar traffic and
traffic stimuli. Figure 7 summarizes the results. As
we can see, user-optimal routing out-performs short-
est hop-count routing by 20% - 30% in most cases.
This is consistent with our expectation, since shortest
hop-count routing minimizes hop-count instead of user
latency.

5.4 Improving network convergence and respon-
siveness

In this subsection, we consider the following issue:
how to make the network converge faster and be more
responsive.

Recall that we implement the routing update in two
steps. First, a node updates its delay estimations to all
of the destinations using exponential averaging. The
parameter used in exponential averaging is called the
delay learning factor. Next, the node updates its rout-
ing probability using the results in the previous step;
the parameter used in this step is called the routing

learning factor. Note that in our analysis we use de-
creasing sequences while in our evaluation we use
fixed values. We evaluate the impact of various control
parameters, namely the delay learning factor, the rout-
ing learning factor, and the period of updating routing
probability vectors.

Delay Learning Factor: We first evaluate the effect
of the delay learning factor, which is used in updating
delay estimations. As shown in Figure 8(a), a higher
delay learning factor leads to faster convergence and
higher fluctuation. However, neither a too-low fac-
tor(e.g., 0.1 and 0.2) nor a too-high factor (e.g., 0.8,
which is not plot for the sake of clarity) leads to a sta-
ble state with low fluctuation. A preferable learning
factor would range between 0.4 and 0.6.

Recall that we adopt delay learning factor (� � �
and

Equation (2) to smooth out noise introduced in esti-
mating link latency and marginal link latency. High
learning factors make the algorithm too sensitive to
noise (therefore, more and larger fluctuations in la-
tency after convergence), while small factors make the
algorithm not responsive to network dynamics (there-
fore, slower convergence rate). It is very important
to choose appropriate values for delay learning factor

10

 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(a) Pareto traffic

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(b) Spike stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(c) Step stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(d) Linear stimulus

Figure 7. Comparison between user-optimal and shortest path routing.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

delay learning factor
0.1
0.2
0.4
0.6

(a) Delay learning factor

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

routing learning factor
0.1
0.2
0.4
0.6

(b) Routing learning factor

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

update period
0.2 ms
0.4 ms
0.6 ms
0.8 ms

(c) Update period

Figure 8. Impacts of different parameters.

in order for the routing algorithm to be both robust to
noise and responsive to network dynamics.

Routing Learning Factor: Figure 8(b) shows how
the routing learning factor affects the convergence
speed. The network starts to converge more quickly
when using eager learning (with a higher learning fac-
tor) than lazy learning. However, we also observe that
a higher factor leads to more fluctuation, e.g., the curve
corresponding to a factor of 0.6 has more fluctuation
compared to that of 0.2 and 0.4. A preferable learning
factor would range between 0.2 and 0.4. Note that sim-
ilar to delay learning factor, routing learning factor of
large values makes the algorithm sensitive to noise and
leads to undesired fluctuations after convergence; and
small factor makes the algorithm less responsive and
slows down convergence rate, as shown in the figure.

Period of Routing Update: The last parameter we
evaluate is the period of updating the routing proba-
bility vectors. As Figure 8(c) shows, an eager update
scheme (with shorter update period) leads to faster
convergence and less fluctuations compared with lazy
update. We have the same observation when evalu-
ating the impact of larger update periods; therefore,
only the results of shorter update periods are presented

here to fit the space. We observe that eager update
scheme is preferable for fast convergence and high re-
sponsiveness. We also note that a shorter update pe-
riod introduces more control traffic between neighbor-
ing routers. However, the overhead is very low and
localized, and the routing schemes with a shorter up-
date period still scale very well. In practice, we can
use much larger update periods to further reduce the
overhead when slower convergence and lower respon-
siveness are allowed.

In summary, the three parameters we evaluate have
important impacts on convergence and fluctuation. A
relatively short update period and medium routing
learning factor can be combined to provide enough
sensitivity to the dynamics of the network. Finding the
optimal values for these parameters in real networks
may be difficult, and studies based on simulations and
empirical experiments will play an important role.

5.5 Routing loops

The two routing schemes studied in this paper are
both probabilistic routing. Unlike a deterministic rout-
ing such as a distance-vector or link-state routing
scheme, a probabilistic routing cannot be guaranteed

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(a) ATT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(b) Sprint

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(c) Tiscali

Figure 9. Cumulative probability of packets being delivered in a number of hops.

to be free of loops.] In this section, we examine how
likely routing loops are formed under the above rout-
ing schemes.

We compute the probability of forming routing
loops as follows. We take all of the routing probability
vectors from all of the nodes at time � . These vectors
altogether represent the complete state of the network
at that time. For any packet sent to a particular desti-
nation, a Markov transition matrix can be constructed
from the above vectors obtained from all of the routing
nodes. Let £¢ denote such a complete routing proba-
bility matrix for a destination ¤ . The probability that
a packet starting from a particular source node [(this
node routes the packet based on its own routing prob-
ability vector) arrives at the destination node in ¥ hops
can be represented as � §¦¢ � s ¢ , i.e., the ¤ -th entry in the[-th row in the matrix ¦¢ .

Figure 9 compares the cumulative distribution of a
packet delivered to the destination in ¥ hops before
and after the network is converged. As we can see, the
probability of forming routing loops is significantly
lower after the network has converged. For example,
before the network converges, the probability of deliv-
ering packets within 10 hops is 88%, 60%, and 70%
in ATT, Sprint, and Tiscali topologies, respectively; in
comparison, the corresponding probabilities increase
to 100%, 91%, and 86% after the network converges.

In addition, we observe that topologies have a sig-
nificant impact on how likely routing loops are formed.
The probability of having routing loops is much lower
in the ATT topology than in Sprint or Tiscali. After
taking a closer look at the topologies, we find that both
Sprint and Tiscali are highly connected, so a packet¨

The routing schemes proposed in [5, 18] guarantee loop-
freeness. However, they require synchronous update, which may
be undesirable in a large network.

has more routing choices at every hop, increasing the
chance of traveling more hops. In comparison, for a
less well connected topology, such as ATT, the chance
of forming routing loops is lower.

6 Optimization for both User Latency and
Link Utilization

So far, we have considered routing for optimizing
latency. As shown in [29], optimizing the average user
latency alone sometimes leads to overloaded network
links, which is undesirable from the network opera-
tors’ traffic engineering objective [17]. Ideally, we
would like to achieve low user latency while avoid-
ing overloaded links. In this section, we study how to
optimize routing for both metrics simultaneously.

Our method is to introduce a link utilization thresh-
old. Whenever a link’s utilization exceeds the thresh-
old, the routing scheme will shift some traffic from
the overloaded link to other under-utilized links. This
is done by updating the routing probability vector for
the corresponding destination. When all of the outgo-
ing links experience higher utilization than the thresh-
old (i.e., there are no under-utilized links), the routing
scheme distributes the traffic evenly among all outgo-
ing links.

In our experiments, we use several utilization
thresholds: 20%, 50%, 80%, and 100%. We apply
spike, step, and linear stimuli to evaluate how respon-
sive and stable the different routing schemes are. Fig-
ure 10 shows the average latency for the Tiscali net-
work when user-optimal routing is used.

We make the following observations. First, both
routing schemes are very responsive to the traffic stim-
uli: they closely track the changes in traffic and be-
come stabilized as soon as the traffic stops chang-
ing. Second, comparing the results with those in Fig-

12

 0
 50

 100
 150
 200
 250
 300
 350

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(a) Spike stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(b) Step stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(c) Linear stimulus

Figure 10. User-optimal routing combined with load optimization: average user latency for various
link utilization thresholds.

ure 6, which are obtained solely by optimizing user la-
tency, we observe that by trying to minimize the max-
imum link utilization, the network experiences higher
latency; this is especially clear when we restrict link
utilization to be below 20%. In comparison, the la-
tency increase is only marginal when we increase link
utilization threshold to 50% or higher. This is because
when the threshold is high, only a few links are above
the threshold; as a result, only a small portion of traffic
needs to be re-routed through less loaded paths.

Next we compare the user- and network-optimal
routings. Figure 11 summarizes the results. As it
shows, user-optimal routing and network-optimal rout-
ing exhibit similar latency and convergence speed,
both adapting quickly to changes in traffic.

7 Related Work

User-optimal routing achieves Wardrop equilib-
rium [40]. In [4, 40], the authors showed that unco-
operative traffic can be modeled as network flows, and
the flow paths between any source and destination pair
have the same latency. Based on the observation that
such an equilibrium flow is an optimal solution to a
related convex program, Beckmann et al. [4] proved
the existence and uniqueness of traffic equilibrium for
user-optimal routing. Most previous studies have been
concerned with user-optimal routing with an infinite
number of users, i.e., infinitesimal demand. In [22],
Korilis, Lazar, and Orda considered a finite number
of users and studied the conditions for the existence
of Nash equilibria. They showed that there may exist
multiple Nash equilibria and that although it is pos-
sible to use Rosen’s Diagonal Strict Concavity [30]
to establish uniqueness, this condition generally does

not apply. In [12], Boulogne, Altman, Pourtallier, and
Kameda studied the conditions for the existence of a
Nash equilibrium in a mixed network, i.e., a network
where some users control a substantial amount of traf-
fic and other users generate infinitesimal amount of
traffic.

Network-optimal routing in a centralized setting
has been studied previously, and many optimization
techniques have been proposed. For a survey, please
see [6]. There are also previous distributed algorithms
for computing optimal traffic equilibrium, e.g., see [8]
for a complete survey; however, they do not use the
probabilistic routing scheme.

Our routing scheme is based on reinforcement
learning [21]. In [13, 28], Littman and Boyan first ap-
plied reinforcement learning to routing and proposed
the Q-routing scheme. The Q-routing scheme is fur-
ther revised in [25, 36]. Their scheme is per-packet
based, however, and only supports single path rout-
ing. The work closest to ours is [10], but (like Q-
routing) the scheme is per-packet based and considers
only user-optimal routing.

The authors in [29] study the interaction between
end users’ route selection and network-level routing.
In [23, 26, 31, 32], the interactions between routing
and traffic engineering are studied, but in the context of
Stackelberg routing, which is different from the traffic
engineering objective [17] we studied in this paper.

8 Conclusion and Future Work

In this paper, we develop routing schemes to
achieve user-optimal and network-optimal routing.
Viewed as a mechanism for computing equilibrium,
our scheme is simple and efficient; thus it can be used

13

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) Spike stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Step stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Linear stimulus

Figure 11. Comparison between the user- and network-optimal routing schemes: average latency
when the link utilization threshold is 20%.

to evaluate the performance of large scale networks.
Moreover, it does not require analytical network mod-
els, and is able to model user-optimal and network-
optimal routing in a dynamic environment. It is also
able to capture the potential overhead of the routing
convergence process. Viewed as a protocol for de-
termining routes in a network, our scheme is sim-
ple and distributed; and the scheme has low protocol
overhead. We analyze the convergence of the routing
scheme, and demonstrate its efficiency and responsive-
ness through extensive simulations.

In addition, we adapt the routing scheme to opti-
mize end-user performance and link utilization simul-
taneously. We evaluate the trade-off between the two
objectives and show that the degradation in end-user
performance is only marginal for typical link utiliza-
tion requirements.

There are a number of avenues for future work.
First, we are interested in a better understanding of
the incentive issues of our routing scheme. By hav-
ing routers compute user-optimal routing, we know
that the users will have no incentives in deviating from
the routing protocol. The major issue, however, is
the interaction among routing, traffic engineering, and
flow control. How to design routing schemes with
incentive-compatibility [15] and high efficiency while
interacting well with traffic engineering and flow con-
trol is an open issue. Second, it remains an open prob-
lem how to compute traffic equilibria when users are
optimizing for other end-to-end performance metrics,
such as loss and throughput. The probabilistic routing
investigated here may offer a way to efficiently com-
pute traffic equilibria for such cases.

9 Appendix

Let© � � , � � � {ª|<~ v\� � �«eW�+¬ � g (�	 � � � y , where� F � . Define interval ® g � 0 � ��� � � � , � ��� � © � � , � �*� 1 .
Let ¯ �� denote the simplex of probability vectors in� 8±°

, where � � is the number of neighbors of node
�
.

Let
 �� � � � � 0
 ��] � � � , $�$�$,
 ��] ��� � � 1�² . ¯ �� denote the
probability vector of node

�
for destination node 	 . We

define ³ �� and � �� � � �
similarly. Define ¯ �µ´ � � ¯ ��

and ³ � ´ � � ³£�� . Let �¶� � �·. ³ denote the vector
of all the routing probabilities at all nodes at time � ,
and the value of �¶� � � is computed using Equation (4).
¸� � �¹. ¯ is defined similarly as well.

Lemma 1º |<{gL»m¼=½5¾¶¿� 69À�Á � �¶� � � & �¶��� ��� � � �*� � � � ,5Â $ [$
Proof Let v\� �� � � � y � Ã£�X698': �<; v\� ��� � U � y , rear-

ranged in increasing order. Suppose that � ��� � � � ��Ä��Å�XÆ� �
and �H��� � © � � , � �*� � �Ä����XÆ� ¦ �

with Æ� � Æ�ÈÇ lÆ�] l $�$�$ l Æ� ¦ denoting the integers for which�Ä��Å� � " � � � �Ä��Å�XÆ� ¬ � , �ÉP � P ¥ . Let Ê ¬ be the
number of updates received by node i during the in-
terval

0 � ��� � � " � � , � ��� � � " � " � � 1 . Let Ë ¬ be the set
of m such that the m-th update takes place during this
interval. Note that Ì Ë ¬ Ì � Ê ¬ . Therefore, C �XÆ� ¬ � is the
most recent step size used to update routing probabili-
ties at time � ��� � � " � � at node i. Since v C � U � y is non-
increasing, we have C �XÆ� ¬ � � C � U �

for all U . Ë ¬ .
We also have Æ� ¬ � � " � , implying C �XÆ� ¬ � P C � � " � � .

14

Hence½5¾¶¿� 69À Á � �¶� � � & �¶��� ��� � � �*� � P Í] ¦3 ¬ � Ç 3Î 6LÏÑÐ C � U �
P Í] ¦3 ¬ � Ç Ê ¬ C �XÆ� ¬ �
� Í] ¦3 ¬ � Ç Â � � " � � Ê ¬ � C �XÆ� ¬ �Â � � " � � �
P Í] ¦3 ¬ � Ç Â � � " � � Ê ¬ � C � � " � �Â � � " � � �
P Í N � � ¦¬ � Ç (� � " � � Ê ¬ �DÒ : g � ¬ ;Ó : g � ¬ ; �� ¦¬ � Ç (� � " � � ,

where Í] is a suitable positive constant in the above
derivation. The facts that C �XÆ� ¬ � � C � U �

, Ì Ë ¬ Ì � Ê ¬ ,
and C �XÆ� ¬ � P C � � " � � are used in deriving the above
inequalities. In the last step, the fact that � ¦¬ � Ç (� � "� � � �ÕÔ : g � � ;¬ � g (��� �ª.`0 � , � "ÖÂ � © � � , � �*� 1 is used in the
derivation as well. We choose Í N �ÕÍ] � � " (� � �*� ?×� .

The right hand side of the above inequality will tend
to zero almost surely if Ê ¬ � C � � " � � ? (� � " � �*�mØ �
almost surely. However, for any Ù F � and [F � , and
a suitable constant Ú F � ,3 ¬ ¯ÜÛ¶Ê ¬ Û C � � " � �(� � " � �ÞÝ � Ù Ý P Ù%ß s Ú 3 ¬ Û C ��� �(��� �9Ý s l i $
Note that à 0 � Ê ¬ � s 1 l i . By applying Borel-Cantelli
Lemma, we can see that the desired claim holds. á
Lemma 2º |<{gL»m¼ g � ¬ ß]3Î � gâ(� U �D0 ! ��� � U " � � & ! ��� � � � 1Ä� � ,5Â $ [$

Proof Delay estimations are propagated backward
from neighbors of destination node k to node j and then
to node i along the reverse paths from i through j to k.
At any instant when node i receives updates from j, the
updates are aggregation of a series of earlier updates
received by j’s neighbors. Let > g

be the maximum
time lag in the updates, namely, the earliest estimation
at some node en route to k from i is � & > g

. Let ã ��� � � �
be the end to end delay, it can be seen that

! ��� � U "� � & ! ��� � � � P�Í] (� � & > g � ã ��� � � �
, where Í] is a

suitably chosen constant (note that v (� � � y is a non-
increasing sequence). Therefore,g � ¬ ß]3Î � g (� U �D0 ! ��� � U " � � & ! ��� � � � 1

P^Í N
g � ¬ ß]3Î � gâ(� U � (� � & > g � ã ��� � � � $

Notice thatg � ¬ ß]3Î � g ¯}� (� U � (� � & > g � ã ��� � � � � Ù �
P Ù%ß N g � ¬ ß]3Î � g � (� U � (� � & > g �*��N à 0 ��ã ��� � � �*��N 1(9)

P Í �
g � ¬ ß ² Á ß]3Î � g ß ² Á � (� U �*��Nql i $

In (9), we assume that à 0 ��ã ��� � � �*� N 1 l i . Therefore,
by applying Borel-Cantelli Lemma, we can see that the
right hand side of the above inequality tends to zero
almost surely. á

Define äã ��� �9Æ
J� � �*� � àæåç : g ; 0 ! ��� � � � 1
where Æ
¸� � � �
J��� ��� � � �*�

. We have the following
lemma:

Lemma 3º |7{gL»m¼ g � ¬ ß]3Î � g Â � U �D0 äã ��� �è
J��� ��� � � �*�*� & ! ��� � � � 1H� � ,5Â $ [$
Proof Let éê� � � denote the state of the underlying

network at time � . éë� � � can be seen as a continuous-
time controlled Markov chain with state space ì �´âí¬ �] ì ¬ for some � � � , where ì ¬ is a locally compact
topological space with the randomized control given
by
¸� � � , which is the vector of all the routing proba-
bilities at time � . éê� � � will be a time-homogeneous
Markov chain on ì if
J��î � is held fixed at a specific
state. Let ï � denote the right-continuous completion
of the corresponding � -field. Set Æï g � ïBð °èñò : g ; , for� � � , the sumg3Î �] (� U ��ó ! ��� � U � & à ç : ð °ôñò : g ;õ; 0 ! ��� � � � Ì Æï Î ß] 17ö

15

is seen to be a zero mean martingale. Using standard
martingale analysis techniques, we can prove that the
above martingale converges almost surely. The desired
claim then follows Borel-Cantelli Lemma. Note that
äã ��� �è
J��� ��� � � �*�*�

represents the expected delay from
�

through � to 	 , with respect to the unique limiting sta-
tionary law for vÞéê��� ��� � U �*� y under
J� � �

. á
In order to make delay estimation a continuous

function, we take a linear interpolation approach. We
define

ä�t� � � to linearly interpolate � ��� � � �
by letting

ä�Ñ� � � � � ��� � � �
on

0 �D� � � , �K� � " � � 1 , where �K� � � �� gÎ �] (� U �
and �D� � � � � , for � �_� . Let > be a con-

stant and > F � , then we have the following lemma:

Lemma 4º |<{g9»m¼ ½5¾¶¿� : g ;÷ � ÷ � : g ; � ² �
äã ��� �9Æ
J� � �*� & ä�G� � � � � � ,5Â $ [$

Proof Let g � � g � ¬ ß]Î � g (� U �D0 ! ��� � U " � � &! ��� � � � 1 , and ø g � � g � ¬ ß]Î � g (� U �D0 ! ��� � � � &äã ��� �è
J��� ��� � � �*�*� 1 , for �K� � � P �K� � " � � P �D� � � " � ,
rewrite

ä�Ñ� �K� � " � �*� asä�t� �D� � " � �*�� ä�G� �K� � �*� " � g � ¬ ß]Î � g (� U �D0 ! ��� � U " � � & ä�t� �D� U �*� 1� ä�G� �K� � �*� " � g � ¬ ß]Î � g (� U �D0 ! ��� � U " � � & ! ��� � � � 1" � g � ¬ ß]Î � g (� U �D0 ! ��� � � � & äãæ��� �è
J���Ä��� � � �*�*� 1" � g � ¬ ß]Î � g (� U �D0 äã}��� �è
J���Ä��� � � �*�*� & ä�G� �K� U �*� 1 $
Therefore,ä�t� �D� � " � �*� � ä�Ñ� �K� � �*� " g " ø g "�ù � � �"_ú � : g � ¬ ;� : g ; � äã ��� �9Æ
J� � �*� & ä�G� � �*� ¤%� $

Along with Lemma 1, Lemma 2, and Lemma 3, the
desired claim can be derived by a standard argument
based on Gronwall Lemma. á

Define ÆC � � � � � g ß]Î � Ç C � U � , ÆC � � � � � , andä� ��� � ÆC � � �*� � � ��� � � � , � ��� . Therefore,

ä�Å��î � is a lin-
ear interpolation of �¶��î � on each interval

0 ÆC � � � , ÆC � � "� � 1 . By using standard O.D.E. approach to projected
stochastic approximation algorithms (see, e.g., [27]),

we can derive the following ¯ -valued O.D.E.:

ûw ��� � � � � w ��� � � �D0 8H°3Î �] w ��Î � � � ã ��Î � wH� � �*� & ã ��� � wÄ� � �*� 1
(10)

where U . ��� ��� . Therefore,

ä�Å��î � tracks (10).
Let ¯qü denote the space of probability measures on¯ with Prohorov topology. A pair ��� ,*ý ü � in ¯jþ}¯ ü is

a Cesaro-Wardrop equilibrium if both of the following
two conditions are satisfied:

1. ý ü is invariant under O.D.E. (10);

2. àëü 0 ãæ��� �è
 � 1n�ÿ{ª|<~ Î àëü 0 ãæ��Î �è
 � 1 , if �Þ��� F � .
Here àêü 0 ã}��Î �è
 � 1Ä��� ãæ��Î � w � ý üK¤Tw , i.e., àêü 0 î 1 de-
notes the expectation with respect to ý ü .

Define empirical measures ý � � � as follows:

ú��-Y ¤ ý � � � � �� ú �Ç Y � ä�Å��� �*� ¤��
where � F � and Y . Í ��¯ �

. Then we have the follow-
ing lemmas to show that both of the above conditions
are satisfied asymptotically.

Lemma 5 Every limit point of ý � � �t. ¯ ü is invariant
under O.D.E. (10) as � Ø i , Â $ [$

Proof Suppose that ý � � g �ÑØ �ý . ¯ ü as � g Ø i .
Let � � e£¯ Ø ¯ denote the map mapping wH� � �

towH� � � for O.D.E. (10) for � F � . Consider function Y .Í ��¯ �
satisfying�� g ú � ÁÇ Y � ä�Å��� �*� ¤	� Ø ú Y ¤ äý $

For � F � ,º |7{gL»m¼ �� g ú Y � ä�Å��� � ¤�� � º |<{gL»m¼ �� g ú � Á � �� Y � ä����� �*� ¤	�
� º |<{gL»m¼ �� g ú � ÁÇ Y�
 � � � ä�Å��� �*� ¤	�� ú Y�
 � � ¤ �ý $

Therefore, for any limit point of ý � � �-. ¯ ü is invari-
ant as � Ø i since � F � is arbitrary in the above
equations. á

16

According to Lemma 5, we denote by ��� ü ,*ý ü � a
limit point of � ä� ,*ý � � �*� as � Ø i . Note that ý ü is
invariant under (10) by the previous lemma.

Lemma 6 àêü 0 ã}��� �è
 � 1�� {ª|7~ Î àëü 0 ãæ��Î �è
 � 1 , if �Þ��� F� .

Proof Suppose

ä�Å� � g �mØ � ü ,*ý � � g �qØ ý ü in ¯ ü as� g Ø i . Since

ä�¶��î � approximates (10), we have

3 Î� ��Î ��� ä� ��Î � � g �ä� ��Î � � � � �
ú � ÁÇ � ä� �� ��� �*� ² ã �� � ä� ��� �*� ¤��
& ú � ÁÇ � � �� � ² ã �� � ä�Å��� �*� ¤	� "�ù � � g � $ (11)

Note that the term ù � � g �
collects the error terms that

are asymptotically negligible. Without loss of gener-
ality, we assume that

ä� ��Î F � . The right-hand side
becomes� g ��à ü 0 �è
 �� � ² ã �� �è
 � 1�& � � �� � ² à ü 0 ã �� �è
 � 1 � "�ù � � g �

(12)
as � Ø i ; while the left-hand side remains bounded
by our choice of � . Therefore, by dividing both sides
by � g , we haveà ü 0 �è
 �� � ² ã �� �è
 � & � � �� � ² à ü 0 ã �� �è
 � 1Ä� � (13)

as � g Ø i , which is true for all � mutually absolutely
continuous with respect to � ü . Therefore, àZü 0 ã}��Î �è
 � 1
is independent of U if ��� ü � ��Î F � . á

Now we prove Theorem 1 as follows. Let ��� ü ,*ý ü �
be a limit point of � ä�Å� � � ,*ý � � �*� as � Ø i and ���Tü ,*ý ü �
satisfies the following two conditions: (1) ý ü is invari-
ant; (2) à ü 0 ã ��� �è
 � 1'� U � � Î à ü 0 ã ��Î �è
 � 1 if ��� ü � ��� F� , according to Lemma 5 and 6.

Given that we have proved Lemma 5 and 6, we need
only to prove that if ���%ü � ��� � � , thenà ü 0 ã ��� �è
 � � U � � Î à ü 0 ã ��Î �è
 � 1
for all � . We prove the theorem by contradiction.

Assume that there exists a � such that ��� ü � ��� � �
and àêü 0 ã}��� �è
 � 1 l àëü 0 ãæ��Î�� 1È& © where ���Lü � ��Î�� F �
and àêü 0 ãæ��Î�� �è
 � 1#� U � � Î àëü 0 ãæ��Î �è
 � 1 , for some © F� . Let � g be defined as in the proof of Lemma 6. Let

� � ���Lü " Ù Î�� � ?9@ , where Ù Î�� is a point mass at U Ç .
Similarly to the proof of Lemma 6, we have (11) and
(12). (12) is positive for sufficiently large � in view
of choice of � and Equation (13). Therefore, (12) is
actually �}� © � � g and increasing to " i . However, the
left-hand side of Equation (11) is approaching to &Gi
because

ä� ��Î�� � � g �£Ø ��� ü � ��Î�� � � according to our as-
sumption. Therefore our previous assumption yields a
contradiction.

References
[1] Network simulator – ns-2.

http://www.isi.edu/nsnam/ns/.

[2] E. Altman, T. Boulogne, R. E. Azouzi, and T. Jimenez.
A survey on networking games. Telecommunication
Systems, November 2000.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. Morris. Resilient overlay networks. In Pro-
ceedings of the 18th Annual ACM Symposium on Op-
erating Systems Principles, Banff, Canada, Oct. 2001.

[4] M. Beckmann, C. B. McGuire, and C. B. Winsten.
Studies in the Economics of Transportation. Yale Uni-
versity Press, 1956.

[5] D. P. Bertsekas, E. M. Gafni, and R. G. Gallager.
Second direvative algorithms for minimum delay dis-
tributed routing in networks. IEEE Transactions on
Communications, (8):911–919, 1984.

[6] D. P. Bertsekas and R. Gallager. Data Networks.
Prentice-Hall, Second Edition, 1992.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic
Programming. Athena Scientific, 1996.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Athena
Scientific, 1997.

[9] V. Borkar. Stochastic approximation with two time
scales. Systems and Control Letter, 29:291–294, 1997.

[10] V. Borkar and P. R. Kumar. Dynamic Cesaro-Wardrop
equilibration in networks. IEEE Transactions on Au-
tomatic Control, 48(3):382–396, Mar. 2003.

[11] V. Borkar and S. Meyn. The O.D.E. method for con-
vergence of stochastic approximation and reinforce-
ment learning. SIAM Journal on Control, 38(2):447–
469, 2000.

[12] T. Boulogne, E. Altman, O. Pourtallier, and
H. Kameda. Mixed equilibrium for multiclass rout-
ing games. IEEE Transactions on Automatic Control,
47(6):903–916, June 2002.

17

[13] J. A. Boyan and M. L. Littman. Advances in Neu-
ral Information Processing Systems, volume 6, chap-
ter Packet routing in dynamically changing networks:
A reinforcement learning approach, pages 671–678.
Morgan Kaufmann, San Francisco, CA, 1993.

[14] I. Castineyra, N. Chiappa, and M. Steenstrup. The
Nimrod Routing Architecture, RFC 1992, Aug. 1996.

[15] J. Feigenbaum, C. Papadimitriou, R. Sami, and
S. Shenker. A BGP-based mechanism for lowest-cost
routing. In Proceedings of the 21st Symposium on
Principles of Distributed Computing, pages 173–182,
2002.

[16] M. Florian and D. Hearn. Network Routing, chapter
6, Network equilibrium models and algorithms, pages
485–550. Elsevier Science, 1995.

[17] B. Fortz, J. Rexford, and M. Thorup. Traffic engi-
neering with traditional IP routing protocols. IEEE
Communication Magazine, October 2002.

[18] R. G. Gallager. A minimum delay routing algorithm
using distributed computation. IEEE Transactions on
Communications, (1):73–85, 1977.

[19] P. Gupta and P. R. Kumar. A system and traffic depen-
dent adaptive routing algorithm for ad hoc networks.
In Proceedings of IEEE 36th Conference on Decision
and Control, San Diego, CA, 1997.

[20] D. B. Johnson and D. A. Malt. Mobile Computing,
chapter Dynamic Source Routing in Ad Hoc Wireless
Networks, Chapter 5, (Tomasz Imielinski and Hank
Korth, eds.). Kluwer Academic Publishers, 1996.

[21] L. Kaelbling, M. Littman, and A. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelli-
gence Research, 4:237–285, 1996.

[22] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting
noncooperative networks. IEEE Journal of Selected
Areas in Communications, 13(7):1241–1251, Septem-
ber 1995.

[23] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving
network optima using Stackelberg routing strategies.
IEEE/ACM Transactions on Networking, 5(1):161–
173, February 1997.

[24] E. Koutsoupias and C. Papadimitriou. Worst-case
equilibria. In Proceedings of the 16th Annual Sym-
posium on Theoretical Aspects of Computer Science,
1999.

[25] S. Kumar. Confidence based dual reinforcement Q-
routing: an on-line adaptive network routing algo-
rithm. Technical Report AI98-267, 1, 1998.

[26] V. A. Kumar and M. V. Marathe. Improved results for
Stackelberg scheduling strategies. Technical report,
Los Alamos National Laboratory, November 2001.

[27] H. J. Kushner and G. G. Yin. Stochastic Approxima-
tion Algorithms and Applications. Springer Verlag,
New York, NY, 1997.

[28] M. L. Littman and J. A. Boyan. A distributed rein-
forcement learning scheme for network routing. In
Proceedings of the 1993 International Workshop on
Applications of Neural Networks to Telecommunica-
tions, pages 45–51, Hillsdale NJ, 1993.

[29] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On self-
ish routing in Internet-like environments. In Proceed-
ings of ACM SIGCOMM ’03, Karlsruhe, Germany,
Aug. 2003.

[30] J. B. Rosen. Existence and uniqueness of equilibrium
points for concave n-person games. Econometrica,
33:520–534, July 1965.

[31] T. Roughgarden. Designing networks for selfish users
is hard. In Proceedings of the 42nd Annual Symposium
on Foudations of Computer Science 2001, pages 472–
481, Las Vegas, Nevada, Oct. 2001.

[32] T. Roughgarden. Stackelberg scheduling strategies. In
Proceedings of the 33rd Annual Symposium on Theory
of Computing 2001, pages 104–113, 2001.

[33] T. Roughgarden and E. Tardos. How bad is selfish
routing? Journal of ACM, 49(2):236–259, 2002.

[34] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vah-
dat, G. Voelker, and J. Zahorjan. Detour: a case for in-
formed Internet routing and transport. In IEEE Micro,
volume 19, pages 50–59, January 1999.

[35] N. Spring, R. Mahajan, and D. Wetherall. Rocketfuel:
An ISP topology mapping engine. Available from
www.cs.washington.edu/research/networking/rocketfuel/.

[36] D. Subramanian, P. Druschel, and J. Chen. Ants and
reinforcement learning: A case study in routing in dy-
namic networks. In IJCAI (2), pages 832–839, 1997.

[37] V. Tadic and S. Meyn. Asymptotic properties of two
time-scale stochastic approximation algorithms with
constant step sizes. In Proceedings of the 2003 Amer-
ican Control Conference, June 2003.

[38] H. Tangmunarunkit, R. Govindan, S. Shenker, and
D. Estrin. The impact of routing policy on Internet
paths. In Proceedings of IEEE INFOCOM ’01, An-
chorage, AK, Apr. 2001.

18

[39] J. N. Tsitsiklis and D. P. Bertsekas. Distributed asyn-
chronous optimal routing in data networks. IEEE
Transactions on Automatic Control, 31:325–332,
1986.

[40] J. G. Wardrop. Some theoretical aspects of road traf-
fic research. In Proceedings of the Institute of Civil
Engineers, Part II, volume 1, pages 325–378, 1952.

[41] H. Xie, L. Qiu, Y. R. Yang, and Y. Zhang. On
self adaptive routing in dynamic environments — an
evaluation and design using a simple, probabilistic
scheme. Technical report, Computer Science Depart-
ment, Yale University, May 2004.

[42] Y. Zhang, M. Roughan, N. Duffield, and A. Green-
berg. Fast accurate computation of large-scale IP traf-
fic matrices from link loads. In Proc. of ACM SIG-
METRICS, Jun. 2003.

19

