
Integrating Formal Schedulability
Analysis into a Verified OS Kernel

Xiaojie Guo1,2, Maxime Lesourd1,2, Mengqi Liu3,
Lionel Rieg1,3(B), and Zhong Shao3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP,
VERIMAG, Grenoble, France

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,
LIG, Grenoble, France

3 Yale University, New Haven, CT, USA
lionel.rieg@univ-grenoble-alpes.fr

Abstract. Formal verification of real-time systems is attractive because
these systems often perform critical operations. Unlike non real-time sys-
tems, latency and response time guarantees are of critical importance in
this setting, as much as functional correctness. Nevertheless, formal ver-
ification of real-time OSes usually stops the scheduling analysis at the
policy level: they only prove that the scheduler (or its abstract model)
satisfies some scheduling policy. In this paper, we go further and connect
together Prosa, a verified schedulability analyzer, and RT-CertiKOS, a
verified single-core sequential real-time OS kernel. Thus, we get a more
general and extensible schedulability analysis proof for RT-CertiKOS, as
well a concrete implementation validating Prosa models. It also show-
cases that it is realistic to connect two completely independent formal
developments in a proof assistant.

Keywords: Formal methods · Proof assistant · Real-time scheduling ·
OS kernel · Schedulability analysis

1 Introduction

The real-time and OS communities have seen recent effort towards formal proofs,
through several techniques such as model checking [16,22] and interactive the-
orem provers [7,14,17]. This trend is motivated by the high stakes of critical
systems and the combinatorial complexity of considering all possible interleav-
ings of states of a system, which makes pen-and-paper reasoning too error-prone.

Real-time OSes used in critical areas such as avionics and automobile applica-
tions must ensure not only functional correctness but also timing requirements.
Indeed, a missed deadline may have catastrophic consequences. Schedulability
analysis aims to guarantee the absence of deadline miss given a scheduling algo-
rithm which decides which task is going to execute.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 496–514, 2019.
https://doi.org/10.1007/978-3-030-25543-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-25543-5_28

Integrating Formal Schedulability Analysis into a Verified OS Kernel 497

In the current state of the art, the schedulability analysis is decoupled from
the kernel code verification. This is good from a separation of concern perspec-
tive as both kernel verification and schedulability analysis are already complex
enough without adding in the other. Nevertheless, this gap also means that both
communities may lack validation from the other one.

On the one hand, schedulability analysis itself is error-prone, e.g., a flaw was
found in the original schedulability analysis [26,27,29] for the Controller Area
Network bus, which is widely used in automobile. To tackle this issue, the Prosa
library [7] provides mechanized schedulability proofs. This library is developed
with a focus on readable specifications in order to ensure wide acceptance by
the community. It is currently a reference for mechanized schedulability proofs
and was able to verify several existing multicore scheduling policies under a new
setting with jitter. However, some of its design decisions, in particular for task
models and scheduling policies, are highly unusual and their adequacy to reality
has never been justified by connecting them to a concrete OS kernel enforcing a
real-time scheduling policy.

On the other hand, OS kernels are very sensitive and bug-prone pieces of code,
which inspires a lot of existing work on using formal methods to prove functional
correctness and other requirements, such as access control policies [17], schedul-
ing policies [31], timing requirements, etc. One such verified OS kernel is RT-
CertiKOS [21], developed by the Yale FLINT group and built on top of the sequen-
tial CertiKOS [9,13]. Its verification focuses on extensions beyond pure functional
correctness, such as real-time guarantees and isolation between components. How-
ever, any major extension such as real-time adds a lot of proof burden.

In this paper, we solve both problems at once by combining the formal schedu-
lability analysis given by Prosa with the functional correctness guarantees of RT-
CertiKOS. Thus, we get a formal schedulability proof for this kernel: if it accepts a
task set, then formal proofs ensure that there will be no deadline miss during exe-
cution. Furthermore, this work also produces a concrete instance of the definitions
used in Prosa, ensuring their consistency and adequacy with a real system.

Contributions. In this paper, we make the following contributions:

– Definition of a clear interface for schedulability analysis between a kernel
(here, RT-CertiKOS) and a schedulability analyzer (here, Prosa);

– A workaround for the mismatch between the notion of jobs in schedulability
analysis (which contains actual execution time) and in OS scheduling through
the scheduling trace;

– A way to extend a finite scheduling trace (from RT-CertiKOS) into an infi-
nite one (for Prosa) while still satisfying the fixed priority preemptive (FPP)
scheduling policy;

– A formally proven connection between RT-CertiKOS and Prosa, validating
Prosa modeling choices and enabling RT-CertiKOS to benefit from the state-
of-the-art schedulability results of Prosa.

498 X. Guo et al.

Outline of the Paper. Section 2 introduces the Prosa library and its descrip-
tion of scheduling. In Sect. 3, we describe RT-CertiKOS, its scheduler, as well as
the associated verification technique, abstraction layers. Section 4 then highlights
the key differences between the models of Prosa and RT-CertiKOS, and how we
resolve them. Finally, Sects. 5, 6, and 7, evaluate our work, present future work
and related work before concluding.

2 Prosa

Prosa [7] is a Coq [25] library of models and analyses for real-time systems.
The library is aimed towards the real-time community and provides models and
analyses found in the literature with a focus on readable specifications.

Fig. 1. An overview of Prosa layers

The library contains four basic layers, which are presented in Fig. 1:

System behavior. The base of the library is a model of discrete time traces
as infinite sequences of events. We consider two such kinds of sequences:
arrival sequences record requests for service called job activations and sched-
ules record which job is able to progress.

System model. In order to reason about system behavior, jobs with simi-
lar properties are grouped into tasks. Based on system behavior, task mod-
els (arrival patterns and cost models) and scheduling policies are defined.
These models are axiomatic in the sense that they are given as predicates on
traces/schedules and not as generating and scheduling functions. In particu-
lar, a “FPP scheduler” (see Sect. 2.2) is modeled as “any trace satisfying the
FPP policy”.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 499

Analysis. The library provides response time and schedulability analyses for
these models.

Implementation. Finally, examples of traces and schedulers are implemented
to validate the specifications axiomatized in the System model layer and to
use the results proven in the Analysis layer. It is this part (more precisely,
the top left dark block of Fig. 1) that is meant to connect with RT-CertiKOS.

2.1 System Behavior

The basic definitions in Prosa concern concrete system behavior. The notion of
time used in the library corresponds to scheduling ticks: durations are given in
number of ticks and instants are given as number of ticks from initialization of
the system. For this paper, we focus on single-core systems1 on which instances of
a finite set TaskSet of tasks are scheduled. To each task τ is associated a relative
deadline Dτ which corresponds to the delay we want to guarantee between the
activation of an instance of a task and its completion. We defer the definition
of tasks (Definition 4) until their parameters are relevant and focus first on the
modeling of system behavior in Prosa. The instances of tasks which are to be
scheduled are called jobs.

Definition 1 (Job). A job j is defined by a task τj, a positive cost cj, and a
unique identifier.

We do not use the identifier directly, it is only used to distinguish jobs of the
same task in traces.

These jobs are used to describe the workload to be scheduled. This workload
is defined by an arrival sequence which is a trace of job activations.

Definition 2 (Arrival sequence). An arrival sequence is a function ρ map-
ping any time instant t to a finite (possibly empty) set of jobs ρ(t).

A job can only appear once in an arrival sequence.

Since a job j can appear at most once in an arrival sequence ρ, we can define
its arrival time aρ(j) in ρ as the instant t such that j ∈ ρ(t).

We do not model the scheduler as a function, instead we work with schedules
over an arrival sequence which are traces of scheduled jobs.

Definition 3 (Schedule). A schedule over an arrival sequence ρ is a function
σ which maps any time instant t to either a job appearing in ρ or ⊥.

The symbol ⊥ is used for instants at which no job is scheduled. Given an arrival
sequence ρ and a schedule σ over ρ, a job j ∈ ρ is said to be scheduled at an
instant t if σ(t) = j, the service received by j up to time t is the number of
instants before t at which j is scheduled. A job j is said to be complete at time
t if its service received up to time t is equal to its cost cj and j is said to be
pending at time t if it has arrived before time t and is not complete at time t.
From now on, we require schedules to only schedule pending jobs. A job j is said
to be schedulable if it is complete by its absolute deadline dj := aρ(j) + Dτj.
1 Multicore systems are handled by Prosa but we do not consider them here.

500 X. Guo et al.

2.2 System Model

Task Model. In order to specify the behavior of the system we are interested
in, Prosa introduces predicates on traces for which the response time analysis
provides guarantees.

We now focus on the definitions related to the sporadic task model and the
fixed priority preemptive (FPP) scheduling policy.

Definition 4 (Sporadic FPP task). A sporadic FPP task τ is defined by a
deadline Dτ ∈ N, a minimal inter-arrival time δ−

τ ∈ N, a worst case execution
time (WCET) Cτ , and a priority pτ ∈ N. When Dτ is equal to δ−

τ , the deadline
is said implicit.

Sporadic Task Model. The sporadic task model is specified by a sporadic
arrival model and a cost model.

In the sporadic arrival model, consecutive activations of a task τ are separated
by a minimum distance δ−

τ : an arrival sequence ρ is sporadic if for any two
distinct jobs j1, j2 ∈ ρ of the same task τ , |aρ(j1) − aρ(j2)| ≥ δ−

τ . Periodic
arrivals are a particular case of this model where δ−

τ is the period and jobs
arrives exactly at intervals of δ−

τ . This is sufficient for us as the schedulability
analysis for FPP yields the same bounds for sporadic and periodic activations.

The considered cost model is a constraint on activations: jobs in the arrival
sequence must respect the WCET of their task, that is, for any j ∈ ρ, cj ≤ Cτj

.

FPP Scheduling Policy. The FPP policy is modeled in Prosa as two con-
straints on the schedule: it must be work conserving, that is, it cannot be idle
when there are pending tasks; and it must respect the priorities, that is, a sched-
uled job always has the highest priority among pending jobs.

2.3 Analysis

Prosa contains a proof of Bertogna and Cirinei’s [4] response time analysis for
FPP single-core schedules of sporadic tasks, with exact bounds for implicit dead-
lines. The analysis is based on the following property of the maximum workload
for these schedules.

Definition 5 (Maximum Workload). Given a task τ ∈ TaskSet and a dura-
tion Δ, the maximum workload of the system w.r.t. τ within that duration is

Wτ (Δ) :=
∑

τ ′∈TaskSet
pτ′ ≥pτ

Cτ ′ ×
⌈

Δ

δ−
τ ′

⌉

The maximum workload Wτ (Δ) corresponds to the worst case activation pat-
tern in which all tasks are simultaneously activated with maximum cost (WCET
of their task) and minimal inter-arrival distance. It is an upper bound on the

Integrating Formal Schedulability Analysis into a Verified OS Kernel 501

amount of service required to schedule activations of the tasks with a priority
higher than or equal to pτ in any interval of size Δ. Based on this property, we
can derive a response time bound for our system model if we can find a Δ larger
than Wτ (Δ).

Theorem 1 (Response Time Bound). Given a sporadic taskset TaskSet
and a task τ ∈ TaskSet then for any R > 0 such that R ≥ Wτ (R), any job
j of task τ in an FPP schedule σ over an arrival sequence ρ is completed by
aρ(j) + R.

For instance, the smallest response time bound for a task τ ∈ TaskSet can
be computed by the least positive fixed point of the function Wτ . Using this
response time bound, we can derive a schedulability criterion by requiring this
bound to be smaller than or equal to the deadline of task τ .

2.4 Implementation and Motivation for the Connection
with RT-CertiKOS

The Prosa library includes functions to generate periodic traces and the corre-
sponding FPP schedules, together with proofs of these properties and an instan-
tiation of the schedulability criterion for these traces. This implementation was
initially provided as a way to check that the modeling of the arrival model and
scheduling policy are not contradictory and as such the implementation is as
simple as possible. Although this is a good step in order to make the axiomatic
definition of scheduling policies more acceptable, there is still room for improve-
ment: these implementations are still rather ad-hoc and there is no connection
to an actual system. This is where the link with RT-CertiKOS is beneficial to
the Prosa ecosystem: it justifies that the model is indeed suitable for a concrete
and independently developed real-time OS scheduler.

3 The RT-CertiKOS OS Kernel

RT-CertiKOS [21], developed by the Yale FLINT group, is a real-time exten-
sion of the single-core sequential CertiKOS [9,13],2 whose functional correctness
has been mechanized in the Coq proof assistant [25]. The sequential restric-
tion greatly simplifies the implementation of the OS kernel. However, it does
not support multicore, and the lack of kernel preemption can also degrade the
responsiveness of the whole system. RT-CertiKOS proves spatial and temporal
isolation (including schedulability) between components.

Both CertiKOS and RT-CertiKOS follow the same proof methodology, orga-
nized around the notion of abstraction layers that permits decomposition of the
kernel into small pieces that are easier to verify.

2 There is a multicore version of CertiKOS [14,15], but RT-CertiKOS is developed on
top of the sequential version.

502 X. Guo et al.

3.1 Abstraction Layers

Abstraction layers [13] are essentially a way to combine code fragments and their
interface with simulation proofs. They consist of four elements: (a) a piece of
code; (b) an underlay, the interface that the code relies on; (c) an overlay, the
interface that the code provides; (d) a simulation proof ensuring that the code
running on top of the underlay indeed provides the functionalities described in
the overlay.

Implementation details of lower layers are encapsulated in higher layers, allow-
ing to reason directly with the specifications rather than the implementation.

Notice that the underlay and overlay are specifications written in Coq and
may be expressed using the semantics of several programming languages at once.
This explains how CertiKOS (and RT-CertiKOS) manages to encompass both
C and assembly code verification into a unified framework. Notice further that
this notion of interface not only includes functions but also some abstract state,
which exposes memory states of lower layers in a clean and structured way, and
allows the overlay to access them only by invoking verified functions.

3.2 The Scheduler in RT-CertiKOS

RT-CertiKOS supports user-level fixed-priority preemptive scheduling. Its sched-
uler is invoked by timer interrupts periodically, dividing CPU time into intervals,
which are called time slots, time quanta, or time slices.

Task Model. Each task in RT-CertiKOS is defined by a fixed priority, a period,
and a budget (or WCET), the latter two being given in time slot units. Tasks
are strictly periodic, with implicit hard deadlines, that is, the deadlines are the
start of the next period and no deadline miss is allowed at all. While this is
a restricted setting, it is enough to handle closed-loop control, used in control
real-time systems. Furthermore, RT-CertiKOS only allows for fixed priorities in
order to get maximum predictability, which is of utmost importance in critical
systems. Finally, RT-CertiKOS also enforces budgets at the task level: in each
period, a task cannot be scheduled for more than its specified budget.

Fixed-Priority Scheduler. The RT-CertiKOS scheduler maintains an integer
array to keep track of time quantum usage for each task. Upon invocation, the
scheduler first iterates over all tasks, replenishing quotas whenever a new period
arrives. It then loops again and finds the highest priority task that has not
used up its budget, followed by a decrement on the chosen task’s current quota.
Its abstraction is a Coq function that iterates over an abstract array of task
control blocks, updates them, and returns the highest task identifier available
for scheduling.

Yield System Call. Tasks do not always use up their budgets. A task can yield
to relinquish any remaining quota, so that lower priority tasks may be scheduled
earlier and more time slots may be dedicated to non real-time tasks.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 503

3.3 Proof Methodology

Based on sequential CertiKOS, RT-CertiKOS [21] follows the idea of deep spec-
ifications3 in which the specification should be rich enough to deduce any prop-
erty of interest: there should never be any need to consider the implementation.
In particular, even though its source code is written in both C and assembly,
the underlay always abstracts the concrete memory states it operates on into
abstract states, and abstracts concrete code into Coq functions that act as exe-
cutable specification. Subsequent layers relying on this underlay will invoke Coq
functions instead of the concrete code, thus hiding implementation details.

In the case of scheduling, there are essentially two functions: the scheduler
and the yield system call. The scheduler relies on two concrete data structures:
a counter tracking the current time (in time slot units) and an array tracking
the current quota for each periodic task. The yield system call simply sets the
remaining quota of the current task to zero. Both functions are verified in RT-
CertiKOS, that is, formals proofs ensure that their C code implementations
indeed simulate the corresponding Coq specifications.

3.4 Motivation for the Connection with Prosa

Upgrading an OS kernel into a real-time one is not an easy task. When one
further adds formal proofs about functional correctness, isolation, and timing
requirements, the proof burden becomes enormous. In particular, there is still
room for future work on RT-CertiKOS, e.g., a WCET analysis of its system
calls.

In order to reduce the overall proof burden, it is important to try to del-
egate as much as possible to specialized libraries and tools. Thus, from the
RT-CertiKOS perspective, the benefit of using Prosa is precisely to have state-
of-the-art schedulability analyses already mechanized in Coq, without having to
prove all these results.

Furthermore, the schedulability check of Prosa is only performed once while
verifying the proofs, such that there is no runtime overhead and no loss of per-
formance for RT-CertiKOS.

4 From RT-CertiKOS to Prosa: A Schedule Connection

Prosa definitions cannot apply to RT-CertiKOS directly. Indeed, the perspectives
of Prosa and RT-CertiKOS on the real-time aspects of a system are not the same,
which is reflected in the differences in their task models, their executions, and
the information they need. In this section, we explain how we bridge these gaps
to actually perform the connection. Table 1 summarizes the various definitions
and proofs and how they relate to each other.

3 https://deepspec.org/.

https://deepspec.org/

504 X. Guo et al.

Table 1. Summary of the range of the various data between RT-CertiKOS and Prosa

4.1 Interface Between RT-CertiKOS and Prosa

We design an interface to link RT-CertiKOS and Prosa, focusing on the precise
amount of information that needs to be transmitted between them. The interface
is shaped by the information Prosa needs to perform the schedulability analysis:
a task set and a schedule, together with some properties.

Key Elements of the Interface. The task model we consider is the one of
RT-CertiKOS, as it is more restrictive than the ones supported by Prosa. Tasks
are defined by a priority level p, a period Tp and a WCET (more accurately a
budget) Cp. Since we only allow one task per priority level, we identify tasks
and priority levels and we write Cp, Dp, and Tp instead of Cτ , Dτ , and Tτ . In
order for this setting to make sense, we assume the following inequality for each
task p: 0 < Cp ≤ Tp. Notice that this is a particular case of Prosa’s FPP task
model (Definition 4). There is no definition of the jobs of a task as they can be
easily defined from a task and a period number.

The second element Prosa needs is an infinite schedule. RT-CertiKOS cannot
provide such an infinite schedule, as only a finite prefix can be known, up to the
current time. Thus, we keep RT-CertiKOS’s finite schedule as is in the interface
and it is up to Prosa to extend it into an infinite one, suitable for its analysis.

Finally, Prosa needs two properties about the schedule: (a) any task receives
no more service than its WCET in any period; (b) the schedule indeed follows
the FPP policy. We refer to schedules satisfying these properties as valid schedule
prefixes. Proving these properties falls to RT-CertiKOS.

Handling Service and Job Cost. In RT-CertiKOS, and more generally in
any OS, we only assume a bound on the execution time of a task, used as a
budget. The exact execution time of each of its jobs is not known beforehand
and can be observed only at runtime. On the opposite, Prosa assumes that costs
for all jobs of all tasks are part of the problem description and thus are available
from the start.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 505

To fix this mismatch, we define a job cost function computed from a schedule
prefix: its value is the actual service received if the job has yielded and the WCET
of its task otherwise. This definition relies on the computation of service in any
period, which we also provide as part of the interface.

4.2 The RT-CertiKOS Side

Adding the Schedule in RT-CertiKOS. RT-CertiKOS only maintains the
current state of the system, which the scheduler relies on, such as the current time
and quota array. However, the interface requires a schedule trace. We introduce
such a ghost variable in RT-CertiKOS, and update a few scheduling-related
primitives to extend this trace whenever a task is scheduled.

This introduction adds absolutely no proof overhead, since it does not affect
the scheduling decisions, thus existing proofs about the rest of the system still
hold. Furthermore, it is a purely logical variable introduced through refinement,
meaning that it does not exist in the C code, thus it causes no computation
overhead.

Too Much Information in RT-CertiKOS. The full RT-CertiKOS model
contains too much information compared to what the interface requires.

Firstly, services in RT-CertiKOS may affect a part of the state that is relevant
to practical scheduling, but is of no interest to the scheduling model we want to
verify, like batch tasks.

Secondly, due to the nature of deep specification, the abstraction of the whole
scheduling operation contains more information than what is required for rea-
soning about real-time properties. For example, saving and restoring registers is
essential for the correctness of context switches (thus, of the scheduler), but it
is irrelevant to temporal properties.

Thirdly, specifications in RT-CertiKOS enumerate preconditions of the sched-
uler such as the correct configuration of the paging bit in the control register, the
validity of the current stack and so on. These are required for other invariants of
the kernel at other abstraction levels, but again they are irrelevant to scheduling.

Simplified Model of RT-CertiKOS. For all these reasons, we define a sim-
plified scheduling model of RT-CertiKOS, with a much simpler abstract state
containing only the data structures that are actually used in scheduling, from
which the interface data and its properties must be derived. This simplified
abstract state contains four fields:

ticks the current time, that is, the number of past time slots;
quanta a map giving the remaining quota for each priority;
cid the identifier of the running process (if it exists);
schedule the schedule prefix remembering past scheduling decisions.

This abstract state is not equivalent to the complete one, because it operates
on a totally different abstract data type where all irrelevant fields are removed.

506 X. Guo et al.

It is also more permissive: more transitions are allowed since it does not perform
the sanity checks about preconditions such as being in kernel mode, host mode,
etc. Nevertheless, we still have a simulation: any step in the full RT-CertiKOS
is also allowed in the simplified version and results in the same scheduling deci-
sion and trace. This simulation is enough for our purposes as we are ultimately
interested in the behavior of the full RT-CertiKOS.

Proving the Properties Required by Prosa. The interface requires two
key properties: (a) the service received by each job is at most the WCET of its
task; and (b) the schedule prefix follows FPP. These properties must be proven
on the RT-CertiKOS side for any schedule that might be generated. This way,
Prosa can rely on them through the interface.

Since RT-CertiKOS verification is based on state invariants rather than
traces, we prove these properties using the following main invariants on the
simplified scheduling model:
– the length of the schedule trace is the current time + 1 (the scheduler takes

a decision for the next time slot);
– if a task has yielded in the current period, its remaining quota is 0;
– the service plus the remaining quota is equal to the job cost;
– the service received in any period is less than the WCET;
– pending jobs have two equivalent definitions (having positive remaining quota

or having less service than their job cost);
– the current schedule follows FPP.

To prove that these statements are indeed invariants, we must prove that they
are preserved by any step, that is, by the scheduler (triggered by the user-level
timer interrupt) and by the yield system call (triggered by the user process),
since all other kernel steps do not modify the scheduling data of the simplified
scheduling model.

Simulation Between the Simplified Scheduling Model and RT-
CertiKOS. To connect the full RT-CertiKOS model and the simplified one,
we define a projection function RData proj extracting the relevant fields from
the full RT-CertiKOS state to build the simplified one.

As shown in Fig. 2, we prove that given a scheduler transition of RT-CertiKOS
between the (full) states d and d′, there is also a transition from their projec-
tions s and s′ by invoking the simplified scheduler.4 If the states d and s satisfy
respectively the invariants for RT-CertiKOS and the simplified model, then so
do d′ and s′ (they are invariants). As the states s and s′ are projections of d
and d′, the invariants of s and s′ also hold on the corresponding fields in d and d′.
This allows us to utilize the invariants proved in the simplified model to estab-
lish properties on the full state of RT-CertiKOS. Notice that the schedulability
property we study is a safety property (deadlines are never missed) and not a
liveness one (everything is eventually scheduled).
4 More precisely, we prove that certikos sched(s) and RData proj(d′) are extension-
ally equal.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 507

Fig. 2. Simulation between simplified scheduling and RT-CertiKOS

4.3 The Prosa Side

Proven Schedulability Analysis in Prosa. In order to use the response time
bound of Sect. 2, we need to relate any finite schedule prefix from the interface
to an arrival sequence and a schedule satisfying the model described in Sect. 2.
We can then rely on any schedulability criterion (e.g., the one described at the
end of Sect. 2.3) to prove that the response time bound holds and deduce that
any valid schedule prefix from the interface is indeed schedulable.

Bridging the Gap Between the Interface and Prosa. The interface pro-
vides Prosa with a task set, service and job cost functions, and a valid schedule
prefix. We first build an arrival sequence from the schedule prefix where the n-th
job (n > 0) for a given task p arrives at time (n − 1) × Tp with the cost given
by the interface. Note that jobs that do not arrive within the prefix cannot have
yielded yet so that their costs is the WCET of their tasks: we assume the worst
case for the future.

The arrival sequence is then defined by adding all jobs of each task p from
TaskSet, that is, the arrival sequence at time t contains the (�t/Tp� + 1)-th job
of p iff t is divisible by Tp.

Next, we need to turn the finite schedule prefix into an infinite one. There are
two possibilities: either build a full schedule from the arrival sequence using the
Prosa implementation of FPP, or start from the schedule prefix of the interface
and extend it into an infinite one. The first technique gives for free the fact that the
infinite schedule satisfies the FPP model from Prosa. The difficulty lies in proving
that the schedule prefix from the interface is indeed a prefix of this infinite schedule.
The second technique starts from the schedule prefix and the difficulty is proving
that it satisfies the FPP model as specified on the Prosa side.

In this paper, we use the first strategy and prove that the prefix of the
schedule built by Prosa is equal to the schedule prefix provided in the interface.
To do so, we use the fact that two FPP schedule prefixes with the same arrival
sequence and job costs (only known at runtime) are the same, provided we take
care to properly remember when jobs yield.

508 X. Guo et al.

Assuming that the task set is accepted by the schedulability criterion, we
know that the Prosa schedule is schedulable and, since this implies that its
prefix is also schedulable, we deduce that the valid schedule prefix given by the
interface is schedulable.

5 Evaluation and Future Work

5.1 Evaluation

As the C and assembly source code of RT-CertiKOS was not modified at all,
this connection does not introduce any overhead to its performance and there is
no need for a new performance evaluation. Instead, we focus on the benefits this
works brings and on the amount of work involved, described in Table 2.

Benefits for RT-CertiKOS and Prosa. The schedulability analysis already
present in RT-CertiKOS was manually proved and took around 8k LoC to han-
dle the precise setting described in this paper. By contrast, interfacing with
Prosa requires 50% less proofs, is more flexible and can easily be extended (see
Sect. 5.3). The introduction of a simplified scheduling model also reduced by 75%
the size of proofs of invariants about the high-level abstract scheduler since we
are freed from the unnecessary information described in Sect. 4.2.

On the Prosa side, having a complete formal connection with an actual OS
kernel developed independently validates the modeling choices made for describ-
ing real-time systems. Indeed, seeing schedulers as predicates over scheduling
traces is very general but one can legitimately wonder whether such predicates
accurately describe reality.

Proof Effort. Designing a good interface allowed us to cleanly separate the
work required on the RT-CertiKOS and Prosa sides.

On the RT-CertiKOS side, the design of the simplified scheduling setting was
pretty straightforward, as was the correctness of the translation. Indeed, this
translation is essentially a projection, except for batch tasks which are removed.
Designing adequate inductive invariants to prove the two properties required by
the interface was the most challenging part of this work and unsurprisingly, it
took several iterations to find correct definitions.

On the Prosa side, building the arrival sequence and the infinite schedule is
quite effortless given a prefix and a job cost function. The subtle thing was to
find a good definition of the job cost function, which made the corresponding
proofs significantly easier. Proving that the prefix of the built infinite schedule
is the same as the interface prefix w.r.t. executions was troublesome for two
reasons. First, the interface prefix contains an additional boolean representing
whether the scheduled job yielded and which is used for computing job costs,
whereas it does not exist in the built schedule. Second, the definition of the FPP
property in the interface depends on a schedule prefix, while the one in Prosa
depends on an infinite schedule.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 509

Overall, we see the small amount of LoC required to perform this work as a
validation of the adequacy of our method to the considered problem.

Table 2. Proof effort

Feature Changes (LoC)

Adding a schedule field to RT-CertiKOS 15

Interface (with proofs) 380

Simplified scheduling 100

Proving the invariants about the simplified scheduling 950

Translation RT-CertiKOS → simplified scheduling 380

Conversion between ZArith and SSReflect 280

Translation interface → Prosa 1900

Using the schedulability analysis of Prosa 130

Total 4135

5.2 Lessons Learned

Beyond the particular artifact linking RT-CertiKOS with Prosa, what more gen-
eral lessons can we learn from this connection?

First, using the same proof assistant greatly helps. Indeed, beyond the
absence of technical hassle of inter-operability between different formal tools,
it also avoids the pitfall of a formalization mismatch between both formal mod-
els and permits sharing common definitions.

Second, the creation of an explicit interface between both tools clearly marks
the flow of information, stays focused on the essential information, and delimits
the “proof responsibility”: which side is responsible for proving which fact. It
also segregate the proof techniques used on each side so as not to pollute the
other one, either on a technical aspect (vanilla Coq for RT-CertiKOS vs the
SSReflect extension for Prosa) or on the verification methods used (invariant-
based properties for RT-CertiKOS vs trace-based properties for Prosa). This
separation makes it unnecessary to have people be experts in both tools at once:
once the interface was clearly defined, experts on each side could work with only
a rough description of the other one, even though this interface required a few
later changes. In particular, it is interesting to notice that half the authors are
experts in RT-CertiKOS whereas the other half are experts in Prosa.

Third, the common part of the models used by both sides must be amenable
to agreement: in our case, this means having the same notion of time (scheduling
slots, or ticks) and a compatible notion of schedule (finite and infinite).

Finally, we expect the interface we designed to be reusable for other verified
kernels wanting to connect to Prosa or for linking RT-CertiKOS to other formal
schedulability analysis tools.

510 X. Guo et al.

5.3 Future Work

Evolving with RT-CertiKOS. The existing implementation of the scheduler
in RT-CertiKOS imposes a fixed priority scheduling policy with implicit dead-
lines. In the future, as RT-CertiKOS evolves and supports more task models,
the interface connecting it with Prosa should also extend.

A straightforward extension is to allow constrained deadlines, that is, to have
the deadline Dp be shorter than the period Tp (but greater than the WCET Cp)
as the schedulability result we use from Prosa already supports it. This requires
RT-CertiKOS to support an extended task model where a task is also specified
by its deadline. Furthermore, RT-CertiKOS would also need to enforce budget
at the deadlines, instead of at the beginning of the next period as it is currently
the case.

Another extension would be to consider the Earliest Deadline First (EDF)
scheduling policy which provides better utilization ratio. In addition to relaxing
the current task model by not including priorities, the main proof effort would
be to implement and verify this new scheduler in RT-CertiKOS.

Extensions to Prosa. Our experience connecting RT-CertiKOS and Prosa
shows that Prosa’s assumption of having an infinite schedule is quite impracti-
cal when verifying instances of real-time systems. This advocates for building
reusable connections between Prosa’s system model based on infinite traces and
a model similar to the one used in the interface with RT-CertiKOS. Thus, one
would prove analyses in the convenient setting of infinite traces and still be able
to apply them to lower level models of real-time systems with finite traces.

6 Related Work

Schedulability Analysis. Schedulability analysis as a key theory in the real-
time community has been widely studied in the past decades. Liu and Layland’s
seminal work [20] presents a schedulability analysis technique for a simple system
model described as a set of assumptions. Many later work [3,5,11,23,28] aim
to capture more realistic5 and complex system models by generalizing those
assumptions.

In order to provide formal guarantees to those results, several formal
approaches have been used for the formalism of schedulability analyses, such as
model checking [8,12,16], temporal logic [32,33], and theorem proving [10,30].

As far as we know, none of the above work has been applied to a formally
verified OS kernel.

Verification of Real-Time OS Kernels. There is a lot of work about for-
mal verification of OS kernels, see [18] for a survey. Therefore, we restrict our
attention to verification of real-time kernels using proof assistants. We also do

5 In terms of executions and arrival model.

Integrating Formal Schedulability Analysis into a Verified OS Kernel 511

not consider WCET computation, be it of the kernel itself (e.g., [6,24]) or of
the task set we consider. This is a complementary but clearly distinct task to
get verified time bounds.

The eChronos OS [1,2] is a real-time OS running on single-core embedded
systems. It stops its verification at the scheduling policy level, proving that
the currently running task always has the highest priority among ready tasks.
Xu et al. [31] verify the functional correctness of μC/OS-II [19], a real-time
operating system with optimizations such as bitmaps. They also prove some
high level properties, such as priority inversion freedom of shared memory IPC.

RT-CertiKOS [21] is a verified single-core real-time OS kernel developed by
the Yale FLINT group, based on sequential CertiKOS [9,13]. It proves both tem-
poral and spatial isolation among different components, where temporal isolation
entails schedulability, etc. However, as explained in Sect. 5.1, its schedulability
proof is longer whereas connecting to an existing schedulability analyzer is easier
and more flexible.

7 Conclusion

Formal verification aims at providing stronger guarantees than testing. Real-
time systems are a good target because they are often part of critical systems.
Both the scheduling and OS communities have developed their own formally
verified tools but there is a lack of integration between them. In this paper,
we make a first step toward bridging this gap by integrating a formally proven
schedulability analysis tool, Prosa, with a verified sequential real-time OS kernel,
RT-CertiKOS. This gives two benefits: first, it provides RT-CertiKOS with a
modular, extensible, state-of-the-art formal schedulability analysis proof; second,
it gives a concrete instance of one of the scheduling theories described in Prosa,
thus ensuring that its model is consistent and applicable to actual systems.
We believe this connection can be easily adapted for other verified kernels or
schedulability analyzers.

It also showcases that it is possible and practical to connect two completely
independent medium- to large-scale formal proof developments.

Acknowledgments. This research has been partially supported by the following
grants: PEPS INS2I JCJC 2019 Vefose, NSF grants 1521523, 1715154, and 1763399,
DARPA grant FA8750-15-C-0082, as well as by the RT-PROOFS project (grant ANR-
17-CE25-0016) and the CASERM project through the LabEx PERSYVAL-Lab (grant
ANR-11-LABX-0025-01). The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S. Government.

512 X. Guo et al.

References

1. Andronick, J., Lewis, C., Matichuk, D., Morgan, C., Rizkallah, C.: Proof of
OS scheduling behavior in the presence of interrupt-induced concurrency. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 52–68. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 4

2. Andronick, J., Lewis, C., Morgan, C.: Controlled Owicki-Gries concurrency: rea-
soning about the preemptible eChronos embedded operating system. In: Proceed-
ings Workshop on Models for Formal Analysis of Real Systems, MARS, pp. 10–24
(2015). https://doi.org/10.4204/EPTCS.196.2

3. Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Pro-
ceedings - 28th IEEE International Real-Time Systems Symposium (RTSS), pp.
119–128, December 2007. https://doi.org/10.1109/RTSS.2007.35

4. Bertogna, M., Cirinei, M.: Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In: 28th IEEE International Real-Time Systems Sympo-
sium (RTSS), pp. 149–160, December 2007. https://doi.org/10.1109/RTSS.2007.
31

5. Bini, E., Buttazzo, G.C.: Schedulability analysis of periodic fixed priority systems.
IEEE Trans. Comput. 53(11), 1462–1473 (2004)

6. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Timing
analysis of a protected operating system kernel. In: 2011 IEEE 32nd Real-Time
Systems Symposium (RTSS), pp. 339–348, November 2011. https://doi.org/10.
1109/RTSS.2011.38

7. Cerqueira, F., Stutz, F., Brandenburg, B.B.: PROSA: a case for readable mecha-
nized schedulability analysis. In: 28th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 273–284 (2016). https://doi.org/10.1109/ECRTS.2016.28

8. Cordovilla, M., Boniol, F., Noulard, E., Pagetti, C.: Multiprocessor schedulability
analyser. In: Proceedings of the 2011 ACM Symposium on Applied Computing,
SAC 2011, pp. 735–741 (2011). http://doi.acm.org/10.1145/1982185.1982345

9. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow secu-
rity for C and assembly programs. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
648–664 (2016). http://doi.acm.org/10.1145/2908080.2908100

10. Dutertre, B.: The priority ceiling protocol: formalization and analysis using PVS.
In: Proceedings of the 21st IEEE Conference on Real-Time Systems Symposium
(RTSS), pp. 151–160 (1999)

11. Feld, T., Biondi, A., Davis, R.I., Buttazzo, G.C., Slomka, F.: A survey of schedu-
lability analysis techniques for rate-dependent tasks. J. Syst. Softw. 138, 100–107
(2018). https://doi.org/10.1016/j.jss.2017.12.033

12. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of
fixed-priority systems using timed automata. Theor. Comput. Sci. 354(2), 301–
317 (2006)

13. Gu, R., et al.: Deep specifications and certified abstraction layers. In: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pp. 595–608 (2015). http://doi.acm.org/10.1145/
2676726.2676975

https://doi.org/10.1007/978-3-319-43144-4_4
https://doi.org/10.4204/EPTCS.196.2
https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1109/ECRTS.2016.28
http://doi.acm.org/10.1145/1982185.1982345
http://doi.acm.org/10.1145/2908080.2908100
https://doi.org/10.1016/j.jss.2017.12.033
http://doi.acm.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975

Integrating Formal Schedulability Analysis into a Verified OS Kernel 513

14. Gu, R., et al.: CertiKOS: an extensible architecture for building certified concur-
rent OS kernels. In: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 653–669. USENIX Association (2016). https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/gu

15. Gu, R., et al.: Certified concurrent abstraction layers. In: Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 646–661 (2018). http://doi.acm.org/10.1145/3192366.3192381

16. Guan, N., Gu, Z., Deng, Q., Gao, S., Yu, G.: Exact schedulability analysis for static-
priority global multiprocessor scheduling using model-checking. In: IFIP Interna-
tional Workshop on Software Technolgies for Embedded and Ubiquitous Systems,
pp. 263–272 (2007)

17. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP), pp.
207–220 (2009). https://doi.org/10.1145/1629575.1629596

18. Klein, G., Huuck, R., Schlich, B.: Operating system verification. J. Autom. Rea-
soning 42(2–4), 123–124 (2009). https://doi.org/10.1007/s10817-009-9126-9

19. Labrosse, J.J.: Microc/OS-II, 2nd edn. R&D Books, Gilroy (1998)
20. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)
21. Liu, M., et al.: Compositional verification of preemptive OS kernels with tempo-

ral and spatial isolation. Technical report, YALEU/DCS/TR-1549. Department of
Computer Science, Yale University (2019)

22. Nelson, L., et al.: Hyperkernel: push-button verification of an OS kernel. In: Pro-
ceedings of the 26th Symposium on Operating Systems Principles (SOSP), Shang-
hai, China, 28–31 October 2017, pp. 252–269 (2017). https://doi.org/10.1145/
3132747.3132748

23. Palencia, J.C., Harbour, M.G.: Schedulability analysis for tasks with static and
dynamic offsets. In: Proceedings 19th IEEE Real-Time Systems Symposium
(RTSS), pp. 26–37. IEEE (1998)

24. Sewell, T., Kam, F., Heiser, G.: High-assurance timing analysis for a high-assurance
real-time operating system. Real-Time Syst. 53(5), 812–853 (2017). https://doi.
org/10.1007/s11241-017-9286-3

25. The Coq Development Team: The Coq Proof Assistant Reference Manual. INRIA,
8.4pl4 edn. (2014). https://coq.inria.fr/distrib/8.4pl4/files/Reference-Manual.pdf

26. Tindell, K., Burns, A.: Guaranteeing message latencies on controller area network
(CAN). In: Proceedings of 1st International CAN Conference, pp. 1–11 (1994)

27. Tindell, K., Burns, A., Wellings, A.: Calculating controller area network (CAN)
message response times. Control Eng. Pract. 3(8), 1163–1169 (1995)

28. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing Microprogramming 40(2–3), 117–134 (1994)

29. Tindell, K., Hanssmon, H., Wellings, A.J.: Analysing real-time communications:
controller area network (CAN). In: Proceedings of the 15th IEEE Real-Time Sys-
tems Symposium (RTSS), San Juan, Puerto Rico, 7–9 December 1994, pp. 259–263
(1994). https://doi.org/10.1109/REAL.1994.342710

30. Wilding, M.: A machine-checked proof of the optimality of a real-time scheduling
policy. In: Proceedings of the 10th International Conference on Computer Aided
Verification (CAV), pp. 369–378 (1998)

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
http://doi.acm.org/10.1145/3192366.3192381
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s10817-009-9126-9
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1007/s11241-017-9286-3
https://doi.org/10.1007/s11241-017-9286-3
https://coq.inria.fr/distrib/8.4pl4/files/Reference-Manual.pdf
https://doi.org/10.1109/REAL.1994.342710

514 X. Guo et al.

31. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 59–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 4

32. Xu, Q., Zhan, N.: Formalising scheduling theories in duration calculus. Nord. J.
Comput. 14(3), 173–201 (2008)

33. Yuhua, Z., Chaochen, Z.: A formal proof of the deadline driven scheduler. In:
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pp. 756–775 (1994)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4
http://creativecommons.org/licenses/by/4.0/

	Integrating Formal Schedulability Analysis into a Verified OS Kernel
	1 Introduction
	2 Prosa
	2.1 System Behavior
	2.2 System Model
	2.3 Analysis
	2.4 Implementation and Motivation for the Connection with RT-CertiKOS

	3 The RT-CertiKOS OS Kernel
	3.1 Abstraction Layers
	3.2 The Scheduler in RT-CertiKOS
	3.3 Proof Methodology
	3.4 Motivation for the Connection with Prosa

	4 From RT-CertiKOS to Prosa: A Schedule Connection
	4.1 Interface Between RT-CertiKOS and Prosa
	4.2 The RT-CertiKOS Side
	4.3 The Prosa Side

	5 Evaluation and Future Work
	5.1 Evaluation
	5.2 Lessons Learned
	5.3 Future Work

	6 Related Work
	7 Conclusion
	References

