
Intensional Analysis of Higher-Kinded
Recursive Types?

Technical Report YALEU/DCS/TR-

Gregory D. Collins Zhong Shao

Department of Computer Science, Yale University
New Haven, CT -, USA
{gcollins,shao}@cs.yale.edu

Abstract. Recursive types are ubiquitous in modern programming languages,
as they occur when typing constructs such as datatype definitions. Any type-
theoretic framework must effectively deal with recursive types if it purports to
be applicable to real languages such as ML and Haskell. Intensional Type Analy-
sis [] and Certified Binaries [] are two such type-theoretic frameworks. Previ-
ous work in these areas, however, has not adequately supported recursive types.
In this paper we present a new formulation of recursive types which subsumes
the traditional one. We show that intensional analysis over these types (includ-
ing higher-kinded recursive types) can be supported via inductive elimination.
Our solution is simple, general, and extensible; the typing rules for higher-kinded
recursive types are concise and very easy to understand.

 Introduction

Recursive types are ubiquitous in modern programming languages, as they occur when
typing constructs such as ML-like datatype definitions. Recursive data structures can
be mutually recursive, generic (i.e., polymorphic), or type-dependent []; typing them
would require the use of higher-kinded recursive types. Any type-theoretic framework
must effectively deal with all forms of recursive types if it purports to be applicable to a
language such as Standard ML (sml) [] or Haskell [].

Intensional Type Analysis (ita) [] and Certified Binaries (cb) [] are two such
type-theoretic frameworks. Intensional type analysis is a framework for reasoning (ei-
ther at the type level or the term level) about the structure of types in a program. Cer-
tified binaries is a framework for reasoning about advanced properties on programs
written in typed intermediate or assembly languages.

Previous work [, , ] has attempted to solve these problems by defining the type
constructors of term languages as constructors of an inductive kind Ω. Defining types
this way allows the use of inductive elimination to reason about the structure of types.

? This work is supported in part by darpa oasis grant f---, nsf grant ccr-
, and nserc fellowship pgsa--. Any opinions, findings, and conclusions
contained in this document are those of the authors and do not reflect the views of these agen-
cies.

Using inductive elimination is a natural way to think about doing ita, as well as en-
abling one to reason about complex propositions and proofs of properties of programs,
which is necessary for proof-carrying code []. Previous work has been able to represent
most types used by a modern programming language such as Standard ML (sml) using
these inductive definitions [].

Both ita and cb are designed to reason about the properties of programs written
in a modern programming language such as sml. Thusfar, however, all of the work in
this area of which we are aware (for example [, , , , ]) has either completely ignored
or poorly supported recursive types.

In this paper we will show a formulation of the recursive type constructor µ which
can be defined inductively. We show that this approach is more general than the standard
formulation of recursive types and how sml-style datatypes may be represented in our
system. We also show how our scheme can be used to support intensional analysis of
higher-kinded recursive types.

Because our scheme allows the inductive definition of the µ type constructor, we
are able to use inductive elimination to reason about the structure of recursive types. In
contrast to other type-theoretic formulations of recursive types, it works over type terms
of higher kinds. This means that in the context of a certified binary (see, for instance,
Shao et al. []), we could reason about recursive types over kinds like Nat → Ω. Our
solution to this problem also has the advantage of elegance and simplicity; the typing
rules for our µ constructor are small and very easy to understand.

. Recursive Types

The standard approach to recursive types in the context of modern programming lan-
guages such as sml (as presented in Harper and Stone []) is to present a higher-
kinded type constructor µ : (κ → κ) → κ. The unrolling of a recursive type µ(λt : κ.τ)
is then τ[t/µ(λt : κ.τ)]. Unfortunately (unless κ = Ω), the result of applying this type
constructor µ does not belong to the “ground kind” Ω, which we define as the kind of
all type constructors of terms. In other words, in general we cannot type an expression
in the term language with a recursive type. Instead, we would employ Harper/Stone’s
solution, which is to use a “projection” operator to take the result back to Ω. Consider
the following simple example (in sml syntax):

datatype tree = Leaf of unit
| Node of forest ∗ int

and forest = Trees of tree ∗ tree
(.)

In a standard presentation, since the types mutually recurse, we would package them
together using a fixpoint function:

λ(tree, forest) : Ω ~ Ω. 〈unit + (forest(t) ∗ int), tree(t) ∗ tree(t)〉 .

Applying the recursive type constructor µ (and cleaning up the syntax), the type of this
definition then becomes:

τ := µ(λt : (Ω ~ Ω). 〈unit + (π2(t) ∗ int), π1(t) ∗ π1(t)〉).



We could then project this result back to obtain the type of tree as π1(τ) and the type
of forest as π2(τ).

This approach is not especially general; in particular, in [], projections of κ1 ⇒ κ2

back to Ω are handled differently in the static semantics from projections of κ1 ~ κ2,
and it is not clear how their mechanism may be applied to higher kinds. This is not
surprising, since the system was designed to be just powerful enough to formalize sml
datatypes.

Our solution is to explicitly combine the fixpoint function and the projection op-
eration into one type, writing a recursive type over κ as µκ(f , g). For instance, if we let
F = λt : (Ω ~ Ω). 〈unit + (π2(t) ∗ int), π1(t) ∗ π1(t)〉 as above, then we can write tree
as

µΩ~Ω(F, λt : (Ω ~ Ω).π1(t)),

and forest as
µΩ~Ω(F, λt : (Ω ~ Ω).π2(t)).

Our µ can thus be viewed as a constructor

µ : Πk : Set.(k → k) → (k → Ω) → Ω.

We note that this definition is inductive in Ω. Using this definition has several benefits.
It is general, it fits into a comprehensive framework of typechecking using inductive
definitions, and it allows inductive reasoning on recursive types. Key operations such as
roll/unroll can be expressed using type-level reasoning, by way of inductive elimination.
We will show that this formulation of recursive types is at least as general as the standard
one.

 A Language using Traditional Recursive Types: λM1

We will begin by showing a minimal language which uses a more traditional formulation
of recursive types. We’ll call this language λM1. To simplify our analysis we only consider
constants representing natural numbers (n). We present only pairs, not tuples (tuples
may be defined as a “syntactic sugar” on pairs). The term language also lacks function
polymorphism and existential types. See Figure  for the syntax of this language.

A ground-level type (i.e., a type which we can type terms with) τ in λM1 can be
the integer type (int), the unit type (unit), the function type (τ1 → τ2), the sum type
(τ1 + τ2), or the tuple type (τ1 ∗ τ2). In addition, λM1 has higher-order types such as
lambda abstraction (λt : κ.τ), type variables t, and type tuples (〈τ1, τ2〉). The type
system of λM1 essentially contains a computation language consisting of a simply-typed
lambda calculus; thus we also have type-function application (τ1 τ2) and type-tuple
projection πi(τ). We (of course) also have the recursive type µt : κ.τ , which will be
explained later. The types of λM1 are kinded; Ω is the kind of all ground terms, κ1 ⇒ κ2

is the kind of type-functions, and κ1 ~ κ2 is the kind of type-tuples.
The term language of λM1 is completely standard: we have variables (x), integer

constants (n), if statements, function definitions and applications, tuple creation and
projection, sum-type injection (inl, inr) and elimination (case), and recursive roll and
unroll.



(kinds) κ ::= Ω | κ1 ⇒ κ2 | κ1 ~ κ2

(types) τ ::= int | unit | τ1 → τ2 | τ1 ∗ τ2 | τ1 + τ2 | µt : κ.τ
| t | λt : κ.τ | τ1(τ2) | πi(τ) | 〈τ1, τ2〉

(expr) e ::= x | n | op(e1, e2) | if e then e1 else e2 fi
| fun f (x : τ1) : τ2 is e end | e1(e2) | (e1, e2) | () | fst(e) | snd(e)
| rollτ(e) | unroll(e) | inlτ1+τ2(e1) | inrτ1+τ2(e2)
| caseτ1+τ2 e of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end

(oper) op ::= + | − | . . .

Fig. . A lightweight language using traditional µ: λM1

type environment ∆
term environment Γ
well-formed ∆ ` ∆ type env
well-formed Γ ∆ ` Γ term env
well-formed kind ` κ kind

well-formed types ∆ ` τ : κ
type-equivalence ∆ ` τ1 ≡ τ2 : κ
well-formed term Γ; ∆ ` e : τ

term evaluation e1 ↪→ e2

Fig. . Summary of formal properties of λM1

For λM1 we use a standard small-step operational semantics. The values of the lan-
guage are as follows:

(values) v ::= n | fun f (x : τ1) : τ2 is e end | inlτ1+τ2(v) | inrτ1+τ2(v)
| () | (v1, v2) | rollτ(v)

Figure  contains a summary of the formal judgments of λM1. For the complete for-
mal properties of λM1, including dynamic semantics, static semantics, and type-safety
theorems, see Appendix A.

. Recursive Types

This language uses a standard presentation of recursive types; that is, µ has the form
µt : κ.τ , where τ ends up having kind κ. The typing judgments for roll and unroll are as
follows: (taken from Harper and Stone [])

∆, t : κ ` τ : κ

∆ ` µt : κ.τ : κ
(Well-formed µ)



p = πi | ·
s = τ ′′ | ·

∆ ` τ ≡ (p(µt : κ.τ ′))(s) : Ω
Γ; ∆ ` e : τ

Γ; ∆ ` unroll(e) : (p(τ ′[t := µt : κ.τ ′]))(s)
(Unroll)

p = πi | ·
s = τ ′′ | ·

∆ ` τ ≡ (p(µt : κ.τ ′))(s) : Ω
Γ; ∆ ` e : (p(τ ′[t := µt : κ.τ ′]))(s)

Γ; ∆ ` rollτ(e)
(Roll)

In the rules above, p and s are “optional”, and are required to coerce the µ-type back
to Ω. The fact that they are necessary indicates a fault in this formulation of recursive
types; we have to resort to “tricks” such as this to typecheck roll and unroll. A worse
problem is that these rules only work for a limited set of kinds; it is completely unclear
how to extend this mechanism to be more general.

The roll and unroll terms act as coercions on the typing of variables; the values end up
unchanged. This is evidenced by the following rule taken from the operational semantics
of λM1:

unroll(roll(v)) ↪→ v

. Examples

We will now consider some illustrative examples. We’ll relax our formalism for a mo-
ment and extend λM1 to include tuples of arbitrary size. Consider the following set of
datatypes (from Okasaki []):

datatype α Quad = Q of α ∗ α ∗ α ∗ α
and α Square = Zero of α

| Succ of (α Quad) Square
(.)

We can type this datatype (erasing the constructor names) as:

τ =µt : (Ω ⇒ Ω) ~ (Ω ⇒ Ω).

〈λα : Ω.(α ∗ α ∗ α ∗ α), λα : Ω.(α + (π2(t) (π1(t) α))〉

In order to create a value of type int Quad, we need to coerce the recursive type back to
Ω:

roll(π1(τ))(int)(1, 2, 3, 4)

Similarly, to create the value Succ(Zero(Q(1, 2, 3, 4))) of type int Square, abbreviating
Quad = π1(τ), T = Quad(int), and Square = π2(τ), we do the following:

rollSquare(int)(inrint+Square(Quad(int))(rollSquare(T)
(inlT+Square(Quad(T))(rollT(1, 2, 3, 4)))))

Unrolling a value of type int Square gives us the same value (since unrolling a re-
cursive type is essentially a coercion) of type int + (π2(τ) (π1(τ) int)). We will revisit
these examples when we discuss our new formulation of recursive types in Section .



(kinds) κ ::= Ω | κ1 ⇒ κ2 | κ1 ~ κ2

(types) τ ::= int | unit | τ1 → τ2 | τ1 ∗ τ2 | τ1 + τ2 | µκ(f , g)
| t | λt : κ.τ | τ1(τ2) | πi(τ) | 〈τ1, τ2〉

(expr) e ::= x | n | op(e1, e2) | if e then e1 else e2 fi
| fun f (x : τ1) : τ2 is e end | e1(e2) | (e1, e2) | () | fst(e) | snd(e)
| rollµκ(f ,g)(e) | unroll(e) | inlτ1+τ2(e1) | inrτ1+τ2(e2)
| caseτ1+τ2 e of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end

(oper) op ::= + | − | . . .

Fig. . A lightweight language using new µ : λM2, changed parts in bold

 A Language Using our Proposed Recursive Types: λM2

We continue now by modifying λM1 to use our new formulation of recursive types. We’ll
call this language λM2. The only differences between λM1 and λM2 involve the handling
of recursive types. Figure  contains the syntax for this language, with the changed parts
in bold. For a full discussion of the formal properties of this language, including static
semantics, dynamic semantics, and type-safety theorems, see Appendix B.

. Recursive Types

This language uses our proposed presentation of recursive types. Here µ is a constructor
of kind (κ ⇒ κ) ⇒ (κ ⇒ Ω) ⇒ Ω. The relevant portions of the static semantics of this
language are as follows:

∆ ` f : κ ⇒ κ ∆ ` g : κ ⇒ Ω
∆ ` µκ(f , g) : Ω

(Well-formed µ)

∆ ` µκ(f , g) : Ω Γ; ∆ ` e : µκ(f , g)
Γ; ∆ ` unroll(e) : K(κ, f , g)

(Unroll)

∆ ` µκ(f , g) : Ω Γ; ∆ ` e : K(κ, f , g)
Γ; ∆ ` rollµκ(f ,g)(e) : µκ(f , g)

(Roll)

These last two rules deserve some explanation. Since f : κ ⇒ κ, and we have refor-
mulated µ-types to belong to Ω, we cannot unroll types by applying f to the µ-type
itself, as we might do in a more standard presentation. Instead we need to analyze the
structure of κ to determine how we should unroll the µ-type. This analysis is performed
by the macro K above. We note that the choice of K does not influence the type-safety



properties of the language (see Appendix B). It is conceivable that one might choose
an appropriate K on an application-to-application basis. For this paper, we would like
the unroll operator to be as close as possible to the standard one. So, for instance, if
κ = Ω ~ Ω, then we would want the unrolling of µκ(f , g) to be:

f (〈µκ(f , λk : κ.π1(k)), µκ(f , λk : κ.π2(k))〉),

which is of kind κ. We would then coerce this, using g, back to Ω. With this in mind, we
define K as follows (assuming that we have the ability to perform a meta-level typecase
operation):

K(κ, f : κ ⇒ κ, g : κ ⇒ Ω) :=
g(f (H(κ, κ, λx : κ.x, f))),

where H is defined as follows:

H(κ′, κ, Q : κ ⇒ κ′, f : κ ⇒ κ) :=
µκ(f , Q) when κ = Ω
〈H(κ1, κ, λh : κ.(π1(Q h)), f),

H(κ2, κ, λh : κ.(π2(Q h)), f)〉
when κ = κ1 ~ κ2

λg : κ1.H(κ2, κ, λh : κ.(Q h)(g), f) when κ = κ1 ⇒ κ2.

The K macro takes three arguments: the kind κ which we’re working over, the fixpoint
function f : κ ⇒ κ, and the coercion function g : κ ⇒ Ω. The macro returns the
unrolling of µκ(f , g). To do this it passes the arguments to the H macro. The purpose of
this macro is to expand the recursive type from something belonging to Ω to something
belonging to κ so that f may be applied to it. It takes four parameters: the kind κ′ which
is the kind of the result, the kind κ which is the kind of the whole expression (necessary
for when we create types µκ(f , . . .), the function f which is copied verbatim to any µ-
types we generate, and a function Q. The Q function works to take a value from κ to κ′

— we keep this around to build up the new coercion functions when we create µ-types
in the recursive calls.

Revisiting Example . from the introduction, we specified the type of tree to be

µΩ~Ω(f , λt : (Ω ~ Ω).π1(t)),

where
f = λt : (Ω ~ Ω). 〈unit + (π2(t) ∗ int), π1(t) ∗ π1(t)〉 .

If we were to unroll this type, we would first apply

H(Ω ~ Ω, Ω ~ Ω, λx : Ω ~ Ω.x, f).

Substituting once, this leaves:

〈H(Ω, Ω ~ Ω, λh : Ω ~ Ω.π1(h), f),H(Ω, Ω ~ Ω, λh : Ω ~ Ω.π2(h), f)〉 .

ApplyingH(Ω, Ω ~ Ω, λh : Ω ~ Ω.π1(h), f) gives us µΩ~Ω(f , λh : Ω ~ Ω.π1(h)), which
(not coincidentally) is the type of tree itself. The full unrolling of tree, then, is

g(f (〈µΩ~Ω(f , λh : Ω ~ Ω.π1(h)), µΩ~Ω(f , λh : Ω ~ Ω.π2(h))〉)),



which evaluates to

unit + (µΩ~Ω(f , λx : Ω ~ Ω.π2(x)) ∗ int),

which is precisely what one would expect.

. Examples

We will look again at the example from Okasaki’s paper, given in Equation .:

datatype α Quad = Q of α ∗ α ∗ α ∗ α
and α Square = Zero of α

| Succ of (α Quad) Square

Let κ = (Ω ⇒ Ω) ~ (Ω ⇒ Ω). We will type α Quad as

Quad = λt : Ω.µκ(f , λx : κ.(π1(x) t)),

and we’ll type α Square as

Square = λt : Ω.µκ(f , λx : κ.(π2(x) t)),

where
f = λx : κ. 〈λt : Ω.t ∗ t ∗ t ∗ t, λt : Ω.t + π2(x) (π1(x) t)〉 .

In order to create a value of type int Quad, we would write the following:

rollQuad(int)(1, 2, 3, 4).

Similarly, to create the value Succ(Zero(Q(1, 2, 3, 4))) of type int Square, abbreviating
T = Quad(int):

rollSquare(int)(inrint+Square(T)
(rollSquare(T)(inlT+Square(Quad(T))(rollT(1, 2, 3, 4)))))

Unrolling the type int Square gives us the type int + τ2 (τ1 int).

 Translation from λM1 to λM2

In this section we will give a translation from λM1 to λM2. The purpose of giving such a
translation is to demonstrate that our new formulation of recursive types is backwards-
compatible with the traditional one. To do this, we show that the result of translating
a well-typed λM1 term is itself well-typed in λM2. After inspecting the translation, this
should be enough to convince the reader that our new formulation of recursive types is
at least as general as the traditional one.

We want to embed old-style types µt : κ.τ and their associated roll and unroll terms
into terms of type µκ(f , g).

The translation of µ will preserve kinds. To accomplish this we translate µ types into
types having the same kind in which the µ is “pushed” inward. For example, the type

µt : Ω ~ Ω.τ

would be translated as:

〈µΩ~Ω(λt : Ω ~ Ω.τ , λs : Ω ~ Ω.π1(s)), µΩ~Ω(λt : Ω ~ Ω.τ , λs : Ω ~ Ω.π2(s))〉 .



. Translation

The translation is as follows:

Jµt : κ.τK = H(κ, κ, λx : κ.x, λt : κ.τ), (.)

where the H function is defined in Section .. The translation of other types is trivial;
see for example the translation of the lambda-type:

Jλt : κ.τK = λt : κ. JτK (.)

Type environments stay the same; term environments have their types translated.

J∆K = ∆ (.)

J·K = · (.)

JΓ, x : τK = JΓK , x : JτK (.)

Here are the translations for roll and unroll:

p = πi | · t = τ ′′ | · ∆ ` τ ≡ (p(µt : κ.τ ′))(t) : Ω
Jrollτ(e)K = rollp(Jµt:κ.τ ′K)(JtK)(JeK)

(.)

Junroll(e)K = unroll(JeK) (.)

The following theorem demonstrates the well-typedness of the translation:

Theorem. If Γ; ∆ ` e : τ , then JΓK ; J∆K ` JeK : JτK.

Proof. In Appendix C.

 Adding ML-style Datatypes

We now add to our language (in abstract syntax) the ability to define ML-style datatypes,
using the treatment in []:

(type declarations) δ ::= datatype β
(datatype bindings) β ::= (t1, . . . , tn) γ 〈〈and β〉〉

(datatype constructors) γ ::= τ 〈〈or γ〉〉,

where the syntax 〈〈X〉〉 means X is repeated zero or more times. We note that this is
essentially ML syntax, except with identifiers erased (constructors may be accessed by
number) and with no restriction on type variables. This presentation is given to simplify
the discussion of the type theory.

In a Harper/Stone-style presentation, the type of the i-th datatype in the declaration

datatype (t11, . . . , t1n1)T1 = τ11 or . . . or τ1m1

and (t21, . . . , t2n2)T2 = τ21 or . . . or τ2m2

and . . .

and (tp1, . . . , tpnp)Tp = τp1 or . . . or τpmp



is given by

πi

(
µλ(T1, . . . , Tp).((

λ(t11, . . . , t1n1).(τ11 + · · ·+ τ1m1)
)
, . . . ,

(
λ(tp1, . . . , tpnp).(τp1 + · · ·+ τpmp)

)))
.

We’ll now show the typing for this datatype using our new presentation (with a slight
change in syntax to accommodate n-ary tuples and sums). First we’ll define the type σi

associated with the type parameters of the i-th datatype

(ti1, . . . , tini)Ti = τi1 or . . . or τimi

as

σi = Ω ~ · · ·~ Ω︸ ︷︷ ︸
ni times

⇒ Ω.

Likewise, we define for the i-th datatype clause the sum type Σi = τi1 + · · ·+ τimi . Now
we can define the function F : (σ1 ~ · · ·~ σp) ⇒ (σ1 ~ · · ·~ σp) as:

F := λ(T1 : σ1, . . . , Tp : σp). 〈Σ1, . . . , Σn〉 .

Now that we’ve defined F, we’re in a position to type the entire datatype declaration Ti

with the type:

λ(ti1 : Ω, . . . , tini : Ω).µσ1~···~σp(F, λt : σ1 ~ · · ·~ σp.(#i(t)(ti1, . . . , tini))).

 Intensional Type Analysis

. Introduction

Supporting type analysis type-safely has been an active area of research in past years,
since Harper and Morrisett [] introduced the intensional type analysis (ita) frame-
work — that is, analysis of the structure of types. Intensional type analysis was novel in
that it allows for the inspection of types in a type-safe manner. The Harper/Morrisett
framework, however, only supports primitive recursion over the monotypes of their lan-
guage λML

i , cannot express general recursion at all, and cannot support analysis of types
with binding structure (such as polymorphic or existential types).

Existing work in this area [, , ] either ignores or does not fully support analysis
of recursive types. Trifonov et al. [] present a framework which ostensibly supports
fully reflexive ita — by “fully reflexive”, meaning that type-analyzing operations are ap-
plicable to the type of any runtime value in the language. Their framework’s support of
recursive types is severely limited, however. In this section we build upon this result and
present a lightweight language which fully supports the type-level analysis of recursive
types.



(exp) e ::= x | n | op(e1, e2) | if e then e1 else e2 fi
| fun f (x : τ1) : τ2 is e end | e1(e2) | (e1, e2) | () | #i(e)
| caseτ1+τ2 e of inj(1)(x : τ1) ⇒ e1 or inj(2)(x : τ2) ⇒ e2

| inj
(i)
τ1+τ2

(ei) | rollτ(e) | unroll(e)

(oper) op ::= + | − | . . .

Fig. . Syntax of the term language λR
i

. CiC

To typecheck this term language, we will use the calculus of inductive constructions
(CiC) [], which is implemented in the Coq proof assistant []. CiC is an extension of
the calculus of constructions (CC) [], which is a higher-order typed lambda calculus.
The syntax of CC is as follows:

A, B ::= Set | Type | X | λX : A.B | AB | ΠX : A.B

The lambda term denotes a function abstraction, and the Π term denotes a dependent
product type. When X does not occur in B, the term ΠX : A.B is usually abbreviated
A → B.

CiC extends the calculus of constructions with inductive definitions. An inductive
definition is usually written in a syntax similar to that of an ML datatype definition; the
following is a snippet of Coq code defining the set of natural numbers:

Inductive Nat : Set := zero : Nat | succ : Nat→ Nat

Inductive definitions in CiC may be parameterized, and the calculus provides elimi-
nation constructs for inductive definitions, which combine case analysis with a fixpoint
operation. To maintain the soundness of the calculus, restrictions are placed on the con-
structors of inductive definitions, to ensure that the inductive type being created occurs
only positively in the definition of the constructor. A full discussion of inductive types
is beyond the scope of this paper. Elimination on inductive definitions generalizes the
Typerec operator used in previous ita papers [, , ].

. Term Language

We are now in a position to present our term language. See Figure  for the syntax of λR
i .

To simplify our analysis we only consider constants representing natural numbers (n).
We present only pairs, not tuples (tuples may be defined as a “syntactic sugar” on pairs).
The term language also lacks function polymorphism and existential types, as ita on
these types has been dealt with in previous papers [, ].



Static Semantics We’ll be typechecking λR
i using CiC. We define the type constructors

of the term language as constructors of an inductive kind Ω as follows:

Inductive Ω : Set ::= int : Ω
| unit : Ω
| →→ : Ω → Ω → Ω
| pair : Ω → Ω → Ω
| sumty : Ω → Ω → Ω
| µ : Πk : Set.(k → k) → (k → Ω) → Ω

In other words, all terms in λR
i have a type τ which belongs to Ω. To improve readability,

we define the following syntactic sugars:

A1 → A2 ≡→→ A1 A2

A1 ∗ A2 ≡ pair A1 A2

A1 + A2 ≡ sumty A1 A2

µκ(f , g) ≡ µ[κ] f g

In order to be able to unroll recursive types, we need to restrict the kinds upon which
a recursive type may operate. Hence we define the inductive kind (using Coq syntax):

Inductive Kind : Set ::= ω : Kind
| To : Kind→ Kind→ Kind
| Pair : Kind→ Kind→ Kind

To simplify the presentation, here we have only defined pair kinds; however, this may
be extended to tuple kinds without much trouble. Given this inductive definition, we
would like to coerce elements of this kind back to their representations:

Fixpoint toSet[K : Kind] : Set :=
Cases K of

ω ⇒ Ω
| (To k1 k2) ⇒ (toSet k1) → (toSet k2)
| (Pair k1 k2) ⇒ (toSet k1) ∗ (toSet k2)

end.

Here the arrow and star in the right-hand side of the case clauses are the type-level arrow
and cartesian product types (where cartesian product is also defined as an inductive
type). We define the following syntactic sugars for these kinds:

A1 ⇒ A2 ≡ To A1 A2

A1 ~ A2 ≡ Pair A1 A2

For a full discussion of the formal properties of λR
i , including static semantics, dynamic

semantics, and type-safety theorems, please see Appendix D.

 Coq includes syntactic sugars for fixpoint operations and inductive eliminations. Lambda ab-
stractions are written as [X : A]B, and Π-terms are written as (X : A)B.



. An Application: CPS Conversion

In this section we will show how to perform CPS conversion on λR
i using intensional

type analysis. CPS conversion transforms all unconditional control transfers, including
function invocation and return, to function calls and gives explicit names to all interme-
diate computations. To perform CPS conversion, we will need a target language which
we will call λK, with syntax:

(val) v ::= x | n | () | (v1, v2) | rollτ(v)
| fix x′[X1 : A1, . . . , Xn : An](x : A).e | inj

(i)
τ1+τ2

(v)
(exp) e ::= v[A1, . . . , An](v′) | let x = v in e | let x = #i(v) in e

| let x = op(v1, v2) in e | let x = unroll(v) in e
| if v then e1 else e2

| let x = caseτ1+τ2 v of inj(1)(x : τ1) ⇒ e1 or inj(2)(x : τ2) ⇒ e2 in e
(oper) op ::= + | − | . . .

Expressions in λK consist of a series of let bindings followed by a function application
or a conditional branch. There is only one abstraction mechanism, fix, which combines
type and value abstraction.

The λK language uses the same type language as λR
i . The ground types for λK all

have kind ΩK, which, as before, is an inductive kind defined in CiC. The ΩK language
has all the constructors of Ω. Functions in CPS do not return values, so in ΩK we rede-
fine the →→ constructor to have kind:

→→: ΩK → ΩK.

We use the more conventional syntax A → ⊥ in place of →→ A.
Typed CPS conversion involves translating both types and computation terms. To

translate types, we require a function Ktyp : Ω → ΩK, and to translate terms we re-
quire a meta-level function Kexp. Since we have used CiC as a general framework using
inductive definitions, we can write Ktyp as a type-level function of kind Ω → ΩK. This
allows us to show that Ktyp J[A/X]BK and [A/X](Ktyp JBK) are equivalent. This would
prove very difficult if Ktyp were defined at the meta-level.

We can define Ktyp then as follows (using pattern-matching syntax):

Ktyp(int) = int
Ktyp(unit) = unit
Ktyp(→→ t1 t2) = (Ktyp(t1) ∗Kc(t2)) → ⊥
Ktyp(pair t1 t2) = pair Ktyp(t1) Ktyp(t2)
Ktyp(sumty t1 t2) = sumty Ktyp(t1) Ktyp(t2)
Ktyp(µ[k] f g) = µ[k] f λx : k.(Ktyp(g x))
Kc = λt : Ω.Ktyp(t) → ⊥

The complete CPS-conversion algorithm is given in Section D.. The handling of the
µ constructor in this example deserves some illumination. We note firstly that when
we translate a roll term from λR

i to λK, that the f function is unchanged in µκ(f , g).
This means that in the static semantics for λK, the f function is still limited to kinds



matching toSet(k), which work over Ω in the base case. What happens, then, when we
unroll such a term? The Ktyp function composes the coercion function g with itself, so
when we unroll µκ(f , g′), we obtain

Ktyp(g(f (H(. . .)))),

and any instances of µ in the unrolled type have their coercion functions likewise altered.

 Related Work and Conclusions

Harper and Morrisett [] introduced intensional type analysis and pointed out the ne-
cessity for type-level type analysis operators which inductively traverse the structure of
types. The domain of their analysis is restricted to a predicative subset of the type lan-
guage and it does not cover quantified types and recursive types.

Crary and Weirich [] proposed the use of deBruijn indices (i.e. natural numbers)
to represent quantifier-bound variables. To analyze recursive types, the iterator carries
an environment that maps indices to types. When the iterator reaches a type variable,
which is now represented as just another constructed type (encoding a natural number),
it returns the corresponding type from the environment. This method works well on
recursive types of kind Ω but would be difficult, if not impossible, to extend to higher
kinds. Papers by Trifonov et al. [] and Weirich [] exhibit the same problem.

The original motivation for this paper was to develop a formulation of recursive
types which fit into a pre-existing framework which made pervasive use of inductive
definitions. We believe, however, that the solution we have presented in this paper is
applicable in a far more general context. Our goal for this paper is to put recursive
types on a more rigorous, or at least more consistent, footing. The technique that we
have proposed is simple, general, and extensible. It is consistent enough with standard
approaches to type theory that we could, for instance, replace the recursive types in
Harper’s sml type theory paper [] with ours with minimal effort. We believe that
our paper is the first one to successfully attack the problem of fitting mutually recursive
types in the context of intensional type analysis.

. Future work

Whereas other approaches to higher-order intensional type analysis [, , ] support
runtime intensional type analysis, (also known as polytypic programming), our treatment
here, because of space restrictions, only considers type-level analysis. We are confident
that we will be able to extend λR

i to support a term-level typecase operator with little
difficulty.

Acknowledgements. Thanks to Hai Fang, Andrew McCreight, and Stefan Monnier
for their helpful suggestions.



Bibliography

[] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analy-
sis. In Proc. POPL ’: nd ACM Symposium on Principles of Programming Languages, pages
–, San Francisco, CA, USA, .

[] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type system for
certified binaries. In Proc. POPL ’: th ACM Symposium on Principles of Programming
Languages, pages –, Portland, OR, USA, January .

[] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proc.
Twenty-Sixth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pages –. ACM Press, .

[] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, Massachusetts, .

[] Paul Hudak, Simon Peyton Jones, Philip Wadler, and et al. Report on the programming
language Haskell, a non-strict, purely functional language version .. SIGPLAN Notices, 

(), May .
[] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type analysis. In

Proc. ICFP ’: ACM SIGPLAN International Conference on Functional Programming, pages
–, September .

[] Bratin Saha, Valery Trifonov, and Zhong Shao. Intensional analysis of quantified types. ACM
Transactions on Programming Languages and Systems (TOPLAS), . To appear.

[] George C. Necula. Proof-carrying code. In Proc. POPL ’: ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages –, Paris, January .

[] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proc. ICFP ’: ACM SIGPLAN
International Conference on Functional Programming, pages –, .

[] Robert Harper and Christopher Stone. An interpretation of Standard ML in type theory.
Technical Report cmu-cs-97-147, Carnegie Mellon University, June .

[] Bratin Saha, Valery Trifonov, and Zhong Shao. Fully reflexive intensional type analysis in
type erasure semantics. Technical Report YALEU/DCS/TR-, Dept. of Computer Science,
Yale University, New Haven, CT, USA, June .

[] Bratin Saha, Valery Trifonov, and Zhong Shao. Fully reflexive intensional type analysis. Tech-
nical Report YALEU/DCS/TR-, Dept. of Computer Science, Yale University, New Haven,
CT, USA, March .

[] Chris Okasaki. From fast exponentiation to square matrices: An adventure in types. In
Proc. ICFP ’: ACM SIGPLAN International Conference on Functional Programming, pages
–, .

[] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties. In
M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda Calculi and
Applications, number  in Lecture Notes in Computer Science, . LIP research report
-.

[] The Coq Development Team. The Coq Proof Assistant Reference Manual Version .. INRIA-
Rocquencourt-CNRS-ENS Lyon, October .

[] Thierry Coquand and Gerard Huet. The calculus of constructions. In Information and
Computation, volume , pages –, .

[] Stephanie Weirich. Higher-order intensional type analysis. In European Symposium on Pro-
gramming, pages –, .

[] Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Gödel’s T. Accepted for publication

in the Archive for Mathematical Logic. Available from http://www.tcs.informatik.

uni-muenchen.de/~matthes/abstracts.html., .
[] Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, L’Université Paris ,

May .

A Formal Properties of λM1

A. Static semantics

Environments We define two environments, ∆ and Γ. The ∆ environment is a type en-
vironment mapping type variables to their kinds, and Γ is a term environment mapping
term variables to their types. Typing a term e with a type τ is denoted as Γ; ∆ ` e : τ .
The static semantics for these environments are as follows:

` Ω kind (A.)

` κ1 kind ` κ2 kind

` κ1 ⇒ κ2 kind
(A.)

` κ1 kind ` κ2 kind

` κ1 ~ κ2 kind
(A.)

` · type env (A.)

` ∆ type env ` κ kind

` ∆, t : κ type env
(A.)

∆ ` · term env (A.)

∆ ` Γ term env ∆ ` τ : Ω
∆ ` Γ, x : τ term env

(A.)

Type formation ∆ ` τ : κ

t ∈ ∆
∆ ` t : ∆(t)

(A.)

∆ ` int : Ω
(A.)

∆ ` unit : Ω
(A.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 → τ2 : Ω

(A.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 + τ2 : Ω

(A.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 ∗ τ2 : Ω

(A.)

∆, t : κ1 ` τ : κ2

∆ ` λt :κ1.τ : κ1 ⇒ κ2
(A.)

∆ ` τ1 : κ1 ⇒ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2
(A.)

∆ ` τ1 : κ1 ∆ ` τ2 : κ2

∆ ` 〈τ1, τ2〉 : κ1 ~ κ2
(A.)

∆ ` τ : κ1 ~ κ2

∆ ` πi(τ) : κi
(A.)

∆, t : κ ` τ : κ

∆ ` µt : κ.τ : κ
(A.)

∆ ` Γ(x) : Ω (∀x ∈ Dom(Γ))
∆ ` Γ

(A.)

Type equality ∆ ` τ1 ≡ τ2 : κ

∆ ` τ : κ

∆ ` τ ≡ τ : κ
(A.)

Rule A.: reflexivity.

∆ ` τ1 ≡ τ2 : κ

∆ ` τ2 ≡ τ1 : κ
(A.)



Rule A.: symmetry.

∆ ` τ1 ≡ τ2 : κ ∆ ` τ2 ≡ τ3 : κ

∆ ` τ1 ≡ τ3 : κ
(A.)

Rule A.: transitivity.

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 → τ2 ≡ τ ′1 → τ ′2 : Ω

(A.)

We note here that the function type is only de-
fined for types of kind Ω; see rule A..

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 + τ2 ≡ τ ′1 + τ ′2 : Ω

(A.)

Note that the sum type is only defined for types
of kind Ω; see rule A..

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 ∗ τ2 ≡ τ ′1 ∗ τ ′2 : Ω

(A.)

Note, again, that the pair type is only defined
for types of kind Ω; see rule A..

∆ ` τ1 ≡ τ ′1 : κ1 ∆ ` τ2 ≡ τ ′2 : κ2

∆ ` 〈τ1, τ2〉 ≡
〈
τ ′1, τ ′2

〉
: κ1 ~ κ2

(A.)

∆, t : κ ` τ1 ≡ τ2[s := t] : κ t 6 ∈ FV(τ2)
∆ ` µt : κ.τ1 ≡ µs : κ.τ2 : κ

(A.)
∆ ` τ1 ≡ λt : κ.τ : κ ⇒ κ′ ∆ ` τ2 : κ

∆ ` τ1τ2 ≡ τ1[t := τ2] : κ′

(A.)
∆ ` τ1 ≡ τ ′1 : κ1 ⇒ κ2 ∆ ` τ2 ≡ τ ′2 : κ1

∆ ` τ1(τ2) ≡ τ ′1(τ
′
2) : κ2

(A.)
∆, t : κ ` τ ≡ τ ′[s := t] : κ′ t 6 ∈ FV(τ ′)

∆ ` λt : κ.τ ≡ λs : κ.τ ′ : κ ⇒ κ′
(A.)

∆ ` 〈τ1, τ2〉 : κ1 ~ κ2

∆ ` πi(〈τ1, τ2〉) ≡ τi : κi
(A.)

∆ ` τ1 ≡ τ2 : κ1 ~ κ2

∆ ` πi(τ1) ≡ πi(τ2) : κi
(A.)

Term formation Γ; ∆ ` e : τ

x ∈ Γ
Γ; ∆ ` x : Γ(x)

(A.)

∆ ` τ1 ≡ τ2 Γ; ∆ ` e : τ1

Γ; ∆ ` e : τ2
(A.)

Γ; ∆ ` n : int
(A.)

Γ; ∆ ` e1 : int Γ; ∆ ` e2 : int

Γ; ∆ ` op(e1, e2) : int
(A.)

Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2

Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ1 → τ2
(A.)

Γ; ∆ ` e1 : τ1 → τ2 Γ; ∆ ` e2 : τ1

Γ; ∆ ` e1(e2) : τ2
(A.)

Γ; ∆ ` () : unit
(A.)

Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2

Γ; ∆ ` (e1, e2) : τ1 ∗ τ2
(A.)

Γ; ∆ ` e : int Γ; ∆ ` e1 : τ Γ; ∆ ` e2 : τ

Γ; ∆ ` if e then e1 else e2 fi : τ
(A.)

Γ; ∆ ` e : τ1 ∗ τ2

Γ; ∆ ` fst(e) : τ1
(A.)

Γ; ∆ ` e : τ1 ∗ τ2

Γ; ∆ ` snd(e) : τ2
(A.)

Γ; ∆ ` e : τ1

Γ; ∆ ` inlτ1+τ2(e) : τ1 + τ2
(A.)

Γ; ∆ ` e : τ2

Γ; ∆ ` inrτ1+τ2(e) : τ1 + τ2
(A.)

Γ, x2 : τ2; ∆ ` e2 : τ
Γ, x1 : τ1; ∆ ` e1 : τ
Γ; ∆ ` e : τ1 + τ2

Γ; ∆ ` caseτ1+τ2 e of inl(x1 : τ1) ⇒ e1

orelse inr(x2 : τ2) ⇒ e2 end : τ
(A.)

p = πi | ·
s = τ ′′ | ·

∆ ` τ ≡ (p(µt : κ.τ ′))(s) : Ω
Γ; ∆ ` e : τ

Γ; ∆ ` unroll(e) : (p(τ ′[t := µt : κ.τ ′]))(s)
(A.)

p = πi | ·
s = τ ′′ | ·

∆ ` τ ≡ (p(µt : κ.τ ′))(s) : Ω
Γ; ∆ ` e : (p(τ ′[t := µt : κ.τ ′]))(s)

Γ; ∆ ` rollτ(e)
(A.)



A. Dynamic semantics

The values of the language are as follows:

(values) v ::= n | fun f (x : τ1) : τ2 is e end | inlτ1+τ2(v) | inrτ1+τ2(v)
| () | (v1, v2) | rollτ(v)

Primitive evaluation rules

op(v1, v2) ↪→ v1 op v2
(A.)

v1 = fun f (x : τ1) : τ2 is e end

v1(v2) ↪→ e[f := v1, x := v2]
(A.)

fst(v1, v2) ↪→ v1
(A.)

snd(v1, v2) ↪→ v2
(A.)

v = inlτ1+τ2(v′)
caseτ1+τ2 v of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ e1[x := v′]

(A.)

v = inrτ1+τ2(v′)
caseτ1+τ2 v of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ e2[x := v′]

(A.)

unroll(rollτ(v)) ↪→ v
(A.)

v 6 = 0

if v then e1 else e2 fi ↪→ e1
(A.)

v = 0

if v then e1 else e2 fi ↪→ e2
(A.)

Search rules

e1 ↪→ e′1
op(e1, e2) ↪→ op(e′1, e2)

(A.)

e2 ↪→ e′2
op(v, e2) ↪→ op(v, e′2)

(A.)

e1 ↪→ e′1
e1(e2) ↪→ e′1(e2)

(A.)

e2 ↪→ e′2
v(e2) ↪→ v(e′2)

(A.)

e1 ↪→ e′1
(e1, e2) ↪→ (e′1, e2)

(A.)

e2 ↪→ e′2
(v1, e2) ↪→ (v1, e′2)

(A.)

e ↪→ e′

fst(e) ↪→ fst(e′)
(A.)

e ↪→ e′

snd(e) ↪→ snd(e′)
(A.)

e ↪→ e′

inlτ1+τ2(e) ↪→ inlτ1+τ2(e′)
(A.)

e ↪→ e′

inrτ1+τ2(e) ↪→ inrτ1+τ2(e′)
(A.)

e ↪→ e′

caseτ1+τ2 e of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ caseτ1+τ2 e′ of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end

(A.)

e ↪→ e′

if e then e1 else e2 fi
↪→ if e′ then e1 else e2 fi

(A.)

e ↪→ e′

unroll(e) ↪→ unroll(e′)
(A.)

e ↪→ e′

rollτ(e) ↪→ rollτ(e′)
(A.)

A. Soundness and safety

Properties of static semantics

Proposition  (Strong normalization). Type reduction for the language given above is
strongly normalizing.

Proof (sketch). Rules A. through A. describe a simply-typed lambda calculus with
pair types and constants. Proofs of strong normalization for λ → are familiar in the
literature (see [], for instance.)



Corollary  (Decidability). Type-checking the language given above is decidable.

Proof. Judgments for the formations of kinds (A.–A.), type environments (A.–A.),
term environments (A.–A.), and type formation are all syntax-directed and hence
decidable.

Type equivalence, however, is not syntax-directed. Since type reductions are strongly
normalizing (Proposition ), we can determine whether τ1 ≡ τ2 by reducing both τ1 and
τ2 to normal form, then testing whether the normal forms are syntactically congruent.

Term formation is syntax-directed, excepting the type-equivalence rule A.. How-
ever, if the type-checker always reduces types to normal form, then rule A. can be
omitted.

Soundness

Lemma  (Substitution).

. If Γ; ∆ ` e′ : τ ′ and Γ, x : τ ′; ∆ ` e : τ , then Γ; ∆ ` e[x := e′] : τ .
. If ∆ ` τ ′ : κ and Γ; ∆, t : κ ` e : τ , then Γ[t := τ ′]; ∆ ` e[t := τ ′] : τ[t := τ ′].

Proof.

. By induction on the derivation of Γ, x : τ ′; ∆ ` e : τ .
. By induction on the derivation of Γ; ∆, t : κ ` e : τ .

Lemma  (Type Inversion).

. If Γ; ∆ ` x : τ , then ∆ ` Γ(x) ≡ τ : Ω.
. If Γ; ∆ ` n : τ , then ∆ ` τ ≡ int : Ω.
. If Γ; ∆ ` op(e1, e2) : τ , then ∆ ` τ ≡ int : Ω, Γ; ∆ ` e1 : int, and Γ; ∆ ` e2 : int.
. If Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ , then Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2 and

∆ ` τ ≡ τ1 → τ2 : Ω.
. If Γ; ∆ ` e1(e2) : τ , then there exists τ2 such that Γ; ∆ ` e1 : τ2 → τ and Γ; ∆ `

e2 : τ2.
. If Γ; ∆ ` (e1, e2) : τ , then there exist τ1 and τ2 such that ∆ ` τ ≡ τ1 ∗ τ2 : Ω,

Γ; ∆ ` e1 : τ1, and Γ; ∆ ` e2 : τ2.
. If Γ; ∆ ` () : τ , then ∆ ` τ ≡ unit : Ω.
. If Γ; ∆ ` fst(e) : τ , then there exists τ2 such that Γ; ∆ ` e : τ ∗ τ2, and similarly for

snd.
. If Γ; ∆ ` inlτ1+τ2(e1) : τ , then ∆ ` τ ≡ τ1 + τ2 : Ω and Γ; ∆ ` e1 : τ1. The inr case

is similar.
. If Γ; ∆ ` caseτ1+τ2 e of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end : τ , then

Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ .
. If Γ; ∆ ` if e then e1 else e2 fi : τ , then Γ; ∆ ` e : int, Γ; ∆ ` e1 : τ , and Γ; ∆ `

e2 : τ .
. Let p = · | πi, and let t = · | τ ′′′. If Γ; ∆ ` rollτ(e) : τ ′, then ∆ ` τ ≡ τ ′ ≡ p(µt :

κ.τ ′′)(t) : Ω and Γ; ∆ ` e : p(τ ′′[t := µt : κ.τ ′′])(t).
. Let p = · | πi, and let t = · | τ ′′. If Γ; ∆ ` unroll(e) : τ , then ∆ ` τ ≡ (p(τ ′[t :=

µt : κ.τ ′]))(t) and Γ; ∆ ` e : (p(µt : κ.τ ′))(t).



Proof (sketch). The proof relies on the fact that every typing derivation Γ; ∆ ` e : τ
is the result of a unique typing rule, apart from the type-equality rule A.. The type-
equality rule is dealt with by noting that since it has only one premise, each typing
derivation ending with Γ; ∆ ` e : τ is a finite chain of zero or more type-equality
judgments, with a necessarily unique type judgment at the top.

Theorem  (Preservation). If Γ; ∆ ` e : τ and e ↪→ e′, then Γ; ∆ ` e′ : τ .

Proof. The proof is by induction on the rules defining one-step evaluation.

(Rule A.) Here e = op(v1, v2) and e′ = v1 op v2. By type inversion rule , ∆ ` τ ≡
int : Ω, Γ; ∆ ` v1 : int, and Γ; ∆ ` v2 : int. The meta-level integer operation “op”
returns an integer, so Γ; ∆ ` e′ : int.

(Rule A.) Here e = v1(v2), where v1 = fun f (x : τ1) : τ2 is e1 end. From syntax
and type inversion rule , we know that Γ; ∆ ` e : τ2, and that Γ; ∆ ` v1 : τ1 → τ2.
Using inversion again (rule ), we have that Γ, f : τ1 → τ2, x : τ1; ∆ ` e1 : τ2. By twice
applying the substitution lemma (), we have that Γ; ∆ ` e1[f := v1, x := v2] : τ2,
which is what is required.

(Rule A.) Here e = fst(v1, v2). By type inversion rule , we have Γ; ∆ ` (v1, v2) : τ1 ∗
τ2 and Γ; ∆ ` e : τ1 for some τ1 and τ2. By type inversion rule , we have Γ; ∆ ` v1 : τ1,
which is what is required. The proof for rule A. is similar.

(Rule A.) Here e = caseτ1+τ2 v of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end,
where v = inlτ1+τ2(v′). From type inversion rule , we learn that Γ; ∆ ` v : τ1 + τ2

and Γ, x : τ1; ∆ ` e1 : τ . Applying inversion again (rule ) gives us Γ; ∆ ` v′ : τ1. Using
the substitution lemma (), we have that Γ; ∆ ` e1[x := v′] : τ . The proof for rule A.

is similar.

(Rule A.) Here e = if v then e1 else e2 fi. From type inversion rule , we learn that
Γ; ∆ ` e1 : τ . The proof for rule A. is similar.

(Rule A.) Here e = unroll(rollτ(v)), Γ; ∆ ` e : τ ′, and e′ = v. By type inversion rule
, we have ∆ ` τ ′ ≡ p(τ ′′[t := µt : κ.τ ′′])(t) : Ω and Γ; ∆ ` rollτ(v) : p(µt : κ.τ ′′)(t);
thus by type inversion rule refoldmu:inv:roll, we have Γ; ∆ ` v : p(τ ′′[t := µt : κ.τ ′′]).

(Rule A.) Here e = op(e1, e2), with e1 ↪→ e′1. By type inversion rule , we have Γ; ∆ `
e : int, Γ; ∆ ` e1 : int, and Γ; ∆ ` e2 : int. By the induction hypothesis we have
Γ; ∆ ` e′1 : int. Application of typing rule A., then, gives us Γ; ∆ ` op(e′1, e2) : int as
required.

(Rule A.) Here e = unroll(e1), e′ = unroll(e′1), e1 ↪→ e′1, and Γ; ∆ ` e : τ . By type
inversion rule , we find that Γ; ∆ ` e1 : p(µt : κ.τ ′)(s) and ∆ ` τ ≡ p(τ ′[t := µt :
κ.τ ′])(s). By induction, Γ; ∆ ` e′1 : p(µt : κ.τ ′)(s), and therefore Γ; ∆ ` unroll(e′1) :
p(τ ′[t := µt : κ.τ ′])(s) by typing rule A..



(Rule A.) Here e = rollτ(e1), e′ = rollτ(e′1), e1 ↪→ e′1, and Γ; ∆ ` e : τ ′. By type
inversion rule , we find that ∆ ` τ ≡ τ ′ ≡ (p(µt : κ.τ ′′))(s) : Ω and Γ; ∆ ` e1 :
(p(τ ′′[t := µt : κ.τ ′′]))(s). By induction, Γ; ∆ ` e′1 : (p(τ ′′[t := µt : κ.τ ′′]))(s), and
hence Γ; ∆ ` rollτ(e′1) : (p(µt : κ.τ ′′))(s) by typing rule A..

(Other rules) The proofs of the remainder of the “search” rules (A. – A.) are sim-
ilar to the proof of rule A.: use the type inversion lemma (), apply the induction
hypothesis, and re-apply a typing rule.

Proposition  (Canonical Forms). Suppose that v : τ is a closed, well-formed value.

. If ` v : int, then v = n for some n.
. If ` v : unit, then v = ().
. If ` v : τ1 → τ2, then v = fun f (x : τ1) : τ2 is e end for some f , x, and e.
. If ` v : τ1 ∗ τ2, then v = (v1, v2) for some v1 and v2.
. If ` v : τ1 + τ2, then either v = inlτ1+τ2(v1) for some v1 or v = inrτ1+τ2(v2) for some

v2.
. Let p = · | πi, and let t = · | τ ′. If ` v : p(µt : κ.τ ′)(t), then v = rollp(µt:κ.τ)(t)(v′)

for some v′.

Theorem  (Progress). If Γ; ∆ ` e : τ , then either e is a value, or there exists e′ such that
e ↪→ e′.

Proof. The proof is by induction on the typing rules.

(Rule A.) By application of the induction hypothesis.

(Rule A.) n is a value.

(Rule A.) Γ; ∆ ` op(e1, e2) : int. By the induction hypothesis, there are three cases:

– e1 and e2 are values. Thus by evaluation rule A., op(e1, e2) ↪→ e1 op e2.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1, and using evaluation

rule A. we have: op(e1, e2) ↪→ op(e′1, e2).
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we can apply

evaluation rule A..

(Rule A.) fun f (x : τ1) : τ2 is e end is a value.

(Rule A.) Γ; ∆ ` e1(e2) : τ2, where Γ; ∆ ` e1 : τ1 → τ2 and Γ; ∆ ` e2 : τ1. By the
induction hypothesis, there are three cases:

– e1 and e2 are values. Using canonical forms, (Proposition ), e1 must be of the form
fun f (x : τ1) : τ2 is e′ end. Using A., e ↪→ e′[f := e1, x := e2].

– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1; use evaluation rule
A..

– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2; use evaluation rule
A..



(Rule A.) The expression () is already a value.

(Rule A.) Γ; ∆ ` (e1, e2) : τ1 ∗ τ2, where Γ; ∆ ` e1 : τ1 and Γ; ∆ ` e2 : τ2. By the
induction hypothesis, there are three cases:

– e1 and e2 are values; thus (e1, e2) is itself a value.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1; use evaluation rule

A..
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we can apply

evaluation rule A..

(Rule A.) Γ; ∆ ` fst(e) : τ1, where Γ; ∆ ` e : τ1 ∗ τ2. By the induction hypothesis,
there are two cases:

– e is a value. Thus by canonical forms (Proposition ), e is of the form (v1, v2). Use
evaluation rule A..

– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule A..

(Rule A.) Same as rule A. above.

(Rule A.) Γ; ∆ ` inlτ1+τ2(e) : τ1 + τ2, where Γ; ∆ ` e : τ1. By the induction hypoth-
esis, there are two cases:

– e is a value; therefore inlτ1+τ2(e) is itself a value.
– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule A..

(Rule A.) Same as rule A. above.

(Rule A.) Γ; ∆ ` caseτ1+τ2 e of inl(x1 : τ1) ⇒ e1 orelse inr(x2 : τ2) ⇒ e2 end : τ ,
where Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ . By the
induction hypothesis, there are two cases:

– e is a value. By canonical forms, either e = inlτ1+τ2(v1), or e = inrτ1+τ2(v2); use
either evaluation rule A. or A., respectively.

– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule A..

(Rule A.) Here e = if e then e1 else e2 fi. There are two cases. If e is a value, then
apply either rule A. or A.. If e is not a value, then apply the search rule.

(Rule A.) Here e = unroll(e1), with Γ; ∆ ` e1 : p(µt : κ.τ)(s). By the induction
hypothesis, there are two cases:

– e1 is a value. Thus, by canonical forms, e1 = rollτ ′(v) for some v. Applying evalua-
tion rule A. gives us e ↪→ v.

– e1 is not a value. Apply evaluation rule A..



(Rule A.) Here e = rollτ(e1), with Γ; ∆ ` e1 : p(τ ′[t := µt : κ.τ ′])(s). By the
induction hypothesis, there are two cases:

– e1 is a value, therefore e is itself a value.
– e1 is not a value. Apply evaluation rule A..

B Formal Properties of λM2

B. Static semantics

Environments We define two environments, ∆ and Γ. The ∆ environment is a type en-
vironment mapping type variables to their kinds, and Γ is a term environment mapping
term variables to their types. Typing a term e with a type τ is denoted as Γ; ∆ ` e : τ .
The static semantics for these environments are as follows:

` Ω kind (B.)

` κ1 kind ` κ2 kind

` κ1 ⇒ κ2 kind
(B.)

` κ1 kind ` κ2 kind

` κ1 ~ κ2 kind
(B.)

` · type env (B.)

` ∆ type env ` κ kind

` ∆, t : κ type env
(B.)

∆ ` · term env (B.)

∆ ` Γ term env ∆ ` τ : Ω
∆ ` Γ, x : τ term env

(B.)

Type formation ∆ ` τ : κ

t ∈ ∆
∆ ` t : ∆(t)

(B.)

∆ ` int : Ω
(B.)

∆ ` unit : Ω
(B.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 → τ2 : Ω

(B.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 + τ2 : Ω

(B.)

∆ ` τ1 : Ω ∆ ` τ2 : Ω
∆ ` τ1 ∗ τ2 : Ω

(B.)

∆, t : κ1 ` τ : κ2

∆ ` λt :κ1.τ : κ1 ⇒ κ2
(B.)

∆ ` τ1 : κ1 ⇒ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2
(B.)

∆ ` τ1 : κ1 ∆ ` τ2 : κ2

∆ ` 〈τ1, τ2〉 : κ1 ~ κ2
(B.)

∆ ` τ : κ1 ~ κ2

∆ ` π1(τ) : κ1
(B.)

∆ ` τ : κ1 ~ κ2

∆ ` π2(τ) : κ2
(B.)

∆ ` f : κ ⇒ κ ∆ ` g : κ ⇒ Ω
∆ ` µκ(f , g) : Ω

(B.)

∆ ` Γ(x) : Ω (∀x ∈ Dom(Γ))
∆ ` Γ

(B.)

Type equality ∆ ` τ1 ≡ τ2 : κ

∆ ` τ : κ

∆ ` τ ≡ τ : κ
(B.)

Rule B.: reflexivity.

∆ ` τ1 ≡ τ2 : κ

∆ ` τ2 ≡ τ1 : κ
(B.)



Rule B.: symmetry.

∆ ` τ1 ≡ τ2 : κ ∆ ` τ2 ≡ τ3 : κ

∆ ` τ1 ≡ τ3 : κ
(B.)

Rule B.: transitivity.

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 → τ2 ≡ τ ′1 → τ ′2 : Ω

(B.)

We note here that the function type is only de-
fined for types of kind Ω; see rule B..

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 + τ2 ≡ τ ′1 + τ ′2 : Ω

(B.)

Note that the sum type is only defined for types
of kind Ω; see rule B..

∆ ` τ1 ≡ τ ′1 : Ω ∆ ` τ2 ≡ τ ′2 : Ω
∆ ` τ1 ∗ τ2 ≡ τ ′1 ∗ τ ′2 : Ω

(B.)

Note, again, that the pair type is only defined
for types of kind Ω; see rule B..

∆ ` τ1 ≡ τ ′1 : κ1 ∆ ` τ2 ≡ τ ′2 : κ2

∆ ` 〈τ1, τ2〉 ≡
〈
τ ′1, τ ′2

〉
: κ1 ~ κ2

(B.)

∆ ` f ≡ f ′ : (κ ⇒ κ) ∆ ` g ≡ g′ : (κ ⇒ Ω)
∆ ` µκ(f , g) ≡ µκ(f ′, g′) : Ω

(B.)
Note here the restriction on the kinds of f and
g; this comes from type formation rule B..

∆ ` τ1 ≡ λt : κ.τ : κ ⇒ κ′ ∆ ` τ2 : κ

∆ ` τ1τ2 ≡ τ1[t := τ2] : κ′

(B.)

∆ ` τ1 ≡ τ ′1 : κ1 ⇒ κ2 ∆ ` τ2 ≡ τ ′2 : κ1

∆ ` τ1(τ2) ≡ τ ′1(τ
′
2) : κ2

(B.)

∆, t : κ ` τ ≡ τ ′[s := t] : κ′ t 6 ∈ FV(τ ′)
∆ ` λt : κ.τ ≡ λs : κ.τ ′ : κ ⇒ κ′

(B.)

∆ ` 〈τ1, τ2〉 : κ1 ~ κ2

∆ ` πi(〈τ1, τ2〉) ≡ τi : κi
(B.)

∆ ` τ1 ≡ τ2 : κ1 ~ κ2

∆ ` πi(τ1) ≡ πi(τ2) : κi
(B.)

Term formation Γ; ∆ ` e : τ

x ∈ Γ
Γ; ∆ ` x : Γ(x)

(B.)

∆ ` τ1 ≡ τ2 Γ; ∆ ` e : τ1

Γ; ∆ ` e : τ2
(B.)

Γ; ∆ ` n : int
(B.)

Γ; ∆ ` e1 : int Γ; ∆ ` e2 : int

Γ; ∆ ` op(e1, e2) : int
(B.)

Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2

Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ1 → τ2
(B.)

Γ; ∆ ` e1 : τ1 → τ2 Γ; ∆ ` e2 : τ1

Γ; ∆ ` e1(e2) : τ2
(B.)

Γ; ∆ ` () : unit
(B.)

Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2

Γ; ∆ ` (e1, e2) : τ1 ∗ τ2
(B.)

Γ; ∆ ` e : int Γ; ∆ ` e1 : τ Γ; ∆ ` e2 : τ

Γ; ∆ ` if e then e1 else e2 fi : τ
(B.)

Γ; ∆ ` e : τ1 ∗ τ2

Γ; ∆ ` fst(e) : τ1
(B.)

Γ; ∆ ` e : τ1 ∗ τ2

Γ; ∆ ` snd(e) : τ2
(B.)

Γ; ∆ ` e : τ1

Γ; ∆ ` inlτ1+τ2(e) : τ1 + τ2
(B.)

Γ; ∆ ` e : τ2

Γ; ∆ ` inrτ1+τ2(e) : τ1 + τ2
(B.)

Γ; ∆ ` e : τ1 + τ2

Γ, x1 : τ1; ∆ ` e1 : τ
Γ, x2 : τ2; ∆ ` e2 : τ

Γ; ∆ ` caseτ1+τ2 e of inl(x1 : τ1) ⇒ e1

orelse inr(x2 : τ2) ⇒ e2 end : τ
(B.)

To do the roll/unroll in this language, we need a function which determines the type
of the unrolled/rolled expression. This function is defined as:

K(κ, f : κ ⇒ κ, g : κ ⇒ Ω) :=
g(f (H(κ, κ, λx : κ.x, f))),



where H is defined as follows:

H(κ′, κ, Q : κ ⇒ κ′, f : κ ⇒ κ) :=
µκ(f , Q) when κ = Ω
〈H(κ1, κ, λh : κ.(π1(Q h)), f),

H(κ2, κ, λh : κ.(π2(Q h)), f)〉
when κ = κ1 ~ κ2

λg : κ1.H(κ2, κ, λh : κ.(Q h)(g), f) when κ = κ1 ⇒ κ2.

Now we can define roll and unroll:

∆ ` µκ(f , g) : Ω Γ; ∆ ` e : µκ(f , g)
Γ; ∆ ` unroll(e) : K(κ, f , g)

(B.)

∆ ` µκ(f , g) : Ω Γ; ∆ ` e : K(κ, f , g)
Γ; ∆ ` rollµκ(f ,g)(e) : µκ(f , g)

(B.)

B. Dynamic semantics

The values of the language are as follows:

(values) v ::= n | fun f (x : τ1) : τ2 is e end | inlτ1+τ2(v) | inrτ1+τ2(v)
| () | (v1, v2) | rollµκ(f ,g)(v)

Primitive evaluation rules

op(v1, v2) ↪→ v1 op v2
(B.)

v1 = fun f (x : τ1) : τ2 is e end

v1(v2) ↪→ e[f := v1, x := v2]
(B.)

fst(v1, v2) ↪→ v1
(B.)

snd(v1, v2) ↪→ v2
(B.)

v = inlτ1+τ2(v′)
caseτ1+τ2 v of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ e1[x := v′]

(B.)

v = inrτ1+τ2(v′)
caseτ1+τ2 v of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ e2[x := v′]

(B.)

v 6 = 0

if v then e1 else e2 fi ↪→ e1
(B.)

v = 0

if v then e1 else e2 fi ↪→ e2
(B.)

unroll(rollµκ(f ,g)(v)) ↪→ v
(B.)

Search rules

e1 ↪→ e′1
op(e1, e2) ↪→ op(e′1, e2)

(B.)

e2 ↪→ e′2
op(v, e2) ↪→ op(v, e′2)

(B.)

e1 ↪→ e′1
e1(e2) ↪→ e′1(e2)

(B.)

e2 ↪→ e′2
v(e2) ↪→ v(e′2)

(B.)

e1 ↪→ e′1
(e1, e2) ↪→ (e′1, e2)

(B.)

e2 ↪→ e′2
(v1, e2) ↪→ (v1, e′2)

(B.)

e ↪→ e′

fst(e) ↪→ fst(e′)
(B.)

e ↪→ e′

snd(e) ↪→ snd(e′)
(B.)

e ↪→ e′

inlτ1+τ2(e) ↪→ inlτ1+τ2(e′)
(B.)



e ↪→ e′

inrτ1+τ2(e) ↪→ inrτ1+τ2(e′)
(B.)

e ↪→ e′

caseτ1+τ2 e of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end
↪→ caseτ1+τ2 e′ of inl(x : τ1) ⇒ e1

orelse inr(x : τ2) ⇒ e2 end

(B.)

e ↪→ e′

if e then e1 else e2 fi
↪→ if e′ then e1 else e2 fi

(B.)

e ↪→ e′

unroll(e) ↪→ unroll(e′)
(B.)

e ↪→ e′

rollµκ(f ,g)(e) ↪→ rollµκ(f ,g)(e′)
(B.)

B. Soundness and safety

Properties of static semantics

Proposition  (Strong normalization). Type reduction for the language given above is
strongly normalizing.

Proof (sketch). Rules B. through B. describe a simply-typed lambda calculus with
pair types and constants. Proofs of strong normalization for λ → are familiar in the
literature (see [], for instance.)

Corollary  (Decidability). Type-checking the language given above is decidable.

Proof. Judgments for the formations of kinds (B.–B.), type environments (B.–B.),
term environments (B.–B.), and type formation are all syntax-directed and hence de-
cidable.

Type equivalence, however, is not syntax-directed. Since type reductions are strongly
normalizing (Proposition ), we can determine whether τ1 ≡ τ2 by reducing both τ1

and τ2 to normal form, then testing whether the normal forms are syntactically congru-
ent.

Term formation is syntax-directed, excepting the type-equivalence rule B.. How-
ever, if the type-checker always reduces types to normal form, then rule B. can be
omitted.

Soundness

Lemma  (Substitution).

. If Γ; ∆ ` e′ : τ ′ and Γ, x : τ ′; ∆ ` e : τ , then Γ; ∆ ` e[x := e′] : τ .
. If ∆ ` τ ′ : κ and Γ; ∆, t : κ ` e : τ , then Γ[t := τ ′]; ∆ ` e[t := τ ′] : τ[t := τ ′].

Proof.

. By induction on the derivation of Γ, x : τ ′; ∆ ` e : τ .
. By induction on the derivation of Γ; ∆, t : κ ` e : τ .

Lemma  (Type Inversion).

. If Γ; ∆ ` x : τ , then ∆ ` Γ(x) ≡ τ : Ω.
. If Γ; ∆ ` n : τ , then τ ≡ int : Ω.
. If Γ; ∆ ` op(e1, e2) : τ , then ∆ ` τ ≡ int : Ω, Γ; ∆ ` e1 : int, and Γ; ∆ ` e2 : int.



. If Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ , then Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2 and
∆ ` τ ≡ τ1 → τ2 : Ω.

. If Γ; ∆ ` e1(e2) : τ , then there exists τ2 such that Γ; ∆ ` e1 : τ2 → τ and Γ; ∆ ` e2 :
τ2.

. If Γ; ∆ ` (e1, e2) : τ , then there exist τ1 and τ2 such that ∆ ` τ ≡ τ1 ∗ τ2 : Ω,
Γ; ∆ ` e1 : τ1, and Γ; ∆ ` e2 : τ2.

. If Γ; ∆ ` () : τ , then ∆ ` τ ≡ unit : Ω.
. If Γ; ∆ ` fst(e) : τ , then there exists τ2 such that Γ; ∆ ` e : τ ∗ τ2, and similarly for

snd.
. If Γ; ∆ ` inlτ1+τ2(e1) : τ , then ∆ ` τ ≡ τ1 + τ2 : Ω and Γ; ∆ ` e1 : τ1. The inr case

is similar.
. If Γ; ∆ ` caseτ1+τ2 e of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end : τ , then

Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ .
. If Γ; ∆ ` if e then e1 else e2 fi : τ , then Γ; ∆ ` e : int, Γ; ∆ ` e1 : τ , and Γ; ∆ `

e2 : τ .
. If Γ; ∆ ` rollµκ(f ,g)(e) : τ , then ∆ ` τ ≡ µκ(f , g) : Ω and Γ; ∆ ` e : K(κ, f , g).
. If Γ; ∆ ` unroll(e) : τ , then there exist f , g, and κ such that ∆ ` τ ≡ K(κ, f , g) : Ω,

and Γ; ∆ ` e : µκ(f , g).

Proof (sketch). The proof relies on the fact that every typing derivation Γ; ∆ ` e : τ is
the result of a unique typing rule, apart from the type-equality rule B.. Since the type-
equality rule has only one premise, each typing derivation ending with Γ; ∆ ` e : τ is
a finite chain of zero or more type-equality judgments, with a necessarily unique type
judgment at the top.

Theorem  (Preservation). If Γ; ∆ ` e : τ and e ↪→ e′, then Γ; ∆ ` e′ : τ .

Proof. The proof is by induction on the rules defining one-step evaluation.

(Rule B.) Here e = op(v1, v2) and e′ = v1 op v2. By type inversion rule , ∆ ` τ ≡
int : Ω, Γ; ∆ ` v1 : int, and Γ; ∆ ` v2 : int. The meta-level integer operation “op”
returns an integer, so Γ; ∆ ` e′ : int.

(Rule B.) Here e = v1(v2), where v1 = fun f (x : τ1) : τ2 is e1 end. From syntax
and type inversion rule , we know that Γ; ∆ ` e : τ2, and that Γ; ∆ ` v1 : τ1 → τ2.
Using inversion again (rule ), we have that Γ, f : τ1 → τ2, x : τ1; ∆ ` e1 : τ2. By twice
applying the substitution lemma (), we have that Γ; ∆ ` e1[f := v1, x := v2] : τ2,
which is what is required.

(Rule B.) Here e = fst(v1, v2). By type inversion rule , we have Γ; ∆ ` (v1, v2) : τ1 ∗
τ2 and Γ; ∆ ` e : τ1 for some τ1 and τ2. By type inversion rule , we have Γ; ∆ ` v1 : τ1,
which is what is required. The proof for rule B. is similar.

(Rule B.) Here e = caseτ1+τ2 v of inl(x : τ1) ⇒ e1 orelse inr(x : τ2) ⇒ e2 end,
where v = inlτ1+τ2(v′). From type inversion rule , we learn that Γ; ∆ ` v : τ1 + τ2

and Γ, x : τ1; ∆ ` e1 : τ . Applying inversion again (rule ) gives us Γ; ∆ ` v′ : τ1. Using
the substitution lemma (), we have that Γ; ∆ ` e1[x := v′] : τ . The proof for rule B.

is similar.



(Rule B.) Here e = unroll(rollµκ(f ,g)(v)) and e′ = v. By type inversion rule , we have
that rollµκ(f ,g)(v) : µκ(f , g) and that ∆ ` τ ≡ K(κ, f , g) : Ω. By type inversion rule ,
we have that v : K(κ, f , g), and therefore from type equality we have v : τ .

(Rule B.) Here e = op(e1, e2), with e1 ↪→ e′1. By type inversion rule , we have Γ; ∆ `
e : int, Γ; ∆ ` e1 : int, and Γ; ∆ ` e2 : int. By the induction hypothesis we have
Γ; ∆ ` e′1 : int. Application of typing rule B., then, gives us Γ; ∆ ` op(e′1, e2) : int as
required.

(Rule B.) Here e = if v then e1 else e2 fi. From type inversion rule , we learn that
Γ; ∆ ` e1 : τ . The proof for rule B. is similar.

(Rule B.) Here e = unroll(e1), e′ = unroll(e′1), e1 ↪→ e′1, and Γ; ∆ ` unroll(e1) : τ .
By type inversion rule , we find that Γ; ∆ ` e1 : µκ(f , g), ∆ ` τ ≡ K(κ, f , g) : Ω,
and hence by induction that Γ; ∆ ` e′1 : µκ(f , g). Thus by typing rule B., Γ; ∆ `
unroll(e′1) : K(κ, f , g) ≡ τ .

(Rule B.) Here e = rollµκ(f ,g)(e1), e′ = rollµκ(f ,g)(e′1), e1 ↪→ e′1, and Γ; ∆ ` rollµκ(f ,g)(e1) :
τ . By type inversion rule , we find that Γ; ∆ ` e1 : K(κ, f , g), and hence by in-
duction that Γ; ∆ ` e′1 : K(κ, f , g). By the application of typing rule B., we have
Γ; ∆ ` rollµκ(f ,g)(e′1) : µκ(f , g) ≡ τ .

(Other rules) The proofs of the remainder of the “search” rules (B. – B.) are sim-
ilar to the proof of rule B.: use the type inversion lemma (), apply the induction
hypothesis, and re-apply a typing rule.

Proposition  (Canonical Forms). Suppose that v : τ is a closed, well-formed value.

. If ` v : int, then v = n for some n.
. If ` v : unit, then v = ().
. If ` v : τ1 → τ2, then v = fun f (x : τ1) : τ2 is e end for some f , x, and e.
. If ` v : τ1 ∗ τ2, then v = (v1, v2) for some v1 and v2.
. If ` v : τ1 + τ2, then either v = inlτ1+τ2(v1) for some v1 or v = inrτ1+τ2(v2) for some

v2.
. If ` v : µκ(f , g), then v = rollµκ(f ,g)(v′) for some v′.

Theorem  (Progress). If Γ; ∆ ` e : τ , then either e is a value, or there exists e′ such that
e ↪→ e′.

Proof. The proof is by induction on the typing rules.

(Rule B.) By application of the induction hypothesis.

(Rule B.) n is a value.



(Rule B.) Γ; ∆ ` op(e1, e2) : int. By the induction hypothesis, there are three cases:

– e1 and e2 are values. Thus by evaluation rule B., op(e1, e2) ↪→ e1 op e2.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1, and using evaluation

rule B. we have: op(e1, e2) ↪→ op(e′1, e2).
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we can apply

evaluation rule B..

(Rule B.) fun f (x : τ1) : τ2 is e end is a value.

(Rule B.) Γ; ∆ ` e1(e2) : τ2, where Γ; ∆ ` e1 : τ1 → τ2 and Γ; ∆ ` e2 : τ1. By the
induction hypothesis, there are three cases:

– e1 and e2 are values. Using canonical forms, (Proposition ), e1 must be of the form
fun f (x : τ1) : τ2 is e′ end. Using B., e ↪→ e′[f := e1, x := e2].

– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1; use evaluation rule
B..

– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2; use evaluation rule
B..

(Rule B.) The expression () is already a value.

(Rule B.) Γ; ∆ ` (e1, e2) : τ1 ∗ τ2, where Γ; ∆ ` e1 : τ1 and Γ; ∆ ` e2 : τ2. By the
induction hypothesis, there are three cases:

– e1 and e2 are values; thus (e1, e2) is itself a value.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1; use evaluation rule

B..
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we can apply

evaluation rule B..

(Rule B.) Γ; ∆ ` fst(e) : τ1, where Γ; ∆ ` e : τ1 ∗ τ2. By the induction hypothesis,
there are two cases:

– e is a value. Thus by canonical forms (Proposition ), e is of the form (v1, v2). Use
evaluation rule B..

– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule B..

(Rule B.) Same as rule B. above.

(Rule B.) Γ; ∆ ` inlτ1+τ2(e) : τ1 + τ2, where Γ; ∆ ` e : τ1. By the induction hypoth-
esis, there are two cases:

– e is a value; therefore inlτ1+τ2(e) is itself a value.
– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule B..

(Rule B.) Same as rule B. above.



(Rule B.) Γ; ∆ ` caseτ1+τ2 e of inl(x1 : τ1) ⇒ e1 orelse inr(x2 : τ2) ⇒ e2 end : τ ,
where Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ . By the
induction hypothesis, there are two cases:

– e is a value. By canonical forms, either e = inlτ1+τ2(v1), or e = inrτ1+τ2(v2); use
either evaluation rule B. or B., respectively.

– e is not a value. By the induction hypothesis, then, e ↪→ e′; use evaluation rule B..

(Rule B.) Here e = if e then e1 else e2 fi. There are two cases. If e is a value, then
apply either rule B. or B.. If e is not a value, then apply the search rule.

(Rule B.) Here e = unroll(e1), with e1 : µκ(f , g). By the induction hypothesis, there
are two cases:

– e1 is a value. Thus, by canonical forms, e1 = rollµκ(f ,g)(v) for some v. Applying
evaluation rule B. gives us e ↪→ v.

– e1 is not a value. Apply evaluation rule B..

(Rule B.) Here e = rollµκ(f ,g)(e1) with e1 : K(κ, f , g). By the induction hypothesis,
there are two cases:

– e1 is a value, therefore e = rollµκ(f ,g)(e1) is itself a value.
– e1 is not a value. Apply evaluation rule B..

C Properties of Translation from λM1 to λM2

C. Well-typedness of the translation

Lemma . Let p = · | πi. Let τ = H(κ′, κ, Q, f). If ∆ ` (p(τ))(τ ′) : Ω, then ∆ `
(p(τ))(τ ′) ≡ µκ(f , g) : Ω, with ∆ ` g ≡ λk : κ.(p(Q k))(Jτ ′K) : κ ⇒ Ω.

Proof. The proof is by cases on p. If p = ·, then κ′ = κ′′ ⇒ Ω, and H(κ′, κ, Q, f) =
λg : κ′′.H(Ω, κ, λh : κ.(Q h)(g), f), which reduces to

λg : κ′′.µκ(f , λh : κ.(Q h)(g)).

When applied to Jτ ′K this is equivalent to (using type equality rule B.)

µκ(f , λh : κ.(Q h)(
q
τ ′

y
),

which is what is required.
If p = πi, then typing dictates that κ′ = κ1 ~ κ2. Applying H gives:

τ = 〈H(κ1, κ, λh : κ.(π1(Q h)), f), H(κ2, κ, λh : κ.(π2(Q h)), f)〉 .

We have that (p(τ))(Jτ ′K) is equivalent to (using type equality rule B.):

(H(κi, κ, λh : κ.(πi(Q h)), f)))(
q
τ ′

y
).

By induction, this expression is equivalent to µκ(f , g), with g = λk : κ.((λh : κ.πi(Q h))(k)))(Jτ ′K).
This β-reduces to λk : κ.(πi(Q k)))(Jτ ′K), which is what is required.



Corollary . Let p = · | πi and τ = H(κ′, κ, Q, f). If ∆ ` p(τ) : Ω, then ∆ ` p(τ) ≡
µκ(f , g) : Ω, with ∆ ` g ≡ λk : κ.p(Q k) : κ ⇒ Ω.

Proof. Similar to lemma .

Theorem . If Γ; ∆ ` e : τ , then JΓK ; ∆ ` JeK : JτK.

Proof. We prove by induction on the typing derivations. The only interesting cases are
for rules A. and A..

(Case A.) Here Γ; ∆ ` unroll(e) : p(τ ′[t := µt : κ.τ ′])(s), with premises Γ; ∆ ` e :
p(µt : κ.τ ′)(s) and ∆ ` p(µt : κ.τ ′)(s) : Ω. By induction we have

JΓK ; ∆ ` JeK : p(H(κ, κ, λx : κ.x, λt : κ.
q
τ ′

y
))(JsK).

From Lemma  or Corollary  (whichever is applicable depending on the value of s),
we have that

∆ ` p(H(κ, κ, λx : κ.x, λt : κ.
q
τ ′

y
))(JsK) ≡ µκ(λt : κ.

q
τ ′

y
, λk : κ.p(k)(JsK)) : Ω.

The typing rule for unroll in the destination language is:

∆ ` µκ(f , g) : Ω Γ; ∆ ` e : µκ(f , g)
Γ; ∆ ` unroll(e) : K(κ, f , g)

.

In order to type the translated expression, we need to evaluate K(κ, f , g). Filling in
our values for f and g, we get

K(κ, λt : κ.
q
τ ′

y
, λk : κ.p(k)(JsK)) =

(
λk : κ.p(k)(JsK)

)(
(λt : κ.

q
τ ′

y
)(H(κ, κ, λx : κ.x, λt : κ.

q
τ ′

y
))

)
,

which reduces to

p(
q
τ ′

y
[t := H(κ, κ, λx : κ.x, λt : κ.

q
τ ′

y
)])(JsK).

If we translate the type τ = p(τ ′[t := µt : κ.τ ′])(s), we obtain p(Jτ ′K [t := H(κ, κ, λx :
κ.x, λt : κ. Jτ ′K)])(JsK), which matches our value for K(κ, f , g). Thus by typing rule
B., we have that JΓK ; ∆ ` unroll(JeK) : JτK.

(Case A.) Here Γ; ∆ ` rollτ(e), where ∆ ` τ ≡ p(µt : κ.τ)(s) : Ω and Γ; ∆ ` e :
p(τ ′[t := µt : κ.τ ′])(s). By induction, we have that

JΓK ; ∆ ` JeK : p(
q
τ ′

y
[t := H(κ, κ, λx : κ.x, λt : κ.

q
τ ′

y
)])(JsK).

From corollary , we have that

∆ ` p(H(κ, κ, λx : κ.x, λt : κ.
q
τ ′

y
))(JsK) ≡ µκ(λt : κ.

q
τ ′

y
, λk : κ.p(k)(JsK)) : Ω.

Hence, we can compute K(κ, f , g) as in the proof for case A., yielding:

∆ ` K(κ, λt : κ.
q
τ ′

y
, λk : κ.p(k)(JsK)) ≡ p(

q
τ ′

y
[t := H(κ, κ, λx : κ.x, λt : κ.

q
τ ′

y
)])(JsK) : Ω.

Thus, JΓK ; ∆ ` JeK : K(κ, f , g), and by typing rule B. we have JΓK ; ∆ ` rollµκ(f ,g)(JeK) :
Jp(µt : κ.τ ′)(s)K .



D Formal properties of λR
i

D. Dynamic Semantics

We present a small-step call-by-value operational semantics for λR
i . The values are de-

fined as follows:

(value) v ::= n | (v1, v2) | rollτ(e) | inj
(i)
τ1+τ2

(v)
| fun f (x : τ1) : τ2 is e end

The reduction relation ↪→ is specified by the following primitive evaluation rules:

op(v1, v2) ↪→ v1 op v2
(D.)

v1 = fun f (x : τ1) : τ2 is e end

v1(v2) ↪→ e[f := v1, x := v2]
(D.)

v 6 = 0

if v then e1 else e2 fi ↪→ e1
(D.)

v = 0

if v then e1 else e2 fi ↪→ e2
(D.)

#i(v1, v2) ↪→ vi
(D.)

v = inj
(i)
τ1+τ2

(v′)

caseτ1+τ2 v of inj(1)(x : τ1) ⇒ e1 or inj(2)(x : τ2) ⇒ e2 ↪→ ei[x := v′]
(D.)

unroll(rollτ(v)) ↪→ v
(D.)

The “search rules” have been omitted for brevity.

D. Static Semantics

Environments We define an environment Γ, which is a term environment mapping term
variables to their types. Typing a term e with a type τ is denoted as Γ ` e : τ . The
typechecking is assumed to occur within a CiC environment ∆. The static semantics
for this environment are as follows:

∆ ` · term env (D.)

∆ ` Γ term env ∆ ` τ : Ω
∆ ` Γ, x : τ term env

(D.)



Term formation Γ; ∆ ` e : τ

x ∈ Γ
Γ; ∆ ` x : Γ(x)

(D.)

The following rule deals with type equality. We take equality on types from the CiC
βηι-equality on CiC terms.

` τ1 ≡ τ2 Γ; ∆ ` e : τ1

Γ; ∆ ` e : τ2
(D.)

Γ; ∆ ` n : int
(D.)

Γ; ∆ ` e1 : int Γ; ∆ ` e2 : int

Γ; ∆ ` op(e1, e2) : int
(D.)

Γ; ∆ ` e : int Γ; ∆ ` e1 : τ Γ; ∆ ` e2 : τ

Γ; ∆ ` if e then e1 else e2 : τ
(D.)

Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2

Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ1 → τ2
(D.)

Γ; ∆ ` e1 : τ1 → τ2 Γ; ∆ ` e2 : τ1

Γ; ∆ ` e1(e2) : τ2
(D.)

Γ; ∆ ` () : unit
(D.)

Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2

Γ; ∆ ` (e1, e2) : τ1 ∗ τ2
(D.)

Γ; ∆ ` e : τ1 ∗ τ2 i ∈ {1, 2}
Γ; ∆ ` #i(e) : τi

(D.)

Γ; ∆ ` e : τi i ∈ {1, 2}
Γ; ∆ ` inj

(i)
τ1+τ2

(e) : τ1 + τ2

(D.)

Γ; ∆ ` e : τ1 + τ2 Γ, x1 : τ1; ∆ ` e1 : τ Γ, x2 : τ2; ∆ ` e2 : τ

Γ; ∆ ` caseτ1+τ2 e of inj(1)(x1 : τ1) ⇒ e1 orelse inj(2)(x2 : τ2) ⇒ e2 end : τ
(D.)

To do the roll/unroll in this language, we need a function which determines the type
of the unrolled/rolled expression. This function is defined as:

K[κ : Kind; f : κ ⇒ κ; g : κ ⇒ Ω] :=
g(f (H(κ, κ, λx : κ.x, f))).



where H is defined as follows:

H[κ′ : Kind; κ : Kind; Q : κ ⇒ κ′; f : κ ⇒ κ] :=

Cases κ′ of

Ω −→ µκ(f , Q)
| κ1 ~ κ2 −→ 〈H(κ1, κ, λh : κ.(fst(Q h)), f), H(κ2, κ, λh : κ.(snd(Q h)), f)〉
| κ1 ⇒ κ2 −→ λg : κ1.H(κ2, κ, λh : κ.(Q h)(g), f)

To clarify the presentation, the formulation of these functions is not in CiC syntax;
a few details have been elided for sake of presentation. Firstly, the variables κ and κ′

above are actually dependently typed on toSet k, where k belongs to Kind mentioned
earlier. This is what allows us to case over the kind constructors. Secondly, in order for
the Coq typechecker to unify κ′ with the branches of the Cases statement, we need to
use a dependent case construct and abstract over Q. The details of this, however, are
somewhat technical and do not help to illuminate the key issue. Coq code for these
examples is in Figure .

Given this type-unrolling function, we can now define roll and unroll:

Γ; ∆ ` e : µtoSet(κ)(f , g)
Γ; ∆ ` unroll(e) : (K κ f g)

(D.)

Γ; ∆ ` e : (K κ f g)
Γ; ∆ ` rollµtoSet(κ)(f ,g)(e) : µtoSet(κ)(f , g)

(D.)

D. Properties of static semantics

Proposition  (Strong normalization). Type reduction for the language given above is
strongly normalizing.

Proof. We are using CiC so the proof is from Werner [].

Corollary  (Decidability). Type-checking the language given above is decidable.

Proof. Judgments for the formations of term environments (D.–D.) and type forma-
tion are all syntax-directed and hence decidable.

Type equivalence, however, is not syntax-directed. Since type reductions are strongly
normalizing (Proposition ), we can determine whether τ1 ≡ τ2 by reducing both τ1

and τ2 to normal form, then testing whether the normal forms are syntactically congru-
ent.

Term formation is syntax-directed, excepting the type-equivalence rule D.. How-
ever, if the type-checker always reduces types to normal form, then rule D. can be
omitted. ut



Inductive Omega: Set :=

Int: Omega

| Unit: Omega

| To: Omega -> Omega -> Omega

| PairType: Omega -> Omega -> Omega

| SumType: Omega -> Omega -> Omega

| Mu: (K:Set) (K->K)->(K->Omega)->Omega.

Inductive Kind: Set :=

omega: Kind

| TO: Kind -> Kind -> Kind

| PairKind: Kind -> Kind -> Kind.

Fixpoint toSet [K:Kind] : Set :=

Cases K of

omega => Omega

| (TO k1 k2) => (toSet k1)->(toSet k2)

| (PairKind k1 k2) => (toSet k1) * (toSet k2)

end.

Fixpoint H [k’:Kind]: (k:Kind)(((toSet k) -> (toSet k’))

-> ((toSet k) -> (toSet k)) -> (toSet k’)) :=

[k:Kind][Q:((toSet k) -> (toSet k’)); f:((toSet k) -> (toSet k))]

((<[k’:Kind](((toSet k)->(toSet k’))->(toSet k’))>Cases k’ of

omega => [QQ:((toSet k) -> Omega)](Mu (toSet k) f QQ)

| (PairKind k1 k2)=> [QQ:((toSet k) -> ((toSet k1) * (toSet k2)))]

((H k1 k ([h:(toSet k)] (Fst(QQ h))) f),

(H k2 k ([h:(toSet k)] (Snd(QQ h))) f))

| (TO k1 k2) => [QQ:((toSet k) -> ((toSet k1) -> (toSet k2)))]

([g:(toSet k1)]

(H k2 k ([h:(toSet k)] ((QQ h)(g))) f))

end) Q).

Definition K: (k:Kind)(((toSet k)->(toSet k))

-> ((toSet k)->Omega) -> Omega) :=

[k:Kind; f:((toSet k)->(toSet k)); g:((toSet k)->Omega)]

(g(f(H k k ([x:(toSet k)](x)) f))).

Fig. . Coq code illustrating λR
i ’s type system



D. Soundness

Lemma  (Substitution). If Γ; ∆ ` e′ : τ ′ and Γ, x : τ ′; ∆ ` e : τ , then Γ; ∆ ` e[x :=
e′] : τ .

Proof. By induction on the derivation of Γ, x : τ ′; ∆ ` e : τ . ut

Lemma  (Type Inversion).

. If Γ; ∆ ` x : τ , then Γ(x) ≡ τ : Ω.
. If Γ; ∆ ` n : τ , then τ ≡ int : Ω.
. If Γ; ∆ ` op(e1, e2) : τ , then τ ≡ int : Ω, Γ; ∆ ` e1 : int, and Γ; ∆ ` e2 : int.
. If Γ; ∆ ` if e then e1 else e2 : τ , then Γ; ∆ ` e : int, Γ; ∆ ` e1 : τ , and Γ; ∆ ` e2 :

τ .
. If Γ; ∆ ` fun f (x : τ1) : τ2 is e end : τ , then Γ, f : τ1 → τ2, x : τ1; ∆ ` e : τ2 and

τ ≡ τ1 → τ2 : Ω.
. If Γ; ∆ ` e1(e2) : τ , then there exists τ2 such that Γ; ∆ ` e1 : τ2 → τ and Γ; ∆ ` e2 :

τ2.
. If Γ; ∆ ` (e1, e2) : τ , then there exist τ1 and τ2 such that τ ≡ τ1 ∗ τ2 : Ω, Γ; ∆ ` e1 :

τ1, and Γ; ∆ ` e2 : τ2.
. If Γ; ∆ ` () : τ , then τ ≡ unit : Ω.
. If Γ; ∆ ` #i(e) : τ , where i ∈ {1, 2}, then Γ; ∆ ` τ1 ∗ τ2 and τ ≡ τi : Ω.

. If Γ; ∆ ` inj
(i)
τ1+τ2

(ei) : τ , then τ ≡ τ1 + τ2 : Ω and Γ; ∆ ` ei : τi.

. If Γ; ∆ ` caseτ1+τ2 e of inj(1)(x : τ1) ⇒ e1 orelse inj(2)(x : τ2) ⇒ e2 end : τ , then
Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ .

. If Γ; ∆ ` rollµtoSet(κ)(f ,g)(e) : τ , then τ ≡ µtoSet(κ)(f , g) : Ω and Γ; ∆ ` e :

K(κ f g).
. If Γ; ∆ ` unroll(e) : τ , then there exist f , g, and κ such that τ ≡ K(κ f g) : Ω, and

Γ; ∆ ` e : µtoSet(κ)(f , g).

Proof (sketch). The proof relies on the fact that every typing derivation Γ; ∆ ` e : τ is
the result of a unique typing rule, apart from the type-equality rule D.. Since the type-
equality rule has only one premise, each typing derivation ending with Γ; ∆ ` e : τ is
a finite chain of zero or more type-equality judgments, with a necessarily unique type
judgment at the top. ut

Theorem  (Preservation). If Γ; ∆ ` e : τ and e ↪→ e′, then Γ; ∆ ` e′ : τ .

Proof. The proof is by induction on the rules defining one-step evaluation.

(Rule D.) Here e = op(v1, v2) and e′ = v1 op v2. By type inversion rule , τ ≡ int : Ω,
Γ; ∆ ` v1 : int, and Γ; ∆ ` v2 : int. The meta-level integer operation “op” returns an
integer, so Γ; ∆ ` e′ : int.

(Rule D.) Here e = v1(v2), where v1 = fun f (x : τ1) : τ2 is e1 end. From syntax
and type inversion rule , we know that Γ; ∆ ` e : τ2, and that Γ; ∆ ` v1 : τ1 → τ2.
Using inversion again (rule ), we have that Γ, f : τ1 → τ2, x : τ1; ∆ ` e1 : τ2. By twice
applying the substitution lemma (), we have that Γ; ∆ ` e1[f := v1, x := v2] : τ2,
which is what is required.



(Rule D.) Here e = #i(v1, v2). By type inversion rule , we have Γ; ∆ ` (v1, v2) : τ1 ∗ τ2

and Γ; ∆ ` e : τi for some τ1 and τ2. By type inversion rule , we have Γ; ∆ ` vi : τi,
which is what is required.

(Rule D.) Here e = caseτ1+τ2 v of inj(1)(x : τ1) ⇒ e1 orelse inj(2)(x : τ2) ⇒ e2 end,

where v = inj
(i)
τ1+τ2

(v′). From type inversion rule , we learn that Γ; ∆ ` v : τ1 + τ2 and
Γ, x : τi; ∆ ` ei : τ . Applying inversion again (rule ) gives us Γ; ∆ ` v′ : τi. Using the
substitution lemma (), we have that Γ; ∆ ` ei[x := v′] : τ .

(Rule D.) Here e = unroll(rollµtoSet(κ)(f ,g)(v)) and e′ = v. By type inversion rule , we

have that Γ; ∆ ` rollµtoSet(κ)(f ,g)(v) : µtoSet(κ)(f , g) and that τ ≡ (K κ f g) : Ω. By type

inversion rule , we have that v : (K κ f g), and therefore from type equality we have
v : τ .

Proposition  (Canonical Forms). Suppose that v : τ is a closed, well-formed value.

. If ` v : int, then v = n for some n.
. If ` v : unit, then v = ().
. If ` v : τ1 → τ2, then v = fun f (x : τ1) : τ2 is e end for some f , x, and e.
. If ` v : τ1 ∗ τ2, then v = (v1, v2) for some v1 and v2.

. If ` v : τ1 + τ2, then v = inj
(i)
τ1+τ2

(vi) for some vi.
. If ` v : µtoSet(κ)(f , g), then v = rollµtoSet(κ)(f ,g)(v′) for some v′.

Proof. The proof is by induction on the typing rules, using the fact that v is a value.

Theorem  (Progress). If Γ; ∆ ` e : τ , then either e is a value, or there exists e′ such
that e ↪→ e′.

Proof. The proof is by induction on the typing rules.

(Rule D.) By application of the induction hypothesis.

(Rule D.) Here n is already a value.

(Rule D.) Γ; ∆ ` op(e1, e2) : int. By the induction hypothesis, there are three cases:

– e1 and e2 are values. Thus by evaluation rule D., op(e1, e2) ↪→ e1 op e2.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1, and we apply the

search rule.
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we apply the

search rule.

(Rule D.) Γ; ∆ ` if e then e1 else e2 fi : τ . There are two cases:

– e is a value. Using type inversion and canonical forms, either e 6 = 0 or e = 0.
In either case, if e then e1 else e2 fi ↪→ ei, where i = 1 if e is nonzero or i = 2
otherwise.

– e is not a value. Then by the induction hypothesis, e ↪→ e′, and thus we apply the
search rule.



(Rule D.) fun f (x : τ1) : τ2 is e end is a value.

(Rule D.) Γ; ∆ ` e1(e2) : τ2, where Γ; ∆ ` e1 : τ1 → τ2 and Γ; ∆ ` e2 : τ1. By the
induction hypothesis, there are three cases:

– e1 and e2 are values. Using canonical forms, (Proposition ), e1 must be of the form
fun f (x : τ1) : τ2 is e′ end. Using D., e ↪→ e′[f := e1, x := e2].

– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1, and we apply the
search rule.

– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we apply the
search rule.

(Rule D.) The expression () is already a value.

(Rule D.) Γ; ∆ ` (e1, e2) : τ1 ∗ τ2, where Γ; ∆ ` e1 : τ1 and Γ; ∆ ` e2 : τ2. By the
induction hypothesis, there are three cases:

– e1 and e2 are values; thus (e1, e2) is itself a value.
– e1 is not a value. Thus by the induction hypothesis, e1 ↪→ e′1, and we apply the

search rule.
– e1 is a value, but e2 is not. By the induction hypothesis, e2 ↪→ e′2, and we apply the

search rule.

(Rule D.) Γ; ∆ ` #i(e) : τi, where Γ; ∆ ` e : τ1 ∗ τ2. By the induction hypothesis,
there are two cases:

– e is a value. Thus by canonical forms (Proposition ), e is of the form (v1, v2). Use
evaluation rule D..

– e is not a value. By the induction hypothesis, then, e ↪→ e′, and we apply the search
rule.

(Rule D.) Γ; ∆ ` inj
(i)
τ1+τ2

(e) : τ1 + τ2, where Γ; ∆ ` e : τi. By the induction hypoth-
esis, there are two cases:

– e is a value; therefore inj
(i)
τ1+τ2

(e) is itself a value.
– e is not a value. By the induction hypothesis, then, e ↪→ e′, and we apply the search

rule.

(Rule D.) Γ; ∆ ` caseτ1+τ2 e of inl(x1 : τ1) ⇒ e1 orelse inr(x2 : τ2) ⇒ e2 end : τ ,
where Γ; ∆ ` e : τ1 + τ2, Γ, x1 : τ1; ∆ ` e1 : τ , and Γ, x2 : τ2; ∆ ` e2 : τ . By the
induction hypothesis, there are two cases:

– e is a value. By canonical forms, e = inj
(i)
τ1+τ2

(v1). We apply D..
– e is not a value. By the induction hypothesis, then, e ↪→ e′; use the search rule.



(Rule D.) Here e = unroll(e1), with Γ; ∆ ` e1 : µtoSet(κ)(f , g). By the induction
hypothesis, there are two cases:

– e1 is a value. Thus, by canonical forms, e1 = rollµtoSet(κ)(f ,g)(v) for some v. Applying

evaluation rule D. gives us e ↪→ v.
– e1 is not a value. Apply the search rule.

(Rule D.) Here e = rollµtoSet(κ)(f ,g)(e1) with e1 : (K κ f g). By the induction hypothe-

sis, there are two cases:

– e1 is a value, therefore e = rollµκ(f ,g)(e1) is itself a value.
– e1 is not a value. Apply the search rule.

D. Example: CPS Conversion (Details)

We start by defining a version of λR
i using type-annotated terms. By f̄ and ē we denote

the terms without annotations. Type annotations allow us to present the CPS transfor-
mation based on syntax instead of typing derivations.

(exp) e ::= ēA

ē ::= x | n | () | op(e1, e2) | if e then e1 else e2 fi
| fun f (x : τ1) : τ2 is e end | e1(e2) | (e1, e2) | #i(e)
| caseτ1+τ2 e of inj(1)(x : τ1) ⇒ e1 or inj(2)(x : τ2) ⇒ e2

| inj
(i)
τ1+τ2

(ei) | rollτ(e) | unroll(e)

(oper) op ::= + | − | . . .

The target language λK of the CPS conversion stage has been defined in Section .. We
define the following syntactic sugar to denote non-recursive function definitions and
value applications in λK (here x′ is a fresh variable):

λx : A.e ≡ fix x′[](x : A).e
v v′ ≡ v[](v′)

ΛX1 : A1. . . . ΛXn.An.λx : A.e ≡ fix x′[X1 : A1, . . . , Xn : An](x : A).e

In the static semantics of λK we use two forms of judgments. As in λR
i , the judgment

Γ; ∆ `K v : A indicates that the value v is well-formed with type A. In addition, the
judgment Γ; ∆ `K e indicates that the expression e is well-formed. We will omit the
subscript on the ` symbol when it can be deduced from the context.

The static semantics for λK is specified by the following rules (we specify only the
rules which differ from those of λR

i):

A′ = (ΠX1 : A1.ΠXn : An.A) → ⊥
∆ ` Ai : si for all i ∈ {1, . . . , n}
∆, X1 : A1, . . . , Xn : An ` A : ΩK

Γ, x′ : A′, x : A; ∆, X1 : A1, . . . , Xn : An ` e

Γ; ∆ ` fix x′[X1 : A1, . . . , Xn : An](x : A).e : A′
(D.)



∆ ` Ai : Bi for all i ∈ {1, . . . , n}
Γ; ∆ ` v′ : (ΠX1 : A1.ΠXn : An.A) → ⊥

Γ; ∆ ` v : [X1 := A1, . . . , Xn := An]A
Γ; ∆ ` v′[A1, . . . , An](v)

(D.)

Γ; ∆ ` v : A Γ, x : A; ∆ ` e

Γ; ∆ ` let x = v in e
(D.)

Γ; ∆ ` v : A1 ∗ A2 Γ, x : Ai; ∆ ` e

Γ; ∆ ` let x = #i(v) in e
(D.)

Γ; ∆ ` v1 : int Γ; ∆ ` v2 : int Γ, x : int ` e

Γ; ∆ ` let x = v1 op v2 in e
(D.)

Γ; ∆ ` v : µtoSet(κ)(f , g) Γ, x : (K κ f g); ∆ ` e

Γ; ∆ ` let x = unroll(v) in e
(D.)

Γ; ∆ ` v : int Γ; ∆ ` e1 Γ; ∆ ` e2

Γ; ∆ ` if v then e1 else e2
(D.)

Γ; ∆ ` v : τ1 + τ2

Γ, x : τ1 ` e1

Γ, x : τ2 ` e2

Γ, x : τ ` e

Γ; ∆ ` let x = caseτ1+τ2 v of inj(1)(x : τ1) ⇒ e1 or inj(2)(x : τ2) ⇒ e2 in e
(D.)

The definition of the CPS transformation for computation terms of λR
i to computa-

tion terms of λK is given in Figure .

Proposition  (Type correctness of CPS conversion). If ·; · ` e : A, then ·; · `K

Kexp
q

eA
y

: (Kc(A) → ⊥).



Kexp
q

xA
y

= λk : Kc(A).k(x)
Kexp

q
nint

y
= λk : Kc(int).k(n)

Kexp
q
()unit

y
= λk : Kc(unit).k(())

Kexp
q

op(eint
1 , eint

2)int
y

= λk : Kc(int).Kexp
q

eint
1

y
(λv1 : Ktyp(int).

Kexp
q

eint
2

y
(λv2 : Ktyp(int).

(let x = op(v1, v2) in k x)))
Kexp

q
if eint then eA

1 else eA
2 fi

y
= λk : Kc(A).Kexp

q
eint

y
(λx : int.

if x then Kexp
q

eA
1

y
k else Kexp

q
eA

2

y
k fi)

Kexp Jfun f (x : A) : B is

eB endA→BK
= λk : Kc(A → B).k(fix f [](k : Kc(A → B)).

k(λy : Ktyp(A) ∗Kc(B).
let x = #1(y) in

let k = #2(y) in Kexp
q

eB
y

k))
Kexp

q
(eA→B

1 (eA
2))B

y
= λk : Kc(B).Kexp

q
eA→B

1

y

(λx1 : Ktyp(A → B).Kexp
q

eA
2

y

(λx2 : Ktyp(A).x1 (x2, k)))
Kexp

r
(eA1

1 , eA2
2)A1∗A2

z
= λk : Kc(A1 ∗ A2).

Kexp

r
eA1

1

z
(λx1 : Ktyp(A1).

Kexp

r
eA2

2

z
(λx2 : Ktyp(A2).k(x1, x2)))

Kexp
q

#i(eA1∗A2)Ai
y

= λk : Kc(Ai).Kexp
q

eA1∗A2
y

(λv : Ktyp(A1 ∗ A2).let x = #i(v) in k x)
Kexp JcaseA+B eA+B of

inj(1)(x : A) ⇒ eC
1

or inj(2)(x : B) ⇒ eC
2 K

= λk : Kc(C).Kexp
q

eA+B
y

(λv : Ktyp(A + B).
let x = caseKtyp(A+B) v of

inj(1)(x : A1) ⇒ Kexp
q

eC
1

y
k

or inj(2)(x : A2) ⇒ Kexp
q

eC
2

y
k in e)

Kexp

r
inj

(i)
A1+A2

(eAi)A1+A2

z
= λk : Kc(A1 + A2).Kexp

q
eAi

y

(λv : Ktyp(Ai).k inj
(i)
Ktyp(A1+A2)

(v))

Kexp

r
rollµtoSet(κ)(f ,g)(eK κ f g)

z
= λk : Kc(µtoSet(κ)(f , g)).Kexp

q
eK κ f g

y

(λv : Ktyp(K κ f g).
k rollKtyp(µtoSet(k)(f ,g))(v))

Kexp

r
unroll(eµtoSet(κ)(f ,g))K κ f g

z
= λk : Kc(K κ f g).Kexp JeµtoSet(κ)K

(λv : Ktyp(µtoSet(κ)(f , g)).
let x = unroll(v) in k x)

Fig. . CPS conversion: from λR
i to λK.



