
352

Compositionality and Observational Refinement for
Linearizability with Crashes

ARTHUR OLIVEIRA VALE, ZHONGYEWANG, YIXUAN CHEN, PEIXIN YOU, and ZHONG
SHAO, Yale University, USA

Crash-safety is an important property of real systems, as the main functionality of some systems is resilience to

crashes. Toward a compositional verification approach for crash-safety under full-system crashes, one observes

that crashes propagate instantaneously to all components across all levels of abstraction, even to unspecified

components, hindering compositionality. Furthermore, in the presence of concurrency, a correctness criterion

that addresses both crashes and concurrency proves necessary. For this, several adaptations of linearizability

have been suggested, each featuring different trade-offs between complexity and expressiveness. The recently

proposed compositional linearizability framework shows that to achieve compositionality with linearizability,

both a locality and observational refinement property are necessary. Despite that, no linearizability criterion

with crashes has been proven to support an observational refinement property.

In this paper, we define a compositional model of concurrent computation with full-system crashes. We

use this model to develop a compositional theory of linearizability with crashes, which reveals a criterion,

crash-aware linearizability, as its inherent notion of linearizability and supports both locality and observational

refinement. We then show that strict linearizability and durable linearizability factor through crash-aware

linearizability as two different ways of translating between concurrent computation with and without crashes,

enabling simple proofs of locality and observational refinement for a generalization of these two criteria. Then,

we show how the theory can be connected with a program logic for durable and crash-aware linearizability,

which gives the first program logic that verifies a form of linearizability with crashes. We showcase the

advantages of compositionality by verifying a library facilitating programming persistent data structures and

a fragment of a transactional interface for a file system.

CCS Concepts: •Theory of computation→Parallel computingmodels; Denotational semantics;Program

specifications; Program verification; Abstraction; • Computer systems organization→ Reliability.

Additional Key Words and Phrases: Crash-Aware Linearizability, Strict Linearizability, Durable Linearibility,

Compositional Linearizability

ACM Reference Format:

Arthur Oliveira Vale, Zhongye Wang, Yixuan Chen, Peixin You, and Zhong Shao. 2024. Compositionality and

Observational Refinement for Linearizability with Crashes. Proc. ACM Program. Lang. 8, OOPSLA2, Article 352
(October 2024), 115 pages. https://doi.org/10.1145/3689792

1 INTRODUCTION
In this paper, we develop a compositional account of linearizability under full-system crashes.

By a full-system crash, we mean a crash that results in all agents of a system failing or being

reset. This could result from a power outage, a user holding the power button on their computer,

a fatal crash in an OS, a critical component failure, etc. By compositional, we mean that verified

Authors’ address: Arthur Oliveira Vale, arthur.oliveiravale@yale.edu; Zhongye Wang, zhongye.wang@yale.edu; Yixuan

Chen, yixuan.chen@yale.edu; Peixin You, peixin.you@yale.edu; Zhong Shao, zhong.shao@yale.edu, Yale University, New

Haven, CT, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

2475-1421/2024/10-ART352

https://doi.org/10.1145/3689792

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0009-0002-4494-0486
HTTPS://ORCID.ORG/0000-0001-8659-8493
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0001-8184-7649
https://doi.org/10.1145/3689792
https://orcid.org/1234-5678-9012
https://orcid.org/0009-0002-4494-0486
https://orcid.org/0000-0001-8659-8493
https://orcid.org/0000-0001-8659-8493
https://orcid.org/0000-0001-8184-7649
https://doi.org/10.1145/3689792

352:2 Oliveira Vale et al.

components can be freely composed vertically and horizontally so that the composed system is

correct by construction, in that no side conditions are necessary to derive its correctness from

the correctness of its components. As a result, we obtain a framework for verifying large-scale

crash-aware systems against linearizability. To see why compositionality is important, consider

one of our main examples: the FLiT library [38].

The FLiT Library. Implementing persistent data structures, even when non-volatile memory

(NVM) is available, is notoriously challenging. For instance, one of the challenges when program-

ming with NVM is that it provides a buffered interface BCell. We can encapsulate the operations of

a buffered memory cell in the following signature, where 1 stands for some singleton set (we will

write () ∈ 1 if it is an argument, and ok ∈ 1 if it is a return) and Val a set of memory values:

BCell := {load : 1→ Val, store : Val→ 1, flush : 1→ 1}
What this signature expresses is that BCell provides three operations: load(), which takes unit

() ∈ 1 as argument and returns some value in Val; store(𝑣), which takes a value 𝑣 ∈ Val as argument,

and returns the unit ok ∈ 1; and flush(), which takes unit () as argument and returns a unit ok.
The signature BCell provides the syntax of the operations of a buffered memory cell. It must be

paired with a specification defined later, which provides the semantics of the operations. Such a

specification would state that stores are not guaranteed to persist immediately; instead, they are

buffered and persist only when the buffer is non-deterministically flushed or explicitly flushed by a

flush() invocation [33, 34]. In other words, once a crash happens, a load is only guaranteed to read

a value no older than the latest flush. The explicit flush operation guarantees a buffer flush at a

significant performance cost, so in practice, one would like to minimize its usage. For instance, in

the trace (where 𝛼0, 𝛼1, 𝛼2, and 𝛼3 are the names of the agents performing the operations):

𝛼0
𝛼0𝛼0:::store(0) · 𝛼0

𝛼0𝛼0:::ok · 𝛼0
𝛼0𝛼0:::flush() · 𝛼0

𝛼0𝛼0:::ok · 𝛼1
𝛼1𝛼1:::store(1) · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::load() · 𝛼2

𝛼2𝛼2:::𝑣 · · 𝛼3
𝛼3𝛼3:::load() · 𝛼3

𝛼3𝛼3:::𝑣
′

the value 𝑣 must be 𝑣 = 1, as 1 is currently the buffered value. Meanwhile, either 𝑣 ′ = 0 (the value

at the latest flush), or 𝑣 ′ = 1 (which could have been non-deterministically flushed from the buffer).

This non-determinism of the value of a load after a crash complicates programming with NVM.

Some works attempt to facilitate programming persistent data structures by providing more

robust persistent objects than those available directly from the underlying NVM, which usually only

provides buffered memory cells. One such work is FLiT, a C++ library which provides a wrapper

for the BCell operations. Specifically, in its essence, FLiT provides an object with signature

FLiT := {load : 1→ Val, store : Val→ 1}.
As is traditional in the linearizability literature, we use a set of valid concurrent traces 𝜈 ′ to represent
objects. 𝜈 ′ may be further abstracted by providing a set 𝜈 of less concurrent traces (often atomic,

i.e., traces where every invocation is immediately followed by its response) with respect to which

the traces in 𝜈 ′ are linearizable1. In the context of durable linearizability [22], 𝜈 ′ also differs from

its linearized specification 𝜈 in that 𝜈 ′ has explicit crashes while 𝜈 does not. More precisely, durable

linearizability requires that ops(𝜈 ′), the crash-less specification obtained by removing all crash

events from traces in 𝜈 ′, is linearizable (in the usual sense) w.r.t. 𝜈 .

We specify the FLiT object 𝜈 ′FLiT to be durably linearizable to 𝜈FLiT, the usual crash-less atomic

memory cell. This should be understood as stating that the FLiT operations are persistent in 𝜈 ′FLiT,
meaning that a load after a crash does read the most recently written value, up to happens-before

reordering. FLiT’s implementation𝑀FLiT, which runs on top of a buffered memory cell object 𝜈 ′BCell
and of a volatile counter object 𝜈 ′Counter, does this by: (1) always flushing stores; (2) using the counter
to keep track of when flushes are necessary; (3) having loads only flush when the counter marks

that a flush is necessary. The counter specified by 𝜈 ′Counter is volatile in that it lives in volatile

1
We take the convention that a primed specification is a concrete specification, and the un-primed an abstract specification

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:3

memory, so after a crash, a new instance is created with the initial value of 0. The code𝑀FLiT for

our simplified formulation of FLiT is found below in Fig. 1.

Import B:BCell
Import C:Counter

load() store(v)

{ v ← B.load (); { C.inc();

if(C.get() != 0) B.store(v);

{ B.flush (); } B.flush ();

return v; C.dec();

} return; }

Fig. 1. FLiT Memory Cell Implementation𝑀FLiT

For instance, a buffered memory cell allows for

the following trace:

𝛼0
𝛼0𝛼0:::store(1) · 𝛼1

𝛼1𝛼1:::load() · 𝛼1
𝛼1𝛼1:::1 · · 𝛼2

𝛼2𝛼2:::load() · 𝛼2
𝛼2𝛼2:::𝑣

where either 𝑣 = 0 (when the buffer containing 1

has not flushed before the crash) or 𝑣 = 1 (when

the buffer is flushed before the crash). If 𝑣 = 0,

the trace is not durably linearizable to the usual

memory cell specification because a 0 is read after

1 is read with no store(0) to justify it.

Meanwhile, when using FLiT, the call to

store(1) must execute at least up to the 𝐵.store(1) invocation (as load() manages to read 1). This

means that the call to store(1) will have executed 𝐶.inc(). Assuming it only executes up to re-

ceiving the response 𝐵.ok to its 𝐵.store(1) call (otherwise, it executes a flush). The 𝛼1𝛼1𝛼1:::load() call
will execute to completion, so it will call 𝐵.load() and receive 𝐵.1 as response. Then, it will read 1

from 𝐶.get(), and will execute 𝐵.flush() before returning 1. Hence, when the crash happens, the

buffered memory cell has been flushed, guaranteeing that any load() calls after the crash will read

1. Therefore, calling the memory operations using FLiT guarantees that 𝑣 = 1.

The FLiT paper claims that: “Using the library’s default mode makes any linearizable data

structure durable [...]”, which they do not prove. In fact, it is challenging to state this theoremwithout

a compositional model of crash-aware computation, as it concerns discussing the composition

of arbitrary clients with FLiT. In addition, even if such a compositional model were available, it

must provide good support for durable linearizability and be closely connected with a concurrent

compositional model without crashes, also providing good support for usual linearizability [20]. The

reason for this is that this statement relates an implementation that assumes the usual concurrent

memory and implements a linearizable object, with an implementation that runs on top of the crash-

aware FLiT library and implements a durably linearizable object. No framework for verification of

concurrent systems with crashes allows for the correctness of FLiT to be stated in full formality,

much less for it to be proved and used to build provably correct durable components using a

crash-less component (i.e., one whose specification does not involve crashes) which has been

previously verified against a linearizability specification.

Using our compositional account of linearizability with crashes, we prove the following FLiT
correctness theorem (𝜈 ′Cell is any crash-less object Herlihy-Wing linearizable to 𝜈FLiT).

Proposition 1.1 (FLiT Correctness). For any object signature 𝐸, writing 𝜈 ′Mem := ⊗𝑖∈𝐼𝜈 ′Cell for
the horizontal composition of several memory cells, if 𝜈 ′Mem;𝑀 is an object linearizable to 𝜈𝐸 then,
writing 𝜈 ′BMem := ⊗𝑖∈𝐼𝜈 ′BCell, it follows that 𝜈

′
BMem;𝑀FLiT; vol(𝑀) is durably linearizable to 𝜈𝐸 .

The −⊗− operation stands for horizontal composition, which composes two objects into a single

object, allowing operations from both components to be issued by a client. Therefore, 𝜈 ′Mem defines

a memory array.𝑀 is code implementating a new object with signature 𝐸 using the memory array

𝜈 ′Mem. The −;− stands for vertical composition, so that 𝜈 ′Mem;𝑀 stands for the object obtained by

running the implementation𝑀 on top of the memory array. Similarly, 𝜈 ′BMem is a buffered memory

array. vol(𝑀) adds crash semantics to𝑀 by running it in each epoch (the period in between crashes),

so that 𝜈 ′BMem;𝑀FLiT; vol(𝑀) is the object obtained by running𝑀 on top of the FLiT wrapper𝑀FLiT
around the buffered memory array.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:4 Oliveira Vale et al.

(𝑏)

𝜈 ′Cell ; 𝜈FLiT ⊗ . . . ⊗ 𝜈 ′Cell ; 𝜈FLiT

𝑀Snapshot

𝜈 ′Snapshot ; 𝜈Snapshot

(𝑎)

𝜈 ′BCell ;
 𝜈BCell ⊗ 𝜈 ′Counter ;

 𝜈Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

𝜈 ′BCell ⊗ 𝜈 ′Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

⊗ . . . ⊗
𝜈 ′BCell ⊗ 𝜈 ′Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

dur(𝑀Snapshot)

𝜈 ′Snapshot ;
dur 𝜈Snapshot

(𝑑)

(𝑐)
(𝑒)

Fig. 2. (a) Using our program logic for durable linearizability, we verify the FLiT implementation; (b) Using
the program logic for compositional linearizability we verify the crash-less snapshot object; (c) Using the FLiT
correctness theorem, we lift the crash-less snapshot object into durably linearizable snapshot object running
on top of a FLiT array; (d) Using vertical and horizontal composition, we obtain (e) a durably linearizable
snapshot object running on top of an array of buffered memory cells and volatile counters.

We prove this by developing a compositional theory of durable linearizability which supports

both locality and observational refinement (where we write 𝜈 ′ ;dur 𝜈 for “𝜈 ′ is durably linearizable

to 𝜈”), proving locality and observational refinement properties for durable linearizability, and then

introducing a program logic for verifying individual components to be durably linearizable. Using

our program logic, we show that (depicted diagrammatically in Fig. 2 (a)):

Proposition 1.2. (𝜈 ′Counter ⊗ 𝜈 ′BCell);𝑀FLiT is durably linearizable with respect to 𝜈FLiT.

(𝜈 ′Counter ⊗ 𝜈 ′BCell);𝑀FLiT is the object obtained by running the code in Fig. 1 on top of the volatile

counter 𝜈 ′Counter and the buffered memory cell 𝜈 ′BCell. By using an observational refinement property

for crash-aware linearizability, a novel linearizability criterion we introduce, we prove this using

instead the linearized specifications for the counter and the bufferedmemory cell, greatly simplifying

its proof by only considering atomic traces. By verifying that𝑀FLiT is durably linearizable, we can

use locality (Prop. 1.4) and observational refinement (Prop. 1.3) to prove FLiT’s correctness.

Proposition 1.3 (Observational Refinement). An object 𝜈 ′
𝐴
: 𝐴 is durably linearizable to 𝜈𝐴 if

and only if whenever an implementation𝑀 implements a concurrent object linearizable to 𝜈𝐵 using
𝜈𝐴, vol(𝑀) implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

Proposition 1.4 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵:

𝜈 ′
𝐴 ;dur 𝜈𝐴 and 𝜈 ′

𝐵 ;dur 𝜈𝐵 if and only if 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵
While the original paper on durable linearizability claims it satisfies locality, it does not do so

by formalizing horizontal composition. Meanwhile, our locality statement is directly formulated

within our compositional model of computation with crashes, which is defined independent of any

notion of linearizability. This makes our locality theorem much stronger as it interacts well with

refinement and vertical composition. Observational refinement, however, has never been shown for

any linearizability criteria with crashes. Our program logic is the first to verify any linearizability

criteria with crashes. Moreover, as it is necessary to verify the FLiT library, our program logic can

reason about external linearization points and helpings [26], even across crashes.

We further showcase the benefits of compositionality and of the FLiT correctness theorem by

showing that we can lift a crash-less interval-sequential linearizable snapshot object [7] into a

durable one (Fig. 2 (b)). We do this by first verifying the write-snapshot implementation𝑀Snapshot

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:5

from Borowsky and Gafni [6] using the program logic of Oliveira Vale et al. [31, 32]. The imple-

mentation uses a (crash-less) memory cell object 𝜈 ′Cell (which is Herlihy-Wing linearizable to 𝜈FLiT)

to implement an object with interface Snapshot with a single operation write_snapshot:

Snapshot := {write_snapshot : Val→ P(Val)}

The operation write_snapshot writes the current value to the memory and returns a set of values

that have been written to the object before. The implementation𝑀Snapshot uses one memory cell

per agent 𝛼 ∈ 𝑆 in the snapshot system to implement the Snapshot object.
Using the soundness theorem for their program logic [31], we obtain a crash-less interval-

sequential linearizable object. Because we formally connect our model and durable linearizability

definition to their model, we can then use the FLiT correctness theorem to obtain that the write-

snapshot object is interval-sequential durably linearizable in the model with crashes. Note that

this also showcases that our linearizability criteria and program logic are all generalized to handle

interval-sequential objects. We display this setup in Fig. 2 (e).

While durable linearizability is a good criterion for specifying persistent objects, it is inept

at expressing objects with less persistent behaviors, such as volatile objects, buffered objects,

or objects with hybrid crash behaviors (e.g., horizontal compositions of objects with different

persistency guarantees). Therefore, we use the methodology of compositional linearizability [31] to

derive the inherent notion of linearizability to our compositional model, which we call crash-aware
linearizability. We show that this criterion, though simple, is novel to our work and satisfies locality

and observational refinement. Then, we show that durable linearizability and strict linearizability

factor through crash-aware linearizability as different ways to translate crash-aware linearizable

objects to the crash-less model from compositional linearizability. We showcase that crash-aware

linearizability is a robust verification criterion by verifying a fragment of a transactional file system

interface featuring recovery and objects with many different persistency guarantees.

Summary of Main Contributions.

• A compositional model of concurrent computation with crashes directly connected to the model

of crash-less computation used in the compositional linearizability paper [31].

• A novel linearizability criterion, which we call crash-aware linearizability, is apt for specifying

objects with a variety of crash behaviors.

• Compositional formulations of strict and durable linearizability, in particular, generalizing them

away from atomic specifications.

• Proofs of locality, formulated for the first time in a compositional style, for crash-aware, strict,

and durable linearizability.

• The first proofs of observational refinement properties for any linearizability criterion with

crashes, which we show for crash-aware, strict, and durable linearizability.

• Two variations of a program logic for showing linearizability of crash-aware components: one

for crash-aware linearizability and the other for durable linearizability. This makes for the first

program logic that can prove linearizability specifications for components with crashes.

• A proof of correctness for FLiT and a proof that the snapshot object of Borowsky and Gafni

[6] is interval-sequential linearizable, yielding a verified durable interval-sequential snapshot

object using the FLiT correctness theorem.

• A proof of correctness, against crash-aware linearizability, of a simplified file API, involving

objects with a variety of crash-behaviors and a few layers to exemplify compositionality under

heterogenous crash-behaviors.

We present a reduced treatment of our results, which emphasizes the main points and omits all

proofs. A full account of our results may be found in our extensive appedix.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:6 Oliveira Vale et al.

2 THREE LINEARIZABILITY CRITERIA UNDER CRASHES
We start the technical core of our paper by defining and contrasting three different linearizability

criteria under crashes: crash-aware linearizability, strict linearizability and durable linearizability.
We assume a crash model with full-system crashes, that is, a crash event crashes all agents in the

system. This is appropriate for, for example, a multicore machine but not for a distributed system,

which requires individual crashes for each node. It serves, however, as a crucial stepping stone

toward a realistic compositional modeling of distributed systems with crashes, as each node is

often a multi-threaded system over a multicore machine. We define the criteria formally but omit

many technical details of the compositional model, which we explain later in §3.

2.1 Preliminaries
Our model is parametrized by a set Υ of agent names 𝛼 ∈ Υ. Events look like 𝛼𝛼𝛼:::𝑚 denoting that

agent 𝛼 performs an invocation or response𝑚. If𝑀 denotes the given set of events then 𝑠 ∈ 𝑀∗
is said to be a crash-less well-formed trace if its projection 𝜋𝛼 (𝑠) to only events performed by 𝛼

alternates between invocations and responses, and denote the set of all such traces by Pconc
𝑀

.

We denote a crash event by . We say a trace 𝑠 ∈ (𝑀 +)∗ is a well-formed crash-aware trace if
it is of the form 𝑠1 · · 𝑠2 · · . . . · · 𝑠𝑛 where each 𝑠𝑖 ∈ Pconc𝑀

. Given this decomposition, we define

the number of epochs ∥𝑠 ∥ of 𝑠 to be ∥𝑠 ∥ := 𝑛. The trace 𝑠𝑖 is called the 𝑖-th epoch of 𝑠 and denoted

by epo𝑖 (𝑠) := 𝑠𝑖 . We denote the set of all well-formed crash-aware traces over𝑀 by P
𝑀
.

As usual with linearizability, a specification is a non-empty, prefix-closed set of well-formed traces.

If the specification 𝜈 only has crash-less traces, i.e. 𝜈 ⊆ Pconc
𝑀

, we call it a crash-less specification,
and if it has crash-aware traces, i.e. 𝜈 ⊆ P

𝑀
, we call it a crash-aware specification.

Toward defining our linearizability criteria, we start by defining a rewrite system that models the

preservation of happens-before ordering from the usual linearizability definition in a more localized

way. This formulation has been used in many developments on linearizability [2, 14, 18, 31].

Definition 2.1. We define a string rewrite system⇝ with local rewrite rule:

𝑠 · 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝑡 ⇝ 𝑠 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝛼𝛼𝛼:::𝑚 · 𝑡
whenever 𝛼 ≠ 𝛼 ′ and one of the following two conditions hold:

• 𝑚 and𝑚′ are both invocations or both responses, or

• 𝑚 is an invocation and𝑚′ is a response.

The definition of linearizability from the compositional linearizability paper is then given by:

Definition 2.2. A crash-less trace 𝑠 ∈ Pconc
𝑀

is linearizable to a crash-less trace 𝑡 ∈ Pconc
𝑀

when

there exists a sequence of responses 𝑠𝑃 ∈ 𝑀∗ and a sequence of invocations 𝑠𝑂 ∈ 𝑀∗ such that

𝑠 · 𝑠𝑃 ⇝ 𝑡 · 𝑠𝑂 . We write 𝑠 ; 𝑡 when 𝑠 is linearizable to 𝑡 . We say a crash-less specification 𝜈 ′

linearizes to another one 𝜈 , written 𝜈 ′ ; 𝜈 , when every trace 𝑠 ∈ 𝜈 ′ linearizes to some trace 𝑡 ∈ 𝜈 .
Note that 𝑡 is not required to be atomic, as in Herlihy-Wing linearizability, and that 𝑠𝑂 is not

required to contain every pending invocation of 𝑠 · 𝑠𝑃 , unlike most definitions of linearizability. If 𝑡

is an atomic trace, then this definition is equivalent to the original Herlihy-Wing definition [18, 31].

2.2 Linearizability Under Full-System Crashes
We now define crash-aware linearizability, the criterion we propose in this paper. It requires that

each epoch of a trace 𝑠 linearizes, in the crash-less sense, to the corresponding epoch of 𝑡 .

Definition 2.3. A crash-aware trace 𝑠 ∈ P
𝑀
is crash-aware linearizable to a trace 𝑡 ∈ P

𝑀
when

∥𝑠 ∥ = ∥𝑡 ∥ and ∀𝑖 ≤ ∥𝑠 ∥ .epo𝑖 (𝑠) ; epo𝑖 (𝑡)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:7

We denote this as 𝑠 ; 𝑡 , extending the notation to specifications as with linearizability (Def. 2.2).

Observe that crash-aware linearizability relates crash-aware specifications to crash-aware spec-

ifications. This is unusual in the literature on linearizability under crashes, as the other criteria

relate a crash-aware specification to a crash-less specification. We discuss the reasons for this later

when we have defined two other linearizability criteria and can better compare them.

We now define strict linearizability [2]. Our definition differs from the original one in that it

specializes it to full-system crashes (instead of allowing for each agent to crash independently),

removes the notion of aborted executions, and generalizes away from atomicity to allow for non-

atomic linearized specifications. The first two changes were already considered in Ben-David et al.

[3] and make the criterion appropriate for the settings we are interested in, such as NVM and file

systems. The later change goes along the lines of the way that Castañeda et al. [7] and Oliveira Vale

et al. [31] generalize Herlihy-Wing linearizability [20]. If we restrict our definition so that the

linearized trace must be atomic, we obtain the same criterion considered by Ben-David et al. [3].

Definition 2.4. For a crash-aware trace 𝑠 , we define, whenever well-formed, the crash-less trace

ops(𝑠) := epo
1
(𝑠) · epo

2
(𝑠) · . . . · epo∥𝑠 ∥ (𝑠)

We say a crash-aware trace 𝑠 ∈ P
𝑀
is strictly linearizable to a crash-less trace 𝑡 , written 𝑠 ;str 𝑡 ,

when there exists a crash-aware trace 𝑡 ′ such that 𝑠 ; 𝑡 ′ and ops(𝑡 ′) = 𝑡 .

Note that our definition of strict linearizability shows a clear factoring of strict linearizability as

crash-aware linearizability followed by crash-removal.

The third and final linearizability criterion we consider here is durable linearizability [22]. Durable
linearizability is more expressive than strict linearizability [3, 19] in that it considers more objects

to be linearizable. This comes at the cost of the extra assumption on the model that new agent

names are used in each epoch, which we call the durability assumption.

Definition 2.5. We say a crash-aware trace 𝑠 ∈ P
𝑀
is durable when:

∀𝑖, 𝑗 ≤ ∥𝑠 ∥.𝑖 ≠ 𝑗 =⇒ Υ(epo𝑖 (𝑠)) ∩ Υ(epo𝑗 (𝑠)) = ∅

where Υ(𝑡) is the set of agents appearing in a trace 𝑡 . We denote by Pdur
𝑀
⊆ P

𝑀
the subset of

well-formed crash-aware traces that are durable.

When a trace 𝑠 is durable, ops(𝑠) is always a well-formed crash-less trace. Durable linearizability

is then defined in terms of usual crash-less linearizability. Our definition, similarly to our definitions

of the other linearizability criteria we consider, generalizes away from atomicity by allowing

linearized traces to be non-atomic and allows for the specification of blocking objects, as it does

not require all uncompleted pending invocations to be removed. It is, however, fully equivalent to

the original definition of durable linearizability if we require that the linearized trace be atomic.

Definition 2.6. We say a durable trace 𝑠 ∈ Pdur
𝑀

is durably linearizable, written 𝑠 ;dur 𝑡 , to a

crash-less trace 𝑡 when ops(𝑠) ; 𝑡 .

Note that durable linearizability corresponds to the inverse factoring to strict linearizability,

one first removes crashes and then uses crash-less linearizability. These two factorings play an

important technical role in our proofs. Moreover, it is possible to show that both criteria factor (in

a different sense) through crash-aware linearizability.

Proposition 2.7.

•If 𝑠′ ; 𝑠 and 𝑠 ;str 𝑡 then 𝑠
′
;str 𝑡 • If 𝑠′ ; 𝑠 and 𝑠 ;dur 𝑡 then 𝑠

′
;dur 𝑡

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:8 Oliveira Vale et al.

Because of this fact, in practice, when verifying durably linearizable objects, we find it useful to

use a crash-aware specification 𝜈mid
satisfying: 𝜈 ′ ; 𝜈mid

and 𝜈mid ;dur 𝜈 . This allows us to consider

less concurrent traces within the linearized specification for 𝜈 ′ by linearizing as much as possible

within each epoch of 𝜈mid
first. This allows us to obtain the benefits of both crash-aware and

durable linearizability simultaneously: by maintaining both 𝜈mid
and 𝜈 we can still express durably

linearizable specifications, but by manipulating 𝜈mid
we achieve the same level of compositionality

as crash-aware linearizability. This technique is not necessary for strict linearizability because we

can just use crash-aware linearizability directly by always picking 𝜈mid
so that ops(𝜈mid) = 𝜈 .

2.3 Specifying a Buffered Memory Cell
In §1 we mentioned that we use crash-aware linearizability to specify a buffered memory cell with

signature BCell. As an example, we define here what the linearized specification for a buffered

memory cell implementation would be under crash-aware linearizability.

An example of a trace of a concrete buffered memory cell 𝜈 ′BCell is:

𝛼1
𝛼1𝛼1:::store(1) · 𝛼2

𝛼2𝛼2:::load() · 𝛼1
𝛼1𝛼1:::ok · 𝛼2

𝛼2𝛼2:::0 · 𝛼2
𝛼2𝛼2:::flush() · 𝛼1

𝛼1𝛼1:::store(2) · 𝛼1
𝛼1𝛼1:::ok · · 𝛼3

𝛼3𝛼3:::load() · 𝛼3
𝛼3𝛼3:::1

The trace above is crash-aware linearizable to the following trace, among others:

𝛼2
𝛼2𝛼2:::load() · 𝛼2

𝛼2𝛼2:::0 · 𝛼1
𝛼1𝛼1:::store(1) · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::flush() · 𝛼2

𝛼2𝛼2:::ok · 𝛼1
𝛼1𝛼1:::store(2) · 𝛼1

𝛼1𝛼1:::ok · · 𝛼3
𝛼3𝛼3:::load() · 𝛼3

𝛼3𝛼3:::1

We specify the semantics of the buffered memory cell by a set of traces 𝜈 ′BCell with only events that

are allowed by the signature BCell. Crashes can happen at any point. To specify the correctness

of 𝜈 ′BCell we require it to be crash-aware linearizable to the atomic linearized specification 𝜈BCell.

Because we show observational refinement, we are able to leave 𝜈 ′BCell unspecified for the sake

of verifying the FLiT implementation, as only the linearized specification will be necessary. The

linearized specification 𝜈BCell is then defined by:

𝑠 ∈ 𝜈BCell ⇐⇒ 𝑠 is atomic ∧ (∀𝑠1, 𝑠2.∀𝑣 .𝑠 = 𝑠1 · 𝛼𝛼𝛼:::load() · 𝛼𝛼𝛼:::𝑣 · 𝑠2 =⇒ 𝑣 ∈ snd(mstate(𝑠1)))
where mstate(𝑠) assigns to an atomic complete trace 𝑠 a set of pairs mstate(𝑠) ⊆ Val × Val. A
pair (𝑣𝑝 , 𝑣𝑏) ∈ mstate(𝑠) consists of a possibility for a value 𝑣𝑝 that has persisted and a value 𝑣𝑏
currently in the buffer. mstate(𝑠) is then the function inductively defined below (𝑣0 ∈ Val is an
identified initial value for the memory cell):

mstate(𝜖) := {(𝑣0, 𝑣0)} mstate(𝑠 ·) := {(𝑣, 𝑣) | ∃𝑣 ′ .(𝑣, 𝑣 ′) ∈ mstate(𝑠)}

mstate(𝑠 · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok) := {(𝑣 ′, 𝑣) | ∃𝑣 ′′ .(𝑣 ′, 𝑣 ′′) ∈ mstate(𝑠)} ∪ {(𝑣, 𝑣)}

mstate(𝑠 · 𝛼𝛼𝛼:::load() · 𝛼𝛼𝛼:::𝑣) := {(𝑣 ′, 𝑣) | (𝑣 ′, 𝑣) ∈ mstate(𝑠)}

mstate(𝑠 · 𝛼𝛼𝛼:::flush() · 𝛼𝛼𝛼:::ok) := {(𝑣, 𝑣) | (𝑣 ′, 𝑣) ∈ mstate(𝑠)}

The function snd(𝑝) projects into the second component 𝑣𝑏 of the pair 𝑝 = (𝑣𝑝 , 𝑣𝑏), so that

snd(mstate(𝑠)) = {𝑣𝑏 | ∃𝑣𝑝 .(𝑣𝑝 , 𝑣𝑏) ∈ mstate(𝑠)}.
Note that we could have specified it instead using a labeled state transition system (LTS), in

which case 𝜈BCell is the set of traces that start from the initial state of the LTS. Either way of defining

𝜈BCell defines the same set of traces.

2.4 Contrasting Crash-Aware Linearizability
We now compare crash-aware linearizability against strict and durable linearizability. We will not

compare strict and durable linearizability against each other since they are not new to our work,

and refer the interested reader to the following references [3, 19, 22]. We do briefly mention a key

difference that applies to crash-aware linearizability as well. In strict and crash-aware linearizability,

a pending invocation must be linearized within the epoch it was issued. Durable linearizability,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:9

however, allows for a pending invocation to be linearized in (essentially) a later epoch by allowing

those pending invocations to be reordered after events from later epochs. This is what makes it

more expressive than strict linearizability, allowing for more complex crash behaviors, such as

recovering parts of a data structure only when they are demanded by a client, which could happen

several epochs later. As explained in the remark at the end of §2.2 crash-aware linearizability

interacts well with durable linearizability. This will be discussed further in §5.3.

As we saw, both durable and strict linearizability factor through crash-aware linearizability. The

key difference between the two former criteria and the latter is that the former use crash-less

linearized specifications, while the latter uses crash-aware linearized specifications. So let’s refer to

the former as crash-unaware criteria.
Crash-unaware criteria reduce the correctness of an object with crashes to that of an object with-

out crashes. This makes them great at specifying objects with very strong persistency guarantees,

that is, objects whose whole state (or almost) persists after a crash. But it makes them quite deficient

at specifying objects with weaker persistency guarantees such as volatile objects (all of the state is

lost on a crash), objects with hybrid persistency (part of the state is volatile and part of the state

is persistent), or objects whose persistency features some degree of non-determinism (such as in

buffered memory). Some of these issues were already known. For instance, in the original durable

linearizability paper [22], it is noted that the criteria do not behave well when used to specify a

buffered object, requiring them to define an ad-hoc notion of buffered durable linearizability which

does not satisfy locality, making it not compositional.

Consider the simple problem of specifying the correctness of a volatile object. Given a crash-less

specification 𝜈 , we can construct a crash-aware specification vol(𝜈) of a volatile version of that

object by the Kleene algebra formula vol(𝜈) := (𝜈 ·)∗ · 𝜈 .
For example, given the usual atomic counter specification 𝜈Counter, the following trace is allowed

by vol(𝜈Counter) (the subscript 1 under the Counter operations will be useful later):
𝑠1 = 𝛼1

𝛼1𝛼1:::inc1 · 𝛼1
𝛼1𝛼1:::ok · 𝛼2

𝛼2𝛼2:::get1 · 𝛼2
𝛼2𝛼2:::1 · · 𝛼3

𝛼3𝛼3:::get1 · 𝛼3
𝛼3𝛼3:::0

Note that the crash move plays a crucial role in the specification, as the counter only resets to 0

after a crash event (such as the last get event in 𝑠1), making the linearized specification deterministic.

Under crash-aware linearizability, a concurrent object 𝜈 ′ correctly implements a volatile version

of a crash-less object 𝜈 when 𝜈 ′ ; vol(𝜈). With our methods, it is easy to show that

Proposition 2.8. If 𝜈 ′ ; 𝜈 then vol(𝜈 ′) ; vol(𝜈).
A consequence of this is that if we have an implementation 𝑀 that implements a crash-less

object linearizable to 𝜈𝐵 on top of a crash-less object 𝜈𝐴, then if we run𝑀 on each epoch on top of

vol(𝜈𝐴) then𝑀 implements an object crash-aware linearizable to vol(𝜈𝐵). Formally,

𝜈𝐴;𝑀 ; 𝜈𝐵 =⇒ vol(𝜈𝐴); vol(𝑀) ; vol(𝜈𝐵)
In other words, crash-aware linearizability is able to appropriately specify and characterize the

correctness of volatile objects in a way that is useful to a client.

Now, consider what happens if we try to specify a volatile object using a crash-unaware criterion.

A crash-unaware linearized specification will need to include both of the following traces:

ops(𝑠1) = 𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 and 𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::1

so that the linearized specification under crash-unaware criteria must admit non-deterministically

resetting the counter at any point. This can happen at any point, but the point at which it happens

is not detectable in the linearized specification, which makes the specification quite weak. This

means that even if some observational refinement theorem (à la Filipovic et al. [14]) holds for

the crash-unaware criterion, the client to the linearized specification will need to contend with

non-determinism, making the contextual refinement, and hence vertical composition, weaker.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:10 Oliveira Vale et al.

This issue is compounded when considering horizontal composition. Both durable and strict

linearizability are known to satisfy locality. However, those locality theorems introduce even more

non-determinism into the resulting linearized specifications. Consider now a second trace 𝑠2 for a

second counter independent of the counter in play 𝑠1

𝑠2 = 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

Any trace in their parallel composition 𝑠1 ⊗ 𝑠2 (the set of well-formed crash-aware interleavings

of 𝑠1 and 𝑠2, defined in §3) synchronizes on the crash, so both counters reset their state at the same

time. For example, the following crash-aware trace belongs to 𝑠1 ⊗ 𝑠2:
𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0

Meanwhile, the corresponding linearized specifications under durable or strict linearizability

include these traces without the crash event, i.e., ops(𝑠1) and ops(𝑠2). Hence, the following trace is

in their parallel composition ops(𝑠1) ⊗ops(𝑠2) (the set of their well-formed crash-less interleavings):

𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

There is no trace of the concrete horizontally composed volatile counters that is linearizable to

the trace above, as we must at least introduce a crash right before 𝛼3𝛼3𝛼3:::get1 to justify its return 𝛼3𝛼3𝛼3:::0:

𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

This makes the trace inconsistent with the semantics of the second counter, as the crash should

also have reset it, so that 𝛼2𝛼2𝛼2:::get2 should not return 𝛼2𝛼2𝛼2:::1. The same kind of argument shows how

crash-unaware criteria fail to accurately handle hybrid and buffered objects (all the traces above

are valid for a buffered counter, for example).

3 A CONCURRENT GAME SEMANTICS WITH CRASHES
So far, in §2 we focused on three linearizability criteria in a unstructured setup. For instance,

we did not enforce typing on specifications. This will not be enough to achieve the degree of

compositionality we seek, especially as we treat objects as open components.

In this section, we discuss our compositional model with crashes in detail. The model is defined

using a simple game semantics. The reader not familiar with game semantics jargon will find the

following approximation useful. A game 𝐴, 𝐵 roughly corresponds to a type; a move of the game 𝐴

corresponds to an event of type 𝐴 which also has a polarity, i.e. its metadata (such as the name of

the agent who issued it, and whether it is a move by the environment or by the system); a play
over a game 𝐴 is a trace of that type. Crucially, plays can have higher-order types (unlike in most

trace semantics); in particular, we may form the affine implication game 𝐴 ⊸ 𝐵 (the type of code

using an object of type𝐴 to implement one of type 𝐵) whose plays are well-formed traces involving

moves from both 𝐴 and 𝐵; a strategy 𝜎 of type 𝐴 is the denotation of some computation, be it a

state transition system, or the semantics of some code. It is represented as some prefix-closed set

of plays
2
of its type 𝐴. Readers looking for comprehensive introductions to game semantics may

benefit from Abramsky and McCusker [1], Ghica [15], Hyland [21] though we warn that our model

simplifies several aspects of these game semantics, which are not necessary for our purposes.

3.1 Games with Full-System Crashes
Definition 3.1 (Polarities and Moves). A move set consists of a set of moves 𝑀 together with an

assignment 𝜆 : 𝑀 → ∑
𝛼∈Υ{𝑂, 𝑃}, that is, every move is labeled with the agent who plays it and

2
It is folklore that prefix-closed sets of traces are in one-to-one correspondence with equivalence classes of transition

systems under forward-backward simulation [27]. Therefore, all of our results translate to equivalent statements that hold

up to forward-backward simulation. We use a presentation based on prefix-closed sets of traces as it aligns well with the

typical treatment of linearizability, while simplifying many aspects of the presentation and of the compositional structure.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:11

whether or not it is an environment (𝑂) or a system (𝑃) move. The elements of

∑
𝛼∈Υ{𝑂, 𝑃} are

called polarities and are denoted by 𝛼𝛼𝛼:::𝑂 or 𝛼𝛼𝛼:::𝑃 .

Most of the games we use in practice will be defined by first providing an effect signature. An

effect signature is a collection of operations, or effects, 𝐸 = (𝑒𝑖)𝑖∈𝐼 together with assignments

par(−), ar(−) : 𝐸 → Set of a set of parameters par(𝑒) and a set of return values ar(𝑒) for each
operation 𝑒 ∈ 𝐸. This is conveniently described by the following notation.

𝐸 = {𝑒𝑖 : par(𝑒𝑖) → ar(𝑒𝑖) | 𝑖 ∈ 𝐼 }
All the signatures defined in §1 are effect signatures. We call an Υ-indexed collection of effect

signatures 𝐸 = (𝐸 [𝛼])𝛼∈Υ a concurrent effect signature. Given a concurrent effect signature 𝐸 we

define a corresponding move set as follows:

𝑀†𝐸 :=
∑

𝛼∈Υ (
∑

𝑒∈𝐸 [𝛼]par(𝑒) +
∑

𝑒∈𝐸 [𝛼]ar(𝑒))

𝜆†𝐸 (𝛼𝛼𝛼:::𝑒 (𝑎)) := 𝛼𝛼𝛼:::𝑂, 𝑒 ∈ 𝐸 [𝛼] ∧ 𝑎 ∈ par(𝑒) 𝜆†𝐸 (𝛼𝛼𝛼:::𝑣) := 𝛼𝛼𝛼:::𝑃, 𝑣 ∈ ar(𝑒) for some 𝑒 ∈ 𝐸 [𝛼]
in other words, moves in 𝑀†𝐸 are either 𝛼𝛼𝛼:::𝑒 (𝑎) for 𝑒 ∈ 𝐸 [𝛼] and 𝑎 ∈ par(𝑒), in which case

𝜆†𝐸 (𝛼𝛼𝛼:::𝑒 (𝑎)) = 𝛼𝛼𝛼:::𝑂 , or 𝛼𝛼𝛼:::𝑣 with 𝑣 ∈ ar(𝑒), in which case 𝜆†𝐸 (𝛼𝛼𝛼:::𝑣) = 𝛼𝛼𝛼:::𝑃 .

Definition 3.2. We denote a crash by . Given a move set𝑀 we write𝑀
for its extension𝑀 +{ }

with a crash move. We also extend its polarity function 𝜆 into 𝜆 with the assignment 𝜆 () = .

Recall that given a sequence 𝑠 ∈ 𝑀∗, we write 𝜋𝛼 (𝑠) for the projection of 𝑠 to its largest

subsequence involving only events by 𝛼 ∈ Υ.

Definition 3.3. A game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) consists of a move set (𝑀𝐴, 𝜆𝐴) and a non-empty,

prefix-closed set of well-formed crash-less plays 𝑃𝐴 ⊆ Pconc𝑀𝐴
satisfying 𝑃𝐴 = ∥𝛼∈Υ 𝜋𝛼 (𝑃𝐴). We write

𝑃

𝐴
⊆ P

𝑀𝐴
for the set 𝑃

𝐴
:= (𝑃𝐴 ·)∗ · 𝑃𝐴.

The set of plays 𝑃𝐴 of a game𝐴 defines which plays are valid plays within an epoch. It is required

to be an arbitrary parallel compositions of the sequential plays that each agent can perform.

Meanwhile, 𝑃

𝐴
, the corresponding set of crash-aware plays, is defined by simply allowing crashes

to happen at any point in an epoch.

Some examples of crash-aware games are now due. The simplest game is the game 1 := (∅,∅, {𝜖}).
The game 1 has no non-crash moves, and its only crash-aware plays are the empty sequence 𝜖 and

sequences of crashes · · . . . · .
Another game is the game Σ = ((∑𝛼∈Υ 𝑞 + 𝑎), (

∑
𝛼∈Υ 𝛼𝛼𝛼:::𝑂 +𝛼𝛼𝛼:::𝑃), ∥𝛼∈Υ ↓{𝑞 · 𝑎}) where ↓ − stands

for prefix-closure. Unrolling this definition, every agent has two moves: an 𝑂-move 𝑞 (question)

and a 𝑃-move 𝑎 (answer). The only valid sequential plays are 𝑞 · 𝑎 and its prefixes, and the valid

plays for the game are interleavings of these sequential plays at each epoch, such as:

𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼𝛼𝛼:::𝑎 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞

The most important kind of game for our examples are games †𝐸 generated by effect signatures

𝐸. We can extend the move set (𝑀†𝐸, 𝜆†𝐸) into a game with set of valid plays 𝑃†𝐸 defined by:

𝑃†𝐸 :=∥𝛼∈Υ ↓(∪𝑒∈𝐸 [𝛼] ∪𝑎∈par(𝑒) ∪𝑣∈ar(𝑒)𝛼𝛼𝛼:::𝑒 (𝑎) · 𝛼𝛼𝛼:::𝑣)∗

That is to say, locally, each agent 𝛼 ∈ Υ is allowed to alternate between making a call to an effect

𝑒 (𝑎) in 𝐸 [𝛼] or providing a response to the previously issued effect. For instance, recall that we

defined, in §1, a signature BCell encoding the operations available to a buffered memory cell. This

defines a concurrent effect signature BCell[𝛼] = BCell. The corresponding set of valid crash-aware
plays 𝑃

†BCell includes all traces seen in §2.3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:12 Oliveira Vale et al.

3.2 Combining Games
We now define a few combinators on games. We start by defining a dualizing operation on move

sets, which swaps the role of environment and system.

Definition 3.4 (Dual Move Set). Given a move set (𝑀, 𝜆) we define the moveset (𝑀⊥, 𝜆⊥) by
𝑀⊥ := 𝑀 and 𝜆⊥ (𝑚) := 𝜆(𝑚)⊥, where (𝛼𝛼𝛼:::𝑂)⊥ := 𝛼𝛼𝛼:::𝑃 and (𝛼𝛼𝛼:::𝑃)⊥ := 𝛼𝛼𝛼:::𝑂 .

In the context of games 𝐴, 𝐵, 𝐶 , given 𝑠 ∈ P
𝑀𝐴+𝑀𝐵

we define 𝑠↾𝐴,− ∈ P 𝑀𝐴
and 𝑠↾−,𝐵 ∈ P 𝑀𝐵

to

be the projections to the corresponding components of𝑀𝐴 +𝑀𝐵 , but keeping the crash moves in

the projections too. Similarly, given 𝑠 ∈ P
𝑀𝐴+𝑀𝐵+𝑀𝐶

, we write 𝑠↾𝐴,𝐵,− , for the projection of 𝑠 to its

largest subsequence with only moves in 𝐴, 𝐵 and crashes; we similarly define 𝑠↾𝐴,−,𝐶 and 𝑠↾−,𝐵,𝐶 .
We now define horizontal composition of games, and the affine arrow.

Definition 3.5. Fix games 𝐴 and 𝐵. We define the games 𝐴 ⊗ 𝐵 and 𝐴 ⊸ 𝐵 by the following data

𝑀𝐴⊗𝐵 := 𝑀𝐴 +𝑀𝐵 𝜆𝐴⊗𝐵 := 𝜆𝐴 + 𝜆𝐵 𝑃𝐴⊗𝐵 := {𝑠 ∈ P𝑀𝐴+𝑀𝐵
| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

𝑀𝐴⊸𝐵 := 𝑀⊥𝐴 +𝑀𝐵 𝜆𝐴⊸𝐵 := 𝜆⊥𝐴 + 𝜆𝐵 𝑃𝐴⊸𝐵 := {𝑠 ∈ P𝑀⊥
𝐴
+𝑀𝐵
| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

It is implicit in this definition that by composing in parallel the two crash-aware plays, the

resulting set of traces synchronizes the crash events, merging them into a single crash event and

then producing any (locally sequential) parallel composition of the subtraces appearing in each

epoch. Consider, for instance, the two plays below on the left, each of type Σ:

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎
 ⊗ ⊗ ⊗=⇒⊗

The resulting set of traces synchronizes the crashes, as depicted on the right. For example, the

following is a valid trace in their horizontal composition:

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎· · · · · · · · · · · · ·

Similarly, consider the following play 𝑠 of Σ ⊸ Σ (on the left):

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞

Σ 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞

⊸

𝑠↾−,Σ = 𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞

𝑠↾Σ,− = 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞
or, depicted sequentially: 𝛼𝛼𝛼:::𝑞 ·𝛼𝛼𝛼:::𝑞 ·𝛼 ′𝛼 ′𝛼 ′:::𝑞 ·𝛼𝛼𝛼:::𝑎 · ·𝛼 ′𝛼 ′𝛼 ′:::𝑞 ·𝛼 ′𝛼 ′𝛼 ′:::𝑞. Note that the crash signal synchronizes

across the source and target components of the play. This models that the crashes are synchronous
across components (they happen in all components at once) and that they are instantaneous (it
takes negligible time for the crash to propagate to components). On the right, above, we see the

projections of 𝑠 to the source and target components. Importantly, the crash event is retained in

both projections, so it effectively belongs to both components.

3.3 Crash-Aware Strategies
We now define strategies, which are the denotations of both object specifications and code.

Definition 3.6 (Crash-Aware Strategy). A crash-aware strategy 𝜎 : 𝐴 over a game𝐴 is a non-empty,

prefix-closed, subset 𝜎 ⊆ 𝑃
𝐴
, which is moreover -receptive in that

∀𝑠 ∈ 𝜎.𝑠 · ∈ 𝑃
𝐴

=⇒ 𝑠 · ∈ 𝜎

 -receptivity models the usual assumption that crashes may non-deterministically happen at

any point in an execution. It plays a crucial role in proving the locality property.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:13

We specify the semantics of objects using strategies. For example, in §2.3 we specified the

linearized buffered memory cell by a strategy 𝜈BCell : †BCell. The denotations of implementations,

such as 𝑀FLiT : †BCell ⊗ †Counter ⊸ †FLiT or 𝑀Snapshot : †Mem ⊸ †Snapshot mentioned in §1

are examples of strategies with the affine arrow type. Strategies of type 𝐴 ⊸ 𝐵 can be vertically

composed, which amounts to the usual motto of “interaction + hiding”.

Definition 3.7. Given strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 we define their vertical composition

𝜎 ;𝜏 : 𝐴 ⊸ 𝐶 by: 𝜎 ;𝜏 := {𝑠↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶
| ∃𝑠 ∈ ((𝑀𝐴 +𝑀𝐵 +𝑀𝐶))∗ .𝑠↾𝐴,𝐵,− ∈ 𝜎 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝜏}

Proposition 3.8. Composition of crash-aware strategies is well-defined and associative.

For the reader with familiarity with category theory, we can package all the information above:

Definition 3.9. We denote by Crash the semicategory of crash-aware games, with crash-aware

strategies 𝜎 : 𝐴 ⊸ 𝐵 as morphisms between games 𝐴 and 𝐵, and composition given by −;−.

Import F

f(a) {

r <- F.f(a);

ret r

}

. . .

Import F

f(a) {

r <- F.f(a);

ret r

}

...
...

Fig. 3. Code corresponding to the copycat strategy
crashcopy†𝐹⊸†𝐹 : †𝐹 ⊸ †𝐹

Unfortunately, and this is a common phe-

nomenon in concurrency models, Crash does

not assemble into a category, as the vertical

composition operation −;− does not have a

neutral element. That is, to say, there is no

choice of strategies id𝐴 : 𝐴 ⊸ 𝐴 for which

id𝐴;𝜎 ; id𝐵 = 𝜎 for every 𝜎 : 𝐴 ⊸ 𝐵. This issue

is explained extensively in Oliveira Vale et al.

[31] in the context of concurrent games.

We follow the approach from compositional

linearizability, and start by noting that there

are obvious candidates crashcopy𝐴 : 𝐴 ⊸ 𝐴 for the neutral elements, which are called the copycat

strategies and formalize the code seen in Fig. 3. The copycat strategy is idempotent, in that for

all games 𝐴, crashcopy𝐴; crashcopy𝐴 = crashcopy𝐴. This essentially means that the crashcopy𝐴
at least behaves like a neutral element for itself. In fact, they behave like a neutral element with

respect to any strategy which is a parallel composition of sequential strategies. This fact justifies

defining a class of strategies that behaves well when composed with the copycat:

Definition 3.10. We say a strategy 𝜎 : 𝐴 ⊸ 𝐵 is saturated with respect to crashcopy when

crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎

Since crashcopy is idempotent, it is saturated. Moreover, by definition, crashcopy behaves as a

neutral element for strategy composition of saturated strategies. It is also easy to see that saturated

strategies compose. Note that this means that we can promote Crash to a category by restricting

attention to these saturated strategies.

Saturation for concurrent strategies corresponds to, beyond 𝑂-receptivity (the environment can

make valid moves whenever it wants), strategies that are insensitive to certain delays, which might

be caused, for instance, if an agent is preempted. This is typically formalized using the rewrite

system −⇝ − we defined in §2.1 and redefined now in light of our more detailed formalism.

Definition 3.11. Let 𝐴 = (𝑀𝐴, 𝑃𝐴) be a game. We define a string rewrite system (𝑃𝐴,⇝𝐴) with
local rewrite rules:

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .∀𝑋 ∈ {𝑂, 𝑃}.𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑋 ∧ 𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑋 ∧ 𝛼 ≠ 𝛼 ′ =⇒ 𝑚 ·𝑚′ ⇝𝐴 𝑚
′ ·𝑚

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑂 ∧ 𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑃 ∧ 𝛼 ≠ 𝛼 ′ =⇒ 𝑚 ·𝑚′ ⇝𝐴 𝑚
′ ·𝑚

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:14 Oliveira Vale et al.

A concrete characterization of saturation for crash-aware strategies is possible, but we do not

cover it here for the sake of space (see the appendix). We will soon see an equivalent characterization

in terms of crash-aware linearizability, which will be sufficient for our purposes.

3.4 Refinement and Horizontal Composition
Before proceeding, we briefly address refinement and horizontal composition. We take as our notion

of refinement behavior containment, 𝜎 ⊆ 𝜏 , with joins given by set union. This makes all of the

models we discuss into enriched (semi)categories over join semi-lattices, which means that:

Proposition 3.12. Strategy composition −;− is monotonic and join-preserving.

For horizontal composition, recall that we have already defined a game 𝐴 ⊗ 𝐵 ∈ Crash. The
tensor can be extended to strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐴′ ⊸ 𝐵′ by:

𝜎 ⊗ 𝜏 := {𝑠 ∈ 𝑃𝐴⊗𝐴′⊸𝐵⊗𝐵′ | 𝑠↾𝐴⊸𝐵 ∈ 𝜎 ∧ 𝑠↾𝐴′⊸𝐵′ ∈ 𝜏}

Proposition 3.13. Let Crash be the restriction of the semicategory Crash to strategies saturated
with respect to crashcopy. Then, (Crash,− ⊗ −, 1) defines an enriched symmetric monoidal category.

These definitions permit us to prove Prop. 3.13. This means that − ⊗ − defines a monotonic

and join-preserving functor so that horizontal composition behaves well with respect to both

vertical composition and refinement. This formalizes what we mean when we say that our model

is compositional. It remains to extend this compositional structure to linearizability.

4 THREE LINEARIZABILITY CRITERIA REVISITED
We now revisit the linearizability criteria discussed in §2 from the perspective of our just defined

model and following ideas from compositional linearizability. In particular, we argue that their

methodology recovers crash-aware linearizability as the notion of linearizability associated with

the compositional structure of our model and use their general theorem around locality and

observational refinement to obtain these results for crash-aware linearizability. Then, we extend

these results to strict and durable linearizability by analyzing translations from our crash-aware

model to the crash-less model from compositional linearizability.

4.1 Abstract Crash-Aware Linearizability
In §2 we defined a new linearizability criterion which we called crash-aware linearizability (;). We,

however, did not come up with this definition of linearizability. Instead, following the methodology

of compositional linearizability, we have derived it from the structure of the model, Crash.
To understand this, we start by defining the operation 𝐾 − : Crash→ Crash by the formula

𝐾 𝜏 := crashcopy𝐴;𝜏 ; crashcopy𝐵

for 𝜏 : 𝐴 ⊸ 𝐵 ∈ Crash. This operation assigns to 𝜏 the smallest saturated strategy containing 𝜏 .

The framework of compositional linearizability proposes that the native notion of linearizability

for crash-aware objects should be equivalent to the refinement 𝜈 ′ ⊆ 𝐾 𝜈 . Indeed, we are able to
show the following characterization of 𝐾 −, which provides a concrete characterization of 𝐾 𝜈 as

the set of all plays that are crash-aware linearizable w.r.t. 𝜈 .

Proposition 4.1. For any crash-aware strategy 𝜈 : 𝐴 it holds that: 𝐾 𝜈 = {𝑠 ∈ P
𝐴
| ∃𝑡 ∈ 𝜈.𝑠 ; 𝑡}.

It follows immediately from this characterization that

Proposition 4.2. 𝜈 ′ is crash-aware linearizable w.r.t. 𝜈 if and only if 𝜈 ′ ⊆ 𝐾 𝜈 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:15

This effectively turns linearizability into a refinement property. This has many benefits from the

point of view of verification, as refinement techniques are well-understood. Moreover, since we

derive it in this way, we may use the general category-theoretic result in Oliveira Vale et al. [31] to

obtain locality and observational refinement.

Proposition 4.3 (Observational Refinement and Locality).

• 𝜈 ′
𝐴
: 𝐴 is crash-aware linearizable w.r.t 𝜈𝐴 : 𝐴 iff for all saturated 𝜎 : 𝐴 ⊸ 𝐵, 𝜈 ′

𝐴
;𝜎 ⊆ 𝜈𝐴;𝜎

• For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′

𝐴 ; 𝜈𝐴 and 𝜈 ′
𝐵 ; 𝜈𝐵 if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵 ; 𝜈𝐴 ⊗ 𝜈𝐵

4.2 Compositional Verification of a File System Fragment
To showcase the benefits of compositionality and to show that crash-aware linearizability provides

a flexible criterion for mixing objects with different, and complicated, crash behaviors, we verify

against a crash-aware linearizable specification a fragment of a file API. Instead of providing a

detailed description, we emphasize the salient aspects to our point (a detailed description is available

in the appendix). The system also features recovery, our handling of which is discussed later (§5).

The file system fragment involves four main objects: the file interface File, a disk interface Disk
implemented using a disk array Disk[𝑁] with a finite number 𝑁 of disks each with 𝑆 + 1 blocks,
and a write-ahead log Log. The signatures for File and Disk are given below:

File :=


write : block_id × file_id × block→ 1,

read : block_id × file_id→ block,

swap : block_id × block_id × file_id × file_id→ 1

 Disk :=

{write : block_id × block→ 1,

read : block_id→ block

}
The file interface exposes a two-level structure. At the first level lies a set of folders, each

occupying a single disk block as its inode. For simplicity, the API uses block ids instead of strings

to uniquely identify folders. Each folder contains a set of files identified by their file id. The swap
operation swaps the pointers in the respective folders’ inodes, which provides a symmetric move

operation as seen in actual file systems. Thewrite and read operations are as usual. The file interface
is implemented on top of a disk, providing write and read operations to read and write to a block.

𝜈 ′Disk[𝑁]

𝑀Disk

𝜈 ′Disk ⊗

𝜈 ′LockMapB

vol(𝑀Lock) [𝑆]

vol(𝜈 ′FAI) [𝑆] ⊗ vol(𝜈 ′Counter) [𝑆]

𝑀Log ⊗ idDisk

𝜈 ′Log ⊗ 𝜈 ′Disk

𝑀File

𝜈 ′File

Fig. 4. The structure of our File example.

All the objects involved are specified using crash-

aware linearizability. For instance, a single disk is

specified as the horizontal composition of its blocks,

using locality, guaranteeing that its concrete spec-

ification 𝜈 ′Disk : †Disk is crash-aware linearizable

to a specification 𝜈Disk : †Disk which guarantees

read and writes are persistent and atomic. The disk

array specification 𝜈 ′Disk[𝑁] is required to be crash-

aware linearizable to the horizontal composition of

𝑁 atomic disk specifications 𝜈Disk[𝑁] := ⊗𝑖∈[𝑁]𝜈Disk.
The concrete object 𝜈 ′File is required to be crash-

aware linearizable to a specification 𝜈File that en-

sures that writes, reads and swaps are persistent and

seem to happen atomically. All the specifications

also enforce that the recovery routines correctly re-

construct any relevant lost state after a crash.

We implement the replicated disk on top of the disk array by replicating writes to all the disks in

the array in a specific order. Reads to the disk array non-deterministically choose a disk to read

from, mimicking the behavior of a disk array controller. On a crash, a recovery procedure copies

the contents of the first disks to all disks.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:16 Oliveira Vale et al.

The File implementation𝑀File for write and read is mostly straight-forward. The swap operation

requires special treatment for its atomicity. As swap operations need to update two different folders

(and thus two different disk blocks), to ensure persistency, we record the operations in a write-ahead

log 𝜈 ′Log so that the recovery routine can finish incomplete operations. The log is itself implemented

on top of a single block of the disk together with a volatile array and a volatile lock (omitted from

Fig. 4). Since the disk is itself equivalent to the parallel composition of individual blocks, we use

locality together with our compositionality properties (the symmetric monoidal structure of the

model) to separate the part of the disk used for the log, from the rest of the disk.

The file system also uses a set of dynamically allocated locks 𝜈 ′LockMapB to guarantee atomicity

when writing to a block. These locks are volatile objects residing in memory that only last for the

duration of a single File operation. Because of this, we use the verified lock from Oliveira Vale et al.

[31] and lift it to a volatile object using Prop. 2.8, benefiting from the fact that we have connected

our model to their model. The whole structure of the example is depicted in Fig. 4.

At this point it is worth remarking that even this small fragment of a file system features a mix

of persistent objects, volatile objects, and objects that fit neither category well. Some of the objects

involved are horizontal compositions of these objects, making them have hybrid crash behavior.

We model all of these objects using crash-aware linearizability, which proves to be robust enough

to verify the whole system compositionally.

4.3 Crash Abstraction
Recall that strict and durable linearizability relate a crash-aware concrete specification to a crash-

less specification. In this section we develop conversions between these computational models,

which serve as a building block for strict and durable linearizability. So, first, we briefly recall that:

Definition 4.4. Given a game 𝐴, a crash-less strategy 𝜎 : 𝐴 consists of a non-empty, prefix-closed

set of plays 𝜎 ⊆ 𝑃𝐴.
The main difficulty in removing crashes from a play 𝑠 is that the removal may generate traces

that do not satisfy well-formedness. This happens when the same agent has a pending invocation

in one epoch and also moves in a later epoch. So, in the definition of the operation −♭ (read de-crash,
and the same as ops(−)), the projections ops(𝑠) are required to be well-formed plays.

Definition 4.5. Given a game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) we define the game 𝐴♭
, by:

𝑀𝐴♭ := 𝑀𝐴 𝜆𝐴♭ (𝑚) := 𝜆𝐴 (𝑚) 𝑃𝐴♭ := (𝑃𝐴)∗ ∩ Pconc𝑀𝐴

Given a crash-aware strategy 𝜎 : 𝐴 ∈ Crash we define the crash-less strategy 𝜎♭ : 𝐴♭
as below.

Note that −♭ formalizes ops(−) (§2). It is also useful to provide a reverse operation −♯, read re-crash,
that lifts, in a persistent way, a crash-less strategy 𝜎 : 𝐴♭

into a strategy 𝜎♯ : 𝐴.

𝜎♭ := {ops(𝑠) ∈ Pconc𝑀𝐴
| 𝑠 ∈ 𝜎} 𝜎♯ := {𝑠 ∈ P

𝑀𝐴
| ops(𝑠) ∈ 𝜎}

4.4 Strict Linearizability
Similarly to how Oliveira Vale et al. [31] characterizes linearizability by lifting a non-saturated

strategy to a saturated strategy, we formalize strict linearizability by lifting a strategy without

crashes into a strategy with crashes.

Definition 4.6. Given games 𝐴, 𝐵, we define the strict lift str(𝜎) : 𝐴 ⊸ 𝐵 of a crash-less strategy

𝜎 : 𝐴♭ ⊸ 𝐵♭ as the crash-aware strategy: str(𝜎) := 𝐾 𝜎♯

It then turns out that, similarly to what we did for crash-aware linearizability, strict linearizability

supports the following refinement-based characterization:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:17

Proposition 4.7. 𝜈 ′ : 𝐴 is strictly linearizable to 𝜈 : 𝐴♭ if and only if 𝜈 ′ ⊆ str(𝜈).

We make use of this characterization to show the following observational refinement property:

Proposition 4.8 (Observational Refinement). Suppose 𝜈 ′
𝐴
: 𝐴 is strictly linearizable to 𝜈𝐴 : 𝐴♭

and that 𝜎 : 𝐴♭ ⊸ 𝐵♭ implements an object linearizable to 𝜈𝐵 : 𝐵♭ using 𝜈𝐴, i.e. 𝜈𝐴;𝜎 ⊆ 𝜈𝐵 , then,
str(𝜎) implements an object strictly linearizable to str(𝜈𝐵) using 𝜈 ′𝐴, i.e. 𝜈 ′𝐴; str(𝜎) ⊆ str(𝜈𝐵).

The reverse direction, unfortunately, does not hold, fundamentally because str(ccopy𝐴♭) ≠
crashcopy𝐴. By similar reasoning as the locality for crash-aware linearizability, we also obtain:

Proposition 4.9 (Locality). For crash-aware strategies 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and crash-less strategies

𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′
𝐴
⊆ str(𝜈𝐴) and 𝜈 ′𝐵 ⊆ str(𝜈𝐵) if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵
⊆ str(𝜈𝐴 ⊗ 𝜈𝐵)

4.5 Durable Linearizability
Recall that a crash-aware play (i.e., a trace) is durable when the set of agents on different epochs

is disjoint. Given a game 𝐴, let 𝑃dur
𝐴

be the subset of 𝑃

𝐴
containing only its durable plays. As we

noted in §2, durable plays 𝑠 have the important property that their de-crash 𝑠♭ is always defined.

We call a crash-aware strategy durable if it only contains durable plays.

Now, for our refinement-based formulation, we define a durable lift dur(−), which assigns to a

crash-less strategy 𝜈 : 𝐴♭
the durable strategy dur(𝜈) : 𝐴 defined by dur(𝜈) : 𝐴 := (𝐾Conc 𝜈)♯ ∩ 𝑃dur𝐴

.

The operation 𝐾Conc − in the formula is defined by Oliveira Vale et al. [31] similarly to 𝐾 −, but
in the crash-less setting. It may be more intuitively understood through their result that:

𝐾Conc 𝜈 = {𝑠 ∈ 𝑃𝐴♭ | ∃𝑡 ∈ 𝜈.𝑠 ; 𝑡}

that is to say, 𝐾Conc − assigns to a crash-less strategy 𝜈 the smallest strategy containing 𝜈 that has

all plays linearizable w.r.t. to 𝜈 . We observe that, indeed, dur(−) does provide an appropriate lifting

operation for durable linearizability.

Proposition 4.10. 𝜈 ′ : 𝐴 is durably linearizable to 𝜈 : 𝐴♭ if and only if 𝜈 ′ ⊆ dur(𝜈).

This refinement characterization enables us to show observational refinement and locality.

Proposition 4.11 (Observational Refinement and Locality).

• Let 𝐴, 𝐵 be games. Then 𝜈 ′
𝐴

: 𝐴 is durably linearizable to 𝜈𝐴 : 𝐴♭ if and only if whenever
𝜎 : 𝐴♭ ⊸ 𝐵♭ is a crash-less strategy implementing a crash-less object linearizable to 𝜈𝐵 using 𝜈𝐴,
then dur(𝜎) : 𝐴 ⊸ 𝐵 implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

• For durable strategies 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and crash-less 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′

𝐴 ;dur 𝜈𝐴 and 𝜈 ′
𝐵 ;dur 𝜈𝐵 if and

only if 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵

5 PROGRAM LOGIC
In this section, we present a program logic for verifying durable linearizability, which is based on

rely-guarantee reasoning, crash Hoare logic and possibility reasoning. We first (§5.1) briefly discuss

how to abstract away recovery. Then (§5.2) we define an object-agnostic imperative programming

language. Lastly (§5.3) we demonstrate the key rules of the program logic. We refer readers to our

appendix for its variation for verifying crash-aware linearizability, which is largely similar.

5.1 Recovery
We start by discussing a simple way of removing recovery events from a play, which is enough for

our purposes. First, we fix a certain kind of signature for objects with recovery.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:18 Oliveira Vale et al.

Definition 5.1. We define a recovery signature 𝐸 ⟲ 𝑅 to be the union of two effect signatures 𝐸

for regular operations and 𝑅 for recovery operations.

To simplify reasoning about programs with recovery, it is common to provide a way to remove

the recovery events from the specification. In our setting, this is notoriously simple.

Definition 5.2. We say a strategy 𝜈 ′ : †(𝐸 ⟲ 𝑅) recovery-refines to 𝜈 : †𝐸 when 𝜈 ′↾𝐸 ⊆ 𝜈 .

It is straightforward to see that the following refinement theorem holds.

Proposition 5.3 (Recovery Refinement Theorem). Suppose 𝜈 ′ : †(𝐸 ⟲ 𝑅) recovery-refines to
𝜈 : †𝐸 and that 𝜎 ′ : †(𝐸 ⟲ 𝑅) ⊸ †𝐹 then, for 𝜎 : †𝐸 ⊸ †𝐹 , 𝜎 ′↾†𝐸⊸†𝐹 ⊆ 𝜎 =⇒ 𝜈 ′;𝜎 ′ ⊆ 𝜈 ;𝜎

5.2 Programming Language
5.2.1 Syntax. We start by defining a language Com for commands over some effect signature 𝐸.

Prim := 𝑥 ← 𝑒 (𝑎) | assume(𝜙) | ret 𝑣 Com := Prim | Com;Com | Com + Com | Com∗ | skip

Prim stands for primitive commands. The assignment command, 𝑥 ← 𝑒 (𝑎), executes the effect
𝑒 ∈ 𝐸 with argument 𝑎 and stores the response to variable 𝑥 in a local environment Δ ∈ Env. The
assume command, assume(𝜙), takes a boolean function 𝜙 over Δ and terminates the computation

if it evaluates to False. We implement loops and if-statements using assume(−) in the usual way.

The return command, ret 𝑣 , stores the value 𝑣 into a reserved variable res, and is executed once per

invocation of a procedure. Com is the grammar of commands defined as usual in a Kleene algebra.

The implementation𝑀 of an object (with the effect signature 𝐹 ⟲ 𝑅𝐹) is defined as a collection

of commands 𝑀 [𝛼] 𝑓 ∈ Com, 𝑀 = (𝑀 [𝛼])𝛼∈Υ =
(
𝑀 [𝛼] 𝑓

)
𝛼∈Υ,𝑓 ∈𝐹∪𝑅𝐹

, which implements each

method 𝑓 ∈ 𝐹 ∪ 𝑅𝐹 per agent 𝛼 ∈ Υ. Here 𝐹 defines the overlay’s regular procedures and 𝑅𝐹 its

recovery procedures. For simplicity, we require that there is only one recovery program 𝑟 in 𝑅𝐹 ,

i.e. 𝑅𝐹 = {𝑟 : 1→ 1}. We call𝑀 [𝛼] a local implementation and𝑀 ∈ CMod a concurrent module,

where CMod is the set of all concurrent modules.

5.2.2 Memory Model & Object State. Observe that our programming language is object-agnostic

in that it operates over an arbitrary object of type 𝐸. This means that the language does not have a

memory model baked in. Instead, the underlay object’s effect signature 𝐸, over which the language

is parameterized, determines which memory operations the user can perform. For example, to

implement the FLiTmemory cell in Fig. 1, one would use as the underlay a bufferedmemory cell with

the BCell signature. Then, one can write a program with statements like 𝑥 ← 𝐵.load();𝐵.flush()
to manipulate the memory shared across threads.

We define the underlay state as (Δ, 𝑠) ∈ UndState, a tuple of a local environment Δ and a

history 𝑠 ∈ 𝑃†𝐸 . The local environment Δ is defined solely as a mapping from local variables to

their values (with Δ0 representing the empty local environment). The history 𝑠 is a canonical

representation for shared state, since it records all previous operations to the shared underlay

object. One may reconstruct other more intuitive definitions of the shared state by defining an

interpretation function over the trace 𝑠 . For example, given the traces 𝑝 ∈ 𝜈FLiT of one FLiTmemory

cell, we can define the evaluation function fstate : 𝜈FLiT → Val to compute the current value of the

cell by reading the latest stored value. In particular, note that we may use the (atomic) linearized

specification for FLiT because of observational refinement.

5.2.3 Semantics. Primitive commands 𝐵 are interpreted as state transformers J𝐵K𝛼 : UndState→
P(UndState) from a set of underlay states to a new set of states. The J𝐵K𝛼 depends on 𝛼 only in

that it tags event it adds to the history with an agent identifier 𝛼 . We then lift the state transformer

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:19

−→ ⊆ (Com × UndState) × Υ × (Com × UndState) −↠𝑅𝐸
⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓) Δ′ = Δ[𝛼 ↦→ [arg ↦→ 𝑎]]
⟨𝑐 [𝛼 ↦→ idle],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝑀 [𝛼] 𝑓],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

Inv

⟨𝐶,Δ, 𝑠↾𝐸 ⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′↾𝐸 ⟩
⟨𝑐 [𝛼 ↦→ 𝐶],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶′],Δ′, 𝑠′ ⟩

Step

𝜋𝛼 (𝑠↾𝐹) = 𝑝 · 𝑓 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑓) Δ′ = Δ[𝛼 ↦→ ∅]
⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ idle],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

Ret

∀𝛼 ∈ 𝑠.𝑐′ [𝛼] = dead
∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼] = halt

⟨𝑐,Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ0, 𝑠 · ⟩

Crash

𝑠 = 𝑠′ · ®𝑟 = perm(𝑅𝐸)
𝐶 = sequence(®𝑟,𝑀 [𝛼]𝑟)

⟨𝑐 [𝛼 ↦→ halt],Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶],Δ, 𝑠 · 𝛼𝛼𝛼:::𝑟 ⟩

StartRec

𝜋𝛼 (𝑠↾𝐹∪𝑅𝐹
) = 𝑠′ · 𝑟 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑟) Δ′ = Δ[𝛼 ↦→ ∅]

∀𝛼 ∈ Υ.𝑐 [𝛼] = dead⇒ 𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝑐 [𝛼] ≠ dead⇒ 𝑐′ [𝛼] = idle

⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

EndRec

where sequence(®𝑟,𝐶) =
{
𝐶 ®𝑟 = 𝜖

(𝑥𝑟 ← 𝑟 (𝑎)) ; sequence(®𝑟 ′,𝐶) ®𝑟 = 𝑟 · ®𝑟 ′ ∧ 𝑎 ∈ par(𝑟) ∧ reserved(𝑥𝑟)
Fig. 5. Local Small-Step Semantics (−→) and Module Small-step semantics (−↠𝑅𝐸

)

J𝐵K𝛼 to a thread-local small-step semantics ⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩, which encodes how 𝛼 steps

through commands in a mostly standard way following the Kleene algebra structure of commands.

In Fig. 5, we lift this local small-step semantics to a concurrent module small-step semantics

⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠′⟩, which takes a continuation 𝑐 ∈ Cont := Υ → {idle, skip, dead, halt} +

Com and a module state (Δ, 𝑠) ∈ ModState := (Υ → Env) × 𝑃†(𝐸⟲𝑅𝐸)⊸†(𝐹⟲𝑅𝐹) containing local

environments for all agents and the global trace of the system. The first three rules come from the

semantics in Oliveira Vale et al. [31] to handle mainly the execution of regular procedures:

Inv Allows a new invocation of any overlay operation 𝑓 in an idle thread and appends the new

invocation to the end of 𝑠 .

Step Non-deterministically chooses some thread that is running a program𝐶 and performs a thread

local small-step in that thread with its effect applied to the concurrent module state.

Ret Allows any thread that has finished its program to return to idle by appending the return value

as a response to the end of 𝑠 and clearing Δ[𝛼].
We add three highlighted rules to handle crashes and recoveries:

Crash Allows for crashes to happen at any time, resetting local environments to Δ0 for all agents,

marking all the previously active agents as dead and all remaining ones as halt.
StartRec Non-deterministically selects a halted thread 𝛼 and starts the recovery phase by using

𝐶 as its continuation, which sequentially runs first a permutation of underlay recoveries

(®𝑟 = perm(𝑅𝐸)) and then the overlay recovery 𝑀 [𝛼]𝑟 . This is achieved by using sequence
to sequence a list of commands (note that reserved(𝑥𝑟) simply means that 𝑥𝑟 is a reserved

variable). During the recovery phase, other threads must wait for 𝛼 to finish the recovery

before their executions. The execution of 𝛼 follows the Step rule.

EndRec When the recovery finishes, any agent that is not dead becomes idle, so that the system
can now run normally. To enforce the durable assumption, dead agents will no longer run.

We define the denotation of a module by the formula below as the set of traces generated by

the small-step semantics from the initial configuration, where 𝑐0 is the initial continuation (every

agent is idle) and Δ0 is the initial environment where every agent has an empty local environment.

J𝑀K𝑅𝐸
:= {𝑠 | ∃𝑐 ∈ Cont,Δ ∈ (Υ→ Env) .⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀

𝑅𝐸
⟨𝑐,Δ, 𝑠⟩} ⊆ 𝑃†(𝐸⟲𝑅𝐸)⊸†(𝐹⟲𝑅𝐹)

5.3 A Program Logic for Durable Objects
5.3.1 Interfaces. The interface of a crash-aware linearizable object 𝐸 is a (round bracket) tuple.

(𝜈 ′
𝐸
: †(𝐸 ⟲ 𝑅𝐸), 𝜈𝐸 : †𝐸) s.t. 𝜈 ′

𝐸
↾𝐸 ;

 𝜈𝐸

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:20 Oliveira Vale et al.

𝜈 ′
𝐸
is the concrete specification containing all possible traces the object can produce, including

crash and recovery events, and 𝜈𝐸 is the linearized specification after removing recovery events.

Similarly, we define the interface of a durable linearizable object 𝐸 as the (angle bracket) tuple

but with a major difference: the durable interface’s linearized specification 𝜈𝐸 is crash-less.

⟨𝜈 ′
𝐸
: †(𝐸 ⟲ 𝑅𝐸), 𝜈𝐸 : †𝐸⟩ s.t. 𝜈 ′

𝐸
↾𝐸 ;dur 𝜈𝐸

The objective of our program logic is to establish the judgment

⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹) or ⊢ 𝑀 : (𝜈 ′

𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩

which means under the assumption that the implementation𝑀 implements 𝐹 with either a crash-

aware interface (𝜈 ′
𝐹
, 𝜈𝐹) (the variation described in our appendix) or a durable interface ⟨𝜈 ′

𝐹
, 𝜈𝐹 ⟩

(the variation we describe here), using the crash-aware underlay 𝐸 with interface (𝜈 ′
𝐸
, 𝜈𝐸). The

concrete specification 𝜈 ′
𝐹
is defined by running an implementation𝑀 above 𝜈 ′

𝐸
, i.e., 𝜈 ′

𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

.

The program logic’s soundness guarantees the validity of the crash-aware/durable overlay interface.

In this context, (𝜈 ′
𝐸
, 𝜈𝐸) is called𝑀’s underlay, while ⟨𝜈 ′

𝐹
, 𝜈𝐹 ⟩ is called𝑀’s overlay.

The specifications 𝜈 ′
𝐸
, 𝜈𝐸, 𝜈

′
𝐹
, 𝜈𝐹 are fixed in the program logic. For simplicity, we take them as a

parameter in all that follows and omit the parametrization in the concrete proof rules.

5.3.2 The Rely-Guarantee Crash Linearizability Hoare Logic (CLHL).

Configurations & Assertions. CLHL uses as proof configurations triples (Δ, 𝑠, 𝜌) ∈ Config :=

ModState × Poss, where 𝜌 ∈ Poss, called a possibility, is a play of type †𝐹 linearizable w.r.t. 𝜈𝐹 .

A configuration is valid when 𝑠 is durably linearizable to 𝜌 and 𝜌 is linearizable w.r.t. 𝜈𝐹 . This

ensures that the concrete trace 𝑠 is always durably linearizable with respect to 𝜈𝐹 after the recovery

refinement. Pre-conditions 𝑃 , post-conditions 𝑄 , and crash conditions 𝑄 are given by sets of

configurations, while rely conditions R and guarantee conditions G are relations over Config.

Top Level Rules. The top level rule Object Impl proves that𝑀 implements the overlay ⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩

using the underlay (𝜈 ′
𝐸
, 𝜈𝐸). It requires the prover to find an object invariant 𝐼 : Υ → P(Config)

for the implementation and then verify regular procedures and the recovery separately.

∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′]
∀𝛼 ∈ Υ.R[𝛼], G[𝛼], 𝐼 [𝛼] ⊨𝐹𝛼 𝑀 [𝛼] ∀𝛼 ∈ Υ.𝐼 ⊨𝑅𝛼 𝑀 [𝛼]

⊢ 𝑀 : (𝜈′𝐸 , 𝜈𝐸) → ⟨𝜈
′
𝐹 , 𝜈𝐹 ⟩

Object Impl

Verifying Regular Procedures. To verify a concurrent object, the Object Impl rule requires finding

appropriate rely R and guarantee G for the object. The rely R[𝛼 ′] of an agent models the interfer-

ence of other threads in the executions and therefore must take into account at least invocations,

returns, and the guarantee of other agents 𝛼 (specified, respectively, by invoke𝛼 (−), return𝛼 (−),
and G[𝛼]). The prover needs to show R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝐹𝛼 𝑀 [𝛼], which asserts that when 𝛼 runs

regular methods in 𝐹 , assuming other threads behave according to R[𝛼], 𝛼 will behave according

to G[𝛼], and 𝐼 [𝛼] is satisfied when the thread 𝛼 is idle.

The Local Impl rule proves this judgment by splitting 𝐼 [𝛼] into conjunctions of 𝑃 [𝛼] 𝑓 , each
specifying the pre-condition of a method invocation, and then proving a series of objectives (− ◦ −
stands for relational composition).

𝐼 [𝛼] = ∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 ∀𝑓 ∈ 𝐹 .(Δ0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓 ∀𝑓 ∈ 𝐹 .stable(R[𝛼], 𝑃 [𝛼] 𝑓)
∀𝑓 ∈ 𝐹 .R[𝛼], G[𝛼] ⊨𝑓𝛼 {𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }{⊤} ∀𝑓 ∈ 𝐹 .return𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ⊆ 𝐼 [𝛼]

R[𝛼], G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝛼]
Local Impl

Firstly, each pre-condition 𝑃 [𝛼] 𝑓 needs to include the initial configuration and must be stable

under interferences R[𝛼] of the environment, which implies the invariant 𝐼 [𝛼] to be stable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:21

Then, the prover needs to show that R[𝛼],G[𝛼] ⊨𝑓𝛼 {𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }{⊤} is satisfied for

each method 𝑓 . The hexad R,G ⊨𝑓𝛼 {𝑃} 𝐶 {𝑄}{𝑄 } means that given states satisfying 𝑃 , running

the program 𝐶 on thread 𝛼 in an environment with interference in R will produce actions in G,
and if it terminates normally, the state will satisfy 𝑄 , and if it crashes, the state will satisfy 𝑄 . A

hexad is proved with proof rules introduced later. It is worth mentioning that there is no need to
explicitly specify and prove a crash condition for any regular method, and we can simply put ⊤ as the

crash condition. This is true because:

(1) The guarantee G[𝛼] of the current thread is included in any other thread’s rely R[𝛼 ′], and
therefore any step during the execution of any method in thread 𝛼 is captured in R[𝛼 ′].

(2) For any other thread 𝛼 ′, its invariant 𝐼 [𝛼 ′] is stable w.r.t. R[𝛼 ′], which means any state after

any execution step of any method in thread 𝛼 (captured in R[𝛼 ′]) is in 𝐼 [𝛼 ′].
(3) Therefore, the state of thread 𝛼 will satisfy any other thread’s invariant 𝐼 [𝛼 ′] at any time

(including the point of crash), and the crash condition in 𝛼 can be derived from 𝐼 [𝛼 ′].
Lastly, after finishing the execution of a method and returning from it, the invariant 𝐼 [𝛼] needs

to be satisfied so that the current thread can still access the object by invoking its procedures.

Verifying Recovery. Then, to ensure the durability of the object, provers need to show 𝐼 ⊨𝑅𝛼 𝑀 [𝛼],
which means whenever a crash happens, the execution of the recovery on any thread 𝛼 can restore

the program state to satisfy the object invariant 𝐼 . It can be verified via the Recover rule.

ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼] }𝑀 [𝛼]𝑟 {𝑄𝑟 [𝛼] } {𝑄 [𝛼] } 𝑄 [𝛼] ⊆ 𝑃𝑟 [𝛼]
∪𝛼 ′∈Υ𝐼 [𝛼 ′] ⇒ 𝑄 [𝛼] return𝛼 (𝑟) ◦𝑄𝑟 [𝛼] ⊆ ∩𝛼 ′∈Υ𝐼 [𝛼 ′]

𝐼 ⊨𝑅𝛼 𝑀 [𝛼]
Recover Impl

The prover needs to find a recovery pre-condition 𝑃𝑟 , a recovery post-condition 𝑄𝑟 , and a crash

condition𝑄 for the recovery program, and prove ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {𝑄𝑟 [𝛼]}{𝑄 [𝛼]}, which
means running the recovery program𝑀 [𝛼]𝑟 from states in 𝑃𝑟 [𝛼] will either recover the system
into states in 𝑄𝑟 [𝛼] or crash into states in 𝑄 [𝛼]. Since the recovery program always runs after a

crash, the crash condition𝑄 needs to imply 𝑃𝑟 . But as the recovery program executes sequentially,

with no interference from other threads, the rely and guarantee for it are ID and ⊤.
The invariant 𝐼 [𝛼 ′] serves as the crash condition of other threads. Therefore, we require that

all 𝐼 [𝛼 ′] crash into the crash condition 𝑄 of the recovery program. The crash-into relation (⇒)

amounts to implication after adding a crash: 𝐼 ⇒ 𝑄 ⇐⇒ ∀(Δ, 𝑠, 𝜌) ∈ 𝐼 .(Δ0, 𝑠 · , 𝜌) ∈ 𝑄 .
Lastly, after the execution of the recovery, the system is restored and ready to run, so the program

state after the recovery’s return needs to imply the invariant 𝐼 [𝛼 ′] of any thread 𝛼 ′.

The Core Proof Rule. According to these top-level rules, proofs of both the regular procedures and

the recovery boil down to proofs of hexads like R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 }. Among CLHL proof rules

for the hexad, the core proof rule for proving the durable linearizability is the Prim rule, which we

focus on in this section and refer readers to the appendix for other proof rules, which are standard.

𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑄 𝑄 ⇒ 𝑄 stable(R, 𝑃) stable(R,𝑄) G ⊢𝛼 {𝑃 }𝐵{𝑄 }
R, G ⊨𝛼 {𝑃 }𝐵{𝑄 }{𝑄 }

Prim

There are three groups of Prim rule’s premises. Firstly, as crashes can happen at any point, the

pre-/post-condition and the crash condition should be able to crash into (⇒) the crash condition.

Then, as any rely-guarantee logic, the pre-/post-condition needs to be stable w.r.t. the rely R.
G ⊢𝛼 {𝑃 }𝐵{𝑄 } ⇐⇒ ∀Δ, 𝑠, 𝜌,Δ′, 𝑠′ .((Δ, 𝑠, 𝜌) ∈ 𝑃 ∧ (Δ′, 𝑠′) ∈ J𝐵K𝛼 (Δ, 𝑠) ∩ 𝜈𝐸)

⇒ (∃𝜌 ′ .(Δ′, 𝑠′, 𝜌 ′) ∈ 𝑄 ∧ (Δ, 𝑠, 𝜌) G(Δ′, 𝑠′, 𝜌 ′) ∧ 𝜌 d 𝜌 ′)
where 𝜌 d 𝜌 ′ ⇐⇒

∃𝑡𝑃 ∈ (𝑀𝑃
𝐹)
∗ .𝜌 · 𝑡𝑃 ⇝†𝐹 𝜌 ′

Lastly, we need to prove the commit rule G ⊢𝛼 {𝑃}𝐵{𝑄} for the primitive command 𝐵. It states that

after a step from a state in 𝑃 made by the command 𝐵 the new state will satisfy the post-condition𝑄

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:22 Oliveira Vale et al.

and the guarantee. This step may be the commitment point of some pending operations. To maintain

the invariant that 𝑠 is durably linearizable to 𝜌 , the commit rule allows an angelic linearization

update, 𝜌 d 𝜌 ′, where provers can append several response events to 𝜌 and rewrite it according to

⇝†𝐹 to obtain 𝜌 ′, a new possibility that 𝑠 linearizes into. Moreover, since possibility updates are

recorded in G, its effect is visible to any other thread. Only a careful choice of possibility updates

will respect other threads’ relies and prove that this object is indeed durably linearizable.

Soundness. CLHL is justified by the following soundness theorem.

Proposition 5.4 (Soundness). If ⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is provable, and (𝜈 ′𝐸, 𝜈𝐸) is a valid

crash-aware interface, and 𝜈 ′
𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

, then ⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩ is a valid durable interface.

5.4 Examples Revisited
In this section, we present some high-level proof ideas of the FLiT example and demonstrate the

usage of the program logic. The FLiT object is built above the buffered memory cell BCell.

The Buffered Cell. The bufferedmemory cell’s concrete traces in 𝜈 ′BCell are crash-aware linearizable
to its specification 𝜈BCell, which we can define through an interpretation function,mstate : 𝜈BCell →
P(Val × Val), which computes the set of all possible combinations of the persisted value (the first

component) and the buffered value (the second component), as seen in §2.3.

Using mstate, the specification 𝜈BCell is essentially defined as the set of traces that can step from

the initial state, the singleton set {(𝑣0, 𝑣0)}, to some non-empty state, with the step function below.

The sets on the two sides of the arrow are the value ofmstate before and after appending the events
to the trace.

𝑆
𝛼𝛼𝛼:::store(𝑣) ·𝛼𝛼𝛼:::ok
−−−−−−−−−−→ {(𝑣𝑝 , 𝑣) | (𝑣𝑝 , 𝑣𝑏) ∈ 𝑆 } ∪ { (𝑣, 𝑣) } 𝑆

𝛼𝛼𝛼:::flush·𝛼𝛼𝛼:::ok−−−−−−−−→ {(𝑣𝑏 , 𝑣𝑏) | (𝑣𝑝 , 𝑣𝑏) ∈ 𝑆 }

𝑆

−→ {(𝑣𝑝 , 𝑣𝑝) | (𝑣𝑝 , 𝑣𝑏) ∈ 𝑆} 𝑆

𝛼𝛼𝛼:::load·𝛼𝛼𝛼:::ok(𝑣)
−−−−−−−−−−→ {(𝑣𝑝 , 𝑣) | (𝑣𝑝 , 𝑣) ∈ 𝑆}

• When a store operation finishes, there are two possible outcomes: the value may have been

stored only to the buffered content, while the persisted content remains the same as before the

store; the value may be persisted, making the buffered content the same as the persisted one.

• When a flush operation finishes, the buffered value gets flushed into the persisted part. Since

after each store operation, the buffered content is uniquely determined (synchronized), after a

consequent flush operation, the content of mstate is uniquely determined.

• When a crash happens, the buffered content is lost, and after the crash, the buffered content

is overwritten by the persisted value, which may have various possibilities because a flush may

not have happened before the crash. As a result, the uniqueness of the buffered content no

longer holds after the crash and is un-synchronized. The non-determinism brought by store and
 is the first challenge of the FLiT proof and the reason we define mstate in this way.
• When a load operation finishes, the actual buffered content is determined and all future load
will not observe other possibilities of the buffered content. As we will explain later, this behavior

makes the load operation an external linearization point of buffered operations before a crash.

The helping mechanism, especially helpings across crashes, is the second challenge of the FLiT
proof. The returned value must be consistent with at least one possible buffered content in 𝑆 .

Otherwise, the post-state is an empty set and this trace will not be accepted in 𝜈BCell.

To use CLHL to verify the FLiT overlay, we need an invariant 𝐼 that links the overlay and underlay

states and is maintained by any program step. Depending on the current buffered memory cell

state, we split the invariant into three cases. (1) When the buffered content 𝑣𝑏 is synchronized

and persisted (the Flushed state), then the overlay state fstate(𝜌) should also be 𝑣𝑏 , i.e., the store
operation that writes this 𝑣𝑏 is durably linearized. (2) When the buffered content 𝑣𝑏 is synchronized

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:23

but not persisted (the Unflushed state), we use a ghost list 𝐵 to buffer the pending overlay store(𝑣𝑏)
operations in order, so future operations can help linearize it when the value gets persisted. (3)When

a crash happens (the Unsynced state), the buffered content 𝑣𝑏 is un-synchronized and corresponds

to some store(𝑣𝑏) operation in the ghost list 𝐵, in case it has persisted, or is equal to the current

overlay state fstate(𝜌), when none of the buffered operations persisted.

As a result, the proof configuration now becomes (Δ, 𝑠, 𝜌, 𝐵) ∈ ModState×Poss×𝑀∗
𝐹
. According to

the Object Impl rule, we need to find rely and guarantee conditions verifying R[𝛼],G[𝛼], 𝐼 [𝛼] |=𝐹
𝛼

𝑀 [𝛼] for the load and store operations and 𝐼 |=𝑅𝛼 𝑀 [𝛼] for an empty recovery procedure.

5.4.1 Regular Procedure Proofs. To prove regular procedures through the Local Impl rule, we must

find the pre-/post-conditions corresponding to each procedure and prove their Hoare quadruples.

For the FLiT implementation, we prove Hoare quadruple (1) and (2) for the load and store operations.

R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (load) ◦ 𝐼 }load(){returned𝛼 (load) ◦ 𝐼 }{⊤} (1)

R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (store) ◦ 𝐼 }store(){returned𝛼 (store) ◦ 𝐼 }{⊤} (2)

The invoke and returned relations are defined below. The invoke simply adds an invocation (by

clients of the overlay object) to the procedure 𝑓 to the end of 𝑠 and 𝜌 . The returned asserts the

returned result recorded in Δ is consistent with the one linearized in 𝜌 by the prover.

(Δ, 𝑠, 𝜌) invoke𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′) ⇐⇒
(

(Δ, 𝑠, 𝜌) ∈ idle𝛼 ∧ ∃𝑎.Δ′ (𝛼) = [arg ↦→ 𝑎]∧
∀𝛼 ′ ≠ 𝛼.Δ′ (𝛼 ′) = Δ(𝛼) ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑓 ∧ 𝜌 ′ = 𝜌 · 𝛼𝛼𝛼:::𝑓

)
(Δ, 𝑠, 𝜌)returned𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′) ⇐⇒ (Δ′, 𝑠′, 𝜌 ′) = (Δ, 𝑠, 𝜌) ∧ ∃𝑣 ∈ ar(𝑓) .Δ(𝛼) (ret) = 𝑣 ∧ last(𝜋𝛼 (𝜌)) = 𝛼𝛼𝛼:::𝑣

These quadruples are proved by mainly using the Prim rule to step through primitive commands.

In most of the cases, the underlay load/store operations only add pending overlay operations to

the list 𝐵, and a consequent flush operation makes sure they are persisted and helps operations in

𝐵 linearize. The Counter object prevents unnecessary flushes in this process but is not the main

complexity of the FLiT object, and thus we refer readers to the appendix for its treatment.

Figure 6 shows the proof outline for the load operation, which we use as an example for demon-

stration. The program contains two potential linearization points, line 2 and line 5, and we show

how to use the Prim rule to complete proofs and find linearizations at these points.

The underlay load operation at line 2 may execute from three different situations depending

on the object state (Flushed, Unflushed, Unsynced). We choose to perform three different updates

to the possibility 𝜌 and the ghost list 𝐵 and illustrate them through guarantee conditions below,

which record the effects of these updates on proof configurations.

(𝑠, 𝜌, 𝐵) G
load-f
[𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

(
∃𝑣.Flushed(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾BCell) ∧ 𝑣 = fstate(𝜌)∧
lin(𝜌 ′) = lin(𝜌) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

)
(3)

(𝑠, 𝜌, 𝐵) G
load-uf

[𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
(
∃𝑣.Unflushed(𝑠, 𝐵) ∧ last(𝐵↾store) = store(𝑣)∧
𝐵′ = 𝐵 · 𝛼𝛼𝛼:::load ∧ 𝜌 ′ = 𝜌 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

)
(4)

(𝑠, 𝜌, 𝐵) G
load-us

[𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
©­­­­­«

∃𝑣, 𝐵1, 𝐵2 .Unsynced(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾BCell)∧

𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣 ∧
(
(𝐵 = 𝐵1 · 𝐵2 ∧ last(𝐵1) = store(𝑣))
∨(fstate(𝜌) = 𝑣 ∧ 𝐵1 = 𝜖)

)
∧

lin(𝜌 ′) = merge(lin(𝜌), 𝐵1) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖

ª®®®®®¬
(5)

Load from Flushed State. When the underlay memory cell is at the Flushed state, i.e., there are

no buffered operations and 𝐵 = 𝜖 , then, the current memory content fstate(𝜌) is exactly the same

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:24 Oliveira Vale et al.

{invoke𝛼 (load) ◦ 𝐼 }
1: load() {

{𝐼 ∧𝛼𝛼𝛼:::load ∈ 𝑠𝑂 ∧ (Flushed ∨ Unflushed ∨ Unsynced) } // 𝑃load
2: 𝑣 ← 𝑀.load() ; // load-f/load-uf/load-us{

𝐼 ∧
(

(Flushed ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
Unflushed ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

)))} //𝑄load

3: 𝑛 ← 𝐶.get() ;{
𝐼 ∧

(
(𝑛 = 0 ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(

𝑛 ≠ 0 ∧
(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

))) ∧ (Flushed ∨ Unflushed)}
4: if (𝑛 ≠ 0) {{

𝐼 ∧ (Flushed ∨ Unflushed) ∧ (∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣)
}

5: 𝑀.flush() ; // flush

{𝐼 ∧ last(𝜋𝛼 (𝜌)) = 𝑣}
6: }

{𝐼 ∧ last(𝜋𝛼 (𝜌)) = 𝑣}
7: ret 𝑣
8: }
{returned𝛼 (load) ◦ 𝐼 } {⊤}

Fig. 6. A Proof Snippet of the load operation of FLiT Memory Cell

as the content in the underlay memory cell 𝑣 . Therefore, we can simply extend the linearized prefix

lin(𝜌) in 𝜌 with 𝛼𝛼𝛼:::load ·𝛼𝛼𝛼:::𝑣 by reordering the pending load to the place and add the response as (3).

Load from Unflushed State. When the underlay memory is at the Unflushed state, there are

different possible values for the persisted content. Although the underlay load will load the most

recently buffered value 𝑣 , we do not know whether 𝑣 has been persisted or not. If a crash happens

before returning from the current overlay load, this value may be lost from the memory and we

are not supposed to linearize 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 to lin(𝜌). Therefore, instead of linearizing it at this point,

we choose to append the pending load to the buffered list 𝐵 so that a subsequent flush operation

from either the current program or other threads can help linearize it as (4).

Load from Unsynced State. The most special case is when the load is executed after a crash

with some buffered store not flushed yet. As explained before, both the buffered and the persisted

contents may have various values depending on previously buffered stores. The load operation

will determine the actual content in the memory cell, which reveals and linearizes the operations

that are persisted before the crash, making it an external linearization point across crashes.

Fig. 7. External Linearization Point and Crash: the tables above the timeline show the content of the linearized
trace 𝜌 and the ghost list 𝐵 in the first two rows and the mstate content in the remaining rows. 𝑠 (−) is a
shorthand for the store(−) operation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:25

Figure 7 shows an example of this kind of load operation. After a buffered store(2) operation,
the persisted data has not been synchronized with the buffered value 2 since no flush has been

performed, and the system crashes at this moment, resulting in a state with unknown content of

the buffered cell. Just like (4), buffered store operations will be put into the list 𝐵 instead of directly

linearized into 𝜌 . If the result of the load operation following the recovery is 2, like in this example,

it implies that the buffered store operation has been persisted before the crash, and thus we can

linearize the store(2) cached in 𝐵 followed by the current load operation. In the other case, where

the load after recovery gets 1, we know the buffered store operation failed to persist, and thus we

do not linearize the store(2) and instead remove it from the list 𝐵.

We follow this pattern and modify the proof configuration as (5). We maintain as an object

invariant that any persisted value in the underlay memory corresponds to some store in 𝐵 or lin(𝜌).
Based on the return value 𝑣 of the underlay load, we decide how to handle buffered operations

in 𝐵. If 𝑣 is the result of some store(𝑣) in 𝐵, then we know this store(𝑣) has persisted before the

crash, and we linearize all operations 𝐵1 (by reordering them before the crash, adding responses to

invocations in 𝐵1 and putting them after their corresponding invocations) in 𝐵 preceding this store
into lin(𝜌) along with the current load operation and discard what remains in 𝐵.

Then by merging these three branches into one Hoare quadruple through the disjunction rule

and weakening the post-condition to the stable 𝑄load, we prove the Hoare quadruple

R[𝛼],G[𝛼] |=𝛼 {𝑃load}𝑣 ← 𝑀.load(){𝑄load}{⊤}

at line 2 in Figure 6. According to the Prim rule, the quadruple is provable because we can prove

G ⊢𝛼 {𝑃load}𝑣 ← 𝑀.load(){𝑄load} by our reasoning in previous paragraphs, i.e., any update obeys

the rewrite relation⇝†𝐹 , and other entailments and stability checks are all true.

The post-condition 𝑄load indicates that either the current load is linearized and it is obvious that

the returned value 𝑣 is equal to the linearized value 𝑣 , or the state is unflushed and the current load
is buffered in 𝐵. In the second case, the proof that remains to be done for the rest of commands is

still non-trivial. Specifically, the current load may be linearized by some external operations, or it

will be linearized when the flush at line 5 takes place and we need to prove it is a valid linearization

step. The proof of either case will follow the outline in Figure 6 and we can prove (1). We can also

prove (2) and we refer readers to the appendix for its detailed proof.

5.4.2 Recovery Procedure Proof. The FLiT object has no recovery procedure, and therefore we use

the empty recovery signature 𝑅∅ := {𝑟∅} with the recovery program,𝑀 [𝛼]𝑟∅ := r() { ret ok }.
According to the Recover Impl rule, we need to prove the hexad ID,⊤ ⊨𝛼 {𝐼 }𝑀 [𝛼]𝑟∅ {𝐼 }{𝐼 } for 𝑟∅,
which reduces to the idempotence of the invariant w.r.t. crashes, i.e., 𝐼 ⇒ 𝐼 .

As we have shown R[𝛼],G[𝛼], 𝐼 [𝛼] |=𝐹
𝛼 𝑀 [𝛼] and 𝐼 |=𝑅𝛼 𝑀 [𝛼] for any 𝛼 ∈ Υ, according to the

Object Impl rule, we prove ⊢ 𝑀FLiT : (𝜈 ′BCell ⊗ 𝜈
′
Counter, 𝜈BCell ⊗ 𝜈Counter) → ⟨𝜈 ′FLiT, 𝜈FLiT⟩, i.e., the

FLiT memory cell is durably linearizable. Based on the FLiT memory cell, we implement a durable

version of the one-shot write-snapshot object [6], a famous interval-sequential [7] concurrent

object. We prove its linearizability using the logic in Oliveira Vale et al. [31] and use the FLiT
correctness theorem 1.1 to derive its durable linearizability.

We also prove the transactional file system to be crash-aware linearizable with the crash-aware

linearizability variant of CLHL. It demonstrates CLHL’s ability to verify non-trivial recoveries,

and to decompose complicated systems into multiple layers with simpler proofs and then easily

compose these proofs to obtain the originally challenging proof of the entire system.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:26 Oliveira Vale et al.

6 RELATEDWORKS
Game Semantics. Our game semantics model is directly based on that of Ghica and Murawski

[16], Oliveira Vale et al. [31], and our use of object-based game semantics traces back to Oliveira Vale

et al. [30], Reddy [35, 36]. To develop our crash-awaremodel, we indirectly made use of insights from

Mellies [28]. In its goal of describing systems written in imperative languages, our game semantics

is related to some of the work by Ghica and Tzevelekos [17], Koenig and Shao [25]. It is important

to note that crashes are not accurately modeled as a separate computational agent responsible for

issuing crashes: crashes are instantaneous and pervasive, synchronous across components, are not

invoked, and are unimplemented. Because of this, our crash-aware model is rather unorthodox in

that it breaks the tradition of having only two players (Opponent and Proponent) by adding an extra

player for crash events. It models crash events differently from usual moves in traditional game

models by having crash events happen instantaneously and synchronously across all components,

while typically, a move belongs to a single component and happens mostly asynchronously. As

far as we are aware, this is the first game semantics of its kind. Because of this, while we build on

the model from Oliveira Vale et al. [31] and benefit significantly from the theory there, our model

needs to address the intrusive effects of properly modeling crashes.

Linearizability with Crashes. We already discussed some of the history of linearizability criteria

with crashes throughout the paper [2, 4, 19, 22]. In our paper, we address strict linearizability (in

the context of full-system crashes) and durable linearizability. We generalize both of them by not

requiring the linearized specifications to be atomic and by allowing for blocking objects. This

makes our variations of these linearizability criteria closer to interval-sequential linearizability [7].

We formulate these criteria in the style of compositional linearizability [31], which is novel. This

allows us to give simple proofs of locality, develop a compositional verification framework around

these criteria, give the first proof of observational refinement properties for these two criteria, and

provide a counterpart to the analogous result proved for Herlihy-Wing linearizability [14] and

for compositional linearizability [31]. We also discover that the inherent notion of linearizability

to crash-aware objects is the linearizability criterion we called crash-aware linearizability (§4)

satisfying locality and observational refinement. Although related to strict linearizability, it does not

appear elsewhere. We note that while crash-aware linearizability is the compositional linearizability

[31] one gets from our model Crash, our formulations of strict and durable linearizability impose

new challenges and new structures, in particular, because they relate two distinct models of

computation (concurrency with and without crashes). We conjecture that this different structure

can be reconciled with that from compositional linearizability through a weakening of the notion

of a Grothendieck fibration, following ideas from functorial refinement [29].

Verification with Crashes. There are approaches for verifying systems with crashes that do not

involve linearizability. Much of the work on this line has been done in the context of file system

verification. A perhaps notable start is the development of Crash Hoare Logic [11], later refined

into recovery refinement [8], and generalized to handle concurrent systems [9, 10]. Of these, only

Chajed et al. [8], which only handles sequential systems, formally proves a refinement theorem that

enables building large systems. The later variants that handle concurrency lack such a contextual

refinement theorem. These works, different from ours, have been mechanized.

Another important work is Khyzha and Lahav [24], which proves a contextual refinement

theorem for programs with crashes. Quite interesting is the fact that their approach is reminiscent

of that used by Oliveira Vale et al. [31] and by us, in that they define a notion of refinement by

composition with a “Most General Client”. This most general client seems to be a special case

of the copycat strategies that appear in our game models. Since they do this using operational

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:27

semantics, we believe their work is further evidence of the practicality of our approach. Moreover,

their programming language features a buffered memory interface with global flushes, which our

example does not. Despite the similarities, they only address linearizability by providing a few

examples where linearizability specifications can be encoded in their framework, but they do not

describe a generic framework to do so, nor prove a formal connection with linearizability. Modeling

a memory model with global flushes in our model is straightforward: its specification is almost the

same as our buffered memory cell arrays, but with a requirement of proving a memory separation

property, like they had to do. We do not do this here as it was not required for our examples.

A recent line of work proves linearizability specifications, but only for a single component [13],

and focuses on data structures implemented on top of NVM only. It is quite impressive in that it

assumes a weak memory model, which requires handling weak consistency models, which we do

not. Despite that, they do not provide a program logic and are closer to axiomatic approaches, which

could hinder scalability. It is unlikely that their framework could be generalized to a compositional

verification methodology without significant effort.

Concurrently to our work Bodenmüller et al. [5] verified the FLiT library and have a mechanized

proof of correctness. Part of their simulation-based technique is reminiscent of our use of refinement

and dur(−), which they define as a specific transformation of a state-transition system into another

and do not note its relationship to the structure of some compositional model (which they do not

develop). Their technique is restricted to durable linearizability w.r.t. atomic specifications and

is specialized in verifying persistency libraries over NVM. Our work is, therefore, significantly

more general in scope. Our FLiT correctness theorem shows that linearizable objects in the sense of

Oliveira Vale et al. [31] are transformed into durable linearizable libraries in our sense, and therefore

applies even to non-atomic and blocking objects, proving a stronger correctness theorem for FLiT
(in fact, stronger than the FLiT author’s informal claim of correctness, for the same reasons).

Our program logic is the first to verify a linearizability criterionwith crashes. It is based on Khyzha

et al. [23], Oliveira Vale et al. [31], and takes inspiration from Crash Hoare Logic and Argosy [8]. It

differs from the aforementioned works in that it proves durable, and crash-aware linearizability

specifications. The compositional framework, which we directly connect with our program logic, is

the only one that simultaneously provides refinement, linearizability specifications, and vertical

and horizontal composition. Our theory allows us to state the correctness of systems like FLiT [38].

We also show we can verify a simplified variant of a file system interface. Note that previous file

system interfaces are not verified against linearizability specifications, which are deemed as more

intuitive than the kind of specifications one gets from HOCAP style specifications [12, 37].

ACKNOWLEDGMENTS
We thank the reviewers of the current and previous iterations of this work for their thoughtful

revisions. This material is based upon work supported in part by NSF grants 2313433, 2019285, and

1763399, and by the Defense Advanced Research Projects Agency (DARPA) and Naval Information

Warfare Center Pacific (NIWC Pacific) under Contract No. N66001-21-C-4018. Any opinions, find-

ings, and conclusions or recommendations expressed in this material are those of the authors and

do not necessarily reflect the views of the funding agencies.

REFERENCES
[1] Samson Abramsky and Guy McCusker. 1999. Game Semantics. In Computational Logic, Ulrich Berger and Helmut

Schwichtenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–55. https://doi.org/10.1007/978-3-642-58622-

4_1

[2] Marcos K Aguilera and Svend Frølund. 2003. Strict linearizability and the power of aborting. Technical Report
HPL-2003-241 (2003).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

https://doi.org/10.1007/978-3-642-58622-4_1
https://doi.org/10.1007/978-3-642-58622-4_1

352:28 Oliveira Vale et al.

[3] Naama Ben-David, Michal Friedman, and Yuanhao Wei. 2022. Brief Announcement: Survey of Persistent Memory

Correctness Conditions. In 36th International Symposium on Distributed Computing (DISC 2022) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 41:1–41:4. https://doi.org/10.4230/LIPIcs.DISC.2022.41

[4] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. 2016. Robust Shared Objects for Non-Volatile Main Memory.

In 19th International Conference on Principles of Distributed Systems (OPODIS 2015) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 46), Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru (Eds.). Schloss

Dagstuhl, Dagstuhl, Germany, 20:1–20:17. https://doi.org/10.4230/LIPIcs.OPODIS.2015.20

[5] Stefan Bodenmüller, John Derrick, Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. 2024. A Fully Verified

Persistency Library. In Verification, Model Checking, and Abstract Interpretation, Rayna Dimitrova, Ori Lahav, and

Sebastian Wolff (Eds.). Springer Nature Switzerland, Cham, 26–47. https://doi.org/10.1007/978-3-031-50521-8_2

[6] Elizabeth Borowsky and Eli Gafni. 1993. Immediate atomic snapshots and fast renaming. In Proceedings of the Twelfth
Annual ACM Symposium on Principles of Distributed Computing (Ithaca, New York, USA) (PODC ’93). Association for

Computing Machinery, New York, NY, USA, 41–51. https://doi.org/10.1145/164051.164056

[7] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Specifying Concurrent Problems: Beyond Linearizabil-

ity and up to Tasks. In Proceedings of the 29th International Symposium on Distributed Computing - Volume 9363 (Tokyo,
Japan) (DISC 2015). Springer-Verlag, Berlin, Heidelberg, 420–435. https://doi.org/10.1007/978-3-662-48653-5_28

[8] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Argosy: verifying layered storage

systems with recovery refinement. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY,

USA, 1054–1068. https://doi.org/10.1145/3314221.3314585

[9] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe

systems with Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 243–258. https://doi.org/10.1145/

3341301.3359632

[10] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and Nickolai Zeldovich. 2021. GoJournal:

a verified, concurrent, crash-safe journaling system. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 423–439.

[11] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

Crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems
Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 18–37.

https://doi.org/10.1145/2815400.2815402

[12] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 504–528. https://doi.org/10.1007/978-3-642-14107-2_24

[13] Emanuele D’Osualdo, Azalea Raad, and Viktor Vafeiadis. 2023. The Path to Durable Linearizability. Proc. ACM Program.
Lang. 7, POPL, Article 26 (jan 2023), 27 pages. https://doi.org/10.1145/3571219

[14] Ivana Filipovic, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for Concurrent Objects. Theor.
Comput. Sci. 411, 51–52 (dec 2010), 4379–4398. https://doi.org/10.1016/j.tcs.2010.09.021

[15] Dan R. Ghica. 2019. The far side of the cube. CoRR abs/1908.04291 (2019). arXiv:1908.04291 http://arxiv.org/abs/1908.

04291

[16] Dan R. Ghica and Andrzej S. Murawski. 2004. Angelic Semantics of Fine-Grained Concurrency. In Foundations of
Software Science and Computation Structures, Igor Walukiewicz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

211–225. https://doi.org/10.1016/j.apal.2007.10.005

[17] Dan R. Ghica and Nikos Tzevelekos. 2012. A System-Level Game Semantics. Electronic Notes in Theoretical Computer
Science 286 (2012), 191–211. https://doi.org/10.1016/j.entcs.2012.08.013 Proceedings of the 28th Conference on the

Mathematical Foundations of Programming Semantics (MFPS XXVIII).

[18] Éric Goubault, Jérémy Ledent, and Samuel Mimram. 2018. Concurrent Specifications Beyond Linearizability. In

22nd International Conference on Principles of Distributed Systems (OPODIS 2018) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 125), Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira (Eds.). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 28:1–28:16. https://doi.org/10.4230/LIPIcs.OPODIS.2018.28

[19] Rachid Guerraoui and Ron R. Levy. 2004. Robust Emulations of Shared Memory in a Crash-Recovery Model. In

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) (ICDCS ’04). IEEE
Computer Society, USA, 400–407. https://doi.org/10.1109/ICDCS.2004.1281605

[20] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects.

ACM Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

https://doi.org/10.4230/LIPIcs.DISC.2022.41
https://doi.org/10.4230/LIPIcs.OPODIS.2015.20
https://doi.org/10.1007/978-3-031-50521-8_2
https://doi.org/10.1145/164051.164056
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/3571219
https://doi.org/10.1016/j.tcs.2010.09.021
https://arxiv.org/abs/1908.04291
http://arxiv.org/abs/1908.04291
http://arxiv.org/abs/1908.04291
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/j.entcs.2012.08.013
https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1109/ICDCS.2004.1281605
https://doi.org/10.1145/78969.78972

Compositionality and Observational Refinement for Linearizability with Crashes 352:29

[21] Martin Hyland. 1997. Game Semantics. In Semantics and Logics of Computation, Andrew M. Pitts and P.Editors Dybjer

(Eds.). Cambridge University Press, Cambridge, UK, 131–184. https://doi.org/10.1017/CBO9780511526619.005

[22] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016. Linearizability of Persistent Memory Objects

Under a Full-System-Crash Failure Model. In Distributed Computing, Cyril Gavoille and David Ilcinkas (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 313–327. https://doi.org/10.1007/978-3-662-53426-7_23

[23] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson. 2017. Proving Linearizability Using Partial

Orders. In Programming Languages and Systems: 26th European Symposium on Programming, ESOP 2017 (Uppsala,

Sweden). Springer-Verlag, Berlin, Heidelberg, 639–667. https://doi.org/10.1007/978-3-662-54434-1_24

[24] Artem Khyzha and Ori Lahav. 2022. Abstraction for Crash-Resilient Objects. In Programming Languages and Systems,
Ilya Sergey (Ed.). Springer International Publishing, Cham, 262–289. https://doi.org/10.1007/978-3-030-99336-8_10

[25] Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20).
Association for Computing Machinery, New York, NY, USA, 633–647. https://doi.org/10.1145/3373718.3394799

[26] Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle,

Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 459–470. https://doi.org/10.

1145/2491956.2462189

[27] Nancy Lynch and Frits Vaandrager. 1996. Forward and Backward Simulations. Inf. Comput. 128, 1 (jul 1996), 1–25.
https://doi.org/10.1006/inco.1996.0060

[28] Paul-André Mellies. 2019. Categorical Combinatorics of Scheduling and Synchronization in Game Semantics. Proc.
ACM Program. Lang. 3, POPL, Article 23 (jan 2019), 30 pages. https://doi.org/10.1145/3290336

[29] Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15).
Association for Computing Machinery, New York, NY, USA, 3–16. https://doi.org/10.1145/2676726.2676970

[30] Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered and Object-

Based Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (jan 2022), 32 pages. https://doi.org/10.1145/

3498703

[31] Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2023. A Compositional Theory of Linearizability. Proc. ACM
Program. Lang. 7, POPL, Article 38 (jan 2023), 32 pages. https://doi.org/10.1145/3571231

[32] Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2024. A Compositional Theory of Linearizability. J. ACM 71, 2,

Article 14 (apr 2024), 107 pages. https://doi.org/10.1145/3643668

[33] Azalea Raad, JohnWickerson, Gil Neiger, and Viktor Vafeiadis. 2019. Persistency Semantics of the Intel-X86Architecture.

Proc. ACM Program. Lang. 4, POPL, Article 11 (dec 2019), 31 pages. https://doi.org/10.1145/3371079

[34] Azalea Raad, JohnWickerson, and Viktor Vafeiadis. 2019. Weak Persistency Semantics from the Ground up: Formalising

the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. 3, OOPSLA, Article 135 (oct
2019), 27 pages. https://doi.org/10.1145/3360561

[35] Uday S. Reddy. 1993. A Linear Logic Model of State. Technical Report. Dept. of Computer Science, UIUC, Urbana, IL.

[36] Uday S. Reddy. 1996. Global State Considered Unnecessary: An Introduction to Object-Based Semantics. LISP Symb.
Comput. 9, 1 (1996), 7–76. https://doi.org/10.1007/978-1-4757-3851-3_9

[37] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages
and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 149–168. https://doi.org/10.1007/978-

3-642-54833-8_9

[38] Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank. 2022. FliT: a library for simple

and efficient persistent algorithms. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY,

USA, 309–321. https://doi.org/10.1145/3503221.3508436

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

https://doi.org/10.1017/CBO9780511526619.005
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1006/inco.1996.0060
https://doi.org/10.1145/3290336
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3571231
https://doi.org/10.1145/3643668
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1007/978-1-4757-3851-3_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/3503221.3508436

352:30 Oliveira Vale et al.

SUMMARY OF THE APPENDICES
A Provides a more detailed account of the sequential, concurrent and crash-aware game models

used in the main paper.

B Gives our extended treatment of crash-aware linearizability.

C Prepares the ground for strict and durable linearizability by discussing the recrash and decrash

operations.

D Gives our treatment of strict linearizability, including proofs of locality and an observational

refinement property for it.

E Gives our extended treatment of durable linearizability.

F Definesmore carefully the kinds of strategies that serve as denotations of the imperative programs

in our program logic section.

G Gives the full account of our program logic for durable linearizability, including the full definition

of our programming language and operational semantics, all the program logic rules, as well

as the proof of soundness.

H Serves as a continuation of Appendix G by giving a small modification of the program logic

there so that it shows crash-aware linearizability instead of durable linearizability.

I Collects the detailed specification and proofs in our program logic of the FLiT and File examples

discussed in the main paper.

J Collects all of the proofs omitted elsewhere.

A A CONCURRENT GAME SEMANTICS WITH CRASHES
In this section we define our game model with crashes. This does require a long exposition, and a

few different game models. This proves necessary, as durable linearizability involves crash-aware

objects as well as objects without crashes, which live in different models of computation. We start

by recalling the definitions of sequential games Seq and concurrent games Conc appearing in

Oliveira Vale et al. [31], slightly reformulating them in the process (§A.1). Then, we define our

concurrent game model with full-system crashes (§A.2). We finish by discussing the issue of neutral

elements and define the copycat strategy crashcopy that will play the role of the neutral element in

our compositional model (§A.3), and provide a concrete characterization of saturation with respect

to crashcopy.

A.1 Concurrent Games
We now recall the sequential and concurrent games used in Oliveira Vale et al. [31]. The sequential

game mode is traditional in the game semantics literature [1, 21] except that our presentation

differs in, at least at first, not requiring 𝑂-receptivity.
The concurrent game model is closely related to the model appearing in Ghica and Murawski

[16]. We slightly generalize the model in Oliveira Vale et al. [31]. There, concurrent games are

homogenous in that all agents play the same game locally, i.e. have access to copies the same

operations. The model we define here is hetererogenous in the sense that it allows different agents

to play different games locally.

At this point, we must note that our model of concurrent games is parametrized by a set Υ
of agent names. We start by defining a notion of move of a game, and what it means to be a

well-formed sequential and concurrent play.

Definition A.1 (Move Sets and Well-Formed Plays). We define the set of polarities for sequential

games Polseq and concurrent games Polconc respectively as the sets:

Polseq := {𝑂, 𝑃} Polconc :=
∑︁
𝛼∈Υ

Polseq

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:31

We define a move set as a pair (𝑀, 𝜆 : 𝑀 → Pol) of a set of moves and a polarity assigning

function 𝜆 : 𝑀 → Pol to a set of polarities. Given such a move set, we write𝑀pol
for largest subset

of𝑀 including only moves𝑚 ∈ 𝑀 such that 𝜆(𝑚) = pol.
In the case of a move set (𝑀, 𝜆 : 𝑀 → Polconc) we also write 𝑀𝛼

for the largest subset of 𝑀

including only moves 𝜆(𝑚) = 𝛼𝛼𝛼:::pol for any polarity pol ∈ Polseq. Note that𝑀𝛼
defines a move set

(𝑀𝛼 , 𝜆𝛼 : 𝑀 → Polseq) by the polarity assignment

𝜆𝛼 (𝑚) = pol ⇐⇒ 𝜆(𝑚) = 𝛼𝛼𝛼:::pol
Given a sequence 𝑠 ∈ 𝑀∗ and a subset 𝑆 ⊆ Υ, we denote by 𝜋𝛼 (𝑠) ∈ 𝑀∗ the largest subsequence of
𝑠 containing only moves in𝑀𝛼

.

Given a move set (𝑀, 𝜆 : 𝑀 → Polseq) we write Pseq
𝑀

for the set of sequences 𝑠 ∈ 𝑀∗ that start
with a move labelled by 𝑂 , and alternate between 𝑂 and 𝑃 moves in the sense that

𝑠 = 𝑝 ·𝑚 ·𝑚′ · 𝑡 =⇒ 𝜆(𝑚) ≠ 𝜆(𝑚′)
We call sequences in P

seq
𝑀

well-formed sequential plays.

Similarly, given a move set (𝑀, 𝜆 : 𝑀 → Polconc) we write Pconc
𝑀

for the set of sequences 𝑠 ∈ 𝑀∗
which are locally sequential in that 𝜋𝛼 (𝑠) ∈ Pseq𝑀𝛼 . We call sequences in Pconc

𝑀
well-formed concurrent

plays.

We are now ready to define the key notion of a game.

Definition A.2 (Sequential and Concurrent Games). A sequential game𝐴 = ((𝑀𝐴, 𝜆𝐴), 𝑃𝐴) consists
of a move set (𝑀𝐴, 𝜆𝐴 : 𝑀𝐴 → Polseq) and a non-empty, prefix-closed, subset 𝑃𝐴 ⊆ Pseq𝐴

, where we

write P
seq
𝐴

for P
seq
𝑀𝐴

.

A concurrent game 𝐴 = ((𝑀𝐴, 𝜆𝐴), 𝑃𝐴) consists of a move set (𝑀𝐴, 𝜆𝐴 : 𝑀𝐴 → PolconcΥ) and a

non-empty, prefix-closed subset 𝑃𝛼
𝐴
⊆ Pseq

𝑀𝛼
𝐴

for each 𝛼 ∈ Υ verifying that 𝑃𝐴 = ∥𝛼∈Υ𝑃𝛼𝐴
Given a game 𝐴 we can recover the local game that 𝛼 plays, written 𝐴𝛼

, as the sequential game

𝐴𝛼 = ((𝑀𝛼
𝐴
, 𝜆𝛼

𝐴
), 𝜋𝛼 (𝑃𝐴)). Note that by construction, given 𝑠 ∈ 𝑃𝐴 it is necessarily the case that

𝜋𝛼 (𝑠) ∈ 𝑃𝐴𝛼 .

Conversely, given an Υ-indexed collection of sequential games 𝐴 = (𝐴[𝛼])𝛼∈Υ we define the

concurrent game Conc 𝐴 by the data

𝑀Conc 𝐴 :=
∑︁
𝛼∈Υ

𝑀𝐴[𝛼] 𝜆Conc 𝐴 :=
∑︁
𝛼∈Υ

𝜆𝐴[𝛼] 𝑃Conc 𝐴 :=
n

𝛼∈Υ
𝛼𝛼𝛼:::𝑃𝐴[𝛼]

when the context permits, we write 𝐴 instead Conc 𝐴. It is useful to note that given a concurrent

game 𝐴, we always have 𝐴 � (𝐴𝛼)𝛼∈Υ, where the isomorphism holds up to renaming some moves.

So, up-to isomorphism, every concurrent game may be seen as a collection 𝐴 = (𝐴[𝛼])𝛼∈Υ of

sequential games.

An example of a sequential game is the unit game Σ, in which Opponent is able to ask a question 𝑞
and Proponent may answer the unique answer available to it 𝑎. Formally, its moves are𝑀Σ := {𝑞, 𝑎}
where 𝑞 is an Opponent move, i.e. 𝜆Σ (𝑞) = 𝑂 , and 𝑎 is a Proponent move, i.e. 𝜆Σ (𝑎), while its set of
plays is given by

𝑃Σ := {𝜖 , 𝑞 , 𝑞 · 𝑎}
We can use the sequential unit game to define an Υ-indexed collection Σ with Σ[𝛼] := Σ. The
corresponding game Σ simply allows all agents in Υ to play an instance of Σ locally, so that its

plays are sequentially consistent interleavings of plays of Σ labelled by the agent issuing the

corresponding moves. For example, for 𝛼 ≠ 𝛼 ′ both agents in Υ, the following sequence a play of Σ:

𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑎

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:32 Oliveira Vale et al.

where the arrows are merely a visual aid in keeping track of the individual threads of computation.

Definition A.3 (Strategies). For a sequential/concurrent game 𝐴, a sequential/concurrent strategy
𝜎 over 𝐴, written 𝜎 : 𝐴, is a non-empty, prefix-closed subset 𝜎 ⊆ 𝑃𝐴.

Definition A.4 (Dual Move Set). Given a move set (𝑀, 𝜆 : 𝑀 → Polseq) we define (𝑀⊥, 𝜆⊥ : 𝑀⊥ →
Polseq) by

𝑀⊥ := 𝑀 𝜆⊥ (𝑚) := (𝜆(𝑚))⊥

where 𝑂⊥ := 𝑃 and 𝑃⊥ := 𝑂 .

Given a move set (𝑀, 𝜆 : 𝑀 → Polconc) we define (𝑀⊥, 𝜆⊥ : 𝑀⊥ → Polconc) by
𝑀⊥ := 𝑀 𝜆⊥ (𝑚) := (𝜆(𝑚))⊥

where (𝛼𝛼𝛼:::pol)⊥ := 𝛼𝛼𝛼:::pol⊥ for pol ∈ Polseq.

Definition A.5 (Tensor and Affine Implication). Given sequential/concurrent games 𝐴 and 𝐵 we

define the sequential/concurrent games 𝐴 ⊗ 𝐵 and 𝐴 ⊸ 𝐵 by the following data

𝑀𝐴⊗𝐵 := 𝑀𝐴 +𝑀𝐵 𝜆𝐴⊗𝐵 := 𝜆𝐴 + 𝜆𝐵 𝑃𝐴⊗𝐵 := {𝑠 ∈ P𝐴⊗𝐵 | 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}
𝑀𝐴⊸𝐵 := 𝑀⊥𝐴 +𝑀𝐵 𝜆𝐴⊸𝐵 := 𝜆⊥𝐴 + 𝜆𝐵 𝑃𝐴⊸𝐵 := {𝑠 ∈ P𝐴⊸𝐵 | 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

where −↾𝐴,− : (𝑀𝐴 +𝑀𝐵)∗ → 𝑀𝐴 assigns to a sequence 𝑠 its largest subsequence involving only

elements in𝑀𝐴, and analogously for −↾𝐵 : (𝑀𝐴 +𝑀𝐵)∗ → 𝑀𝐵 .

The plays of 𝐴 ⊗ 𝐵 are essentially plays of 𝐴 and 𝐵 interleaved in a sequentially consistent way,

so that 𝐴 ⊗ 𝐵 corresponds to independent horizontal composition. The game 𝐴 ⊸ 𝐵 meanwhile

corresponds to switching the roles of Opponent and Proponent in 𝐴 and then taking the tensor

with 𝐵, which is the traditional way of modelling the affine implication type in game models.

As a matter of illustration, the maximal plays (under prefix ordering) for the sequential games

Σ0 ⊗ Σ1 (the two plays on the left) and Σ0 ⊸ Σ1 (the two plays on the right) are depicted below.

We denote by Σ0, Σ1 the two components of these types, both of which are instances of the game Σ.
We will similarly add an index to the moves of each component.

Σ1 𝑞1 𝑎1 𝑞1 𝑎1

Σ0 𝑞0 𝑎0 𝑞0 𝑎0

⊗
Σ1 𝑞1 𝑎1 𝑞1 𝑎1

Σ0 𝑞0 𝑎0

⊸

Observe that in the game Σ ⊗ Σ Opponent can choose to start in either component, while in the

game Σ ⊸ Σ Opponent must start in the target component (Σ1) due to the flip of polarity in the

source component (Σ0). In Σ ⊗ Σ only Opponent may switch components, while in Σ ⊸ Σ only

Proponent may switch components because of alternation (these are typically called the switching

conditions of sequential games). Their concurrent variants Σ ⊗ Σ and Σ ⊸ Σ merely allow for any

sequentially consistent interleaving of the plays above, labelled by the agents who are performing

each move.

Definition A.6. For sequential/concurrent games 𝐴, 𝐵 and 𝐶 , we define the set of sequential/con-

current interaction plays as

int(𝐴, 𝐵,𝐶) := {𝑠 ∈ (𝑀𝐴 +𝑀𝐵 +𝑀𝐶)∗ | 𝑠↾𝐴,𝐵,− ∈ 𝑃𝐴⊸𝐵 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝑃𝐵⊸𝐶 }
where −↾𝐴,𝐵,− : (𝑀𝐴 +𝑀𝐵 +𝑀𝐶)∗ → (𝑀𝐴 +𝑀𝐵)∗ assigns to 𝑠 the largest subseqeunce of 𝑠 involving
only events in𝑀𝐴 and𝑀𝐵 , and analogously for the projection −↾−,𝐵,𝐶 .
Given sequential/concurrent strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 we define their set of

interactions by

int(𝜎, 𝜏) := {𝑠 ∈ int(𝐴, 𝐵,𝐶) | 𝑠↾𝐴,𝐵,− ∈ 𝜎 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝜏}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:33

and their composition, for sequential strategies and concurrent strategies, respectively:

𝜎 ;𝜏 := {𝑠↾𝐴,−,𝐶 ∈ Pseq𝐴⊸𝐶
| 𝑠 ∈ int(𝜎, 𝜏)} 𝜎 ;𝜏 := {𝑠↾𝐴,−,𝐶 ∈ Pconc𝐴⊸𝐶 | 𝑠 ∈ int(𝜎, 𝜏)}

where, −↾𝐴,−,𝐶 : (𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶)∗ → (𝑀𝐴 + 𝑀𝐶)∗ assigns to 𝑠 the largest subsequence of 𝑠

containing only moves in𝑀𝐴 and𝑀𝐶 .

Proposition A.7. Composition of sequential/concurrent strategies is well-defined and associative.

Prop. A.7, proved by Oliveira Vale et al. [31], means that sequential games, and concurrent games

both assemble into semicategories. Recall that a semicategory is essentially a category without the

requirements about the neutral element for composition.

Definition A.8. We call Seq the semicategory of sequential games and sequential strategies, and

Conc the semicategory of concurrent games and concurrent strategies.

An important class of games for us, as they will make for the types of our concrete objects and

will play a key rule in defining the semantics of imperative code, are games generated by effect

signatures. This follows an approach for modeling imperative programs started in Koenig and Shao

[25], Oliveira Vale et al. [30]. First, we recall the definition of effect signature and define a notion

of concurrent effect signature.

Definition A.9. An effect signature is given by a collection of operations, or effects, 𝐸 = (𝑒𝑖)𝑖∈𝐼
together with an assignments par(−), ar(−) : 𝐸 → Set of a set of parameters par(𝑒) and a set

of return values ar(𝑒) for each operation 𝑒 ∈ 𝐸. This is conveniently described by the following

notation:

𝐸 = {𝑒𝑖 : par(𝑒𝑖) → ar(𝑒𝑖) | 𝑖 ∈ 𝐼 }
For a given set of agents Υ we call an Υ-indexed collection of effect signatures 𝐸 = (𝐸 [𝛼])𝛼∈Υ a

concurrent effect signature.

The corresponding games associated sequential and concurrent games associated to effect

signatures are as follows.

Definition A.10. Given an effect signature 𝐸, define the game Seq(𝐸) ∈ Seq by the data:

𝑀Seq(𝐸) :=
∑︁
𝑒∈𝐸

par(𝑒) +
∑︁
𝑒∈𝐸

ar(𝑒) 𝜆Seq(𝐸) := 𝑂 +𝑃 𝑃Seq(𝐸) := ↓∪𝑒∈𝐸 ∪𝑎∈par(𝑒) ∪𝑣∈ar(𝑒) 𝑒 (𝑎) · 𝑣

we take the freedom of writing 𝐸 for Seq(𝐸).
Then, given a concurrent effect signature 𝐸, its corresponding game Conc(𝐸) in Conc is the

game Conc 𝐸. We will often write just 𝐸 for Conc 𝐸.

The typical play of 𝐸 looks like the following (on the left), where 𝑒 ∈ 𝐸 is an effect, 𝑎 ∈ par(𝑒)
and 𝑣 ∈ ar(𝑒).
𝐸 : 𝑒 (𝑎) 𝑣 †𝐸 : 𝑒1 (𝑎1) 𝑣1 𝑒2 (𝑎2) 𝑣2 . . . 𝑒𝑛 (𝑎𝑛) 𝑣𝑛

Note that 𝐸 only allows for a single effect of 𝐸 to be issued. We can lift such a game 𝐸 to a game †𝐸
(read “replay 𝐸”) that allows several effects of 𝐸 to be invoked in sequence. Its plays, depicted above

on the right, consist of sequences of invocations 𝑒𝑖 ∈ 𝐸 with argument 𝑎𝑖 ∈ par(𝑒𝑖) alternating
with their responses 𝑣𝑖 ∈ ar(𝑒𝑖). We will define the replay modality †− formally later. This informal

description will suffice until then. The concurrent variant 𝐸, as usual, just allows each agent to play

an instance of the corresponding sequential game 𝐸 [𝛼] in a sequentially consistent fashion, while

†𝐸 similarly allows each agent to play †𝐸 [𝛼] locally.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:34 Oliveira Vale et al.

A.2 Games with Full-System Crashes
We are now ready to define our model of concurrent computation with full-system crashes. We

follow the same structure as §A.1.

Definition A.11 (Polarities with Crashes). We define the set of polarities for crash-aware games

Pol as the set Pol := Polconc + { }.

Note that crash-aware games will effectively have an extra player which is responsible for issuing

crash signals, which are represented by moves labelled by and will be treated differently from 𝑂

and 𝑃 moves.

Definition A.12 (Move Set and Well-Formed Plays). We define a crash-aware move set to be a

move set (𝑀, 𝜆 : 𝑀 → Pol) such that𝑀
is a singleton set.

We write 𝑀Υ
for the largest subset of 𝑀 including only moves𝑚 ∈ 𝑀 such that 𝜆(𝑚) ≠ , i.e.

𝑀Υ = ∪𝛼∈Υ𝑀𝛼
. Note that 𝑀Υ

always defines a move set (𝑀Υ, 𝜆Υ : 𝑀Υ → Polconc) by the polarity

assignment 𝜆Υ (𝑚) := 𝜆(𝑚).
Note that a sequence 𝑠 ∈ 𝑀∗ is of the form

𝑠1 · · 𝑠2 · · . . . · · 𝑠𝑛+1

where every 𝑠𝑖 ∈ (𝑀Υ)∗ and ∈ 𝑀
𝐴
. We define ∥𝑠 ∥ to be 𝑛 + 1. We also define the operation

epo𝑖 (−) which assigns to 𝑠 the sequence epo𝑖 (𝑠) := 𝑠𝑖 , called the 𝑖-th epoch of 𝑠 . If 𝑖 > ∥𝑠 ∥ then we

take the convention that epo𝑖 (𝑠) := 𝜖 .
We say a sequence 𝑠 ∈ 𝑀∗ is a well-formed crash-aware play when, for every 𝑖 ∈ N, epo𝑖 (𝑠) ∈

Pconc
𝑀Υ . We denote by P

𝑀
the set of all well-formed crash-aware plays over the move set (𝑀, 𝜆 : 𝑀 →

Pol).

Note that in the definition of the well-formedness of crash-aware plays we implicitly already

enforce that crashes affect the entire system, as when a crash happens the entire system resets

back to a 𝑃-position. This means that after a crash, the first move for all agents is an 𝑂 move, no

matter what was the last move by that agent in the previous epoch. We are now ready to define

crash-aware games. In the definition,and for the remainder of this paper, we will make frequent

use of the usual Kleene algebra over sequences. We will also denote by the unique crash event

 ∈ 𝑀
, for any crash-aware move set, what allows us to ignore the actual name of the crash event.

While the assumption that 𝑀

𝐴
is a singleton is not necessary, allowing for several crash events

makes several of the definitions more involved. Since for our practical purposes one crash event is

enough, we opt for this simpler presentation.

Definition A.13 (Crash-Aware Game). A crash-aware game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) consists of a move

set (𝑀𝐴, 𝜆𝐴 : 𝑀𝐴 → Pol) and a non-empty, prefix-closed subset 𝑃Υ
𝐴
⊆ Pconc

𝐴
making

𝑃𝐴 = (𝑃Υ𝐴 ·)
∗ · 𝑃Υ𝐴 ⊆ P

𝑀𝐴

Note that any crash-aware game 𝐴 defines a concurrent game 𝐴Υ
:= ((𝑀Υ

𝐴
, 𝜆Υ

𝐴
), 𝑃Υ

𝐴
) ∈ Conc.

Conversely, given a concurrent game 𝐴 = ((𝑀𝐴, 𝜆𝐴), 𝑃𝐴) we can construct a crash-aware game

𝐴 := ((𝑀𝐴 +{ }, 𝜆𝐴 +), (𝑃𝐴 ·)∗ ·𝑃𝐴) where we write for the constant function : { } → { }.
This game has every agent 𝛼 ∈ Υ playing the concurrent game 𝐴. It is useful to observe that given

a crash-aware game 𝐴, (𝐴Υ) � 𝐴.
So, for example, the crash-aware version of Σ is given by Σ . Then, an example of play of Σ is:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:35

𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞

Fig. 8. Example of a play of Σ .

Note that the main well-formedness constraint about plays of crash-aware games is that in each

epoch they play a well-formed concurrent play. i.e. a locally sequential play.

Definition A.14 (Crash-Aware Strategy). A strategy 𝜎 : 𝐴 over a game 𝐴 is a non-empty, prefix-

closed, subset 𝜎 ⊆ 𝑃𝐴, which is moreover -receptive in that

∀𝑠 ∈ 𝜎.𝑠 · ∈ 𝑃𝐴 =⇒ 𝑠 · ∈ 𝜎
The -receptivity property of strategies models the usual assumption that crashes may non-

deterministically happen at any point in an execution of a program. Surprisingly, it plays a crucial

role in proving the symmetric monoidal structure of crash-aware games.

Observe that in the definition of the tensor product and the affine implication for sequential and

concurrent games the disjoint union of move sets plays a crucial role. In order to correctly model

the instantaneous and synchronous behavior of crashes, we must treat crash signals differently

when computing the disjoint union of move sets. For this, we define a smash product which behaves

like the disjoint union for 𝑂 and 𝑃 moves, but that merges crash signals together. It will also be

necessary to redefine projections to take this merger into account.

Definition A.15 (Smash Product). Given move sets (𝑀𝐴, 𝜆𝐴) and (𝑀𝐵, 𝜆𝐵) we define their smash

product (𝑀𝐴 + 𝑀𝐵, 𝜆𝐴 + 𝜆𝐵) by
𝑀𝐴 + 𝑀𝐵 := 𝑀Υ

𝐴 +𝑀
Υ
𝐵 + and 𝜆𝐴 + 𝜆𝐵 := 𝜆𝐴 + 𝜆𝐵 +

where stands for the constant function to ∈ Pol .
Given 𝑠 ∈ P𝑀𝐴+ 𝑀𝐵

we define 𝑠↾𝐴,− ∈ P𝑀𝐴
and 𝑠↾−,𝐵 ∈ P𝑀𝐵

to be the projections to the

corresponding components of𝑀𝐴+ 𝑀𝐵 .What thismeans is that−↾𝑀𝐴,− and−↾−,𝑀𝐵
are respectively

generated by the maps in Set below using the universal property of the free monoids𝑀∗
𝐴
and𝑀∗

𝐵

respectively:

−↾𝑀𝐴,− := id𝑀Υ
𝐴
+ 𝜖 + id1 : 𝑀𝐴 + 𝑀𝐵 → 𝑀∗𝐴 − ↾−,𝑀𝐵

:= 𝜖 + id𝑀Υ
𝐵
+ id1 : 𝑀𝐴 + 𝑀𝐵 → 𝑀∗𝐵

where 𝜖 is the constant function to the empty sequence, and id𝑆 is the identity for the set 𝑆 .

Definition A.16 (Dual Move Set). Given a move set (𝑀, 𝜆) we define the moveset (𝑀⊥, 𝜆⊥) by
𝑀⊥ := 𝑀 𝜆⊥ (𝑚) := 𝜆(𝑚)⊥

where (𝛼𝛼𝛼:::pol)⊥ := 𝛼𝛼𝛼:::pol⊥ for pol ∈ Polseq, and ⊥ := .
In the context of games 𝐴 and 𝐵, as opposed to move sets, we write −↾𝐴,− and −↾−,𝐵 for −↾𝑀𝐴,−

and −↾−,𝑀𝐵
respectively. We will also write −↾𝐴,𝐵,− and −↾−,𝐵,𝐶 for, respectively,

−↾𝑀𝐴+ 𝑀𝐵 ,− : (𝑀𝐴+ 𝑀𝐵+ 𝑀𝐶)∗ → (𝑀𝐴+ 𝑀𝐵)∗ −↾−,𝑀𝐵+ 𝑀𝐶
: (𝑀𝐴+ 𝑀𝐵+ 𝑀𝐶)∗ → (𝑀𝐵+ 𝑀𝐶)∗

We also take the opportunity to define a projection

−↾𝐴,−,𝐶 : (𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶)∗ → (𝑀𝐴 + 𝑀𝐶)∗

as the monoid homomorphism associated by the universal property of the free monoid (𝑀𝐴+ 𝑀𝐶)∗
to the mapping 𝑝𝐴,−,𝐶 : 𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶 → (𝑀𝐴 + 𝑀𝐶)∗ in Set:

𝑝𝐴,−,𝐶 (𝑚) =


𝑚, 𝑚 ∈ 𝑀Υ

𝐴
+𝑀Υ

𝐶

𝜖, 𝑚 ∈ 𝑀Υ
𝐵

 , (𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶) (𝑚) =

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:36 Oliveira Vale et al.

Definition A.17. Fix games𝐴 and 𝐵. We define the games𝐴 ⊗ 𝐵 and𝐴 ⊸ 𝐵 by the following data

𝑀𝐴⊗𝐵 := 𝑀𝐴 + 𝑀𝐵 𝜆𝐴⊗𝐵 := 𝜆𝐴 + 𝜆𝐵 𝑃𝐴⊗𝐵 := {𝑠 ∈ P𝑀𝐴+ 𝑀𝐵
| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

𝑀𝐴⊸𝐵 := 𝑀⊥𝐴 + 𝑀𝐵 𝜆𝐴⊸𝐵 := 𝜆⊥𝐴 + 𝜆𝐵 𝑃𝐴⊸𝐵 := {𝑠 ∈ P𝑀⊥
𝐴
+ 𝑀𝐵

| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

It is in this change from a disjoint union to the smash product, and in the corresponding

modification to projections that lies some of the assumptions about the behavior of crashes. Consider

the following play 𝑠 of Σ ⊸ Σ (on the left):

𝑠 =
𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞

𝑠↾−,Σ = 𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞

𝑠↾Σ ,− = 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 · · 𝛼 ′𝛼 ′𝛼 ′:::𝑞
Note that the crash signal synchronize across the the source and target components of the play.

This simultaneously models that the crashes are synchronous across components (they happen in

all components at once) and that they are instantaneous (it takes negligible time for the crash to

propagate to other components). On the right, above, we see the projections of 𝑠 to the source and

target components. Importantly, the crash event is retained in both projections, so that the crash

event of Σ ⊸ Σ effectively belongs to both components.

Definition A.18. We define the set of interaction plays as

int(𝐴, 𝐵,𝐶) := {𝑠 ∈ (𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶)∗ | 𝑠↾𝐴,𝐵,− ∈ 𝑃𝐴⊸𝐵 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝑃𝐵⊸𝐶 }

Given strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 we define their set of interactions by

int(𝜎, 𝜏) := {𝑠 ∈ int(𝐴, 𝐵,𝐶) | 𝑠↾𝐴,𝐵,− ∈ 𝜎 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝜏}

and their composition

𝜎 ;𝜏 := {𝑠↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶
| 𝑠 ∈ int(𝜎, 𝜏)}

Proposition A.19. Composition of crash-aware strategies is well-defined and associative.

Definition A.20. We denote by Crash the semicategory of crash-aware games, with crash-aware

strategies 𝜎 : 𝐴 ⊸ 𝐵 as morphisms between games 𝐴 and 𝐵, and composition given by −;−.

We take the opportunity to define the crash-aware version of 𝐸 as 𝐸 . We similarly define the

game †𝐸 as (†𝐸) .

A.3 The Copycat Strategies and Saturation
None of Seq, Conc or Crash assemble into categories for the corresponding composition operations

−;− do not have a neutral element. That is, to say, there is no choice of strategies id𝐴 : 𝐴 ⊸ 𝐴 for

which id𝐴;𝜎 ; id𝐵 = 𝜎 for every 𝜎 : 𝐴 ⊸ 𝐵. On the other hand, there are clear candidates for such a

neutral element, which are called the copycat strategies.

The sequential copycat strategy seqcopy𝐴 : 𝐴 ⊸ 𝐴 intuitively replicates 𝑂-moves in the target

component as the same move in the source component, and 𝑃-moves in the source component to

the same move in the target component. Formally, it is defined by:

seqcopy𝐴 := {𝑠 ∈ 𝑃𝐴⊸𝐴 | ∀𝑝 ⊑even 𝑠 .𝑝↾𝐴1
= 𝑝↾𝐴2

}

where we write ⊑ for the prefix relation and ⊑even for the even-length prefix relation. For Σ the

maximal play of the copycat strategy seqcopyΣ is the play below (on the left):

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:37

Σ 𝑞 𝑎

Σ 𝑞 𝑎

⊸

Import Σ

q () {

a <- q

ret a

}

Fig. 9. Maximal play of seqcopyΣ (left) and corresponding pseudocode (right)

This play corresponds to complete execution of the code we display on the right, which imple-

ments Σ by importing another instance of Σ.
The concurrent copycat then ccopy𝐴 : 𝐴 ⊸ 𝐴 merely has every agent 𝛼 ∈ Υ play the sequential

copycat for its corresponding game seqcopy𝐴𝛼 : 𝐴𝛼 ⊸ 𝐴𝛼
:

ccopy𝐴 := {𝑠 ∈ 𝑃𝐴⊸𝐴 | 𝜋𝛼 (𝑠) ∈ seqcopy𝐴𝛼 }
Finally, the crash-aware copycat crashcopy𝐴 : 𝐴 ⊸ 𝐴 just plays ccopy𝐴Υ within each epoch:

crashcopy𝐴 := (ccopy𝐴Υ ·)∗ · ccopy𝐴Υ

It turns out that in all cases the corresponding copycat strategy can lead to emergent behavior

after composition, which prevents the models from being compositional. Concretely, writing

copy generically for any of the copycat strategies, it can happen that for some 𝜎 : 𝐴 ⊸ 𝐵,

𝜎 ⊂ copy𝐴;𝜎 ; copy𝐵 strictly. This issue is explained extensively in Oliveira Vale et al. [31] in the

context of concurrent games, and the situation is the same for crash-aware games, so we refer the

reader there for a more detailed account of the issue.

The solution they present which turns out to be deeply related to linearizability, is to note that

the copycat strategy is idempotent, in that for all games 𝐴 in the corresponding models

copy𝐴; copy𝐴 = copy𝐴
This essentially means that the copy𝐴 at least behaves like a neutral element for itself. With that

fact at hand, we define a class of strategies that behave well when composed with the copycat.

Definition A.21. We say a strategy 𝜎 : 𝐴 ⊸ 𝐵 is saturated with respect to the copycat strategy

copy when

copy𝐴;𝜎 ; copy𝐵 = 𝜎

It is not hard to see that the fact that the copycat strategy is idempotent ensures that composing

saturated strategies yields a saturated strategy, and that the copycat does behave like a neutral

element for saturated strategies. This means that we can promote the semicategories we have

defined to categories by restricting attention to these saturated strategies.

Definition A.22. We define the categories Seq, Conc and Crash as the restrictions, respectively, of

the semicategories Seq, Conc and Crash to strategies saturated with respect to the corresponding

copycat strategies seqcopy, ccopy and crashcopy.

It is folklore that, concretely, saturation for sequential strategies is equivalent to 𝑂-receptivity.

That is, a strategy is saturated if and only if it accepts 𝑂-moves whenever the environment is

allowed to make them. For concurrent games the story for saturation is more complicated, and

corresponds to, beyond 𝑂-receptivity, strategies that are insensitive to certain delays, which might

be caused, for instance, if an agent is preempted. This is typically formalized using a rewrite system

− ⇝ −, which figures prominently in the concrete formulation of linearizability appearing in

Oliveira Vale et al. [31], so naturally it will also play a key role in our own work on linearizability,

and we take the opportunity to define it now.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:38 Oliveira Vale et al.

Definition A.23. Let 𝐴 = (𝑀𝐴, 𝑃𝐴) be a concurrent game. We define a string rewrite system

(𝑃𝐴,⇝𝐴) with local rewrite rules:

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.∀𝑋 ∈ {𝑂, 𝑃}.𝛼 ≠ 𝛼 ′∧𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑋∧𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑋 =⇒ 𝑚 ·𝑚′ ⇝𝐴

𝑚′ ·𝑚
• ∀𝑜, 𝑝 ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ∧ 𝜆𝐴 (𝑜) = 𝛼𝛼𝛼:::𝑂 ∧ 𝜆𝐴 (𝑝) = 𝛼 ′𝛼 ′𝛼 ′:::𝑃 =⇒ 𝑜 · 𝑝 ⇝𝐴 𝑝 · 𝑜

For crash-aware strategies, the concrete characterization is only slightly more involved. We do

not cover it here for the sake of space. We will soon see an equivalent characterization in terms of

a linearizability criterion, which will be sufficient for our purposes.

A.4 Refinement and Horizontal Composition
Before proceeding, we briefly address refinement and horizontal composition. We take as our notion

of refinement behavior containment, 𝜎 ⊆ 𝜏 , with joins given by set union. This makes all of the

models we have discussed so far into enriched (semi)categories over join semi-lattices. Specifically,

this means that

Proposition A.24. Strategy composition −;− is monotonic and join-preserving.

Now, for horizontal composition, recall that we have already defined a game 𝐴 ⊗ 𝐵 ∈ Crash
given games 𝐴 and 𝐵 in Crash. The tensor defines a semifunctor as follows, where 𝜎 : 𝐴 ⊸ 𝐵 and

𝜏 : 𝐴′ ⊸ 𝐵′:

𝜎 ⊗ 𝜏 := {𝑠 ∈ 𝑃𝐴⊗𝐴′⊸𝐵⊗𝐵′ | 𝑠↾𝐴⊸𝐵 ∈ 𝜎 ∧ 𝑠↾𝐴′⊸𝐵′ ∈ 𝜏}
Note that these projections are defined just like in the usual concurrent case except for its behaviour

on crashes which is given by:

 ↾𝐴⊸𝐵 = ↾𝐴′⊸𝐵′ =

Moreover, the game 1 is given by the following data

𝑀1 = { } 𝜆1 () = 𝑃1 = ∗

These definitions permit us to prove that

Proposition A.25. (Crash,− ⊗ −, 1) defines an enriched symmetric monoidal category.

This means, in particular, that − ⊗ − defines a monotonic and join-preserving functor, so that

horizontal composition behaves well with respect to both vertical composition and refinement.

B CRASH-AWARE LINEARIZABILITY
Compositional linearizability provides an account of linearizability based on an operation 𝐾Conc −
converting strategies in Conc to strategies in Conc. This operation, comes with the abstract

construction defining Conc, so that, as Crash follows the same construction, there is a counterpart

𝐾 − in Crash. In this section, we give a concrete characterization of the notion of linearizability

associated to𝐾 −, which is closely related to strict linearizability. Then, we present the equivalence
with observational refinement and the locality property for it.

B.1 Crash-Aware Linearizability
We start by defining the operation 𝐾 − : Crash→ Crash by the formula, for 𝜏 : 𝐴 ⊸ 𝐵 ∈ Crash

𝐾 𝜏 := crashcopy𝐴;𝜎 ; crashcopy𝐵
Intuitively, this operation assigns to 𝜎 the smallest saturated strategy containing 𝜎 . 𝐾 − has the

important property that it is an oplax semifunctor, i.e.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:39

Proposition B.1. For all 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 in Crash, 𝐾 (𝜎 ;𝜏) ⊆ 𝐾 𝜎 ;𝐾 𝜏 .
The framework of compositional linearizability proposes that the native notion of linearizability

for crash-aware objects should be equivalent to the refinement 𝜈 ′ ⊆ 𝐾 𝜈 . So for the remainder

of this section, our goal is to concretely characterize this refinement in terms of plays. For this,

we find it useful to recall the concrete formulation of compositional linearizability. This notion of

linearizability is a slight generalization of interval-sequential linearizability, and in particular does

not require that the linearized specification be atomic nor that all pending operations be removed.

Definition B.2. For 𝐴 ∈ Conc, a play 𝑠 ∈ 𝑃𝐴 is linearizable to a play 𝑡 ∈ 𝑃𝐴 when there exists a

sequence of 𝑃-moves 𝑠𝑃 ∈ (𝑀𝑃
𝐴
)∗ and a sequence of𝑂-moves 𝑠𝑂 ∈ (𝑀𝑂

𝐴
)∗ such that 𝑠 · 𝑠𝑃 ⇝𝐴 𝑡 · 𝑠𝑂 .

We write 𝑠 ; 𝑡 when 𝑠 is linearizable to 𝑡 . We say 𝑠 ∈ 𝑃𝐴 is linearizable with respect to a strategy

𝜈 : 𝐴, written 𝑠 ; 𝜈 when there exists 𝑡 ∈ 𝜈 such that 𝑠 ; 𝑡 . We say a strategy 𝜈 ′ : 𝐴 is linearizable

with respect to a strategy 𝜈 : 𝐴, written 𝜈 ′ ; 𝜈 , when for every play 𝑠 ∈ 𝜈 ′, 𝑠 ; 𝜈 .

We use linearizability in Conc to define crash-aware linearizability. It is straight-forward: 𝑠

crash-aware linearizes to 𝑡 when their corresponding epochs linearize to each other.

Definition B.3. For 𝐴 ∈ Crash, we say a play 𝑠 ∈ 𝑃𝐴 crash-aware linearizes to a play 𝑡 ∈ 𝑃𝐴 when

∥𝑠 ∥ = ∥𝑡 ∥ and ∀𝑖 ≤ ∥𝑠 ∥ .epo𝑖 (𝑠) ; epo𝑖 (𝑡)
and write 𝑠 ; 𝑡 when this holds, and extend the notation as we did for linearizability (see Def. B.2).

We now discuss a few examples of crash-aware linearizability. A first example is volatile objects.

For this, we find it useful to define a functor Vol −, defined by Vol 𝐴 := 𝐴 on games. Meanwhile,

given a strategy 𝜎 : 𝐴 ⊸ 𝐵 ∈ Conc we define the strategy vol(𝜎) ∈ Crash as vol(𝜎) := (𝜎 ·)∗ · 𝜎 .
The functor is named vol(−) because we use it to define volatile objects, as given a strategy

𝜈𝐸 : †𝐸 ∈ Conc, vol(𝜈𝐸) : †𝐸 describes the object that behaves as 𝜈𝐸 within each epoch, and in

particular resets the object to its initial state on a crash. It is easy to see that:

Proposition B.4. For 𝜈 ′ : 𝐴 ∈ Conc and 𝜈 : 𝐴 ∈ Conc, if 𝜈 ′ ; 𝜈 then vol(𝜈 ′) ; vol(𝜈).
The main result of this section is the following characterization of 𝐾 −.
Proposition B.5.

𝐾 𝜏 = {𝑠 ∈ 𝑃𝐴⊸𝐵 | 𝑠 is crash-aware linearizable with respect to 𝜏}
Corollary B.6. 𝜈 ′ : 𝐴 is crash-aware linearizable with respect to 𝜈 : 𝐴 if and only if 𝜈 ′ ⊆ 𝐾 𝜈 .

B.2 Observational Refinement and Locality
We use the general result in Oliveira Vale et al. [31] to obtain locality and observational refinement.

The requirements to obtain these properties are the following.

Lemma B.7.

• For any 𝜎 : 1 ⊸ 𝐴 ∈ Crash it holds that crashcopy1;𝜎 = 𝜎 .
• For 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ we have 𝜎 ⊗ 𝜎 ′ ⊆ 𝜏 ⊗ 𝜏 ′ =⇒ 𝜎 ⊆ 𝜎 ′ ∧ 𝜏 ⊆ 𝜏 ′

This gives as corollaries locality and observational refinement, which we write explicitly now.

The proof of these results, under the conditions of our construction and Lemma B.7.

Corollary B.8 (Observational Refinement). 𝜈 ′
𝐴
: 𝐴 ∈ Crash is crash-aware linearizable w.r.t

𝜈𝐴 : 𝐴 ∈ Crash if and only if for all 𝜎 : 𝐴 ⊸ 𝐵, 𝜈 ′
𝐴
;𝜎 ⊆ 𝜈𝐴;𝜎

Corollary B.9 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 ∈ Crash and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵 ∈ Crash:

𝜈 ′
𝐴 ; 𝜈𝐴 and 𝜈 ′

𝐵 ; 𝜈𝐵 if and only if 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵 ; 𝜈𝐴 ⊗ 𝜈𝐵

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:40 Oliveira Vale et al.

C CRASH ABSTRACTION
Many specification methodologies for crash-aware objects, including durable linearizability, use

specifications without crashes. In our framework, this means that while the concrete crash-aware

object 𝜈 ′ lives inVol, the abstract specification 𝜈 lives inConc. In this section we develop conversions
between Crash and Conc that serve as a building block for strict and durable linearizability.

The main difficulty in removing crashes from a play 𝑠 with crashes is that the removal may

generate traces not satisfying sequential consistency. This happens when the same agent has a

pending invocation in one epoch and also moves in a later epoch. So, in the definition of the

operation −♭ (read de-crash), the projections 𝜋Υ (𝑠) are required to be well-formed plays.

Definition C.1. Given a game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) ∈ Crash we define the game 𝐴♭ ∈ Conc, by:
𝑀𝐴♭ := 𝑀

Υ
𝐴 𝜆𝐴♭ (𝑚) := 𝜆𝐴 (𝑚) 𝑃𝐴♭ := {𝜋Υ (𝑠) ∈ Pconc𝐴♭ | 𝑠 ∈ ∥𝛼∈Υ (𝑃𝛼𝐴)

∗}

Given a strategy 𝜎 : 𝐴 ∈ Crash we similarly define 𝜎♭ : 𝐴♭ ∈ Conc by

𝜎♭ := {𝜋Υ (𝑠) ∈ Pconc𝐴♭ | 𝑠 ∈ 𝜎}

A result we note in passing is that (𝐴 ⊸ 𝐵)♭ � 𝐴♭ ⊸ 𝐵♭. This permits us to show that −♭ defines
an oplax semifunctor −♭ : Crash→ Conc, that is:

Proposition C.2. For all 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 in Crash, (𝜎 ;𝜏)♭ ⊆ 𝜎♭;𝜏♭.
In addition, for all 𝐴 ∈ Crash, crashcopy♭

𝐴
= ccopy𝐴, and −♭ is monotonic and join-preserving.

It is also useful to provide a reverse operation −♯, read re-crash, that lifts, in a persistent way, a

strategy 𝜎 : 𝐴♭ ⊸ 𝐵♭ into a strategy 𝜎♯ : 𝐴 ⊸ 𝐵, a situation we depict diagrammatically below.

𝐴 𝐵

𝐴♭ 𝐵♭

⊸
𝜎♯

⊸𝜎

So, suppose given 𝐴, 𝐵 ∈ Crash and 𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc. Then, the
strategy 𝜎♯ : 𝐴 ⊸ 𝐵 ∈ Crash is given by:

𝜎♯ := {𝑠 ∈ P
𝐴
| 𝜋Υ (𝑠) ∈ 𝜎}

Re-crash also behaves like an enriched semifunctor.

Proposition C.3. For 𝜎 : 𝐴♭ ⊸ 𝐵♭, 𝜏 : 𝐵♭ ⊸ 𝐶♭ ∈ Conc, 𝜎♯;𝜏♯ ⊆ (𝜎 ;𝜏)♯.
In addition, for all 𝐴 ∈ Crash, ccopy♯

𝐴♭
⊆ crashcopy𝐴, and −♯ is monotonic and join-preserving.

D STRICT LINEARIZABILITY
Strict linearizability [2], an important linearizability criterion in the presence of crashes often used

to specify objects with robust recovery routines, postulates that a pending operation must linearize

within the same epoch it was issued. It was originally formulated in a system with individual

crashes instead of full-system crashes, so we modify it for our setting. We do not assume atomicity

or that all pending operations are removed.

Similarly to how Oliveira Vale et al. [31] characterizes linearizability by lifting a non-saturated

strategy to a saturated strategy, we formalize strict linearizability by lifting a strategy without

crashes into a strategy with crashes. Naively, one might think it is enough to use the lift 𝜈♯ : 𝐴 ∈
Crash. Unfortunately, this does not make a crash-aware object, mainly because it does not satisfy

𝑂-receptivity anymore. Specifically, 𝜈♯ never has plays such as

𝛼𝛼𝛼:::𝑞 · · 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎
because 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 is not well-formed as a play of 𝐴♭

. We can fix this issue by saturating the

resulting strategy using 𝐾 −.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:41

Definition D.1. Given games 𝐴, 𝐵 ∈ Crash, we define the strict lift str(𝜎) : 𝐴 ⊸ 𝐵 of a strategy

𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc as the strategy
str(𝜎) := 𝐾 𝜎♯

We now define our variation of strict linearizability, which differs only in that it generalizes the

original strict-linearizability by not requiring the linearized specification to be atomic and complete,

and specializes it to full-system crashes.

Definition D.2. We say 𝜈 ′ : 𝐴 ∈ Crash is strictly linearizable to 𝜈 : 𝐴♭ ∈ Conc when 𝜈 ′ ⊆ str(𝜈).

It is not hard to see that when 𝜈 is an atomic strategy this is equivalent to strict linearizability.

Indeed, the application of 𝐾 − within str(−) corresponds to constructing a strict completion [3],

and −♯ to removing the crashes. Finally, by first noting that

Proposition D.3. For all 𝜎 : 𝐴♭ ⊸ 𝐵♭, 𝜏 : 𝐵♭ ⊸ 𝐶♭ ∈ Conc, str(𝜎); str(𝜏) ⊆ str(𝜎 ;𝜏).

we are able to prove the following refinemenet property for strict linearizability.

Proposition D.4. Suppose 𝜈 ′
𝐴

: 𝐴 is strictly linearizable to 𝜈𝐴 : 𝐴♭ and that 𝜎 : 𝐴♭ ⊸ 𝐵♭

implements an object linearizable to 𝜈𝐵 : 𝐵♭ using 𝜈𝐴, i.e.

𝜈𝐴;𝜎 ⊆ 𝜈𝐵
Then, str(𝜎) implements an object strictly linearizable to str(𝜈𝐵) using 𝜈 ′𝐴, i.e.

𝜈 ′𝐴; str(𝜎) ⊆ str(𝜈𝐵)

The reverse direction, unfortunately does not hold as str(ccopy𝐴♭) ≠ crashcopy𝐴. By similar

reasoning as the locality for crash-aware linearizability we also obtain that

Proposition D.5 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 ∈ Crash and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵 ∈ Conc:

𝜈 ′
𝐴
⊆ str(𝜈𝐴) and 𝜈 ′𝐵 ⊆ str(𝜈𝐵) if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵
⊆ str(𝜈𝐴 ⊗ 𝜈𝐵)

E DURABLE LINEARIZABILITY
A frequently used linearizability criterion for specifying persistent objects is durable linearizability

[22], which appears as an important development in linearizability with crashes [3]. Durable

linearizability makes a core assumption, which we call the durability assumption: that the agents
appearing in each epoch are disjoint across epochs. This means that there is no agent re-use

between epochs. The assumption makes the definition of durable linearizability significantly simpler

than previous criteria, including strict linearizability. Moreover, under the durability assumption,

persistent atomicity and recoverable linearizability are equivalent. This assumption, however,

is quite intrusive and must be enforced throughout, requiring us to define a new model Dur.
Interestingly, this can be smoothly done by a different choice of copycat for Crash. We finish by

showing locality and observational refinement for durable linearizability.

E.1 Durable Linearizability
We start by formalizing the durability assumption, and from now on assume Υ is countably infinite.

Definition E.1. For a move set (𝑀𝐴, 𝜆𝐴 : 𝑀𝐴 → Pol) we say a play 𝑠 ∈ P𝐴 is durable when the

set of agents appearing in each epoch of 𝑠 are pairwise disjoint across epochs, i.e.

∀𝑖 .∀𝑗 .𝑖 ≠ 𝑗 =⇒ Υ(epo𝑖 (𝑠)) ∩ Υ(epo𝑗 (𝑠)) = ∅

and write Pdur
𝐴

for the set of all durable plays over𝑀𝐴. We write 𝑃dur
𝐴

for 𝑃𝐴 ∩ Pdur𝐴
.

We say a strategy is durable when all of its plays are durable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:42 Oliveira Vale et al.

Durable plays 𝑠 have the important property that 𝜋Υ (𝑠) ∈ 𝑃𝐴 as

𝜋Υ (𝑠) = epo
1
(𝑠) · epo

2
(𝑠) · . . . · epo𝑛 (𝑠) · . . .

writing ops(𝑠) for the right-hand side above we obtain that when 𝜎 is durable 𝜎♭ = ops(𝜎). An
important result is that durable strategies compose:

Proposition E.2. If 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 are durable strategies then 𝜎 ;𝜏 is a durable strategy.

This means that the restriction of Crash to durable strategies defines a semicategory, which we

call Dur. This motivates defining a durable copycat strategy.

Definition E.3. For 𝐴 ∈ Crash, the strategy durcopy𝐴 : 𝐴 ⊸ 𝐴 is the strategy:

durcopy𝐴 := crashcopy𝐴 ∩ Pdur𝐴⊸𝐴

Proposition E.4. durcopy is idempotent.

This let’s us define a model for durable objects and their implementations.

Definition E.5. We define the category Dur as the restriction of Crash to strategies saturated

with respect to durcopy.

The construction, like for Conc and Crash, comes with its own operation 𝐾dur : Dur → Dur
defined as 𝐾dur 𝜎 := durcopy𝐴;𝜎 ; durcopy𝐵 , as expected. Its associated notion of linearizability

𝜈 ′ ⊆ 𝐾dur 𝜈 is the same as crash-aware linearizability restricted to durable strategies. An important

fact that we mention in passing is that restriction to durable plays − ∩ P𝐴⊸𝐵 defines a semifunctor

from Crash to Dur. Composing this semifunctor with −♯ therefore preserves its functoriality

properties. For simplicity, we denote this composition simply as −♯, as the context should make it

clear when the durable assumption is in place. We are finally ready to define durable linearizability.

Definition E.6. We say a play 𝑠 ∈ 𝑃dur
𝐴

is durably linearizable to a play 𝑡 ∈ 𝑃𝐴♭ , written 𝑠 ;dur 𝑡 ,
when ops(𝑠) ; 𝑡 . We extend the notation to strategies as we did for linearizability (see Def. B.2).

Our definition differs from the traditional one only in that: we do not assume the linearized trace

is atomic, and we do require that all pending invocations be removed in the linearization.

Now, for our refinement-based formulation, we define a durable lift dur(−), which assigns to a

strategy 𝜈 : 𝐴♭ ∈ Conc the strategy dur(𝜈) : 𝐴 ∈ Dur defined by

dur(𝜈) : 𝐴 ∈ Crash := (𝐾Conc 𝜈)♯ ∩ 𝑃dur𝐴

And, indeed, dur(−) does provide an appropriate lifting operation for durable linearizability.

Proposition E.7. 𝜈 ′ : 𝐴 ∈ Crash is durable linearizable to 𝜈 : 𝐴♭ ∈ Conc if and only if
𝜈 ′ ⊆ dur(𝜈).

E.2 Observational Refinement and Locality
E.2.1 Observational Refinement. We now show an observational refinement property for durable

linearizability. For this, we first note that dur(−) behaves like a lax semifunctor, that is:

Proposition E.8. For all 𝜎 : 𝐴♭ ⊸ 𝐵♭, 𝜏 : 𝐵♭ ⊸ 𝐶♭ ∈ Conc, dur(𝜎); dur(𝜏) ⊆ dur(𝜎 ;𝜏).

It also satisfies the following property, which str(−) does not satisfy:

Proposition E.9. For all 𝐴 ∈ Dur, dur(ccopy𝐴♭) = durcopy𝐴

Each of these two results play an important role in each of the two directions of the following

equivalence with observational refinement.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:43

Proposition E.10. Let 𝐴, 𝐵 ∈ Crash. Then 𝜈 ′
𝐴
: 𝐴 is durably linearizable to 𝜈𝐴 : 𝐴♭ if and only

if whenever 𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc implements a concurrent object linearizable to 𝜈𝐵 using 𝜈𝐴, then
dur(𝜎) : 𝐴 ⊸ 𝐵 implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

E.2.2 Locality. For locality, we start by defining a tensor product.

Definition E.11. For strategies 𝜎 : 𝐴, 𝜏 : 𝐵 ∈ Dur we define their tensor product 𝜎 ⊠ 𝜏 : 𝐴 ⊠ 𝐵 as

𝐴 ⊠ 𝐵 := 𝐴 ⊗ 𝐵 𝜎 ⊠ 𝜏 := (𝜎 ⊗ 𝜏) ∩ 𝑃dur𝐴⊗𝐵

Proposition E.12. (Dur,− ⊠ −, 1) defines a symmetric monoidal category.

With that established, establishing locality follows the same structure as for Conc and Crash.

Proposition E.13. For any durable 𝜎 : 𝐴, 𝜏 : 𝐵 ∈ Conc, dur(𝜎 ⊗ 𝜏) = dur(𝜎) ⊠ dur(𝜏).

Proposition E.14. For 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 ∈ Dur and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ ∈ Dur we have

𝜎 ⊠ 𝜎 ′ ⊆ 𝜏 ⊠ 𝜏 ′ =⇒ 𝜎 ⊆ 𝜎 ′ ∧ 𝜏 ⊆ 𝜏 ′

Corollary E.15 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 ∈ Dur and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵 ∈ Conc:

𝜈 ′
𝐴 ;dur 𝜈𝐴 and 𝜈 ′

𝐵 ;dur 𝜈𝐵 if and only if 𝜈 ′
𝐴
⊠ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵

E.3 FLiT Correctness Theorem
For the FLiT correctness theorem, we must assume that 𝜈 ′Cell is strongly linearizable to 𝜈FLiT, in the

sense of [31]. This means that we assume that 𝜈FLiT ⊆ 𝜈 ′Cell in addition to 𝜈 ′Cell ; 𝜈FLiT. Note as well

that the FLiT correctness theorem also assumes that a durably linearizable FLiT implementation is

available, that is that an object 𝜈 ′FLiT : †FLiT durably linearizable to 𝜈FLiT has been established. We

do this for the implementation displayed in §1 in §I.

Proposition E.16 (FLiT Correctness). For any object signature 𝐸, writing 𝜈 ′Mem := ⊗𝑖∈𝐼𝜈 ′Cell, if
𝜈 ′Mem;𝑀 is an object linearizable to𝜈𝐸 then, writing𝜈 ′FLiTMem := ⊠𝑖∈𝐼𝜈 ′FLiT, it follows that𝜈

′
FLiTMem; dur(𝑀)

is durably linearizable to 𝜈𝐸 .

Proof. Note that since 𝜈 ′Cell is linearizable to 𝜈FLiT, from locality for compositional linearizability

it follows that 𝜈 ′Mem ; 𝜈Mem, where we write 𝜈Mem := ⊗𝑖∈𝐼𝜈FLiT. Then, by observational refinement

for compositional linearizability and the assumption, we have:

𝜈Mem;𝑀 = 𝜈 ′Mem;𝑀 ⊆ 𝜈𝐸
Now, by locality for durable linearizability we have that 𝜈 ′FLiTMem ⊆ dur(𝜈Mem). But then, the result
follows from observational refinement for durable linearizability. □

F IMPERATIVE PROGRAMS
So far we have developed the theory of crash-aware, strict and durable linearizability in a rather

general setting. In practice, it proves useful to focus attention to strategies that specifically represent

imperative code. Specifically, these are strategies that arise from parallel compositions of sequential

imperative strategies. Object specifications 𝜈𝐸 : †𝐸 are now assumed to have effect signatures as

types, but otherwise are just any strategy in the appropriate domain. Strategies𝑀 : †𝐸 ⊸ †𝐹
that are used to implement new objects 𝜈𝐸 ;𝑀 will be specialized to these imperative strategies. For

this, we use the theory of object-based semantics proposed by Reddy [36] and further developed

in Oliveira Vale et al. [30, 31]. For brevity, we do this with respect to Crash and Crash, but the
corresponding variation for durable strategies is easily obtained by enforcing durability throughout.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:44 Oliveira Vale et al.

F.1 Parallel Strategies
Recall that in §A.1 we defined an operation Conc − for constructing concurrent games from 𝛼-

indexed collections of sequential games. This operation has a suitable counterpart for strategies,

which makes it into a functor.

Definition F.1. Given a collection of strategies 𝜎 [Υ] = (𝜎 [𝛼])𝛼∈Υ, where for each 𝛼 , 𝜎 [𝛼] :
𝐴[𝛼] ⊸ 𝐵 [𝛼] ∈ Seq, define the strategy Conc 𝜎 [Υ] : Conc 𝐴 ⊸ Conc 𝐵 as

𝜎 [Υ] := ∥𝛼∈Υ𝜎 [𝛼]
We say a strategy in the image of Conc − is a parallel strategy.

Now, we define parallel strategies in Crash.

Definition F.2. We denote by Par − the composition of semifunctors:

Par − : SeqΥ → Crash := vol(Conc −)
We say a strategy in the image of Par is a crash-aware parallel strategy.
Since both Conc − and Vol − restrict to functors, we define the subsemicategory Parallel of

Crash of parallel strategies, which, when restricted to saturated strategies, forms a subcategory

Parallel of Crash.

We note that

Proposition F.3.

Par 𝜎 [Υ] ⊗ Par 𝜎 ′ [Υ] = Par (𝜎 ⊗ 𝜎 ′) [Υ]
where (𝜎 ⊗ 𝜎 ′) [𝛼] = 𝜎 [𝛼] ⊗ 𝜎 ′ [𝛼].

Since, moreover, all the structural morphisms on Crash are parallel strategies, it follows that

Parallel inherits the symmetric monoidal structure of Crash.

F.2 The Crash-Aware Replay Modality
Parallel strategies make for a nice domain for us to fully define the structure of the replay modality

† −, which we have being using for our examples.

Definition F.4. Given a sequential game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) we define the sequential game †𝐴 by

the following data:

𝑀†𝐴 :=
∑︁
𝑖∈N

𝑀𝐴 𝜆†𝐴 =
∑︁
𝑖∈N

𝜆𝐴 𝑃†𝐴 := {𝑠1 · . . . · 𝑠𝑛 ∈ Pseq†𝐴 | ∀𝑖 .𝑠𝑖 ∈ 𝑖𝑖𝑖:::𝑃𝐴}

Given a sequential strategy 𝜎 : 𝐴 ⊸ 𝐵 we define †𝜎 : †𝐴 ⊸ †𝐵 by

†𝜎 := {111:::𝑠1 · . . . ·𝑛𝑛𝑛:::𝑠𝑛 ∈ 𝑃†𝐴 | ∀𝑖 .𝑠𝑖 ∈ 𝜎}
Then, given a crash-aware game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) ∈ Crash we define the game †𝐴 by the

following data.

𝑀†𝐴 :=

(∑︁
𝑖∈N

𝑀Υ
𝐴

)
+ 𝜆†𝐴 :=

∑︁
𝑖∈N

𝑀𝐴 𝑃†𝐴 := ((∥𝛼∈Υ𝑃†𝐴𝛼) ·) · (∥𝛼∈Υ𝑃†𝐴𝛼)

Given a parallel strategy 𝜎 = Par 𝜎 [Υ] we define †𝜎 := Par (†𝜎 [𝛼])𝛼∈Υ.

A crucial result to appropriately define an object-based semantics model is that † − does define a

modality, that is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:45

Proposition F.5.

†− : Parallel→ Parallel

defines a semifunctor restrictiting to a comonad

†− : Parallel→ Parallel

Object-based semantics then postulates that co-algebras of † − capture various flavors of the

semantics of imperative code. It turns out that in fact, Par − transports co-algebras in

Proposition F.6. Given a collection of strategies (𝑀 [𝛼] : 𝐴[𝛼] ⊸ 𝐵 [𝛼])𝛼∈Υ such that, for every
𝛼 ∈ Υ, 𝐴[𝛼] and 𝐵 [𝛼] are co-algebras of the sequential † −, and𝑀 [𝛼]is a co-algebra morphism, then
Par (𝑀 [Υ], 𝑅) is a co-algebra morphism with respect to the crash-aware † −.

This rather technical result means that we may use the same notion of imperative code used in

Oliveira Vale et al. [30, 31] in our framework, and, therefore, we are able to inherit many of their

techniques for modeling imperative programming to our setting.

F.3 Imperative Strategies
We are finally ready to define our model of imperative strategies.

Definition F.7. We define the category Imp to be the subcategory of Parallel defined by the

following data:

Objects: games of the form 𝐸 ∈ Crash, where 𝐸 is a concurrent effect signature.

Morphisms: parallel strategies of the form Par (𝑀 [Υ],Δ) : †𝐸 ⊸ †𝐹 , where, for each 𝛼 ,
𝑀 [𝛼] : †𝐸 [𝛼] ⊸ 𝐹 [𝛼] ∈ Seq, and𝑀 [𝛼] is the co-Kleisli extension �𝑀 [𝛼] : †𝐸 ⊸ †𝐹 of𝑀 [𝛼].

This dense definition encapsulates a recent approach for the semantics of systems. The maps

𝑀 [𝛼] : †𝐸 [𝛼] ⊸ 𝐹 [𝛼] are exactly the regular maps of Oliveira Vale et al. [30], which they show

are effective at describing sequential imperative code. Our parallel strategies, in each epoch, play as

parallel compositions of regular maps, which is the same notion of imperative concurrent code used

in Oliveira Vale et al. [31]. Both of these trace back to the foundational work by Reddy [35, 36].

Two crucial results for the semantics of imperative programs are that:

Proposition F.8. For concurrent effect signatures 𝐸 and 𝐹 , the game 𝐸 & 𝐹 is generated by the
concurrent effect signature (𝐸 [𝛼] + 𝐹 [𝛼])𝛼∈Υ.

Proposition F.9 (Imperative Seely Isomorphism). There is a natural isomorphism in Imp:

†(𝐸 & 𝐹) � †𝐸 ⊗ †𝐹

These two results together mean that Imp inherits the symmetric monoidal structure of Vol.
Essentially, a tensor product †𝐸 ⊗†𝐹 is essentially the same thing as the game †(𝐸 &𝐹), which,
since 𝐸 & 𝐹 is generated by a concurrent effect signature, itself belongs to Imp.

G A PROGRAM LOGIC FOR DURABLE OVERLAY OBJECTS
G.1 Programming Language
In this section, we define a general programming language. Compared to the main text, we define

in detail the state transformer J𝐵K𝛼 and the local operational semantics that we lift the transformer

into.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:46 Oliveira Vale et al.

G.1.1 Syntax. We start by defining a language Com for commands over some effect signature

𝐸 ∈ Eff, where Eff is the set of effect signatures:

Prim := 𝑥 ← 𝑒 (𝑎) | assume(𝜙) | ret 𝑣 Com := Prim | Com;Com | Com + Com | Com∗ | skip
Prim stands for primitive commands. The assignment command, 𝑥 ← 𝑒 (𝑎), executes the effect 𝑒 ∈ 𝐸
with argument 𝑎 and stores the response to variable 𝑥 in a local environment Δ ∈ Env. The assert
command, assume(𝜙), takes a boolean function 𝜙 over the local environment and terminates the

computation if it evaluates to False. We implement while loops and if-statements using assume(−)
in the usual way. The return command, ret 𝑣 , stores the value 𝑣 into a reserved variable res, and
may only be invoked once in any procedure’s execution. Com is the grammar of commands defined

as usual in a Kleene algebra.

An implementation𝑀 [𝛼] of type 𝐸 → 𝐹 ⟲ 𝑅𝐹 implements the overlay’s regular procedures 𝐹

and recovery procedures 𝑅𝐹 , using the underlay with the signature 𝐸. For simplicity, we require that

there is only one recovery program in 𝑅𝐹 , i.e. 𝑅𝐹 = {𝑟 : 1→ 1}, and use 𝑟 to denote the overlay’s

recovery method. The local implementation consists of a collection 𝑀 [𝛼] = (𝑀 [𝛼] 𝑓)𝑓 ∈𝐹∪𝑅𝐹
of

commands𝑀 [𝛼] 𝑓 ∈ Com indexed by 𝑓 ∈ 𝐹 ∪ 𝑅𝐹 . A concurrent module𝑀 [Υ] ∈ CMod is given by

a collection of local implementations𝑀 [Υ] = (𝑀 [𝛼])𝛼∈Υ.

G.1.2 Semantics. Each primitive command 𝐵 receives an interpretation as a state transformer

J𝐵K𝛼 : UndState → P(UndState) over a set of states UndState := Env × 𝑃†(𝐸) and returning a

new set of states. A state (Δ, 𝑠) ∈ UndState contains a local environment Δ ∈ Env and a history

represented as a play 𝑠 ∈ 𝑃†(𝐸) . The transformer J𝐵K𝛼 depends on 𝛼 only in that it tags each event

it adds to the history with an agent identifier 𝛼 . We define the transformer J𝐵K𝛼 as follows.

• A special primitive is id, which is generated when reducing structural commands. Therefore,

it has no effect on the state.

JidK𝛼 (Δ, 𝑠) = {(Δ, 𝑠)}
• The return instruction has the interpretation below.

Jret 𝑣K𝛼 (Δ, 𝑠) =
{
{(Δ[res ↦→ 𝑣], 𝑠)} Δ(𝑟𝑒𝑠) = ⊥
∅ Δ(𝑟𝑒𝑠) ≠ ⊥

• For the assignment, we interpret it differently according to the underlay’s trace.

– If even(𝜋𝛼 (𝑠)), then

J𝑥 ← 𝑒 (𝑎)K𝛼 (Δ, 𝑠) =


{(Δ, 𝑠 · 𝛼𝛼𝛼:::𝑒 (𝑎))} 𝑎 ∈ par(𝑒)
{(Δ, 𝑠 · 𝛼𝛼𝛼:::𝑒 (Δ(𝑎)))} 𝑎 ∈ Var ∧ Δ(𝑎) ∈ par(𝑒)
∅ otherwise

– If 𝜋𝛼 (𝑠) = 𝑝 · 𝑒 (𝑎′), where either 𝑎′ = 𝑎 or 𝑎′ = Δ(𝑎), then
J𝑥 ← 𝑒 (𝑎)K𝛼 (Δ, 𝑠) = {(Δ[𝑥 ↦→ 𝑣], 𝑠 · 𝛼𝛼𝛼:::𝑣 | 𝑣 ∈ ar(𝑒))}

– Otherwise, J𝑥 ← 𝑒 (𝑎)K𝛼 (Δ, 𝑠) = ∅.
• The assert instruction only makes progress when the boolean expression evaluates to true.

Jassume(𝜙)K𝛼 (Δ, 𝑠) =
{
{(Δ, 𝑠)} 𝜙 (Δ) = True
𝜙 otherwise

We lift the interpretation function to a thread local operational semantics ⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩.
It encodes how 𝛼 steps on commands in a mostly standard way following the Kleene algebra struc-

ture of commands. We define the local operational semantics in Fig. 10.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:47

↣ ⊆ Com × Prim × {𝑂, 𝑃} × Com

𝐵↣𝑂
𝐵 𝐵 𝐵↣𝑃

𝐵 skip

𝐶1↣
𝑋
𝐵 𝐶

′
1

𝐶1;𝐶2↣𝐵 𝐶
′
1
;𝐶2 skip;𝐶 ↣𝑋

id 𝐶 𝐶∗↣𝑋
id 𝐶;𝐶

∗

𝐶∗↣𝑋
id skip 𝐶1 +𝐶2↣

𝑋
id 𝐶1 𝐶1 +𝐶2↣

𝑋
id 𝐶2

−→ ⊆ (Com × UndState) × Υ × (Com × UndState)

(Δ′, 𝑠′) ∈ J𝐵K𝑋𝛼 (Δ, 𝑠) 𝐶 ↣𝑋
𝐵 𝐶

′

⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩

Fig. 10. Local Operational Semantics (−→)

In Fig. 5, we lift this local operational semantics to a concurrent module operational semantics

⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠′⟩, which takes a continuation 𝑐 ∈ Cont := Υ → {idle, skip, dead, halt} +

Com and a module state (Δ, 𝑠) ∈ ModState := (Υ → Env) × 𝑃†(𝐸⟲𝑅𝐸)⊸†(𝐹⟲𝑅𝐹) containing local

environments for all agents and the global trace of the system. It adds three highlighted rules to

handle crashes, compared with the semantics in Oliveira Vale et al. [31]. These rules are:

Crash Allows for crashes to happen at any time, resetting local environments for all agents, marking

all the previously ran agents as dead and all remaining ones as halt.
StartRec Starts the recovery phase by putting a recovery code 𝐶 as the continuation, which is a

sequential composition of one permutation of underlay recoveries followed by the overlay

recovery𝑀 [𝛼]𝑟 . Chajed et al. [8] uses a similar recovery scheme.

EndRed When the recovery finishes, any thread that is not dead becomes idle, that the system can

now run normally. It ensures the durable assumption since threads in previous epochs are no

longer available.

We define the denotation of a module to be the set of traces it can generate under the module

operational semantics from the initial configuration by the formula below, where 𝑐0 is the initial

continuation and Δ0 is the initial environment where every agent has an empty local environment.

J𝑀K𝑅𝐸
:= {𝑠 | ∃𝑐 ∈ Cont,Δ ∈ (Υ→ Env).⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀

𝑅𝐸
⟨𝑐,Δ, 𝑠⟩} ⊆ 𝑃†(𝐸⟲𝑅𝐸)⊸†(𝐹⟲𝑅𝐹)

G.2 Object Interfaces
The interface of a crash-aware linearizable object 𝐸 is a tuple

(𝜈 ′𝐸 : †(𝐸 ⟲ 𝑅𝐸) ∈ Dur, 𝜈𝐸 : †𝐸 ∈ Crash) s.t. 𝜈 ′𝐸↾𝐸 ⊆ 𝐾 𝜈𝐸
where 𝜈 ′

𝐸
is the concrete specification that contains all possible traces the object can produce, which

will include concurrent ones and will also contain crash events and recovery signatures, and 𝜈𝐸 is

the linearized specification. The interface is valid if and only if after recovery refining the concrete

specification (the projection onto 𝐸), 𝜈 ′
𝐸
↾𝐸 is crash-aware linearizable to 𝜈𝐸 , i.e., 𝜈

′
𝐸
↾𝐸 ⊆ 𝐾 𝜈𝐸 .

Similarly, we define the interface of a durable linearizable object 𝐸 as a tuple

⟨𝜈 ′𝐸 : †(𝐸 ⟲ 𝑅𝐸) ∈ Dur, 𝜈𝐸 : †𝐸 ∈ Conc⟩ s.t. 𝜈 ′𝐸↾𝐸 ⊆ dur(𝜈𝐸)
A major difference from the crash-aware interface is that the durable interface’s linearized specifi-

cation 𝜈𝐸 does not have crashes, because durable objects can be used as if there is no crash. The

interface is valid if and only if 𝜈 ′
𝐸
↾𝐸 is durable linearizable to 𝜈𝐸 , i.e., 𝜈

′
𝐸
↾𝐸 ⊆ dur(𝜈𝐸).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:48 Oliveira Vale et al.

−→ ⊆ (Com × UndState) × Υ × (Com × UndState)

−↠𝑅𝐸
⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓) Δ′ = Δ[𝛼 ↦→ [arg ↦→ 𝑎]]
⟨𝑐 [𝛼 ↦→ idle],Δ, 𝑠⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝑀 [𝛼] 𝑓],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

Inv

⟨𝐶,Δ, 𝑠↾𝐸⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′↾𝐸⟩
⟨𝑐 [𝛼 ↦→ 𝐶],Δ, 𝑠⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶′],Δ′, 𝑠′⟩

Step

𝜋𝛼 (𝑠↾𝐹) = 𝑝 · 𝑓 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑓) Δ′ = Δ[𝛼 ↦→ ∅]
⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ idle],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

Ret

∀𝛼 ∈ 𝑠 .𝑐′ [𝛼] = dead
∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼] = halt

⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ0, 𝑠 · ⟩

Crash

𝑠 = 𝑠′ · ®𝑟 = perm(𝑅𝐸)
𝐶 = sequence(®𝑟, 𝑀 [𝛼]𝑟)

⟨𝑐 [𝛼 ↦→ halt],Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶],Δ, 𝑠 · 𝛼𝛼𝛼:::𝑟 ⟩

StartRec

𝜋𝛼 (𝑠↾𝐹∪𝑅𝐹
) = 𝑠′ · 𝑟 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑟) Δ′ = Δ[𝛼 ↦→ ∅]

∀𝛼 ∈ Υ.𝑐 [𝛼] = dead⇒ 𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝑐 [𝛼] ≠ dead⇒ 𝑐′ [𝛼] = idle

⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

EndRec

where sequence(®𝑟,𝐶) =
{
𝐶 ®𝑟 = 𝜖
(𝑥𝑟 ← 𝑟 (𝑎)); sequence(®𝑟 ′,𝐶) ®𝑟 = 𝑟 · ®𝑟 ′ ∧ 𝑎 ∈ par(𝑟) ∧ reserved(𝑥𝑟)

Fig. 11. Module Operational Semantics (−↠𝑅𝐸
)

Usually, the client of the overlay object 𝐹 will follow certain constraints when using the it. For

example, when using a lock, one is supposed to invoke the lock acquire and the lock release in

an alternating fashion. These constraints on clients often help us to prove a stronger and more

useful specification 𝜈𝐹 . We use a strategy 𝜇𝐹 : †(𝐹 ⟲ 𝑅𝐹) to encode these client specifications. In

the main text, we do not consider the client specification due to space limit, and we consider it in

the program logic in this appendix. Most of the proof rules are the same except the Prim rule.

The objective of our program logic is to establish the judgement

𝜇𝐹 ⊢ 𝑀 : (𝜈 ′𝐸, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹) or 𝜇𝐹 ⊢ 𝑀 : (𝜈 ′𝐸, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩

whichmeans under the assumption that the client will use the overlay 𝐹 according to strategy 𝜇𝐹 , the

implementation𝑀 implements 𝐹 with either a crash-aware interface (𝜈 ′
𝐹
, 𝜈𝐹) or a durable interface

⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩, using the crash-aware underlay 𝐸 with a valid interface (𝜈 ′

𝐸
, 𝜈𝐸). Concrete specification 𝜈 ′𝐹

is defined by running𝑀 above 𝜈 ′
𝐸
of the underlay, i.e., 𝜈 ′

𝐹
= (𝜈 ′

𝐸
; J𝑀K𝑅𝐸

∩ 𝜇𝐹)↾(𝐹⟲𝑅𝐹) . The program
logic’s soundness guarantees the validity of the crash-aware/durable overlay interface. With the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:49

validity, we may use the object 𝐹 and its interface to implement and verify another layer of objects

above it.

G.3 The Rely-Guarantee Crash Linearizability Hoare Logic (CLHL) for Durable
Linearizability

We have been using a simplified rely-guarantee crash Hoare logic in the main text, while we develop

a more expressive one in this appendix. Their main difference is that the CLHL in this appendix uses

a binary relation between the pre-state and post-state of a program as the post-condition. This gives

the logic more expressiveness and allows us to verify more complicated programs. We prove the

CLHL with binary post-conditions to be sound, which implies the one with unary post-conditions

in the main text to be sound, because it is strictly less expressive than the former one.

The program logic uses as proof configurations triples (Δ, 𝑠, 𝜌) ∈ Config := ModState × Poss,
where Poss is a set of possibilities and is of type †𝐹 . We define a configuration triple to be valid

if and only if 𝑠↾𝐹 is linearizable to 𝜌 and 𝜌 is linearizable to 𝜈𝐹 . This is exactly the definition of

the durable linearizability: after removing recoveries and crashes, the trace is linearizable to its

specification. We maintain this as an invariant in proofs to ensure that the concrete trace 𝑠 is always

durably linearizable to 𝜈𝐹 after the recovery refinement. Pre-conditions 𝑃 and crash post-conditions

𝑄 are given by sets of configurations, while post-conditions 𝑄 , rely conditions R, and guarantee

conditions G are specified as relations over the configurations. As usual, we define the stability

requirements:

stable(R, 𝑃) ⇐⇒ R ◦ 𝑃 ⊆ 𝑃 stable(R, 𝑄) ⇐⇒ R ◦𝑄 ⊆ 𝑄 ∧𝑄 ◦ R ⊆ 𝑄

G.3.1 Top Level Rules. The top level rule Object Impl proves𝑀 implements the overlay ⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩

using the underlay (𝜈 ′
𝐸
, 𝜈𝐸).

∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′]
∀𝛼 ∈ Υ.R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝐹𝛼 𝑀 [𝛼] ∀𝛼 ∈ Υ.𝐼 ⊨𝑅𝛼 𝑀 [𝛼]

𝜇𝐹 ⊢ 𝑀 : (𝜈 ′𝐸, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩
Object Impl

It requires the prover to find an object invariant 𝐼 : Υ→ Config→ Prop for the implementation

and then prove the correctness of regular procedures and the recovery separately:

• Verifying Regular Procedures. To verify a concurrent object, the Object Impl rule requires finding

the rely R and guarantee G of the object. The rely R[𝛼 ′] of an agent needs to consider the effect

of any other thread’s executions, invocations, and returns, each represented by actions in G[𝛼],
invoke𝛼 (−), and return𝛼 (−). And provers need to show R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝐹𝛼 𝑀 [𝛼], which asserts

that running regular procedures in 𝐹 on the thread 𝛼 , its environment will restrict its behavior in

R[𝛼] while itself will only have behaviors in G[𝛼], and 𝐼 [𝛼] is satisfied when the thread 𝛼 is idle.

Auxilliary Relations. We define some useful auxiliary relations here.

(Δ, 𝑠, 𝜌)invoke𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′) ⇐⇒
(
(Δ, 𝑠, 𝜌) ∈ idle𝛼 ∧ 𝑠′↾𝐹 ∈ 𝜇𝐹 ∧ ∃𝑎.Δ′ (𝛼) = [arg ↦→ 𝑎]∧
∀𝛼 ′ ≠ 𝛼.Δ′ (𝛼 ′) = Δ(𝛼) ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑓 ∧ 𝜌 ′ = 𝜌 · 𝛼𝛼𝛼:::𝑓

)
(Δ, 𝑠, 𝜌)returned𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′) ⇐⇒

((Δ′, 𝑠′, 𝜌 ′) = (Δ, 𝑠, 𝜌)∧
∃𝑣 ∈ ar(𝑓).Δ(𝛼) (ret) = 𝑣 ∧ last(𝜋𝛼 (𝜌)) = 𝛼𝛼𝛼:::𝑣

)
(Δ, 𝑠, 𝜌)return𝛼 (𝑓 (𝑎)) (Δ′, 𝑠′, 𝜌 ′) ⇐⇒

(
∃𝑣 ∈ ar(𝑓).Δ(𝛼) (ret) = 𝑣 ∧ Δ′ = ∅∧

𝜌 ′ = 𝜌 ∧ last(𝜋𝛼 (𝜌)) = 𝛼𝛼𝛼:::𝑣 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑣

)
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:50 Oliveira Vale et al.

- The invoke relation requires the current thread 𝛼 is idle in the pre-state, i.e., there is no pending

invocation by 𝛼 . The invoke relation then initialize the local environment according to method

arguments and append the invocation event to both concrete trace 𝑠 and possibility 𝜌 . It also

requires that after this invocation, 𝑠′ satisfies the client specification. By composing this relation

to pre-conditions, invoke𝛼 (𝑓) ◦𝑃 , the result ignores traces where client specification is violated,

since both programmers and provers have no obligations to ensure the correctness in that case.

- The returned relation requires that the post-state’s local environment already has the reserved

variable ret assigned some value and the possibility contains the response to the latest invoca-

tion. By composing it to some post-condition, returned(𝑓) ◦𝑄 , it requires provers to show that

the latest invocation has returned and gets linearized.

- The return relation is a subsequent operation of the returned. It finishes the latest invocation
by clearing its local environment and append the repose to the concrete trace 𝑠 . The invoke
and return are necessary because the program itself cannot manipulate the concrete trace by

appending events of the overlay object. They are added by another client. And the invoke and
return play the role of these clients by appending invocations to form a correct pre-condition

and appending response to truly end a method execution.

Provers need to show R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝛼], which asserts that running the local imple-

mentation on thread 𝛼 by invoking its methods, its environment will restrict their behaviors in

R[𝛼] while itself will only have behaviors in G[𝛼], and 𝐼 [𝛼] is satisfied when the thread 𝛼 is idle.

∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′] ∀𝛼 ∈ Υ.R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝛼]

The Local Impl rule proves this judgement by splitting 𝐼 [𝛼] into conjunctions of 𝑃 [𝛼] 𝑓 , each
specifying the pre-condition of a method invocation, and then proving a series of objectives.

𝐼 [𝛼] = ∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 ∀𝑓 ∈ 𝐹 .(Δ0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓 ∀𝑓 ∈ 𝐹 .stable(R[𝛼], 𝑃 [𝛼] 𝑓)
∀𝑓 ∈ 𝐹 .R[𝛼],G[𝛼] ⊨𝑓𝛼 {𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }{⊤} ∀𝑓 ∈ 𝐹 .return𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ⊆ 𝐼 [𝛼]

R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝛼]
Local Impl

- First of all, each pre-condition 𝑃 [𝛼] 𝑓 needs to include the initial configuration. Each pre-

condition must be stable under interferences (the rely R[𝛼]) of the environment, and therefore

the invariant 𝐼 [𝛼] is also stable w.r.t. environment interfaces.

- Then, provers need to show that each method 𝑓 satisfies

R[𝛼],G[𝛼] ⊨𝑓𝛼 {𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }{⊤}
which is a shorthand for the CLHL hexad below by hiding auxiliary relations applied to

pre-/post-conditions.

R[𝛼],G[𝛼] ⊨𝛼 {invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 }{⊤}
A hexad of the form R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 } means that given states satisfying 𝑃 , running the

program 𝐶 in an environment with interference in R and on thread 𝛼 will produce actions in

G, and if it terminates normally, the state will satisfy 𝑄 , and if it crashes, the state will satisfy

𝑄 . A hexad is provable with proof rules introduced later. It is worth mentioning that there is
no need to explicitly specify and prove a crash post-condition for each regular method, and we can

simply put ⊤ as the crash post-condition. This is true because:

(1) The guarantee G[𝛼] of the current thread is included in any other thread’s rely R[𝛼 ′], and
therefore any step during the execution of any method in thread 𝛼 is captured in R[𝛼 ′].

(2) For any other thread 𝛼 ′, its invariant 𝐼 [𝛼 ′] is stable w.r.t. R[𝛼 ′], which means any state

after any execution step of any method in thread 𝛼 (captured in R[𝛼 ′]) is in 𝐼 [𝛼 ′].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:51

(3) Therefore, the state of thread 𝛼 will satisfy any other thread’s invariant 𝐼 [𝛼 ′] at any time

(including the point of crash), and the crash post-condition in 𝛼 can be derived from 𝐼 [𝛼 ′].
- Lastly, after finished the execution of a method and returned from it, the program state need

to satisfy the invariant so that the current thread can still access the object and invoke its

procedures.

∀𝑓 ∈ 𝐹 .return𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ⊆ 𝐼 [𝛼]

• Verifying the Recovery. Then, to ensure the durability of the object, provers need to show 𝐼 ⊨𝑅𝛼 𝑀 [𝛼],
which means whenever crash happens, the execution of the recovery on any thread 𝛼 can restore

the program state to satisfy the object invariant 𝐼 . It can be verified via the Recover rule.

ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {𝑄𝑟 [𝛼]}{𝑄 [𝛼]} 𝑄 [𝛼] ⊆ 𝑃𝑟 [𝛼]
∪𝛼 ′∈Υ𝐼 [𝛼 ′] ⇒ 𝑄 [𝛼] return𝛼 (𝑟) ◦𝑄𝑟 [𝛼] ⊆ ∩𝛼 ′∈Υ𝐼 [𝛼 ′]

𝐼 ⊨𝑅𝛼 𝑀 [𝛼]
Recover Impl

First of all, provers need to find the pre-condition 𝑃𝑟 , the post-condition 𝑄𝑟 , and the crash post-

condition 𝑄 of the recovery program, and prove the following hexad
3

ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {𝑄𝑟 [𝛼]}{𝑄 [𝛼]}

which means running the recovery program𝑀 [𝛼]𝑟 on arbitrary thread 𝛼 from states in 𝑃𝑟 [𝛼] will
either recover the system into states in 𝑄𝑟 [𝛼] or crash into states in 𝑄 [𝛼]. Since the recovery
program always starts execution after a crash, the crash post-condition 𝑄 needs to imply the

recovery’s pre-condition 𝑃𝑟 .

As mentioned before, 𝐼 [𝛼 ′] will serve as the crash post-condition of other threads. Therefore,

we require that all 𝐼 [𝛼 ′] crash into the crash post-condition 𝑄 of the recovery program to ensure

that all possible crashes are considered. The crash-into relation (⇒) transforms the assertion 𝐼

into 𝑄 , which means that any state satisfying 𝑃 will satisfy 𝑄 immediately after a crash.

𝐼 ⇒ 𝑄 ⇐⇒ ∀(Δ, 𝑠, 𝜌) ∈ 𝐼 .(Δ0, 𝑠 · , 𝜌) ∈ 𝑄

Lastly, after the execution of the recovery, the system is restored and ready to run and therefore,

the program state after the recovery’s return needs to imply the invariant 𝐼 [𝛼 ′] of any thread 𝛼 ′.

G.3.2 CLHL Proof Rules for the Hexad. According to these top level rules, proofs of both the

implementation and the recovery boil down to proofs of hexads like R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 }.
Figure 12 shows CLHL’s proof rules for the hexad.

Among CLHL proof rules for the hexad, the core proof rule for proving the durable linearizability

is the Prim rule. Firstly, we need to show that the pre-/post-condition and the crash post-condition

can crash into (⇒) the crash post-condition, because the crash can happen at any time, even after

another crash.

𝑃 ⇒ 𝑄 𝑄 ◦ 𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑄

Then, as any usual rely-guarantee logic, the pre-/post-condition needs to be stable w.r.t. the rely.

stable(R, 𝑃) stable(R, 𝑄)

3
We reuse the concurrent CLHL for the sequential recovery program, so the rely and guarantee for it are ID and ⊤.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:52 Oliveira Vale et al.

𝑃 ⇒ 𝑄 𝑄 ◦ 𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑄
stable(R, 𝑃) stable(R, 𝑄) G ⊢𝛼 {𝑃}𝐵{𝑄}

R,G ⊨𝛼 {𝑃}𝐵{𝑄}{𝑄 }
Prim

R,G ⊨𝛼 {𝑃}𝐶1{𝑄1}{𝑄 } R,G ⊨𝛼 {𝑄1 ◦ 𝑃}𝐶2{𝑄2}{𝑄 }
R,G ⊨𝛼 {𝑃}𝐶1;𝐶2{𝑄2 ◦𝑄1}{𝑄 }

Seq

stable(R, 𝑃) 𝑃 ⇒ 𝑄

R, ID ⊨𝛼 {𝑃}skip{ID}{𝑄 }
Skip

R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 } 𝑄 ◦ 𝑃 ⊆ 𝑃
R,G ⊨𝛼 {𝑃}𝐶∗{𝑄}{𝑄 }

Iter

R,G ⊨𝛼 {𝑃}𝐶1{𝑄}{𝑄 } R,G ⊨𝛼 {𝑃}𝐶2{𝑄}{𝑄 }
R,G ⊨𝛼 {𝑃}𝐶1 +𝐶2{𝑄}{𝑄 }

Choice

stable(R′, 𝑃 ′) stable(R′, 𝑄 ′) 𝑄 ⊆ 𝑄 ′ 𝑄 ′ ⇒ 𝑄
′
 𝑄 ′ ◦ 𝑃 ′ ⇒ 𝑄

′

𝑃 ′ ⊆ 𝑃 𝑄 ⊆ 𝑄 ′ R′ ⊆ R G ⊆ G′ R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 }
R′,G′ ⊨𝛼 {𝑃 ′}𝐶{𝑄 ′}{𝑄 ′ }

Conseq

Fig. 12. Proof Rules for the CLHL Hexad

Lastly, we need to prove the commit rule G ⊢𝛼 {𝑃}𝐵{𝑄} for the primitive command 𝐵, which is

directly defined by and provable by the semantics:

G ⊢𝛼 {𝑃}𝐵{𝑄} ⇐⇒

∀(Δ, 𝑠, 𝜌).𝑠↾𝐹⟲𝑅𝐹
∈ 𝜇𝐹 ∧ (Δ, 𝑠, 𝜌) ∈ 𝑃∧(

∀(Δ′, 𝑠′) ∈ J𝐵K𝛼 (Δ, 𝑠) ∩ 𝜈𝐸 ⇒ 𝑠′↾𝐹⟲𝑅𝐹
∈ 𝜇𝐹∧

∃𝜌 ′ .(Δ, 𝑠, 𝜌)𝑄 (Δ′, 𝑠′, 𝜌 ′) ∧ (Δ, 𝑠, 𝜌)G(Δ′, 𝑠′, 𝜌 ′) ∧ 𝜌 d 𝜌 ′

)
where 𝜌 d 𝜌 ′ ⇐⇒ ∃𝑡𝑃 ∈ (𝑀𝑃

𝐹)
∗ .𝜌 · 𝑡𝑃 ⇝†𝐹 𝜌 ′

The commit rule states that command 𝐵 will update configurations in 𝑃 by appending the cor-

responding event to the concrete trace, which may be the commitment point of some pending

operations. To maintain the invariant that 𝑠 is durably linearizable to 𝜌 , the commit rule allows

a ghost update, 𝜌 d 𝜌 ′, where provers can append several response events to 𝜌 and rewrite it

according to⇝†𝐹 to obtain 𝜌 ′, a new possibility that 𝑠 linearizes into. After the update made by

the command 𝐵 and the angelic update by the prover, the new configuration needs to satisfy the

post-condition 𝑄 , and both updates need to be recorded in the guarantee.

To summarize, there are following steps to prove the durable linearizability of a concurrent

object using CLHL:

(1) Firstly, find the rely condition R, the guarantee condition G, and the invariant 𝐼 , and use

Object Impl rule to generate separate proof goals for verifying regular procedures and the

recovery program.

(2) The second step is to find pre-conditions and normal post-conditions of regular procedures

and apply Local Impl to generate Hoare hexads for verifying regular procedures.

(3) The third step is to find the pre-condition, normal post-condition, and the crash post-condition

(crash invariant) of the recovery program and prove the Hoare hexad for it and show that

the object invariant will crash into the crash invariant.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:53

(4) Lastly, prove hexads of each procedure and other side conditions generated by top level rules

using CLHL’s proof rules for hexads.

Remark. Notice that for the regular procedure verification, we do not use the crash post-condition
(and instead always set it to ⊤), and for the recovery verification, we do not use the rely and

guarantee condition because it is a sequential program. The another design choice is to use two

different logics for them, each without the unnecessary part. But we find that their logics will have

almost the same set of proof rules, and by unifying them into one rely-guarantee crash Hoare logic

not only benefits our presentation but also simplifies the soundness proof.

Another benefit is that we can easily extend the CLHL for the recovery verification to concurrent

recovery programs, where multiple recovery programs are running concurrently on multiple

thread. The rely-guarantee condition in the Hoare hexad makes the program logic ready for

the concurrent recovery verification. Moreover, since the regular procedure verification and the

recovery verification are decoupled (with only an object invariant linking them together), we do

not need to change the Local Impl rule when we extend the Recover Impl rule to concurrent

recovery programs.

G.4 Soundness
The program logic is justified by the following soundness theorem.

Proposition G.1 (Soundness). If 𝜇𝐹 ⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is provable, and (𝜈 ′𝐸, 𝜈𝐸) is a valid

underlay interface, and 𝜈 ′
𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

∩ 𝜇𝐹 , then ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is a valid overlay interface with

𝜈 ′𝐹↾𝐹 ⊆ dur(𝜈𝐹).

To prove the soundness (proposition G.1), we extend methods in [23, 31] and establish the

overlay interface’s validity in four steps depicted in the formula below. (1) We first use the recovery

refinement in §5.1 to remove the underlay’s refinement. (2) Then, by the validity of the underlay

interface, and observational refinement, we can use their specification in the execution of the overlay

instead of using their concrete traces. (3) We use the linking lemma G.2 to integrate underlay’s

specification in overlay’s denotation, which makes the next step easier. (4) The key step is the

auxiliary soundness (lemma G.6), which establish the linearization from overlay’s concrete traces

to its specification.

𝜈 ′𝐹↾𝐹 = (𝜈 ′𝐸 ; J𝑀K𝑅𝐸
∩ 𝜇𝐹)↾𝐹 By Definition of 𝜈 ′𝐹

= ((𝜈 ′𝐸 ; J𝑀K𝑅𝐸
)↾𝐸 ⊸𝐹⟲𝑅𝐹

∩ 𝜇𝐹)↾𝐹
⊆ (𝜈 ′𝐸↾𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (1) Recovery Refinement

⊆ (𝜈𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (2) Validity of (𝜈 ′𝐸, 𝜈𝐸) + Obs. Ref.

= (JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 (3) Linking (lemma G.2)

⊆ dur(𝜈𝐹) (4) Auxiliary Soundness (lemma G.6)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:54 Oliveira Vale et al.

To make the auxiliary soundness proof easier, we first embed the underlay’s specification into

an auxiliary module semantics by − −↠𝑀
𝜈𝐸
−.

−↠ ⊆ (Cont ×ModState) × (CMod × Crash) × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓) Δ′ = Δ[𝛼 ↦→ [arg ↦→ 𝑎]]
⟨𝑐 [𝛼 ↦→ idle],Δ, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 ↦→ 𝑀 [𝛼] 𝑓],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

⟨𝐶,Δ, 𝑠↾𝐸⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′↾𝐸⟩ 𝑠′↾𝐸 ∈ 𝜈𝐸
⟨𝑐 [𝛼 ↦→ 𝐶],Δ, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 ↦→ 𝐶′],Δ′, 𝑠′⟩

𝜋𝛼 (𝑠↾𝐹) = 𝑝 · 𝑓 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑓) Δ′ = Δ[𝛼 ↦→ ∅]
⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 ↦→ idle],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

∀𝛼 ∈ 𝑠 .𝑐′ [𝛼] = dead
∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼] = halt

⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝜈𝐸
⟨𝑐′,Δ0, 𝑠 · ⟩

𝑠 = 𝑠′ ·
⟨𝑐 [𝛼 ↦→ halt],Δ, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 ↦→ 𝑀 [𝛼]𝑟],Δ, 𝑠 · 𝛼 : 𝑟 ⟩

𝜋𝛼 (𝑠↾𝐹∪𝑅𝐹
) = 𝑠′ · 𝑟 Δ(𝛼) (res) = 𝑣 ∈ ar(𝑟) Δ′ = Δ[𝛼 ↦→ ∅]

∀𝛼 ∈ Υ.𝑐 [𝛼] = dead⇒ 𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝑐 [𝛼] ≠ dead⇒ 𝑐′ [𝛼] = idle

⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠⟩ −↠𝑀
𝜈𝐸
⟨𝑐′,Δ′, 𝑠 · 𝛼 : 𝑣⟩

The only difference between − −↠𝑀
𝜈𝐸
− and − −↠𝑀

∅ − is the rule that lifts thread local reductions,

where we ask steps by the underlay satisfies its specification 𝜈𝐸 . We define the linking denotation

JLink𝜈𝐸 ;𝑀K : †𝐸 ⊸ †(𝐹 ⟲ 𝑅𝐹) by the formula

JLink𝜈𝐸 ;𝑀K := {𝑠 | ∃𝑐 ∈ Cont,Δ ∈ (Υ→ Env).⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩} ⊆ 𝑃†𝐸 ⊸†(𝐹⟲𝑅𝐹) .

Lemma G.2 allows the transformation between the module denotation and the auxiliary linking

denotation. Its proof is similar to the one in Oliveira Vale et al. [31].

Lemma G.2 (Linking). For any𝑀 ∈ CMod and given 𝜈𝐸 : †𝐸 , we have
𝜈𝐸 ; J𝑀K∅ = JLink𝜈𝐸 ;𝑀K

Lemma G.3. For any 𝑐,Δ, 𝑠, 𝑀, 𝜈𝐸 , if ⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩, then

last(𝑠) = ⇐⇒ ∀𝛼.𝑐 (𝛼) ∈ {dead, halt}.

Proof. By discussing the last reduction step in ⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩. □

Definition G.4 (Safety Judgement). We define the judgement safe𝛼 (R,G, 𝑃0, 𝑃, 𝑠,𝑄,𝑄) induc-
tively as follows:

rely(R, 𝑃) ⊆ 𝑄 ◦ 𝑃0
safe𝛼 (R,G, 𝑃0, 𝑃, skip, 𝑄,𝑄)

Done

∀𝐶′ .𝐶 ↣𝑋
𝐵 𝐶

′ ⇒ ∃𝑄 ′ .(G ⊢𝛼 {rely(R, 𝑃)}𝐵{𝑄 ′} ∧ stable(R, 𝑄 ′ ◦ rely(R, 𝑃))∧
safe𝛼 (R,G, 𝑃0, 𝑄 ′ ◦ rely(R, 𝑃),𝐶′, 𝑄,𝑄) ∧𝑄 ′ ◦ rely(R, 𝑃) ⇒ 𝑄)

safe𝛼 (R,G, 𝑃0, 𝑃,𝐶,𝑄,𝑄)
Step

where rely(R, 𝑃) ≜ 𝑃 ∪ R ◦ 𝑃 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:55

Lemma G.5. For any R,G, 𝑃, 𝑠,𝑄,𝑄 , if the quadruple R,G ⊨𝛼 {𝑃}𝑠{𝑄}{𝑄 } is provable, then the
followings are true.

stable(R, 𝑃) 𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑄 safe𝛼 (R,G, 𝑃, 𝑃, 𝑠,𝑄,𝑄)

Proof. By induction over the derivation tree of R,G ⊨𝛼 {𝑃}𝑠{𝑄}{𝑄 }. □

Lemma G.6 (Auxiliary Soundness). If the judgement 𝜇𝐹 ⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is provable

and (𝜈 ′
𝐸
, 𝜈𝐸) is a valid crash-aware underlay interface, then

(JLink𝜈 ′𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 ⊆ dur(𝜈𝐹).

Proof. Since 𝜇𝐹 ⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is provable, by the Object Impl rule, there exists

R,G, 𝐼 , 𝑃𝑟 , 𝑄𝑟 , 𝑄 with the following conclusions.

∀𝛼, 𝛼 ′ ∈ 𝐴.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼] (H-RG)

∀𝛼 ∈ Υ.R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝛼] (H-TLQ)

∀𝛼, 𝛼 ′ ∈ 𝐴.𝑄 [𝛼] ⊆ 𝑃𝑟 [𝛼 ′] (H-RPre)

∀𝛼.𝐼 [𝛼] ⇒ 𝑄 [𝛼] (H-PC)

∀𝛼, 𝛼 ′ ∈ 𝐴.return𝛼 (𝑟) ◦ returned𝛼 (𝑟) ◦𝑄𝑟 [𝛼] ◦ invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼] ⊆ 𝐼 [𝛼 ′] (H-RPost)

∀𝛼 ∈ 𝐴.ID,⊤ ⊨𝛼 {invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {returned𝛼 (𝑟) ◦𝑄𝑟 [𝛼]}{𝑄 [𝛼]} (H-RQ)

By the Local Impl rule and (H-TLQ), there exists 𝑃 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓 with the following conclusion

about thread local executions of each regular function.

∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 = 𝐼 [𝛼] (H-Asrt)

∀𝛼 ∈ 𝐴, 𝑓 ∈ 𝐹 .(Δ0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓 (H-FInit)

∀𝛼 ∈ 𝐴, 𝑓 ∈ 𝐹 .R[𝛼],G[𝛼] ⊨𝛼 {invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 }{⊤} (H-FQ)

∀𝛼 ∈ 𝐴, 𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓) ◦ returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ◦ invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ⊆ 𝑃 [𝛼] 𝑓
′

(H-FPP)

∀𝑓 ∈ 𝐹 .stable(R[𝛼], 𝑃 [𝛼] 𝑓) (H-Stb)

To prove (JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 ⊆ dur(𝜈𝐹), we only need to prove

∀𝑠 ∈ JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹 .𝑠↾𝐹 ∈ dur(𝜈𝐹)

which is equivalent to the following by definitions of auxiliary denotation and durable linearizability.

∀𝑐,Δ, 𝑠 .⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩ ∧ 𝑠↾𝐹 &𝑅𝐹

∈ 𝜇𝐹 ⇒ ∃𝜌𝐹 ∈ 𝜈𝐹 .𝑠↾𝐹 d 𝜌𝐹

We generalize this proposition to the following one.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:56 Oliveira Vale et al.

Proposition G.7. For any 𝑐,Δ, 𝑠 , if ⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩, then when 𝑠↾𝐹 &𝑅𝐹

∈ 𝜇𝐹 there exists
a current linearization 𝜌𝐹 ∈ 𝜈𝐹 and the followings hold.

𝑠↾𝐹 d 𝜌𝐹 (G-Lin)

∧∀𝛼.𝑐 [𝛼] ≠ dead⇒
∃𝑃𝛼 .(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ∧ (halt ∉ 𝑐 ⇒ stable(R[𝛼], 𝑃𝛼)) (G-Pa)

∧ (𝑐 [𝛼] = idle⇒ 𝑃𝛼 ⊆ 𝐼 [𝛼]) (G-Idle)

∧
(
(∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}) ⇒ ∃𝛼 ′ .𝑃𝛼 ⊆ 𝑄 [𝛼 ′]

)
(G-Crs)

∧
(
𝑐 [𝛼] = halt ∧ (∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶) ⇒ ∃𝛼 ′ .𝑃𝛼 ⇒ 𝑄 [𝛼 ′]

)
(G-Rec)

∧
©­­­­­«
∀𝐶 ∈ Com.𝑐 [𝛼] = 𝐶 ⇒ ∃𝑓 ∈ 𝐹 ∪ 𝑅𝐹 .

©­­­­­«
safe𝛼

(
R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ,
𝑃𝛼 ,𝐶, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓

)
∧(𝑓 ∈ 𝑅𝐹 ⇒ ∀𝛼 ′ ≠ 𝛼.𝑐 (𝛼 ′) ∈ {dead, halt})
∧𝑃𝛼 ⇒ 𝑄 [𝛼] 𝑓 ∧ 𝑓 = last(𝜋𝛼 (𝑠↾𝐹 &𝑅𝐹

))

ª®®®®®¬
ª®®®®®¬

(G-Exe)

For conciseness, We define (𝑃 [𝛼]𝑟 , 𝑄 [𝛼]𝑟 , 𝑄 [𝛼]𝑟) as (𝑃𝑟 [𝛼], 𝑄𝑟 [𝛼], 𝑄 [𝛼]), and 𝑄 [𝛼] 𝑓 = ⊤ for

𝑓 ∈ 𝐹 , and (R[𝛼] 𝑓 ,G[𝛼] 𝑓) to be (R[𝛼],G[𝛼]) for 𝑓 ∈ 𝐹 , and (R[𝛼]𝑟 ,G[𝛼]𝑟) to be (ID,⊤) for
the recovery 𝑟 . For the right conjunct of (G-Pa), we would usually have halt ∉ 𝑐 and use/prove it

simply as stable(R[𝛼], 𝑃𝛼) at most of the time. We only consider the LHS when necessary.

To prove the auxiliary soundness, it suffice to prove proposition G.7 under hypotheses introduced

so far. We prove it by induction on the length of the reduction ⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩.

•Base Case. In the base case, we have (𝑐0,Δ0, 𝜖) = (𝑐,Δ, 𝑠). And we take the current linearization
𝜌𝐹 = 𝜖 , which satisfies (G-Lin). For each 𝛼 , we take 𝑃𝛼 = 𝐼 [𝛼] = ∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 ((H-Asrt) and (G-Pa))

is apparent by (H-FInit) and (G-Idle). Other conditions (G-Exe), (G-Rec), and (G-Crs) because the

LHS of the implication is false.

• Inductive Step. In the inductive step, we have

⟨𝑐0,Δ0, 𝜖⟩−↠𝑀
𝜈𝐸

∗⟨𝑐,Δ, 𝑠⟩ and ⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝜈𝐸
⟨𝑐′,Δ′, 𝑠′⟩

and the induction hypothesis that if 𝑠↾𝐹 &𝑅𝐹
∈ 𝜇𝐹 , then there exists 𝜌𝐹 ∈ 𝜈𝐹 with the followings.

𝑠↾𝐹 d 𝜌𝐹 (IH-Lin)

∧∀𝛼.𝑐 [𝛼] ≠ dead⇒
∃𝑃𝛼 .(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ∧ (halt ∉ 𝑐 ⇒ stable(R[𝛼], 𝑃𝛼)) (IH-Pa)

∧ (𝑐 [𝛼] = idle⇒ 𝑃𝛼 ⊆ 𝐼 [𝛼]) (IH-Idle)

∧
(
(∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}) ⇒ ∃𝛼 ′ .𝑃𝛼 ⊆ 𝑄 [𝛼 ′]

)
(IH-Crs)

∧
(
𝑐 [𝛼] = halt ∧ (∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶) ⇒ ∃𝛼 ′ .𝑃𝛼 ⇒ 𝑄 [𝛼 ′]

)
(IH-Rec)

∧
©­­­­­«
∀𝐶 ∈ Com.𝑐 [𝛼] = 𝐶 ⇒ ∃𝑓 ∈ 𝐹 ∪ 𝑅𝐹 .

©­­­­­«
safe𝛼

(
R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ,
𝑃𝛼 ,𝐶, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓

)
∧(𝑓 ∈ 𝑅𝐹 ⇒ ∀𝛼 ′ ≠ 𝛼.𝑐 (𝛼 ′) ∈ {dead, halt})
∧𝑃𝛼 ⇒ 𝑄 [𝛼] 𝑓 ∧ 𝑓 = last(𝜋𝛼 (𝑠↾𝐹 &𝑅𝐹

))

ª®®®®®¬
ª®®®®®¬

(IH-Exe)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:57

Andwewant to find a 𝜌 ′
𝐹
∈ 𝜈𝐹 and for each agent 𝛼 that is not dead in 𝑐′, find a 𝑃 ′𝛼 and prove (G-Lin),

(G-Pa), (G-Idle), (G-Exe), (G-Rec), and (G-Crs) for (𝑐′,Δ′, 𝑠′), under the condition that 𝑠′↾𝐹 &𝑅𝐹
∈ 𝜇𝐹 .

By definition of the semantics, it is easy to observe that 𝑠 ⊑ 𝑠′, which means 𝑠↾𝐹 &𝑅𝐹
⊑ 𝑠′↾𝐹 &𝑅𝐹

.

Moreover, since 𝜇𝐹 is prefix-closed, 𝑠↾𝐹 &𝑅𝐹
∈ 𝜇𝐹 is true and we can freely use above induction

hypotheses.

We perform case analysis on the reduction ⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝜈𝐸
⟨𝑐′,Δ′, 𝑠′⟩ to prove the inductive step.

∗ Invocation. If the reduction is an invocation to a regular procedure, then there exists 𝛼 , 𝑓 ∈ 𝐹 ,
and 𝑎 ∈ par(𝑓) such that

𝑐 [𝛼] = idle 𝑐′ = 𝑐 [𝛼 ↦→ 𝑀 [𝛼] 𝑓] Δ′ = Δ[𝛼 ↦→ [arg ↦→ 𝑎]] 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑓 .
We take 𝜌 ′

𝐹
= 𝜌𝐹 · 𝛼𝛼𝛼:::𝑓 . By (IH-Lin), we know there exists 𝑡𝑃 such that

𝑠↾𝐹 · 𝑡𝑃 ⇝†𝐹 𝜌𝐹
and we prove (G-Lin) by

𝑠′↾𝐹 = 𝑠↾𝐹 · 𝛼𝛼𝛼:::𝑓 · 𝑡𝑃 ⇝†𝐹 𝑠↾𝐹 · 𝑡𝑃 · 𝛼𝛼𝛼:::𝑓 ⇝†𝐹 𝜌𝐹 · 𝛼𝛼𝛼:::𝑓 = 𝜌 ′𝐹 .

We first prove the remaining goals for the 𝛼 that invokes 𝑓 . By (IH-Lin), (IH-Idle), and (IH-Pa),

there exists a stable 𝑃𝛼 such that

(𝑐,Δ, 𝑠) ∈ 𝑃𝛼 ⊆ 𝐼 [𝛼] ⊆ 𝑃 [𝛼] 𝑓 .
By definition, we have (Δ, 𝑠, 𝜌𝐹)invoke𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′𝐹), and therefore we define 𝑃 ′𝛼 and prove the

left conjunct of (G-Pa) by

(Δ′, 𝑠′, 𝜌 ′𝐹) ∈ invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ≜ 𝑃 ′𝛼 .
By (H-FQ) and lemma G.5, we have

safe𝛼 (R[𝛼],G[𝛼], 𝑃 ′𝛼 , 𝑃 ′𝛼 , 𝑀 [𝛼] 𝑓 , returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓)
stable(R[𝛼], 𝑃 ′𝛼) 𝑃 ′𝛼 ⇒ 𝑄 [𝛼] 𝑓

which proves (G-Exe) and the right conjunct of (G-Pa). The remaining (G-Idle), (G-Rec), and (G-Crs)

are apparent because the LHS of the implication is false.

For other 𝛼 ′ that are not 𝛼 , we take 𝑃 ′
𝛼 ′ = 𝑃𝛼 ′ and only need to prove (G-Lin). The remaining

(G-Idle), (G-Exe), (G-Rec), and (G-Crs) are apparent because truth values of both the LHS and the

RHS of implications are not changed compared to those in induction hypotheses. We only need to

show

(Δ′, 𝑠′, 𝜌 ′𝐹) ∈ 𝑃𝛼 ′
which is true because 𝑃𝛼 ′ is stable (by the left conjunct of (IH-Pa)) w.r.t. R[𝛼 ′], which contains

invoke𝛼 (𝑓) (by (H-RG)) that changes (Δ, 𝑠, 𝜌𝐹) into (Δ′, 𝑠′, 𝜌 ′𝐹), and (𝑐,Δ, 𝑠) ∈ 𝑃𝛼 ′ is true by (IH-Pa).

∗ Return. If the reduction is a return of a regular procedure, then there exists 𝛼, 𝑓 , 𝑣 such that

𝑐 [𝛼] = skip 𝑐′ = 𝑐 [𝛼 ↦→ idle] Δ(𝛼) (res) = 𝑣 ∈ ar(𝑓) Δ′ = Δ[𝛼 ↦→ ∅]

last(𝜋𝛼 (𝑠↾𝐹 &𝑅𝐹
)) = 𝑓 ∈ 𝐹 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑣 .

By (IH-Exe), there exists 𝑃𝛼 such that

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 , skip, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓)
By the definition of the safety judgement and (G-Pa), we can further have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ rely(R[𝛼], 𝑃𝛼) ⊆ returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ◦ invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:58 Oliveira Vale et al.

which means 𝜌𝐹 already has some 𝛼𝛼𝛼:::𝑣 ′ linearized to the end of 𝜋𝛼 (𝜌𝐹), where 𝑣 ′ = Δ(𝛼) (res) by
the definition of returned. Therefore, 𝛼𝛼𝛼:::𝑣 is linearized since 𝑣 ′ = Δ(𝛼) (res) = 𝑣 . We take 𝜌 ′

𝐹
= 𝜌𝐹

and have

(Δ, 𝑠, 𝜌𝐹)return𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′𝐹).
By (IH-Lin), there exists 𝑡𝑃 such that

𝑠↾𝐹 · 𝑡𝑃 ⇝†𝐹 𝜌𝐹
and 𝛼𝛼𝛼:::𝑣 ∈ 𝑡𝑃 since last(𝜋𝛼 (𝑠↾𝐹)) = 𝑓 . We take 𝑡 ′

𝑃
= 𝑡𝑃\𝛼𝛼𝛼:::𝑣 and prove (G-Lin) by

𝑠′↾𝐹 = 𝑠↾𝐹 · 𝛼𝛼𝛼:::𝑣 · 𝑡 ′𝑃 ⇝†𝐹 𝑠↾𝐹 · 𝑡𝑃 ⇝†𝐹 𝜌𝐹 = 𝜌 ′𝐹 .

We first prove remaining goals for the 𝛼 that returns from 𝑓 . We define 𝑃 ′𝛼 = 𝐼 [𝛼] and by our

previous argument and (H-FPP), (H-Asrt), we have

(Δ′, 𝑠′, 𝜌 ′𝐹) ∈ return𝛼 (𝑓) ◦ returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ◦ invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ⊆ 𝐼 [𝛼] = 𝑃 ′𝛼
which proves the left conjunct of (G-Pa). By (H-FQ) and lemma G.5, we have

∀𝑓 ∈ 𝐹 .stable(R[𝛼], 𝑃 [𝛼] 𝑓)
which implies stable(R[𝛼],∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓), i.e., stable(R[𝛼], 𝐼 [𝛼]). And this proves the right conjunct
of (G-Pa).

By (H-Asrt) and reflexivity, we prove (G-Idle). Other branches (G-Crs), (G-Rec), and (G-Exe) are

apparent because their LHS of the implication is false.

For other 𝛼 ′ that are not 𝛼 , we take 𝑃 ′
𝛼 ′ = 𝑃𝛼 ′ and prove (G-Lin), (G-Idle), (G-Exe), (G-Rec), and

(G-Crs) with similar argument as the invocation case.

∗ Execution. If the reduction is one step of execution, then there exists 𝛼 and 𝐶,𝐶′ ∈ Com such

that

𝑐 [𝛼] = 𝐶 𝑐′ = 𝑐 [𝛼 ↦→ 𝐶′] ⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩ 𝑠′↾𝐸 ∈ 𝜈𝐸 .
By unfolding the definition of − −→𝛼 −, we have

𝐶 ↣𝑋
𝐵 𝐶

′ ∧ (Δ′, 𝑠′) ∈ J𝐵K𝑋𝛼 (Δ, 𝑠) (H-Cmd)

By the definition of 𝐶 ↣𝑋
𝐵
𝐶′, we know 𝐶 ≠ skip. By (IH-Exe), we know there exists some 𝑃𝛼

and 𝑓 ∈ 𝐹 ∪ 𝑅𝐹 such that

safe𝛼 (R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 ,𝐶, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓).
By unfolding the safety judgement’s definition and by (H-Cmd), there exists𝑄 ′ with the followings.

G[𝛼] 𝑓 ⊢𝛼 {rely(R[𝛼] 𝑓 , 𝑃𝛼)}𝐵{𝑄 ′} (H-BT)

stable(R[𝛼] 𝑓 , 𝑄 ′ ◦ rely(R[𝛼] 𝑓 , 𝑃𝛼)) (H-MStb)

𝑄 ′ ◦ rely(R[𝛼] 𝑓 , 𝑃𝛼) ⇒ 𝑄 [𝛼] 𝑓 (H-CInto)

safe𝛼 (R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 , 𝑄 ′ ◦ rely(R[𝛼] 𝑓 , 𝑃𝛼),𝐶′, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓)
(H-C’Safe)

By (IH-Pa), we have (Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ rely(R[𝛼] 𝑓 , 𝑃𝛼). By 𝑠′↾𝐸 ∈ 𝜈𝐸 and (H-Cmd), we have

(Δ′, 𝑠′) ∈ J𝐵K𝑋𝛼 (Δ, 𝑠) ∩ 𝜈𝐸 . And by 𝑠↾𝐹 &𝑅𝐹
∈ 𝜇𝐹 , (H-BT), and the definition of single instruction’s

judgement, we know there exists 𝜌 ′ such that

(Δ, 𝑠, 𝜌𝐹)𝑄 ′ (Δ′, 𝑠′, 𝜌 ′) (Δ, 𝑠, 𝜌𝐹)G[𝛼] 𝑓 (Δ′, 𝑠′, 𝜌 ′) 𝜌𝐹 d 𝜌 ′

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:59

And by (IH-Lin) and transitivity of − d −, we have 𝑠↾𝐹 d 𝜌𝐹 d 𝜌 ′, i.e., 𝑠↾𝐹 d 𝜌 ′. By taking

𝜌 ′
𝐹
= 𝜌 ′, we prove (G-Lin).

We take 𝑃 ′𝛼 = 𝑄 ′ ◦ rely(R[𝛼] 𝑓 , 𝑃𝛼). Since (Δ, 𝑠, 𝜌𝐹) ∈ rely(R[𝛼] 𝑓 , 𝑃𝛼) and (Δ, 𝑠, 𝜌𝐹)𝑄 ′ (Δ′, 𝑠′, 𝜌 ′),
we know (Δ′, 𝑠′, 𝜌 ′

𝐹
) ∈ 𝑃 ′𝛼 . Combined with the stability from (H-MStb), we prove (G-Pa) when

𝑓 ∈ 𝐹 .
We prove The first and third conjuncts of (G-Exe) directly by (H-C’Safe) and (H-CInto). The last

conjunct of (G-Exe) is true by (IH-Exe) because the current reduction does not modify 𝜋𝛼 (𝑠↾𝐹). If
𝑓 ∈ 𝐹 , then the second conjunct is true. If 𝑓 ∈ 𝑅𝐹 , because the current reduction does not change

other locations in the continuation 𝑐 , the second conjunct is true by (IH-Exe). This also proves

(G-Pa) under the condition 𝑓 ∈ 𝑅𝐹 since the LHS of the implication is false now.

Other branches (G-Idle), (G-Rec), and (G-Crs) are apparent because the LHS of the implication is

false.

If 𝑓 ∈ 𝐹 , for other 𝛼 ′ that is not 𝛼 , we take 𝑃 ′
𝛼 ′ = 𝑃𝛼 ′ and prove (G-Lin), (G-Idle), (G-Exe), (G-Rec),

and (G-Crs) with similar argument as previous cases.

If 𝑓 ∈ 𝑅𝐹 , we have shown that any other thread 𝛼 ′ are either dead or halt in both 𝑐 and 𝑐′ and we
need to maintain (G-Rec) for them. We take 𝑃 ′

𝛼 ′ = 𝑃
′
𝛼 = 𝑄 ′ ◦ rely(R[𝛼] 𝑓 , 𝑃𝛼) and (G-Pa) is already

proved and branches other than (G-Rec) are trivially true. We prove (G-Rec) by (H-CInto).

∗ Crash. If the reduction is a crash, then

∀𝛼 ∈ 𝑠 .𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼] = halt Δ′ = Δ0 𝑠′ = 𝑠 · .

We take 𝜌 ′
𝐹
= 𝜌𝐹 . Since 𝑠↾𝐹 = 𝑠′↾𝐹 and by (IH-Lin), we know 𝑠′↾𝐹 d 𝜌 ′

𝐹
and prove (G-Lin).

For any 𝛼 , if 𝑐′ [𝛼] = dead, then we do not need to prove anything for it. If 𝑐′ [𝛼] = halt, then we

know 𝛼 ∉ 𝑠 , which implies 𝑐 [𝛼] ∈ {idle, halt}. For these two cases, we only need to prove (G-Pa)

and (G-Crs). The branches (G-Idle), (G-Rec), and (G-Exe) are trivially true because their LHS of the

implication is false.

+ 𝑐 [𝛼] = idle. By (IH-Pa) (IH-Idle),

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ 𝐼 [𝛼] .

By (H-PC), we have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝐼 [𝛼] ⇒ 𝑄 [𝛼] .
We take 𝑃 ′𝛼 = 𝑄 [𝛼] and by definition, we have (Δ′, 𝑠′, 𝜌 ′

𝐹
) = (Δ0, 𝑠 · , 𝜌 ′𝐹) ∈ 𝑃 ′𝛼 and proves

(G-Pa), since the right conjunct of it is trivially true.

By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼] ⊆ 𝑄 [𝛼], (G-Crs) is true.

+ 𝑐 [𝛼] = halt. It can be further divided into following cases.

– ∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}, i.e., recovery has not started yet. We take 𝑃 ′𝛼 = 𝑄 [𝛼]. By (H-RQ)
and lemma G.5, we have

∀𝛼.𝑄 [𝛼] ⇒ 𝑄 [𝛼]
Then by (IH-Pa), (IH-Crs), we have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ 𝑄 [𝛼] ⇒ 𝑄 [𝛼] = 𝑃 ′𝛼
which indicates (Δ′, 𝑠′, 𝜌 ′

𝐹
) = (Δ0, 𝑠 · , 𝜌 ′𝐹) ∈ 𝑃 ′𝛼 by definition and proves (G-Pa).

By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼] ⊆ 𝑄 [𝛼], (G-Crs) is true.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:60 Oliveira Vale et al.

– ∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶 , i.e., recovery has started. By (IH-Pa) and (IH-Rec), we know

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⇒ 𝑄 [𝛼 ′]
for some 𝛼 ′. Therefore, we take 𝑃 ′𝛼 = 𝑄 [𝛼 ′]. And we have (Δ′, 𝑠′, 𝜌 ′𝐹) = (Δ0, 𝑠 · , 𝜌 ′𝐹) ∈ 𝑃 ′𝛼
and prove (G-Pa).

By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼 ′] ⊆ 𝑄 [𝛼 ′], (G-Crs) is true.

– ∃𝛼 ′ .𝑐 [𝛼 ′] = idle. This case is impossible, because idle and halt will not exist in 𝑐 at the
same time by the definition of the semantics.

∗ Recovery Invocation. If the reduction is an invocation to the recovery, then there exists 𝛼 such

that

𝑐 [𝛼] = halt 𝑐′ = 𝑐 [𝛼 ↦→ 𝑀 [𝛼]𝑟] Δ′ = Δ last(𝑠) = 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑟 .
We take 𝜌 ′

𝐹
= 𝜌𝐹 and prove (G-Lin) by the same argument as the crash case.

For any 𝛼 ′ other than 𝛼 that are not dead, by lemma G.3, they are in halt state. Since the current
reduction does not change 𝑐 [𝛼 ′], 𝑐′ [𝛼 ′] is still halt. And any thread dead are still dead, which
showcase the second conjunct in (G-Exe) for 𝛼 . While 𝑐′ [𝛼] = 𝑀 [𝛼]𝑟 , the LHS of (G-Idle), (G-Crs),
and (G-Exe) are all false for 𝛼 ′ in the new configuration, which means they are proven. And when

we found 𝑃 ′𝛼 , we will take 𝑃
′
𝛼 ′ = 𝑃

′
𝛼 and (G-Pa) and (G-Rec) will be proved for 𝛼 ′ when we prove

the invariant for 𝛼 .

We take 𝑃 ′𝛼 = invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼]. By (IH-Pa), (IH-Crs), (H-RPre), we have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ 𝑄 [𝛼] ⊆ 𝑃𝑟 [𝛼] .
And by definition, we have

(Δ, 𝑠, 𝜌𝐹)invoke𝛼 (𝑟) (Δ′, 𝑠′, 𝜌 ′𝐹)
which implies (Δ′, 𝑠′, 𝜌 ′

𝐹
) ∈ invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼] = 𝑃 ′𝛼 and proves (G-Pa) for both 𝛼 and 𝛼 ′.

By (H-RQ) and lemma G.5, we have

safe𝛼 (R[𝛼]𝑟 ,G[𝛼]𝑟 , 𝑃 ′𝛼 , 𝑃 ′𝛼 , 𝑀 [𝛼]𝑟 , returned𝛼 (𝑟) ◦𝑄 [𝛼]𝑟 , 𝑄 [𝛼]𝑟)
stable(R[𝛼]𝑟 , 𝑃 ′𝛼) 𝑃 ′𝛼 ⇒ 𝑄 [𝛼]𝑟

which proves (G-Rec) for 𝛼 ′, and proves (G-Exe) for 𝛼 (the second conjunct is proved in last

paragraph). Other branches (G-Idle) and (G-Crs) are trivially true.

∗ Recovery Return. If the reduction is a return from the recovery, then there exists 𝛼 and 𝑣 such

that

𝑐 [𝛼] = skip ∀𝛼 ∈ Υ.𝑐 [𝛼] = dead⇒ 𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝑐 [𝛼] ≠ dead⇒ 𝑐′ [𝛼] = idle

Δ(𝛼) (res) = 𝑣 ∈ ar(𝑟) Δ′ = Δ[𝛼 ↦→ ∅] last(𝜋𝛼 (𝑠↾𝐹∪𝑅𝐹
)) = 𝑟 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑣 .

We take 𝜌 ′
𝐹
= 𝜌𝐹 and prove (G-Lin) by the same argument as the crash case.

We take 𝑃 ′
𝛼 ′ = 𝐼 [𝛼 ′] for any 𝛼 ′ that are not dead.

By (IH-Exe), there exists 𝑃𝛼 such that

safe𝛼 (R[𝛼]𝑟 ,G[𝛼]𝑟 , invoke𝛼 (𝑟) ◦ 𝑃 [𝛼]𝑟 , 𝑃𝛼 , skip, returned𝛼 (𝑟) ◦𝑄 [𝛼]𝑟 , 𝑄 [𝛼]𝑟)
By the definition of the safety judgement and (IH-Pa), we can further have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ rely(R[𝛼]𝑟 , 𝑃𝛼) ⊆ returned𝛼 (𝑟) ◦𝑄 [𝛼]𝑟 ◦ invoke𝛼 (𝑟) ◦ 𝑃 [𝛼]𝑟

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:61

By definition, we have

(Δ, 𝑠, 𝜌𝐹)return𝛼 (𝑓) (Δ′, 𝑠′, 𝜌 ′𝐹).
By (H-RPost), we have the following for any 𝛼 ′.

(Δ′, 𝑠′, 𝜌 ′𝐹) ∈ return𝛼 (𝑓) ◦ returned𝛼 (𝑟) ◦𝑄 [𝛼]𝑟 ◦ invoke𝛼 (𝑟) ◦ 𝑃 [𝛼]𝑟 ⊆ 𝐼 [𝛼 ′] = 𝑃 ′𝛼
which proves (G-Pa) for any 𝛼 ′.

Moreover, since any non-dead 𝛼 ′ is in idle state, we only need to prove (G-Idle), which is trivially

true by reflexivity, 𝑃 ′𝛼 = 𝐼 [𝛼 ′] ⊆ 𝐼 [𝛼 ′].

This concludes the proof of proposition G.7, which proves the auxiliary soundness.

□

Theorem G.8 (Soundness). Proposition G.1 is true, i.e., the program logic is sound.

Proof. We prove the soundness by the following derivation.

𝜈 ′𝐹↾𝐹 = (𝜈 ′𝐸 ; J𝑀K𝑅𝐸
∩ 𝜇𝐹)↾𝐹 By Definition of 𝜈 ′𝐹

= ((𝜈 ′𝐸 ; J𝑀K𝑅𝐸
)↾𝐸 ⊸𝐹⟲𝑅𝐹

∩ 𝜇𝐹)↾𝐹
⊆ (𝜈 ′𝐸↾𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (1) Recovery Refinement

⊆ (𝜈𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (2) Validity of (𝜈 ′𝐸, 𝜈𝐸) + Obs. Ref.

= (JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 (3) Linking (lemma G.2)

⊆ dur(𝜈𝐹) (4) Auxiliary Soundness (lemma G.6)

□

H A PROGRAM LOGIC FOR CRASH-AWARE OVERLAY OBJECTS
In the main text, we mainly present the program logic for durable overlay objects. However, it is

often necessary to verify crash-aware objects, e.g., volatile objects and buffered objects, which are

crucial for implementations of many objects. Our file system example is a two layer crash-aware

object implementation. Therefore, we propose a program logic for crash-aware linearizability and

crash-aware overlay objects in this section.

We use the same programming language and semantics from G for crash-aware objects. For

simplicity, we still enforce the durable assumption here so that we can reuse some previous

definitions and conclusions.

H.1 Interfaces
We use the same interface definitions for crash-aware objects in G, which we repeat here. The

interface of a crash-aware linearizable object 𝐸 is a tuple

(𝜈 ′𝐸 : †(𝐸 ⟲ 𝑅𝐸) ∈ Dur, 𝜈𝐸 : †𝐸 ∈ Crash) s.t. 𝜈 ′𝐸↾𝐸 ⊆ 𝐾 𝜈𝐸
where 𝜈 ′

𝐸
is the concrete specification that contains all possible traces the object can produce, which

will include concurrent ones and will also contain crash events and recovery signatures, and 𝜈𝐸 is

the linearized specification. The interface is valid if and only if after recovery refining the concrete

specification (the projection onto 𝐸), 𝜈 ′
𝐸
↾𝐸 is crash-aware linearizable to 𝜈𝐸 , i.e., 𝜈

′
𝐸
↾𝐸 ⊆ 𝐾 𝜈𝐸 .

The objective for the program logic is to establish the judgement:

𝜇𝐹 ⊢ca 𝑀 : (𝜈 ′𝐸, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹)
where 𝜇𝐹 is the client guarantee. The soundness will ensure (𝜈 ′

𝐹
, 𝜈𝐹) to be valid given a valid

underlay (𝜈 ′
𝐸
, 𝜈𝐸).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:62 Oliveira Vale et al.

H.2 The CLHL for Crash-Aware Linearizability
The program logic uses as proof configurations triples (Δ, 𝑠, 𝜌) ∈ Config := ModState × Poss,
where Poss is a set of possibilities and is of type †𝐹 . The possibility is different from the one in

the program logic for durable objects, where we need to consider crash events in the linearization.

We define assertions and rely-guarantees as sets and relations just like before.

The program logic is almost the same as the one for the program logic for durable objects, except

one crucial difference: we are using a different rewrite system now.

Definition H.1. Let 𝐴 = (𝑀𝐴, 𝑃𝐴) be a crash-aware game. We define a string rewrite system

(𝑃𝐴,⇝
𝐴
) with rewrite rules:

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.∀𝑋 ∈ {𝑂, 𝑃}.𝛼 ≠ 𝛼 ′∧𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑋∧𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑋 =⇒ 𝑚 ·𝑚′ ⇝
𝐴

𝑚′ ·𝑚
• ∀𝑜, 𝑝 ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ∧ 𝜆𝐴 (𝑜) = 𝛼𝛼𝛼:::𝑂 ∧ 𝜆𝐴 (𝑝) = 𝛼 ′𝛼 ′𝛼 ′:::𝑃 =⇒ 𝑜 · 𝑝 ⇝

𝐴
𝑝 · 𝑜

• ∀𝑚 ∈ 𝑀Υ
𝐴
.∀Υ ∈ Υ.𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑃 ⇒ ·𝑚⇝

𝐴
𝑚 ·

It differs from the rewrite system for concurrent games mainly in the third rule, which allows

insertion of a proponent action before a crash, if this insertion is valid. We define the crash-aware

ghost update as

𝑠 d

𝑡 ⇐⇒ ∃𝑠𝑃 ∈ (𝑀𝑃

𝐹)
∗ .𝑠 · 𝑠𝑃 ⇝

†𝐹 𝑡

and lemma H.2 establishes the connection between the crash-aware update and crash-aware

linearizability.

Lemma H.2. For any crash-aware play 𝑠 and 𝑡 in †𝐹 , 𝑠 d 𝑡 ⇒ 𝑠 ; 𝑡 .

For the configuration triple (Δ, 𝑠, 𝜌), we maintain the invariant that 𝑠 d

𝜌 , i.e., 𝑠 ; 𝜌 , and

𝜌 ∈ 𝜈𝐹 .
There are two differences in the program logic’s proof rules. One is the primitive judgement

G ⊢ca𝛼 {𝑃}𝐵{𝑄}, where 𝐵 ∈ Prim. We now use the crash-aware ghost update to linearize the

possibility.

G ⊢ca𝛼 {𝑃}𝐵{𝑄} ⇐⇒
∀(Δ, 𝑠, 𝜌).𝑠↾𝐹⟲𝑅𝐹

∈ 𝜇𝐹 ∧ (Δ, 𝑠, 𝜌) ∈ 𝑃∧(
∀(Δ′, 𝑠′) ∈ J𝐵K𝛼 (Δ, 𝑠) ∩ 𝜈𝐸 ⇒ 𝑠′↾𝐹⟲𝑅𝐹

∈ 𝜇𝐹∧

∃𝜌 ′ .(Δ, 𝑠, 𝜌)𝑄 (Δ′, 𝑠′, 𝜌 ′) ∧ (Δ, 𝑠, 𝜌)G(Δ′, 𝑠′, 𝜌 ′) ∧ 𝜌 d 𝜌 ′

)
Another one is the crash-into relation (− ⇒ca

 −), where we also add the crash event to the

possibility as well. And we replace with this crash-into relation in Prim rule, Skip rule, Conseq

rule, and Object Impl rule, obtaining the program logic for crash-aware linearizability.

𝑃 ⇒ca
 𝑄 ⇐⇒ ∀(Δ, 𝑠, 𝜌) ∈ 𝑃 .(Δ0, 𝑠 · , 𝜌 ·) ∈ 𝑄

Essential, the usage of this program logic is the same as the one for durable objects, except we

use different possibility update operation when establishing the primitive judgement and need to

prove with a slightly different crash-into relation. Fig. 13 shows all proof rules in the program logic

for crash-aware objects.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:63

Crash Hoare Logic Rules:

𝑃 ⇒ca
 𝑄 𝑄 ◦ 𝑃 ⇒ca

 𝑄 𝑄 ⇒ca
 𝑄

stable(R, 𝑃) stable(R, 𝑄) G ⊢ca𝛼 {𝑃}𝐵{𝑄}
R,G ⊨ca𝛼 {𝑃}𝐵{𝑄}{𝑄 }

Prim

R,G ⊨ca𝛼 {𝑃}𝐶1{𝑄1}{𝑄 } R,G ⊨ca𝛼 {𝑄1 ◦ 𝑃}𝐶2{𝑄2}{𝑄 }
R,G ⊨ca𝛼 {𝑃}𝐶1;𝐶2{𝑄2 ◦𝑄1}{𝑄 }

Seq

stable(R, 𝑃) 𝑃 ⇒ca
 𝑄

R, ID ⊨ca𝛼 {𝑃}skip{ID}{𝑄 }
Skip

R,G ⊨ca𝛼 {𝑃}𝐶{𝑄}{𝑄 } 𝑄 ◦ 𝑃 ⊆ 𝑃
R,G ⊨ca𝛼 {𝑃}𝐶∗{𝑄}{𝑄 }

Iter

R,G ⊨ca𝛼 {𝑃}𝐶1{𝑄}{𝑄 } R,G ⊨ca𝛼 {𝑃}𝐶2{𝑄}{𝑄 }
R,G ⊨ca𝛼 {𝑃}𝐶1 +𝐶2{𝑄}{𝑄 }

Choice

stable(R′, 𝑃 ′) stable(R′, 𝑄 ′) 𝑄 ⊆ 𝑄 ′ 𝑄 ′ ⇒
ca
 𝑄 ′ 𝑄 ′ ◦ 𝑃 ′ ⇒ca

 𝑄 ′
𝑃 ′ ⊆ 𝑃 𝑄 ⊆ 𝑄 ′ R′ ⊆ R G ⊆ G′ R,G ⊨ca𝛼 {𝑃}𝐶{𝑄}{𝑄 }

R′,G′ ⊨ca𝛼 {𝑃 ′}𝐶{𝑄 ′}{𝑄 ′ }
Conseq

Top Level Rules:

∀𝑓 ∈ 𝐹 .(Δ0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓 ∀𝑓 ∈ 𝐹 .𝑃 [𝛼] 𝑓 ⊆ idle𝛼 ∀𝑓 ∈ 𝐹 .stable(R[𝛼], 𝑃 [𝛼] 𝑓)
∀𝑓 ∈ 𝐹 .R[𝛼],G[𝛼] ⊨ca𝛼 {invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 }𝑀 [𝛼] 𝑓 {returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 }{⊤}
∀𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓) ◦ returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 ◦ invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ⊆ 𝑃 [𝛼] 𝑓

′

R[𝛼],G[𝛼], (∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓) ⊨ca𝛼 𝑀𝐹 [𝛼]
Local Impl

∀𝛼 ∈ Υ.R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨ca𝛼 𝑀𝐹 [𝛼]
∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼]

∀𝛼.𝐼 [𝛼] ⇒ca
 𝑄 [𝛼] ∀𝛼, 𝛼 ′ ∈ Υ.𝑄 [𝛼] ⊆ 𝑃𝑟 [𝛼 ′]

∀𝛼 ∈ Υ.ID,⊤ ⊨ca𝛼 {invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {returned𝛼 (𝑟) ◦𝑄𝑟 [𝛼]}{𝑄 [𝛼]}
∀𝛼, 𝛼 ′ ∈ Υ.return𝛼 (𝑟) ◦ returned𝛼 (𝑟) ◦𝑄𝑟 [𝛼] ◦ invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼] ⊆ 𝐼 [𝛼 ′]

𝜇𝐹 ⊢ca 𝑀 : (𝜈 ′𝐸, 𝜈𝑑 , 𝜈𝑐) → (𝜈 ′𝐹 , 𝜈𝐹)
Object Impl

Fig. 13. Proof Rules in the Program Logic for Crash-Aware Objects

H.3 Soundness
The program logic is justified by the following soundness theorem.

Proposition H.3 (Soundness). If 𝜇𝐹 ⊢ca 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹) is provable, and (𝜈 ′𝐸, 𝜈𝐸) is a

valid underlay interface, and 𝜈 ′
𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

∩ 𝜇𝐹 , then (𝜈 ′𝐹 , 𝜈𝐹) is a valid overlay interface with

𝜈 ′𝐹↾𝐹 ⊆ 𝐾 𝜈𝐹 .

The soundness proof of the crash-aware program logic is also almost identical to the one of the

durable program logic in G. We use the same auxiliary definitions for judgement of the crash-aware

version and the only difference is the auxiliary soundness (lemma H.4), because it is the only one

mentions the only thing different between the two logics, the linearization (i.e., the possibility

update).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:64 Oliveira Vale et al.

𝜈 ′𝐹↾𝐹 = (𝜈 ′𝐸 ; J𝑀K𝑅𝐸
∩ 𝜇𝐹)↾𝐹 By Definition of 𝜈 ′𝐹

= ((𝜈 ′𝐸 ; J𝑀K𝑅𝐸
)↾𝐸 ⊸𝐹⟲𝑅𝐹

∩ 𝜇𝐹)↾𝐹
⊆ (𝜈 ′𝐸↾𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (1) Recovery Refinement

⊆ (𝜈𝐸 ; J𝑀K∅ ∩ 𝜇𝐹)↾𝐹 (2) Validity of (𝜈 ′𝐸, 𝜈𝐸) + Obs. Ref.

= (JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 (3) Linking (lemma G.2)

⊆ 𝐾 𝜈𝐹 (4) Auxiliary Soundness (lemma H.4)

Lemma H.4 (Auxiliary Soundness). If the judgement 𝜇𝐹 ⊢ca 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹) is provable

and (𝜈 ′
𝐸
, 𝜈𝐸) is a valid underlay interface, then

(JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹)↾𝐹 ⊆ 𝐾 𝜈𝐹 .

Proof. The proof of this auxiliary soundness is almost the same as the proof of lemma G.6 for

the durable program logic. We maintain the invariant that for any 𝑐,Δ, 𝑠 , if ⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,Δ, 𝑠⟩,

then when 𝑠↾𝐹 &𝑅𝐹
∈ 𝜇𝐹 there exists a current linearization 𝜌𝐹 ∈ 𝜈𝐹 and the followings hold.

𝑠↾𝐹 d

𝜌𝐹 (G-Lin)

∧∀𝛼.𝑐 [𝛼] ≠ dead⇒
∃𝑃𝛼 .(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ∧ (halt ∉ 𝑐 ⇒ stable(R[𝛼], 𝑃𝛼)) (G-Pa)

∧ (𝑐 [𝛼] = idle⇒ 𝑃𝛼 ⊆ 𝑃 [𝛼]) (G-Idle)

∧
(
(∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}) ⇒ ∃𝛼 ′ .𝑃𝛼 ⊆ 𝑄 [𝛼 ′]

)
(G-Crs)

∧
(
𝑐 [𝛼] = halt ∧ (∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶) ⇒ ∃𝛼 ′ .𝑃𝛼 ⇒ca

 𝑄 [𝛼 ′]
)

(G-Rec)

∧
©­­­­­«
∀𝐶 ∈ Com.𝑐 [𝛼] = 𝐶 ⇒ ∃𝑓 ∈ 𝐹 ∪ 𝑅𝐹 .

©­­­­­«
safe𝛼

(
R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ,
𝑃𝛼 ,𝐶, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓

)
∧(𝑓 ∈ 𝑅𝐹 ⇒ ∀𝛼 ′ ≠ 𝛼.𝑐 (𝛼 ′) ∈ {dead, halt})
∧𝑃𝛼 ⇒ca

 𝑄 [𝛼] 𝑓 ∧ 𝑓 = last(𝜋𝛼 (𝑠↾𝐹 &𝑅𝐹
))

ª®®®®®¬
ª®®®®®¬

(G-Exe)

Combined with lemma H.2 and the crash-aware linearizability’s definition in §B, this invariant

proves the auxiliary soundness by showing

∀𝑠 ∈ (JLink𝜈𝐸 ;𝑀K ∩ 𝜇𝐹).𝑠↾𝐹 ∈ 𝐾 𝜈𝐹 .

We prove the invariant by first inducting over the reduction ⟨𝑐0,Δ0, 𝜖⟩−↠𝑀
𝜈𝐸

∗⟨𝑐,Δ, 𝑠⟩ and in the

inductive step where we have

⟨𝑐0,Δ0, 𝜖⟩−↠𝑀
𝜈𝐸

∗⟨𝑐,Δ, 𝑠⟩ and ⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝜈𝐸
⟨𝑐′,Δ′, 𝑠′⟩.

We then prove by a case analysis of the last reduction step. The major difference between this proof

and the one in G is the case where the last reduction step is a crash. We only demonstrate the proof

for the crash case here.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:65

We have the induction hypothesis that there exists a current linearization 𝜌𝐹 ∈ 𝜈𝐹 and the

followings hold.

𝑠↾𝐹 d

𝜌𝐹 (IH-Lin)

∧∀𝛼.𝑐 [𝛼] ≠ dead⇒
∃𝑃𝛼 .(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ∧ (halt ∉ 𝑐 ⇒ stable(R[𝛼], 𝑃𝛼)) (IH-Pa)

∧ (𝑐 [𝛼] = idle⇒ 𝑃𝛼 ⊆ 𝑃 [𝛼]) (IH-Idle)

∧
(
(∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}) ⇒ ∃𝛼 ′ .𝑃𝛼 ⊆ 𝑄 [𝛼 ′]

)
(IH-Crs)

∧
(
𝑐 [𝛼] = halt ∧ (∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶) ⇒ ∃𝛼 ′ .𝑃𝛼 ⇒ca

 𝑄 [𝛼 ′]
)

(IH-Rec)

∧
©­­­­­«
∀𝐶 ∈ Com.𝑐 [𝛼] = 𝐶 ⇒ ∃𝑓 ∈ 𝐹 ∪ 𝑅𝐹 .

©­­­­­«
safe𝛼

(
R[𝛼] 𝑓 ,G[𝛼] 𝑓 , invoke𝛼 (𝑓) ◦ 𝑃 [𝛼] 𝑓 ,
𝑃𝛼 ,𝐶, returned𝛼 (𝑓) ◦𝑄 [𝛼] 𝑓 , 𝑄 [𝛼] 𝑓

)
∧(𝑓 ∈ 𝑅𝐹 ⇒ ∀𝛼 ′ ≠ 𝛼.𝑐 (𝛼 ′) ∈ {dead, halt})
∧𝑃𝛼 ⇒ca

 𝑄 [𝛼] 𝑓 ∧ 𝑓 = last(𝜋𝛼 (𝑠↾𝐹 &𝑅𝐹
))

ª®®®®®¬
ª®®®®®¬

(IH-Exe)

We also list some premise extracted from the judgement 𝜇𝐹 ⊢ca 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → (𝜈 ′𝐹 , 𝜈𝐹) that are

used in the crash case’s proof.

∀𝛼 ∈ 𝐴.ID,⊤ ⊨ca𝛼 {invoke𝛼 (𝑟) ◦ 𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {returned𝛼 (𝑟) ◦𝑄𝑟 [𝛼]}{𝑄 [𝛼]} (H-RQ)

∀𝛼.𝐼 [𝛼] ⇒ca
 𝑄 [𝛼] (H-PC)

We also have the crash-aware version of lemma G.5 as lemma H.5

Lemma H.5. For any R,G, 𝑃, 𝑠,𝑄,𝑄 , if the quadruple R,G ⊨ca𝛼 {𝑃}𝑠{𝑄}{𝑄 } is provable, then
the followings are true.

stable(R, 𝑃) 𝑃 ⇒ca
 𝑄 𝑄 ⇒ca

 𝑄 safeca𝛼 (R,G, 𝑃, 𝑃, 𝑠,𝑄,𝑄)

∗ Crash. If the reduction is a crash, then

∀𝛼 ∈ 𝑠 .𝑐′ [𝛼] = dead ∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼] = halt Δ′ = Δ0 𝑠′ = 𝑠 · .
We have the induction hypothesis that there exists 𝜌𝐹 ∈ 𝜈𝐹 , such that

𝑠↾𝐹 d

𝜌𝐹

We take 𝜌 ′
𝐹
= 𝜌𝐹 · . By definition, the induction hypothesis is equivalent to

∃𝑡𝑃 ∈ (𝑀𝑃
𝐹)
∗ .𝑠↾𝐹 · 𝑡𝑃 ⇝

†𝐹 𝜌𝐹 .

By the third rewrite rule of −⇝
†𝐹 −, we insert 𝑡𝑃 from previous linearization before the crash

and have

𝑠′↾𝐹 = 𝑠↾𝐹 · ⇝
†𝐹 𝑠↾𝐹 · 𝑡𝑃 · ⇝

†𝐹 𝜌𝐹 · = 𝜌 ′𝐹

which shows 𝑠′↾𝐹 d

𝜌 ′
𝐹
by definition and proves (G-Lin).

For any 𝛼 , if 𝑐′ [𝛼] = dead, then we do not need to prove anything for it. If 𝑐′ [𝛼] = halt, then we

know 𝛼 ∉ 𝑠 , which implies 𝑐 [𝛼] ∈ {idle, halt}. For these two cases, we only need to prove (G-Pa)

and (G-Crs). The branches (G-Idle), (G-Rec), and (G-Exe) are trivially true because their LHS of the

implication is false.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:66 Oliveira Vale et al.

+ 𝑐 [𝛼] = idle. By (IH-Pa) (IH-Idle),

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ 𝐼 [𝛼] .

By (H-PC), we have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝐼 [𝛼] ⇒ca
 𝑄 [𝛼] .

We take 𝑃 ′𝛼 = 𝑄 [𝛼] and by definition, we have (Δ′, 𝑠′, 𝜌 ′
𝐹
) = (Δ0, 𝑠 · , 𝜌𝐹 ·) ∈ 𝑃 ′𝛼 and

proves (G-Pa), since the right conjunct of it is trivially true.

By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼] ⊆ 𝑄 [𝛼], (G-Crs) is true.

+ 𝑐 [𝛼] = halt. It can be further divided into following cases.

– ∀𝛼 ′ .𝑐 [𝛼 ′] ∈ {dead, halt}, i.e., recovery has not started yet. We take 𝑃 ′𝛼 = 𝑄 [𝛼]. By (H-RQ)
and lemma H.5, we have

∀𝛼.𝑄 [𝛼] ⇒ca
 𝑄 [𝛼]

Then by (IH-Pa), (IH-Crs), we have

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⊆ 𝑄 [𝛼] ⇒ca
 𝑄 [𝛼] = 𝑃 ′𝛼

which indicates (Δ′, 𝑠′, 𝜌 ′
𝐹
) = (Δ0, 𝑠 · , 𝜌𝐹 ·) ∈ 𝑃 ′𝛼 by definition and proves (G-Pa).

By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼] ⊆ 𝑄 [𝛼], (G-Crs) is true.

– ∃𝛼 ′,𝐶 ∈ Com.𝑐 [𝛼 ′] = 𝐶 , i.e., recovery has started. By (IH-Pa) and (IH-Rec), we know

(Δ, 𝑠, 𝜌𝐹) ∈ 𝑃𝛼 ⇒ca
 𝑄 [𝛼 ′]

for some 𝛼 ′. Therefore, we take 𝑃 ′𝛼 = 𝑄 [𝛼 ′]. And we have

(Δ′, 𝑠′, 𝜌 ′𝐹) = (Δ0, 𝑠 · , 𝜌𝐹 ·) ∈ 𝑃 ′𝛼

and prove (G-Pa). By reflexivity, 𝑃 ′𝛼 = 𝑄 [𝛼 ′] ⊆ 𝑄 [𝛼 ′], (G-Crs) is true.

– ∃𝛼 ′ .𝑐 [𝛼 ′] = idle. This case is impossible, because idle and halt will not exist in 𝑐 at the
same time by the definition of the semantics.

□

I APPLICATIONS OF THE PROGRAM LOGIC
In this section, we demonstrate the ability of our program logic from appendix G by presenting

detailed proofs of the FLiT example and the file system example in §4.2. In I.1, we formalize and

verify the FLiT memory cell implementation. And in I.3, we formalize and verify the file system

example.

I.1 The FLiT Memory Cell
I.1.1 Implementation. The FLiT memory cell implementation has the signature:

FLiT := {load : Val, store : Val→ 1}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:67

It is durably linearizable to its specification 𝜈flit, which is the largest set satisfying the following

property.

𝑝 ∈ 𝜈flit ⇐⇒
©­­«

𝑝 = 𝜖∨
(𝑝 ⊑ 𝑝′ · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok ∧ 𝑝′ ∈ 𝜈flit)∨

(𝑝 ⊑ 𝑝′ · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝑝′ ∈ 𝜈flit ∧ 𝑣 = fstate(𝑝′))

ª®®¬
where fstate(𝑝) =


𝑣0 𝑝 = 𝜖

𝑣 𝑝 = 𝑝′ · 𝛼𝛼𝛼:::ok ∧ 𝜋𝛼 (𝑝′) = 𝑝′′ · store(𝑣)
fstate(𝑝′) otherwise, 𝑝 = 𝑝′ · _

It builds on a volatile and atomic counter Counter and a buffered and atomic memory cell BCell
with the following signatures:

Counter := {inc : 1, dec : 1, get : Z}
BCell := {load : Val, store : Val→ 1, flush : 1}

The counter has the specification 𝜈counter as the largest set satisfying the following property.

𝑠 ∈ 𝜈counter ⇐⇒
©­­­­­«

𝑠 = 𝜖 ∨ (𝑠 = 𝑠′ · ∧ 𝑠′ ∈ 𝜈counter)∨
(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::inc · 𝛼𝛼𝛼:::ok ∧ 𝑠′ ∈ 𝜈counter)∨
(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::dec · 𝛼𝛼𝛼:::ok ∧ 𝑠′ ∈ 𝜈counter)∨

(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::get · 𝛼𝛼𝛼:::𝑛 ∧ 𝑠′ ∈ 𝜈counter ∧ 𝑛 = cstate(𝑠′))

ª®®®®®¬
where cstate(𝑠) =


0 𝑠 = 𝜖 ∨ 𝑠 = 𝑠′ ·
cstate(𝑠′) + 1 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::ok ∧ 𝜋𝛼 (𝑠′) = 𝑠′′ · inc
cstate(𝑠′) − 1 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::ok ∧ 𝜋𝛼 (𝑠′) = 𝑠′′ · dec
cstate(𝑠′) otherwise, 𝑠 = 𝑠′ · _

The buffered memory cell has the specification 𝜈bcell as the largest set satisfying the following

property.

𝑠 ∈ 𝜈bcell ⇐⇒
©­­­­­«

𝑠 = 𝜖 ∨ (𝑠 = 𝑠′ · ∧ 𝑠′ ∈ 𝜈bcell)∨
(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok ∧ 𝑠′ ∈ 𝜈bcell)∨
(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::flush · 𝛼𝛼𝛼:::ok ∧ 𝑠′ ∈ 𝜈bcell)∨

(𝑠 ⊑ 𝑠′ · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝑠′ ∈ 𝜈bcell ∧ 𝑣 ∈ mstate(𝑠′)↾2)

ª®®®®®¬

where (𝑣1, 𝑣2) ∈ mstate(𝑠) ⇐⇒

©­­­­­­­­­­­­­­­­­­«

(𝑣1 = 𝑣2 = 𝑣0 ∧ 𝑠 = 𝜖)∨
(𝑣1 = 𝑣2 = 𝑣 ∧ 𝑠 = 𝑠′ · ∧ (𝑣, 𝑣 ′) ∈ mstate(𝑠′))∨(

𝑣1 = 𝑣
′ ∧ 𝑣2 = 𝑣 ∧ 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::ok∧

𝜋𝛼 (𝑠′) = 𝑠′′ · store(𝑣) ∧ (𝑣 ′, 𝑣 ′′) ∈ mstate(𝑠′)

)
∨

(𝑣1 = 𝑣2 = 𝑣 ∧ 𝑠 = 𝑠′ · ok ∧ 𝜋𝛼 (𝑠′) = 𝑠′′ · store(𝑣))∨(
𝑣1 = 𝑣2 = 𝑣 ∧ 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::ok∧

𝜋𝛼 (𝑠′) = 𝑠′′ · flush ∧ (𝑣 ′, 𝑣) ∈ mstate(𝑠′)

)
∨

(𝑠 = 𝑠′ · 𝛼𝛼𝛼:::𝑣2 ∧ 𝜋𝛼 (𝑠′) = 𝑠′′ · load ∧ (𝑣1, 𝑣2) ∈ mstate(𝑠′)) ∨
(𝑠 = 𝑠′ · 𝑒 ∧ 𝑒 ∈ inv ∧ (𝑣1, 𝑣2) ∈ mstate(𝑠′))

ª®®®®®®®®®®®®®®®®®®¬
and mstate(𝑠)↾𝑖 = {𝑣𝑖 | (𝑣1, 𝑣2) ∈ mstate(𝑠)}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:68 Oliveira Vale et al.

Basically, the state function mstate computes all possibilities of the persisted content 𝑣1 and the

buffered content 𝑣2.

• When crash happens, only the persisted content is preserved and is loaded into the buffered

content.

• When storing a value to the cell, the value may be written to the buffered content only or be

written to both the persisted and the buffered one.

• When flush happens, the persisted content gets synchronized with the buffered content.

• Any load to the cell gets the buffered content. Moreover, after a load returns, the buffered

content is determined, which will eliminate any non-determinism brought up by unflushed

stores before previous crashes.

Figure 14 shows the implementation of the FLiT memory cell. To make implementations and

proofs more readable, for structure commands like if-statements and loop-statements, we do not

unfold them into the encoding using 𝐶1 +𝐶2 and 𝐶
∗
and instead write the code and do the proof in

the high-level syntax.

1 𝑀flit:

2 Import M:BCell
3 Import C:Counter
4

5 load() { store(v) {

6 v ← M.load (); C.inc();

7 if (C.get() != 0) { M.store(v);

8 M.flush (); M.flush ();

9 } C.dec();

10 return v; return;

11 } }

Fig. 14. FLiT Memory Cell Implementation

I.1.2 Proof. To prove this example, we need to add more structures to the possibility’s definition.

We use the possibility with the form of 𝜌 = (𝑝, 𝑠𝑂), where 𝑝 ∈ 𝑃!flit and is accessed by lin(𝜌), and
𝑠𝑂 is the set of pending invocations. The set 𝑃!flit is the largest set of atomically linearized traces.

𝑝 ∈ 𝑃!flit ⇐⇒
©­­«

𝑝 = 𝜖∨
(𝑝 = 𝑝′ · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok ∧ 𝑝′ ∈ 𝜈flit)∨

(𝑝 = 𝑝′ · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝑝′ ∈ 𝜈flit ∧ 𝑣 = fstate(𝑝′))

ª®®¬
For this definition, we maintain two invariants that: 𝑠↾FLiT is linearizable to 𝑝 · ⟨𝑠𝑂 ⟩ and 𝑝 · ⟨𝑠𝑂 ⟩ ∈ 𝜈flit,
where ⟨𝑠𝑂 ⟩ is any sequence of pending invocations in 𝑠𝑂 . We use a ghost variable 𝐵 = List 𝑠𝑂 to

store all buffered pending invocations in order, which implicitly implies that ∀𝑒 ∈ 𝐵.𝑒 ∈ 𝑠𝑂 . As a
result, the program state is now a quadruple (Δ, 𝑠, 𝜌, 𝐵). Using this definition of the configuration

will not change the soundness of the logic.

There are three states of the system:

• The Flushed state. It means every stores have persisted in the NVM.

Flushed ⇐⇒ 𝐵 = 𝜖

• The Unflushed state. It means there are buffered stores but the determinism of the buffered

content has not been broken by crashes. However, there must be different possibilities in the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:69

persisted content. Buffered stores that are consistent with the current persisted content will

directly get linearized.

Unflushed ⇐⇒ 𝐵 ≠ 𝜖 ∧
(∀𝑣1, 𝑣2 ∈ mstate(𝑠↾𝑀)↾2.𝑣1 = 𝑣2∧
∃𝑣1, 𝑣2 ∈ mstate(𝑠↾𝑀)↾1.𝑣1 ≠ 𝑣2

)
• The Unsynced state. It means there are buffered stores and we do not know which one is

persisted and loaded into the volatile memory due to some crashes.

Unsynced ⇐⇒ 𝐵 ≠ 𝜖 ∧ ∃𝑣1, 𝑣2 ∈ mstate(𝑠↾𝑀)↾2.𝑣1 ≠ 𝑣2
The object invariant 𝐼 (𝑠, 𝜌, 𝐵) is a conjunction of the following conditions. We maintain the

invariant at any point of the program.

• The system is always in one of the three states.

Flushed ∨ Unflushed ∨ Unsynced

• If the system is in Flushed state, then the memory cell’s state is persistent and is the same as

the overlay’s state.

Flushed⇒ ∀(𝑣1, 𝑣2) ∈ mstate(𝑠↾𝑀).𝑣1 = 𝑣2 = fstate(𝜌)

• If the system is in Unflushed state, then the memory cell’s buffered value is the value of the

latest buffered store and any persisted content corresponds to the current overlay’s state or a

buffered store.

Unflushed⇒
((∀𝑣 ∈ mstate(𝑠↾𝑀)↾2.last(𝐵↾store) = store(𝑣))∧
(∀𝑣 .(store(𝑣) ∈ 𝐵 ∨ fstate(𝜌) = 𝑣) ⇔ 𝑣 ∈ mstate(𝑠↾𝑀)↾1)

)
• AnyUnsynced state is caused by crashes from aUnflushed state. If the system is inUnsynced
state, then any content in the memory cell corresponds to the current overlay’s state or a

buffered store.

Unsynced⇒ (∀𝑣 .(store(𝑣) ∈ 𝐵 ∨ fstate(𝜌) = 𝑣) ⇔ (𝑣, 𝑣) ∈ mstate(𝑠↾𝑀))

• The counter increment by any agent is always non-negative, which implies the counter value

to be non-negative, and when the the system is in the Unflushed state, the counter value is

non-zero.

∀𝛼.cstate(𝜋𝛼 (𝑠↾𝐶)) ≥ 0 ∧ (Unflushed⇒ cstate(𝑠↾𝐶) ≠ 0)

Informal explanation of the load proof. Upon invocation of the load to the FLiT memory cell, it

invokes the load to the underlay𝑀 , which can perform three different transitions according to

the state.

load-f When the system is in the Flushed state, we directly linearize the load with the underlay’s

return value, because according to the invariant, we know the underlay’s persisted value and

buffered value is the overlay’s linearized value. Therefore, the linearization of the current

load is consistent with the linearized part.

load-uf When the system is in the Unflushed state, we know that 𝑣 is the underlay’s buffered

value and according to the invariant, the last buffered store has the argument 𝑣 . We then

append the current load to 𝐵, waiting someone to help linearize the load and corresponding

store before it to ensure consistency.

load-s When the system is in the Unsynced state, the current load will determine how do buffered

operations from previous epochs linearize.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:70 Oliveira Vale et al.

{invoke𝛼 (load) ◦ 𝐼 }
1: load(){

{𝐼 ∧𝛼𝛼𝛼:::load ∈ 𝑠𝑂 ∧ (Flushed ∨ Unflushed ∨ Unsynced)}
2: 𝑣 ← 𝑀.load(); // load-f/load-uf/load-us

𝐼 (𝑠, 𝜌, 𝐵) ∧𝛼𝛼𝛼:::load ∈ 𝑠𝑂∧©­­­­­­­­­­­­­­­«

(
(𝑣, 𝑣) ∈ mstate(𝑠↾𝑀) ∧ 𝑣 = fstate(𝜌) ∧ lin(𝜌′) = lin(𝜌) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣

∧𝐵′ = 𝐵 = 𝜖 ∧mstate(𝑠′↾𝑀) = mstate(𝑠↾𝑀)

)
∨(

last(𝐵↾store) = store(𝑣) ∧ 𝜌′ = 𝜌∧
𝐵′ = 𝐵 · 𝛼𝛼𝛼:::load ∧mstate(𝑠′↾𝑀) = mstate(𝑠↾𝑀)

)
∨

©­­­­«
((𝐵 = 𝐵1 · 𝐵2 ∧ last(𝐵1) = store(𝑣))∨

(fstate(𝜌) = 𝑣 ∧ 𝐵1 = 𝜖)

)
∧ (𝑣, 𝑣) ∈ mstate(𝑠↾𝑀)∧

lin(𝜌′) = merge(lin(𝜌), 𝐵1) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣∧
𝐵′ = 𝜖 ∧mstate(𝑠′↾𝑀) = {(𝑣, 𝑣)}

ª®®®®¬

ª®®®®®®®®®®®®®®®¬

{
𝐼 ∧

((Flushed ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
Unflushed ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

)))}
3: 𝑛 ← 𝐶.get();{

𝐼 ∧
((Flushed ∧ (𝑛 ≠ 0 ∨ 𝑛 = 0) ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
Unflushed ∧ 𝑛 ≠ 0 ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

)))}{
𝐼 ∧

((𝑛 = 0 ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
𝑛 ≠ 0 ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

))) ∧ (Flushed ∨ Unflushed)}
4: if (𝑛 ≠ 0){{

𝐼 ∧ (Flushed ∨ Unflushed) ∧ (∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣)
}

5: 𝑀.flush(); // flush𝐼 (𝑠, 𝜌, 𝐵) ∧
©­­«
(∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣)∧
lin(𝜌′) = merge(lin(𝜌), 𝐵) ∧ 𝐵′ = 𝜖 ∧ last(𝜋𝛼 (𝜌′)) = 𝑣∧

𝑠′ = 𝑠 · 𝛼𝛼𝛼:::flush · 𝛼𝛼𝛼:::ok

ª®®¬


{𝐼 ∧ last(𝜋𝛼 (𝜌)) = 𝑣}
6: }

{𝐼 ∧ last(𝜋𝛼 (𝜌)) = 𝑣}
7: ret 𝑣
8: }
{returned𝛼 (load) ◦ 𝐼 }{⊤}

Fig. 15. Proof of the FLiT Memory Cell: load

• The underlay’s load may return the value from some buffered store, and we take all buffered

operation no-later than this store as 𝐵1. In this case, all operations in 𝐵1 are persisted in

order in the underlay and are visible to all future operations. Therefore, we can safely

linearized operations in 𝐵1 by the merge function, followed by the current overlay’s load.

The merge function,merge : 𝑃!flit × 𝑠𝑂 → 𝑃!flit, linearizes buffered invocations in 𝐵 in order

after the existing linearized possibility.

merge(𝑝, 𝐵) =


𝑝 𝐵 = 𝜖

merge(𝑝′, 𝐵′) 𝐵 = 𝛼𝛼𝛼:::store(𝑣) · 𝐵′ ∧ 𝑝′ = 𝑝 · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok
merge(𝑝′, 𝐵′) 𝐵 = 𝛼𝛼𝛼:::load · 𝐵′ ∧ 𝑣 = fstate(𝑝) ∧ 𝑝′ = 𝑝 · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:71

We forget all remaining buffered operation by setting 𝐵 to empty, because they are no

longer visible.

• Or the underlay’s load may return the persisted value before all buffered operations, i.e.,

the same value as the linearized value. Then we forget all buffered operations and linearize

the current load after the linearized part.

The post-condition is stabilized to

𝐼 ∧
(

(Flushed ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
Unflushed ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

))) .
The transition load-f and load-us results in the Flushed branch, and load-uf results in the Unflushed
branch, where someone may help the current thread linearize its buffered load in 𝐵. For simplicity,

we use variable 𝑣 in assertions as the program variable 𝑣 ’s value.

Then, it gets the current counter value. In the Flushed branch, the returned counter value 𝑛

can be any non-negative number. In the Unflushed branch, by invariant 𝐼 , the counter value must

be non-negative. We then stabilize this post-condition into

𝐼 ∧
(

(𝑛 = 0 ∧ last(𝜋𝛼 (𝜌)) = 𝑣)∨(
𝑛 ≠ 0 ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = 𝑣

))) ∧ (Flushed ∨ Unflushed)
by extracting Flushed ∨ Unflushed outside, because they can change into each other under the

rely. We keep the information that when 𝑛 = 0, the current load is linearized, and otherwise, the

current load may remains in 𝐵 or is linearized.

Into the if branch, we know 𝑛 ≠ 0 and therefore, the current load may either be in the buffered

list 𝐵 or already linearized. When it flushes, we linearize every thing in the buffered list (which

may be empty in the Flushed case), because after the flush, the underlay’s persisted value will be

consistent with the overlay’s value after linearizing operations in 𝐵 according to the invariant. As

a result, after this flush and linearizations, the current load is definitely linearized.

Informal explanation of the store proof. In the load proof, we only use the invariant to get

information about the counter, but in the store proof, it is a major challenge to maintain the

invariant for the counter. When increasing the counter at the beginning of the store, we know

from the invariant that the counter increment (cstate(𝜋𝛼 (𝑠↾𝐶))) by the current thread 𝛼 is non-

negative and after the increment, it will be strictly larger than 0 because no one else can change

cstate(𝜋𝛼 (𝑠↾𝐶)). This step preserves the invariant, because it does not decrease the counter value.

Then it performs a store, which can have three different transitions under four different cases.

store-ff If we are in the Flushed state and we are storing a value that is exactly the same as the

current linearized value. Then we can directly linearize this store because the underlay is the

same no matter this store is persisted or not. Another choice is to put it in the buffered list

and let someone else linearize it, but this makes defining the Unflushed states difficult. This

step preserves the invariant because we are still in the Flushed state.

store-fu If we are in the Flushed state and we are storing a value that is different from the current

linearized value. Then we need to put it in the buffered list, because it may not be persisted

and is unsafe to be linearized. This step preserves the invariant, because although we changed

into the Unflushed state, we have ensured the local increment to the counter is positive,

which means the counter value is positive.

store-uu (unflushed) If we are in the Unflushed state, we append the store to the buffered list 𝐵

and it is still in the Unflushed state. This step preserves the invariant for the same reason as

the store-fu transition.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:72 Oliveira Vale et al.

{invoke𝛼 (store(𝑣)) ◦ 𝐼 }
1: store(𝑣){{

𝐼 ∧𝛼𝛼𝛼:::store(𝑣) ∈ 𝑠𝑂 ∧ 0 ≤ cstate(𝜋𝛼 (𝑠↾𝐶))
}

2: 𝐶.inc();{
𝐼 ∧𝛼𝛼𝛼:::store(𝑣) ∈ 𝑠𝑂 ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧ (Flushed ∨ Unflushed ∨ Unsynced)

}
3: 𝑀.store(𝑣); // store-ff/store-fu/store-uu

𝐼 ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.store(𝑣) · 𝛼𝛼𝛼:::ok∧©­­«
(
Flushed(𝑠, 𝐵) ∧ fstate(𝜌) = 𝑣 ∧ 𝐵′ = 𝜖 ∧ lin(𝜌′) = lin(𝜌) · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok

)
∨(

Flushed(𝑠, 𝐵) ∧ fstate(𝜌) ≠ 𝑣 ∧ 𝐵′ = 𝛼𝛼𝛼:::store(𝑣) · 𝜖 ∧ 𝜌′ = 𝜌
)
∨(

(Unflushed(𝑠, 𝐵) ∨ Unsynced(𝑠, 𝐵)) ∧ 𝐵′ = 𝐵 · 𝛼𝛼𝛼:::store(𝑣) ∧ 𝜌′ = 𝜌
) ª®®¬

{
𝐼 ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧

((Flushed ∧ last(𝜋𝛼 (𝜌)) = ok)∨
(Unflushed ∧

((𝛼𝛼𝛼:::store(𝑣) ∈ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = ok
)
)

)}
4: 𝑀.flush(); // flush

𝐼 ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ≤ cstate(𝑠↾𝐶)∧©­­­«
(
Flushed(𝑠, 𝐵) ∧ last(𝜋𝛼 (𝜌)) = ok ∧ (𝜌′, 𝐵′) = (𝜌, 𝐵)

)
∨(

Unflushed(𝑠, 𝐵) ∧ lin(𝜌′) = merge(lin(𝜌), 𝐵)∧
𝐵′ = 𝜖 ∧ ((𝛼𝛼𝛼:::store(𝑣) ∈ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = ok)

) ª®®®¬
{

𝐼 ∧ last(𝜋𝛼 (𝜌)) = ok ∧
((Flushed ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ≤ cstate(𝑠↾𝐶))∨
(Unflushed ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) < cstate(𝑠↾𝐶))

)}
5: 𝐶.dec();{

𝐼 ∧ last(𝜋𝛼 (𝜌)) = ok ∧
((Flushed ∧ 0 ≤ cstate(𝜋𝛼 (𝑠↾𝐶)) ≤ cstate(𝑠↾𝐶))∨
(Unflushed ∧ 0 ≤ cstate(𝜋𝛼 (𝑠↾𝐶)) < cstate(𝑠↾𝐶))

)}
6: ret ok
7: }
{returned𝛼 (store(𝑣)) ◦ 𝐼 }{⊤}

Fig. 16. Proof of the FLiT Memory Cell: store

store-uu (unsynced) If we are in theUnsynced state, we append the store to the buffered list 𝐵 and

step into the Unflushed state. This transition is valid because an underlay store synchronizes

all possible buffered values to be one value after the crash breaks such synchronization. This

step preserves the invariant for the same reason as the store-fu transition.

We stabilize the post-condition into

𝐼 ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧
(

(Flushed ∧ last(𝜋𝛼 (𝜌)) = ok)∨
(Unflushed ∧

((𝛼𝛼𝛼:::store(𝑣) ∈ 𝐵 ∨ last(𝜋𝛼 (𝜌)) = ok
)
)

)
The transition store-ff results into the Flushed branch and other two transitions results into the

Unflushed branch. Other threads may change Flushed into Unflushed but the current store will

remain linearized or change Unflushed into Flushed and guarantee the current store will be

linearized since it is in 𝐵.

Then itflushes. By definition, the counter value (cstate(𝑠↾𝐶)) is no less than the local increment

(cstate(𝜋𝛼 (𝑠↾𝐶))). In the Flushed case, the flush operation has no effect. In the Unflushed case,

the flush operation will linearize all buffered operations in 𝐵, which includes the current store if

it has not been linearized. Therefore, it ensures the current store is linearized and results in the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:73

Flushed in the stabilized post-condition:

𝐼 ∧ last(𝜋𝛼 (𝜌)) = ok ∧
((Flushed ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ≤ cstate(𝑠↾𝐶))∨
(Unflushed ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) < cstate(𝑠↾𝐶))

)
This step preserves the invariant because it changes into the Flushed state. However, other threads

may change it into the Unflushed state. Luckily, when they make the store-fu or store-uu transition,

they will guarantee that their local counter increment is non-zero, which means the counter value

is strictly larger than the local increment of the current thread. This fact is important when proving

the next step.

Then it decreases the counter. This step does not change the system state, but we need to

verify that it preserves the invariant. In either branch, the local increment (cstate(𝜋𝛼 (𝑠↾𝐶))) now
is non-negative. If the system is still Flushed, the invariant is preserved. If the system is Unflushed,
since we have maintained that cstate(𝜋𝛼 (𝑠↾𝐶)) < cstate(𝑠↾𝐶), we know the counter value is

still non-zero and the invariant is preserved.

I.1.3 Summary & More Proof Details. To summarize, we define the invariant 𝐼 of the object as the

following, which is satisfied at any point of the program and is the crash-invariant as well.

𝐼 (𝑠, 𝜌, 𝐵) ⇐⇒

©­­­­­­­­­«

(Flushed ∨ Unflushed ∨ Unsynced)∧
(Flushed⇒ ∀(𝑣1, 𝑣2) ∈ mstate(𝑠↾𝑀).𝑣1 = 𝑣2 = fstate(𝜌))∧(

Unflushed⇒
((∀𝑣 ∈ mstate(𝑠↾𝑀)↾2 .last(𝐵↾store) = store(𝑣))∧
(∀𝑣 .(store(𝑣) ∈ 𝐵 ∨ fstate(𝜌) = 𝑣) ⇔ 𝑣 ∈ mstate(𝑠↾𝑀)↾1)

))
∧

(Unsynced⇒ (∀𝑣 .(store(𝑣) ∈ 𝐵 ∨ fstate(𝜌) = 𝑣) ⇔ (𝑣, 𝑣) ∈ mstate(𝑠↾𝑀)))∧
∀𝛼.cstate(𝜋𝛼 (𝑠↾𝐶)) ≥ 0 ∧ (Unflushed⇒ cstate(𝑠↾𝐶) ≠ 0)

ª®®®®®®®®®¬
And there are three states of the object with transitions illustrated in Fig. 17.

Flushed Unflushed

Unsynced

store-fu

flush

 store-uu

load-us

load-f

store-ff

flush

load-uf

store-uu

Fig. 17. STS for FLiT Memory Cell

Notice that this invariant 𝐼 is idempotent under the crash-into relation, i.e., 𝐼 ⇒ 𝐼 .

• Firstly, as the state transition system in Fig. 17 and the invariant definition indicates, the crash

will change the system into the Flushed or Unsynced state, which is still in the invariant.

• Secondly, a crash does not invalidate any conjuncts in the invariant. It is worth mentioning

that when a crash changes Unflushed in Unsynced, the second branch of the Unflushed
branch, which is about the persisted value of𝑀 , is necessary for establishing the invariant in

the Unsynced branch.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:74 Oliveira Vale et al.

This object does not need a recovery program, so we set the body of 𝑟 to be ret ok, which does

nothing and returns immediately. And it is obvious that the following quadruple holds.

ID,⊤ ⊨𝛼 {invoke𝛼 (𝑟) ◦ 𝐼 }ret ok{returned𝛼 (𝑟) ◦ 𝐼 }{𝐼 }

The pre-/post-conditions, 𝐼 , of this recovery program obviously connect to the crash invariant and

the object invariant, which are also 𝐼 .

We have proved R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝛼 𝑀𝐹 [𝐴] in the previous section. And it is easy to check that

we have established all conditions (except the stability) in Object Impl for the judgement

𝑃†(FLiT⟲𝑅∅) ⊢ 𝑀FLiT : (𝜈 ′BCell ⊠ 𝜈
′
Counter, 𝜈BCell ⊗ 𝜈Counter) → ⟨𝜈 ′FLiT, 𝜈FLiT⟩

We then define the guarantee relations of each transitions and they form the rely relation. It is easy

to check that all stabilized assertions are stable w.r.t. the rely relation. And this finishes the proof

of the FLiT memory cell.

(𝑠, 𝜌, 𝐵)Gload-f [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
©­­«
∃𝑣 .Flushed(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾𝑀) ∧ 𝑣 = fstate(𝜌)∧

lin(𝜌 ′) = lin(𝜌) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖∧
𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

ª®®¬
(𝑠, 𝜌, 𝐵)Gload-uf [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

©­­«
∃𝑣 .Unflushed(𝑠, 𝐵) ∧ last(𝐵↾store) = store(𝑣)∧

𝐵′ = 𝐵 · 𝛼𝛼𝛼:::load ∧ 𝜌 ′ = 𝜌∧
𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

ª®®¬
(𝑠, 𝜌, 𝐵)Gload-us [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

©­­­­­­­«

∃𝑣, 𝐵1, 𝐵2.Unsynced(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾𝑀)∧((𝐵 = 𝐵1 · 𝐵2 ∧ last(𝐵1) = store(𝑣))
∨(fstate(𝜌) = 𝑣 ∧ 𝐵1 = 𝜖)

)
∧

lin(𝜌 ′) = merge(lin(𝜌), 𝐵1) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖∧
𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

ª®®®®®®®¬

(𝑠, 𝜌, 𝐵)Gstore-ff [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
©­­«
∃𝑣 .Flushed(𝑠, 𝐵) ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧ fstate(𝜌) = 𝑣∧

lin(𝜌 ′) = lin(𝜌) · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok ∧ 𝐵′ = 𝜖
𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.store(𝑣) · 𝛼𝛼𝛼:::ok

ª®®¬
(𝑠, 𝜌, 𝐵)Gstore-fu [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

©­­«
∃𝑣 .Flushed(𝑠, 𝐵) ∧ 0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧ fstate(𝜌) ≠ 𝑣∧

𝐵′ = 𝛼𝛼𝛼:::store(𝑣) · 𝜖 ∧ 𝜌 ′ = 𝜌
𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.store(𝑣) · 𝛼𝛼𝛼:::ok

ª®®¬
(𝑠, 𝜌, 𝐵)Gstore-uu [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

©­­«
∃𝑣 .(Unflushed(𝑠, 𝐵) ∨ Unsynced(𝑠, 𝐵))∧

0 < cstate(𝜋𝛼 (𝑠↾𝐶)) ∧ 𝐵′ = 𝐵 · 𝛼𝛼𝛼:::store(𝑣)∧
𝜌 ′ = 𝜌 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.store(𝑣) · 𝛼𝛼𝛼:::ok

ª®®¬
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:75

(𝑠, 𝜌, 𝐵)Gflush [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
(
lin(𝜌 ′) = merge(lin(𝜌), 𝐵) ∧ 𝐵′ = 𝜖∧

𝑠′ = 𝑠 · 𝛼𝛼𝛼:::flush · 𝛼𝛼𝛼:::ok

)
(𝑠, 𝜌, 𝐵)Ginc [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

(
𝜌 ′ = 𝜌 ∧ 𝐵′ = 𝐵 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::inc · 𝛼𝛼𝛼:::ok∧

cstate(𝜋𝛼 (𝑠′↾𝐶)) = cstate(𝜋𝛼 (𝑠↾𝐶)) + 1

)
(𝑠, 𝜌, 𝐵)Gdec [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒

(
𝜌 ′ = 𝜌 ∧ 𝐵′ = 𝐵 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::dec · 𝛼𝛼𝛼:::ok∧

cstate(𝜋𝛼 (𝑠′↾𝐶)) = cstate(𝜋𝛼 (𝑠↾𝐶)) − 1

)

(𝑠, 𝜌, 𝐵)Gid [𝛼] (𝑠′, 𝜌 ′, 𝐵′) ⇐⇒
©­­«

𝜌 ′ = 𝜌 ∧ 𝐵′ = 𝐵∧
mstate(𝜋𝛼 (𝑠′↾𝑀)) = mstate(𝜋𝛼 (𝑠↾𝑀))∧
cstate(𝜋𝛼 (𝑠′↾𝐶)) = cstate(𝜋𝛼 (𝑠↾𝐶))

ª®®¬

R[𝛼] ≜
⋃

𝛼 ′∈Υ,𝛼 ′≠𝛼

©­­«
Gload-f [𝛼 ′] ∪ Gload-uf [𝛼 ′] ∪ Gload-us [𝛼 ′] ∪ Gstore-ff [𝛼 ′] ∪ Gstore-fu [𝛼 ′]∪
Gstore-uu [𝛼 ′] ∪ Gflush [𝛼 ′] ∪ Ginc [𝛼 ′] ∪ Gdec [𝛼 ′] ∪ Gid [𝛼 ′]∪

invoke𝛼 ′ (−) ∪ return𝛼 ′ (−)

ª®®¬
I.2 The Interval-Sequential Write-Snapshot Object
With the FLiT memory cell’s correctness established in appendix I.1 and the FLiT correctness

theorem (proposition 1.1), we can prove any object implement to be durably linearizable as long

as we can prove it satisfying linearizability defined in [31]. For example, the interval-sequential

write-snapshot object in [7] can be implemented as a durably linearizable object using the FLiT

cell’s read and write instead of the usual atomic memory cell. In this section, we prove the interval-

linearizability of the one-shot write-snapshot object in [7] using the program logic in [31].

I.2.1 Specification & Implementation. The write-snapshot object has the signature below.

Snapshot := {write_snapshot : Val→ 2
Val}

The operation write_snapshot writes the current value to the memory and returns a set of values

that have been written to the object before.

Its interval-sequential specification𝜈write_snapshot is the largest set of traces satisfying the following

𝑠 ∈ 𝜈write_snapshot ⇐⇒
©­­«
𝑠 = 𝜖

∨
(
𝑠 = 𝑠′ · 𝛼𝛼𝛼:::𝑉 ∧𝑉 = snpstate(𝑠′) ∧ 𝑠′ ∈ 𝜈write_snapshot

)
∨

(
𝑠 = 𝑠′ · 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ 𝛼 ∉ 𝑠′ ∧ 𝑠′ ∈ 𝜈write_snapshot

)ª®®¬
where the state of the write-snap shot object snpstate(𝑠) is defined as the set of values given by all

invocations before a point.

snpstate(𝑠) :=


{ } if 𝑠 = 𝜖

snpstate(𝑠′) ∪ {𝑣} if 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::write_snapshot(𝑣)
snpstate(𝑠′) otherwise, 𝑠 = 𝑠′ · 𝛼 : _

The specification clarifies two key points of the object:

• Firstly, the object is not atomic-sequential, which means the linearized specification does

not guarantee the response happens immediately after the corresponding invocation. The

response will take into account all invocations linearized before itself.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:76 Oliveira Vale et al.

• Secondly, the object is one-shot. Each agent (thread) can only invoke 𝜈write_snapshot once. We

use the client specification 𝜇write_snapshot to pose this one-shot requirement on clients.

𝑠 ∈ 𝜇write_snapshot ⇐⇒
(
∀𝑠′, 𝛼, 𝑣 .𝑠′ · 𝛼𝛼𝛼:::write_snapshot(𝑣) ⊑ 𝑠 ⇒
(∀𝑣 .𝛼𝛼𝛼:::write_snapshot(𝑣 ′) ∉ 𝑠′ ∧ 𝛼 ∈ 𝑆)

)
As [7], we consider the one-shot write-snapshot algorithm for solving problems with only finite

participating agents. Therefore, we require the client to take a finite subset 𝑆 of all agents Υ, and
use the client specification to require all invocations be made in these threads.

The implementation of the write-snapshot object is shown in figure 18. With a total number of

|𝑆 | threads where the write-snapshot object will be used, each thread is assigned a FLiT memory

cell (with initial value ⊥) to store the value it writes to the object. Since this is a one-shot object,

we know that each memory cell is written at most once. After written to the cell, the algorithm

repeatedly takes a snapshot of all values written to the object. It returns only when two consecutive

snapshot converges, which guarantees the snapshot to be correct, meaning the snapshot did occur

at a certain moment. This is non-trivial. For example, when taking a snapshot, if two writes to a

visited cell and un-visited cell occurs, only the second one will be captured in the snapshot, which

makes the snapshot invalid because in any possible snapshot, the second value should be recorded

if the first value is not recorded.

1 𝑀write_snapshot:

2 Import M:⊗𝑖∈ [|𝑆 |]FLiT𝑖
3

4 write_snapshot(int v) {

5 M[𝛼].write(v);

6 old ← {⊥}; new ← ∅; i ← 1;

7 while (i ≤ |𝑆 |) {

8 v ← M[𝛼𝑖].read ();

9 new ← new ∪ {v};

10 i ← i+1

11 }

12 while (new ≠ old) {

13 old ← new; new ← ∅; i ← 1;

14 while (i ≤ |𝑆 |) {

15 v ← M[𝛼𝑖].read ();

16 new ← new ∪ {v};

17 i ← i+1

18 }

19 };

20 return new\{⊥}
21 }

Fig. 18. One-Shot Write-Snapshot Implementation

I.2.2 Proof. Like what we did in the FLiT example, we use the possibility with the form of 𝜌 =

(𝑝, 𝑠𝑂), where 𝑝 is the linearized trace with 𝑝 ∈ 𝜈write_snapshot (and is accessed through lin(𝜌)) and
𝑠𝑂 are pending invocations. Notice that there can exist pending invocations in 𝑝 as well, since we

are proving an interval-sequential object which allows an interval without the response, but these

invocations will have impact on linearized responses in the future.

We do not use any other ghost variables in this proof, and the program configuration is a

triple (Δ, 𝑠, 𝜌). We need to maintain two invariants that: 𝑠↾Snapshot is linearizable to 𝑝 · ⟨𝑠𝑂 ⟩ and
𝑝 · ⟨𝑠𝑂 ⟩ ∈ 𝜈write_snapshot.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:77

For this concurrent object, we maintain the following object invariant at any point of the program

execution. It simply ensures the the order of writes in 𝑠 is the same as the order of write_snapshot

in the linearized trace.

𝐼 (Δ, 𝑠, 𝜌) ⇐⇒ 𝑠↾write ∼ lin(𝜌)↾write_snapshot

where 𝑠1 ∼ 𝑠2 ⇐⇒
©­­«

(𝑠1 = 𝑠2 = 𝜖)∨

∃𝛼, 𝑣, 𝑠′
1
, 𝑠′

2
.

(
𝑠′
1
∼ 𝑠′

2
∧ 𝑠1 = 𝑠′1 · 𝛼𝛼𝛼:::write(𝑣)

∧𝑠2 = 𝑠′2 · 𝛼𝛼𝛼:::write_snapshot(𝑣)

)ª®®¬

For the three while loop, we introduce the following two loop invariant.

𝐼𝑜 [𝑖, old, 𝑝] (Δ, 𝑠, 𝜌) ⇐⇒ 𝑝 ⊑ lin(𝜌) ∧ old\{⊥} ⊆
𝑖−1⋃
𝑗=1

snpstate(𝜋𝛼 𝑗
(𝑝)) ∧ 𝑖 ≤ |𝑆 | + 1

𝐼𝑛 [𝑖, new, 𝑝] (Δ, 𝑠, 𝜌) ⇐⇒
©­­­«

𝑖−1⋃
𝑗=1

snpstate(𝜋𝛼 𝑗
(𝑝)) ⊆ new\{⊥} ∧ 𝑖 ≤ |𝑆 | + 1

∧(∀𝛼 : write_snapshot(𝑣) ∈ 𝑝 ⇒ 𝛼 : 𝑀 [𝛼] .write(𝑣) ∈ 𝑠)

ª®®®¬

• The loop invariant 𝐼𝑜 guarantees there is always a prefix 𝑝 of the linearized possibility such

that each write in the old snapshot is captured by 𝑝 . The invariant 𝐼𝑜 assets that the old

snapshot is a lower bound of a linearized trace’s snapshot state at a certain moment.

• The loop invariant 𝐼𝑛 guarantees that any write in the prefix 𝑝 extracted from 𝐼𝑜 is always in

the new snapshot. The invariant 𝐼𝑛 assets that the new snapshot is an upper bound of the

linearized trace 𝑝’s snapshot state.

• Both invariant takes a parameter 𝑖 , which is the loop variable. We will only consider the first

𝑖 threads operations in the trace and maintain the invariant. When the loop terminates, 𝑖

becomes |𝑆 | + 1, and the invariant will be true under the consideration of all threads, which

means it is true for the complete trace.

When the outer loop terminates, we know old\{⊥} = snpstate(𝑝) = new\{⊥}, and we can linearize
the response at the end of 𝑝 since new\{⊥} is valid snapshot at that moment.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:78 Oliveira Vale et al.

{invoke𝛼 (write_snapshot) ◦ 𝐼 }
1: write_snapshot(𝑣){

{𝐼 ∧𝛼𝛼𝛼:::write_snapshot(𝑣) ∈ 𝑠𝑂 }
2: 𝑀 [𝛼] .write(𝑣); // write

{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣)}
3: old← {⊥}; new← ∅; 𝑖 ← 1;

{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ 𝐼𝑜 [|𝑆 | + 1, old, 𝜖] ∧ 𝐼𝑛 [𝑖, new, 𝜖] ∧ ∃𝑞. 𝐼𝑜 [𝑖, new, 𝑞]}
{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝] ∧ ∃𝑞. 𝐼𝑜 [𝑖, new, 𝑞]}

4: while(𝑖 ≤ |𝑆 |){
5: 𝑣 ← 𝑀 [𝛼𝑖] .read();
6: new← new ∪ {𝑣}; 𝑖 ← 𝑖 + 1
7: }{

𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣)∧
∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [|𝑆 | + 1, new, 𝑝] ∧ ∃𝑞. 𝐼𝑜 [|𝑆 | + 1, new, 𝑞]

}
8: while(new ≠ old){

{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ ∃𝑞. 𝐼𝑜 [|𝑆 | + 1, new, 𝑞]}
9: old← new; new← ∅; 𝑖 ← 1;

{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝] ∧ ∃𝑞. 𝐼𝑜 [𝑖, new, 𝑞]}
10: while(𝑖 ≤ |𝑆 |){
11: 𝑣 ← 𝑀 [𝛼𝑖] .read();
12: new← new ∪ {𝑣}; 𝑖 ← 𝑖 + 1
13: }{

𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣)∧
∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [|𝑆 | + 1, new, 𝑝] ∧ ∃𝑞. 𝐼𝑜 [|𝑆 | + 1, new, 𝑞]

}
14: }

{𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, new, 𝑝] ∧ 𝐼𝑛 [|𝑆 | + 1, new, 𝑝]}{
𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣) ∧ ∃𝑝 ⊑ lin(𝜌, 𝐿) . snpstate(𝑝) = new\{⊥}}
{𝐼 ∧ last(𝜋𝛼 (𝜌)) = 𝛼𝛼𝛼:::new\{⊥}} // snapshot

15: ret new\{⊥}
16: }
{returned𝛼 (write_snapshot) ◦ 𝐼 }

Fig. 19. Proof of Write-Snapshot

Figure 19 shows the proof outline for the write-snapshot object. At line 2, when writing to the

FLiT cell, we linearize the corresponding write_snapshot invocation to the linearized trace so that

the object invariant can be maintained. This operation satisfies the following guarantee Gwrite.

(Δ, 𝑠, 𝜌)Gwrite [𝛼] (Δ′, 𝑠′, 𝜌 ′) ⇐⇒
©­­«

𝑠′ = 𝑠 · 𝛼 : 𝑀 [𝛼]write(𝑣) · 𝛼 : ok

∧𝑠′𝑂 = 𝑠𝑂\{𝛼𝛼𝛼:::write_snapshot(𝑣)}
∧lin(𝜌 ′) = lin(𝜌) · 𝛼 : write_snapshot(𝑣)

ª®®¬
Then, we initial the old snapshot old, new snapshot new, and the loop variable 𝑖 . Since old

contains only the initial value, it is a lower bound of any trace’s snapshot state, and therefore we

can take 𝑝 = 𝜖 and 𝐼 [|𝑆 | + 1, old, 𝜖] is true. Moreover, since 𝜖 produce empty snapshot state, any set

is an upper bound of it and thus 𝐼𝑛 [𝑖, new, 𝜖] is true for any 𝑖 .
The loop from line 4 to line 6 is the process of taking the snapshot. We may split the proof for

this loop into two parts,

• one for constructing 𝐼𝑜 , the lower bound invariant for the next snapshot loop;

• one for constructing 𝐼𝑛 , the upper bound invariant for the current snapshot loop.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:79

Their proof are independent, and since there are no control flow can break out of the loop, we may

present their proofs separately for a clearer demonstration.

Construct Lower Bound. In figure 20, we use 𝐼 ∧ ∃𝑝. 𝐼𝑜 [𝑖, new, 𝑝] as the loop invariant. In each

iteration, the read operation does not change the state of the memory cell and the write-snapshot

object and there are two cases for the read value.

• If the value is ⊥, meaning thread 𝛼𝑖 has not written to the cell and new is still the lower

bound, i.e., 𝐼𝑜 [𝑖 + 1, new ∪ {⊥}, 𝑝] is true.
• If the value is not ⊥, then 𝛼𝑖 has written to its cell, and by the object invariant 𝐼 , its

write_snapshot(𝑣) invocation has been linearized. Therefore, there exists𝑞 ⊑ lin(𝜌) which in-
cludes this invocation and we can take the longest one of 𝑝 and 𝑞. Since this object is one-shot,

values written to any cell cannot be overwrite when we consider more future events by ex-

tending 𝑝 tomax{𝑝, 𝑞}, and any value in new still appears in

⋃𝑖−1
𝑗=1 snpstate(𝜋𝛼 𝑗

(max{𝑝, 𝑞})).
As a result, new ∪ {𝑣} is a lower bound considering only the first 𝑖 − 1 threads, i.e., 𝐼𝑜 [𝑖 +
1, new ∪ {𝑣},max{𝑝, 𝑞}] is true.

Then we can safely include 𝑣 in new and increase the loop counter while maintaining the invariant.

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [𝑖, new, 𝑝]}
1: while(𝑖 ≤ |𝑆 |){

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [𝑖, new, 𝑝] ∧ 𝑖 ≤ |𝑆 |}
2: 𝑣 ← 𝑀 [𝛼𝑖] .read();

𝐼 ∧ ∃𝑝. 𝐼𝑜 [𝑖, new, 𝑝] ∧ 𝑖 ≤ |𝑆 |

∧

©­­­­­­«

(𝑣 = ⊥ ∧ 𝐼𝑜 [𝑖 + 1, new ∪ {⊥}, 𝑝])

∨
©­­­­«

𝑣 ≠ ⊥ ∧𝛼𝑖𝛼𝑖𝛼𝑖:::𝑀 [𝛼𝑖] .write(𝑣) ∈ 𝑠
∧𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) ∈ lin(𝜌)

∧∃𝑞 ⊑ lin(𝜌) . 𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) ∈ 𝑞
∧𝐼𝑜 [𝑖 + 1, new ∪ {𝑣},max{𝑝, 𝑞}]

ª®®®®¬
ª®®®®®®¬


3: new← new ∪ {𝑣}; 𝑖 ← 𝑖 + 1

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [𝑖, new, 𝑝]}
4: }
{𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, new, 𝑝]}

Fig. 20. Lower Bound Construction Proof

Construct Upper Bound. In figure 21, we use 𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝] as the loop
invariant. According to the read value, there will be four different cases.

• If the read value is ⊥, then thread 𝛼𝑖 has not written to its cell in lin(𝜌). Obviously, its write
will no appear in the prefix 𝑝 and new ∪ {⊥} is an upper bound, i.e., 𝐼𝑛 [𝑖 + 1, new ∪ {⊥}, 𝑝]
is true.

• If the read value is not ⊥ and 𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) already appears in the prefix 𝑝 , then it is

safe to include 𝑣 in the upper bound, i.e., 𝐼𝑛 [𝑖 + 1, new ∪ {𝑣}, 𝑝] is true.
• If the read value is not ⊥ and 𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑤) does not appear in the prefix 𝑝 for any

𝑤 , then we can safely add 𝑣 to the upper bound for the same reason as the first case, and

𝐼𝑛 [𝑖 + 1, new ∪ {𝑣}, 𝑝] is true.
• If the read value is not ⊥ and 𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑤) already appears in the prefix 𝑝 for a

different𝑤 from 𝑣 , then adding 𝑣 to the upper bound newmay produce a snapshot inconsistent

with the trace. However, since we read a different 𝑣 from the memory cell, 𝛼𝑖𝛼𝑖𝛼𝑖:::write(𝑣)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:80 Oliveira Vale et al.

must appear in 𝑠 , and by 𝐼 , we know 𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) must appear in lin(𝜌). With two

different write_snapshot invocations for the same thread 𝛼𝑖 in lin(𝜌), the client specification
𝜇write_snapshot is violated, which leads to a contradiction with 𝜇write_snapshot. As a result, under

the restriction of 𝜇write_snapshot, this case will not happen.

Then we can safely include 𝑣 in new and increase the loop counter while maintaining the invariant.

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝]}
1: while(𝑖 ≤ |𝑆 |){

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝] ∧ 𝑖 ≤ |𝑆 |}
2: 𝑣 ← 𝑀 [𝛼𝑖] .read();

𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝] ∧ 𝑖 ≤ |𝑆 |

∧

©­­­­­­­«

(𝑣 = ⊥ ∧ 𝐼𝑛 [𝑖 + 1, new ∪ {⊥}, 𝑝])
∨

(
𝑣 ≠ ⊥ ∧𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) ∈ 𝑝 ∧ 𝐼𝑛 [𝑖 + 1, new ∪ {𝑣}, 𝑝]

)
∨

(
𝑣 ≠ ⊥ ∧ ∀𝑤.𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑤) ∉ 𝑝 ∧ 𝐼𝑛 [𝑖 + 1, new ∪ {𝑣}, 𝑝]

)
∨

(
𝑣 ≠ ⊥ ∧ ∃𝑤 ≠ 𝑣 .𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑤) ∈ 𝑝 ∧𝛼𝑖𝛼𝑖𝛼𝑖:::𝑀 [𝛼𝑖] .write(𝑣) ∈ 𝑠
∧𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑣) ∈ lin(𝜌) ∧𝛼𝑖𝛼𝑖𝛼𝑖:::write_snapshot(𝑤) ∈ lin(𝜌)

)
ª®®®®®®®¬


3: new← new ∪ {𝑣}; 𝑖 ← 𝑖 + 1

{𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [𝑖, new, 𝑝]}
4: }
{𝐼 ∧ ∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [|𝑆 | + 1, new, 𝑝]}

Fig. 21. Upper Bound Construction Proof

Then, we reach the loop at line 8 in figure 19. Here, we use the loop invariant

𝐼 ∧ last(𝜋𝛼 (lin(𝜌))) = 𝛼𝛼𝛼:::write_snapshot(𝑣)∧
∃𝑝. 𝐼𝑜 [|𝑆 | + 1, old, 𝑝] ∧ 𝐼𝑛 [|𝑆 | + 1, new, 𝑝] ∧ ∃𝑞. 𝐼𝑜 [|𝑆 | + 1, new, 𝑞]

which is the asserts that old and new are lower and upper bounds of the snapshot state for some

prefix 𝑝 of the linearized trace, and new is the lower bound of another linearized prefix 𝑞.

• Inside the loop, we only keep the second branch and by assigning new to old, the new old is

still the lower bound. Then, a loop identical to the one at line 4 takes a new snapshot into

new and we reuse the previous proof for it. The loop establishes the new as the new upper

bound for the new prefix 𝑝 and we re-establish the loop invariant.

• If the loop terminates, we only keep the first branch. With the snapshot state bounded by

new on both side, we can derive snpstate(𝑝) = new\{⊥}, which means new\{⊥} is the
correct snapshot at the time where 𝑝 is the complete linearized trace. We can then linearize

the response to the current operation after 𝑝 and last(𝜋𝛼 (𝜌)) = 𝛼𝛼𝛼:::new\{⊥} is true after

the linearization, which finishes the proof. This linearization step satisfies the following

guarantee.

(Δ, 𝑠, 𝜌)Gsnapshot [𝛼] (Δ′, 𝑠′, 𝜌 ′) ⇐⇒
(

𝑠′ = 𝑠 ∧ ∃𝑝1, 𝑝2,𝑉 . lin(𝜌) = 𝑝1 · 𝑝2
∧lin(𝜌 ′) = 𝑝1 · 𝛼𝛼𝛼:::𝑉 · 𝑝2 ∧𝑉 = snpstate(𝑝1)

)
The rely rely is defined as

R[𝛼] ≜
⋃

𝛼 ′∈Υ,𝛼 ′≠𝛼
Gwrite [𝛼 ′] ∪ Gsnapshot [𝛼 ′] ∪ Gid [𝛼 ′] ∪ invoke𝛼 ′ (−) ∪ return𝛼 ′ (−)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:81

and one may easily check that all assertions in the proof is stable w.r.t. it. Now, we have proved

that the write-snapshot object is linearizable w.r.t. its specification 𝜈write_snapshot and by the FLiT

correctness theorem, this object is also durably linearizable.

I.3 Swap Operation in File System through Write-Ahead Logs
In this four-layered example, we demonstrate that our framework can handle sophisticated file

system patterns compositionally. In the upper layer, we present a file system capable of swapping

files atomically between directories. The file system depends on a write-ahead log objects and an

array of replicated disk cells, both of which are implemented in the lower layer. The file system is

presented in I.3.1, while the replicated disks and write-ahead log is described in I.3.3 and I.3.5.

I.3.1 File System with Read, Write, and Swap. We first present and verify a file system that supports

file read and write operation, as well as file swapping between directories. The file system exposes

a two level structure. At the first level lies a set of folders, each occupies a single disk block as their

inode. For simplicity, the API uses block ids instead of strings to uniquely identify folders. Each

folder contains a set of files, identified by their file id (unique within each folder). A swap operation

will swap the pointer in respective folders’ inodes, which can be considered as a symmetric move

operation seen in actual file systems. For simplicity, we restrict each file to contain a single block

for file content, and assumes all files and directories are pre-allocated on the disk. Allowing for

transactions involving several blocks is straight-forward given that we show our techniques work

in this simplified setting.

While file read and write operations are mostly straightforward, the swap operation requires

special treatment for its atomicity. As swap operations need to update two different folders (and

thus two different disk blocks), the possibilty that a crash happens in between can never be ruled

out. To ensure persistent linearizability, we record the operations in write-ahead logs so that the

recovery routine can finish incomplete operations. Figure 22 showcases the pseudocode for this file

system.

The underlying disk object is modeled as amap from block_id to block. block_id can be considered
as an integer type whereas block can be considered as a constant-sized byte array. In the case a block
actually contains folder inode information, we byte-cast them into the correct type folder_inode.

Disk := {write : block_id × block→ 1, read : block_id→ block}

evalDisk : 𝑃†Disk → {⊥} + (file_id
fin
⇀ block)

evalDisk (𝑠) :=



⋃
𝑏∈block_id{𝑏 ← 0} 𝜖

𝑀 𝑠 = 𝑠′ · ∧ evalDisk (𝑠′) = 𝑀
𝑀 𝑠 = 𝑠′ ·𝑚 · ∧ evalDisk (𝑠′ ·) = 𝑀 ∧ 𝜆Disk (𝑚) = 𝑂
𝑀 [𝑏 ↦→ 𝑣] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::write(𝑏, 𝑣) · 𝛼𝛼𝛼:::ok ∧ evalDisk (𝑠′) = 𝑀
𝑀 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::read(𝑏) · 𝛼𝛼𝛼:::𝑣 ∧ evalDisk (𝑠′) = 𝑀 ∧𝑀 [𝑏] = 𝑣
⊥ otherwise

𝜈Disk := {𝑠 | ∃𝑠′ .𝑠 ⊑ 𝑠′ ∧ evalDisk (𝑠′) ≠ ⊥}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:82 Oliveira Vale et al.

MFS:

Import disk:Disk
Import lockmap:LockMapB
Import log:Log

void write(block_id dir , file_id fid , data_block data) {

lock[dir]. acquire ();

dir_inode ← (folder_inode) disk.read(dir);

file ← dir_inode[fid];

disk.write(file , data);

lock[dir]. release ();

}

data_block read(block_id dir , file_id fid) {

lock[dir]. acquire ();

dir_inode ← (folder_inode) disk.read(dir);

file ← dir_inode[fid];

data ← disk.read(file);

lock[dir]. release ();

return data;

}

void swap(block_id src , block_id tgt , file_id src_f , file_id tgt_f) {

if (src < tgt) {

lock[src]. acquire ();

lock[tgt]. acquire ();

} else {

lock[tgt]. acquire ();

lock[src]. acquire ();

}

src_inode ← (folder_inode) disk.read(src);

tgt_inode ← (folder_inode) disk.read(tgt);

src_file ← src_inode[src_f];

tgt_file ← tgt_inode[tgt_f];

log.insert(src , tgt , src_f , tgt_f , src_file , tgt_file);

disk.write(tgt , tgt_inode[tgt_f -> src_file]);

disk.write(src , src_inode[src_f -> tgt_file]);

log.remove(𝛼);

lock[src]. release ();

lock[tgt]. release ();

}

void recovery () {

for (i = 0; i < |agents |; i ++) {

entry ← log.get(agents[i]);

if (entry = None)

continue;
(src , tgt , src_f , tgt_f , src_file , tgt_file) ← entry;

src_inode ← (folder_inode) disk.read(src);

tgt_inode ← (folder_inode) disk.read(tgt);

disk.write(tgt , tgt_inode[tgt_f -> src_file]);

disk.write(src , src_inode[src_f -> tgt_file]);

log.remove(agents[i]);

}

}

Fig. 22. Implementation of the File System

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:83

The LockMapB object is specified as a collection of individual locks, indexed by block_id type.

LockMapB := {acq : block_id→ 1, rel : block_id→ 1}

evalLockMapB : 𝑃†LockMapB → {⊥} + (block_id
fin
⇀ P(Υ))

evalLockMapB (𝑠) :=


⋃

𝑏∈block_id{𝑓 ← ∅} 𝜖

𝑚[𝑏 ↦→ {𝛼}] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::acq(𝑏) · 𝛼𝛼𝛼:::ok ∧ evalLockMapB (𝑠′) =𝑚 ∧𝑚[𝑏] = ∅
𝑚[𝑏 ↦→ ∅] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::rel(𝑏) · 𝛼𝛼𝛼:::ok ∧ evalLockMapB (𝑠′) =𝑚 ∧𝑚[𝑏] = {𝛼}
⊥ otherwise

𝜈LockMapB := vol({𝑠 | ∃𝑠′ .𝑠 ⊑ 𝑠′ ∧ evalLockMapB (𝑠′) ≠ ⊥})

The lock map is in fact equivalent to a horizontal composition of volatile locks:

𝜈LockMapB := ⊗𝑏∈block_idvol(𝜈Lock)

Since Oliveira Vale et al. [31] have verified the linearizability of a lock (in fact, the ticket lock

implementation𝑀Lock) we may lift their proof to our setting using Prop. 2.8, as explained in the

main paper.

The last object Log is a write ahead log used for crash atomicity of swap operations. It stores at

most one log entry per thread, and each log entry contains all the information about a single swap

operation: the source and target folder block id, the source and target file id, and the block id of the

swapped files. While a thread may only insert entry for itself, it can remove entry for any thread

due to the recovery routine. Otherwise, the specification of Log is simply another map, with the

following formal specification,

entry := block_id × block_id × file_id × file_id × block_id × block_id
Log := {insert : entry→ 1, get : Υ→ option entry, remove : Υ→ 1}

evalLog : 𝑃†Log → {⊥} + (Υ
fin
⇀ entry)

evalLog (𝑠) :=



∪𝛼∈Υ [𝛼 ↦→ None] 𝜖

𝑙 𝑠 = 𝑠′ · ∧ evalLog (𝑠′) = 𝑙
𝑙 𝑠 = 𝑠′ ·𝑚 · ∧ evalLog (𝑠′ ·) = 𝑙 ∧ 𝜆Log (𝑚) = 𝑂
𝑙 [𝛼 ↦→ 𝑒] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::insert(𝑒) · 𝛼𝛼𝛼:::ok ∧ evalLog (𝑠′) = 𝑙
𝑙 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::get(𝛼 ′) · 𝛼𝛼𝛼:::𝑙 [𝛼 ′] ∧ evalLog (𝑠′) = 𝑙
𝑙 [𝛼 ′ ↦→ None] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::remove(𝛼 ′) · 𝛼𝛼𝛼:::ok ∧ evalLog (𝑠′) = 𝑙
⊥ otherwise

𝜈Log := {𝑠 | ∃𝑠′ .𝑠 ⊑ 𝑠′ ∧ evalLog (𝑠′) ≠ ⊥}

Finally, the specification of the file system FS is a nested map from block ids (of folders) into a

map from file ids to file contents, and the formal definition is given below,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:84 Oliveira Vale et al.

FS :=


write : block_id × file_id × block→ 1,

read : block_id × file_id→ block,

swap : block_id × block_id × file_id × file_id→ 1


𝑓 [𝑎 ↦→ 𝑏 ↦→ 𝑐] := 𝑓 [𝑎 ↦→ [𝑓 [𝑎] [𝑏 ↦→ 𝑐]]]

evalFS : 𝑃†FS → {⊥} + (block_id
fin
⇀ file_id

fin
⇀ block)

evalFS (𝑠) :=



∪𝛼 ∈Υ [𝛼 ↦→ None] 𝜖

𝑓 𝑠 = 𝑠′ · ∧ evalFS (𝑠′) = 𝑓

𝑓 𝑠 = 𝑠′ ·𝑚 · ∧ evalFS (𝑠′ ·) = 𝑓 𝑠 ∧ 𝜆FS (𝑚) = 𝑂

𝑓 [𝑎 ↦→ 𝑏 ↦→ 𝑐] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::write(𝑎,𝑏, 𝑐) · 𝛼𝛼𝛼:::ok ∧ evalFS (𝑠′) = 𝑓

𝑓 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::read(𝑎,𝑏) · 𝛼𝛼𝛼:::𝑓 [𝑎] [𝑏] ∧ evalFS (𝑠′) = 𝑓

𝑓 [𝑎 ↦→ 𝑏 ↦→ 𝑓 [𝑐] [𝑑]] [𝑐 ↦→ 𝑑 ↦→ 𝑓 [𝑎] [𝑏]] 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::swap(𝑎,𝑏, 𝑐,𝑑) · 𝛼𝛼𝛼:::ok ∧ evalFS (𝑠′) = 𝑓

⊥ otherwise

𝜈FS := {𝑠 | ∃𝑠′ .𝑠 ⊑ 𝑠′ ∧ evalFS (𝑠
′) ≠ ⊥}

I.3.2 Proof of the File System. The line-by-line proof is presented in Figure 23, Figure 24, Figure 25,

Figure 26, and we highlight the important steps here.

First, we define the maximal linearized prefix of current possibility 𝜌 ,

lin : 𝑃†FS → 𝑃†FS

lin(𝜌) = 𝑝 · 𝑝 ⇐⇒
©­­«

𝑝 · 𝑝 ⊑ 𝜌∧
(𝑝 = 𝜖 ∨ ∃𝑝′ .𝑝′ · = 𝑝)∧

𝑝 ∈ 𝑃!FS ∧ ∀𝑝′ .𝑝 ⊑ 𝑝′ ∧ 𝑝 · 𝑝′ ⊑ 𝜌 =⇒ 𝑝′ ∉ 𝑃!FS

ª®®¬
which helps us derive the current state of the object according to the possibility as well as the

concrete play,

state𝜌 : 𝑃†FS → {⊥} + (block_id
fin
⇀ file_id

fin
⇀ block)

state𝜌 (𝜌) := evalFS (lin(𝜌))

state𝑠 : 𝑃†(Disk&Log&LockMapB) → {⊥} + (file_id
fin
⇀ block)

state𝑠 (𝑠) := evalDisk (𝑠↾Disk)

Since the directory inodes are nevermoved around, we take the liberty to use notation state𝑠 (𝑠) [𝑑] [𝑓]
when it’s clear that 𝑑 ∈ block_id is a folder block and 𝑓 is a file id. Next, we are interested in the

current status of lock ownership,

owned : P(𝑃†(Disk&Log&LockMapB) × block_id)
owned(𝑠, 𝑏) ⇐⇒ evalLockMapB (𝑠↾LockMapB) [𝑏] ≠ ∅
ownedby : 𝑃†(Disk&Log&LockMapB) × Υ→ P(block_id)

ownedby(𝑠, 𝛼) := {𝑏 | evalLockMapB (𝑠↾LockMapB) [𝑏] = {𝛼}}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:85

Finally, we care about whether certain blocks are currently mentioned by some entry in WAL,

logged : P(𝑃†(Disk&Log&LockMapB) × block_id × file_id)

logged(𝑠, 𝑑, 𝑓) ⇐⇒ ∃𝛼,𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2.
(evalLog (𝑠↾Log) [𝛼] = (𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2) ∧

((𝑑, 𝑓) = (𝑑1, 𝑓1) ∨ (𝑑, 𝑓) = (𝑑2, 𝑓2))

)
logged2 : P(𝑃†(Disk&Log&LockMapB) × block_id × block_id × file_id × file_id)

logged2 (𝑠, 𝑑1, 𝑑2, 𝑓1, 𝑓2) ⇐⇒ ∃𝛼,𝑏1, 𝑏2.
(evalLog (𝑠↾Log) [𝛼] = (𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2)∨
evalLog (𝑠↾Log) [𝛼] = (𝑑2, 𝑑1, 𝑓2, 𝑓1, 𝑏1, 𝑏2)

)
The runtime invariant of the program is then a collection of observations. Firstly, the file content

we compute from the two different states matches with each other except for those currently in a

WAL entry,

𝐼1 (𝑠, 𝜌) ⇐⇒ ∀𝑑, 𝑓 .¬logged(𝑑, 𝑓) =⇒ state𝑠 (𝑠) [state𝑠 (𝑠) [𝑑] [𝑓]] = state𝜌 (𝜌) [𝑑] [𝑓]

Secondly, two file blocks can only be duplicates of each other only if both of them are in the same

WAL entry,

𝐼2 (𝑠, 𝜌) ⇐⇒ ∀𝑑1, 𝑑2, 𝑓1, 𝑓2 .state𝑠 (𝑠) [𝑑1] [𝑓1] = state𝑠 (𝑠) [𝑑2] [𝑓2] =⇒ logged2 (𝑠, 𝑑1, 𝑑2, 𝑓1, 𝑓2)

Thirdly, all entries in WAL corresponds to a pending invocation (potentially before some crashes)

in the possibility, and the recorded file block id matches the current overlay state (before swap),

𝐼3 (𝑠, 𝜌) ⇐⇒ ∀𝛼,𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2.
©­­«

evalLog (𝑠↾Log) [𝛼] = (𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2) =⇒
state𝜌 (𝜌) [𝑑1] [𝑓1] = 𝑏1 ∧ state𝜌 (𝜌) [𝑑2] [𝑓2] = 𝑏2 ∧

∃𝑝.𝜋𝛼 (𝜌)↾FS = 𝑝 · swap(𝑑1, 𝑑2, 𝑓1, 𝑓2)

ª®®¬
Finally, membership in WAL implies lock ownership by the same thread,

𝐼4 (𝑠, 𝜌) ⇐⇒ ∀𝛼,𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2.
(evalLog (𝑠↾Log) [𝛼] = (𝑑1, 𝑑2, 𝑓1, 𝑓2, 𝑏1, 𝑏2) =⇒

{𝑑1, 𝑑2} = ownedby(𝑠, 𝛼)

)
The runtime invariant (both the precondition and postcondition of all FS methods) is then the

conjunction of all above,

𝐼 := 𝐼1 ∩ 𝐼2 ∩ 𝐼3 ∩ 𝐼4
However, due to the fact that the locks are not persistent, the last conjunction is not stable with

respect to crashes. Thus the crash invariant is the conjunction of the first three,

𝐼 := 𝐼1 ∩ 𝐼2 ∩ 𝐼3
(𝑠, 𝜌) 𝑄 (𝑠′, 𝜌 ′) ⇐⇒ 𝐼 (𝑠′, 𝜌 ′)

The precondition and postcondition of any method (except for recovery) assumes the invariant

as well as empty ownership of current thread,

𝑃 𝑓 (Δ, 𝑠, 𝜌) ⇐⇒ 𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅
(−) 𝑄 𝑓 (Δ, 𝑠′, 𝜌 ′) ⇐⇒ 𝐼 (𝑠′, 𝜌 ′) ∧ ownedby(𝑠′, 𝛼) = ∅

The guarantee condition, in addition to preservation of invariants, further specifies that one

thread may only update folders or files they currently owns, physically or abstractly. Rely condition

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:86 Oliveira Vale et al.

is then the union of guarantee and method invocations and returns,

(𝑠, 𝜌) G[𝛼] (𝑠′, 𝜌 ′) ⇐⇒
©­­«
∀𝑑.𝑑 ∉ ownedby(𝑠, 𝛼) =⇒ state𝑠 (𝑠) [𝑏] = state𝑠 (𝑠′) [𝑏] ∧
∀𝑑.𝑑 ∉ ownedby(𝑠, 𝛼) =⇒ state𝜌 (𝑠) [𝑑] = state𝜌 (𝑠′) [𝑑] ∧

𝐼 (𝑠′, 𝜌 ′)

ª®®¬
R[𝛼] ≜

⋃
𝛼 ′∈Υ,𝛼 ′≠𝛼

G[𝛼 ′] ∪ invoke𝛼 ′ (−) ∪ return𝛼 ′ (−)

The linearization point of swap normally happens at the time when log entry is removed,

which by itself is a straightforward proof thanks to mutual exclusion. However, if a swap method

crashes after inserting the WAL entry but before removing the entry, it will instead be retroactively

linearized during the recovery procedure, also at the point when the log is removed from WAL.

While the same operation may be performed multiple times and some are even partially performed,

it is safe nonetheless thanks to the idempotent nature of log entry application.

The linearization point of write happens at the point when the underlay actually writes to the

disk and read linearizes at the disk read operation, as one would expect. The safety is provided by

the mutual exclusion of locks, the same as the swap operation.

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅}
1: write(dir, fid, data) {
2: lock[dir] .acquire() ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir}}
3: dir_inode← (folder_inode)disk.read(dir) ;
4: file← dir_inode[fid];

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir} ∧ state𝑠 (𝑠) [dir] [fid] = file}
5: disk.write(file, data) ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir} ∧ state𝑠 (𝑠) [dir] [fid] = file ∧ state𝑠 (𝑠) [file] = data}{
𝐼 (𝑠′, 𝜌 ′) ∧

(
ownedby(𝑠′, 𝛼) = {dir} ∧ state𝑠 (𝑠′) [dir] [fid] = file ∧ state𝑠 (𝑠′) [file] = data ∧

lin(𝜌) · 𝛼𝛼𝛼:::write(dir, fid, data) · 𝛼𝛼𝛼:::ok ⊑ 𝜌 ′

)}
6: lock[dir] .release() ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ ∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok}

7: }
{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ returned[write] (Δ, 𝑠, 𝜌) }

Fig. 23. Proof of file system - write

I.3.3 Replicated Disk. To demonstrate vertical composition, we implement the aforementioned

disk interface on top of several disks. Thanks to the locality property of tensor operator, we only

need to verify a single disk block and safely compose into the whole disk with little effort. The

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:87

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅}
1: write(dir, fid) {
2: lock[dir] .acquire() ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir}}
3: dir_inode← (folder_inode)disk.read(dir) ;
4: file← dir_inode[fid];

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir} ∧ state𝑠 (𝑠) [dir] [fid] = file}
5: data← disk.read(file) ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {dir} ∧ state𝑠 (𝑠) [dir] [fid] = file ∧ state𝑠 (𝑠) [file] = data}{
𝐼 (𝑠′, 𝜌 ′) ∧

(
ownedby(𝑠′, 𝛼) = {dir} ∧ state𝑠 (𝑠′) [dir] [fid] = file ∧ state𝑠 (𝑠′) [file] = data ∧

lin(𝜌) · 𝛼𝛼𝛼:::read(data) · 𝛼𝛼𝛼:::data ⊑ 𝜌 ′

)}
6: lock[dir] .release() ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ ∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · data}

7: }
{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ returned[write] (Δ, 𝑠, 𝜌) }

Fig. 24. Proof of file system - read

single block specification, which both the underlay and overlay follows, is provided below,

DiskBlock := {write : block→ 1, read : 1→ block}
evalDiskBlock : 𝑃†DiskBlock → {⊥} + block

evalDiskBlock (𝑠) :=



0 𝜖

𝑣 𝑠 = 𝑠′ · ∧ evalDisk (𝑠′) = 𝑣
𝑣 𝑠 = 𝑠′ ·𝑚 · ∧ evalDisk (𝑠′ ·) = 𝑣 ∧ 𝜆Disk (𝑚) = 𝑂
𝑣 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::write(𝑣) · 𝛼𝛼𝛼:::ok ∧ evalDisk (𝑠′) ≠ ⊥
𝑣 𝑠 = 𝑠′ · 𝛼𝛼𝛼:::read() · 𝛼𝛼𝛼:::𝑣 ∧ evalDisk (𝑠′) = 𝑣
⊥ otherwise

𝜈DiskBlock := {𝑠 | ∃𝑠′ .𝑠 ⊑ 𝑠′ ∧ evalDiskBlock (𝑠′) ≠ ⊥}
The implementation is given in Figure 27. In the implementaion, we do not acquire locks when

writing or reading disk blocks. This is sound since the file system always guarantees mutual

exclusion when calling disk operations on the same block. We express this fact through a client

policy that requires the client to only access the disk atomically:

𝜉DiskBlock := 𝑃!DiskBlock

where 𝑃!DiskBlock is the set of well-formed atomic plays over DiskBlock.

I.3.4 Verification of Replicated Disks. For the purpose of verification, we assume the lin function

and the eval function are defined in the same way as in the file interface verification. Following a

similar approach, we define state𝜌 and state𝑠 according to the possibility and the the underlay play

respectively. We use DiskBlock[𝑁]𝑖 to denote the 𝑖-th disk of the 𝑁 disk array of the underlay.

state𝜌 : 𝑃†DiskBlock → {⊥} + block
state𝜌 (𝜌) := evalDiskBlock (lin(𝜌))

state𝑠 : 𝑃†DiskBlock[𝑁] → {⊥} + block
state𝑠 (𝜌) := evalDiskBlock (𝑠↾DiskBlock[𝑁]

0

)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:88 Oliveira Vale et al.

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅}
1: swap(src, tgt, src_f, tgt_f) {
2: if (src < tgt) {
3: lock[src] .acquire() ;
4: lock[tgt] .acquire() ;
5: }else{
6: lock[tgt] .acquire() ;
7: lock[src] .acquire() ;
8: }

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {src, tgt}}
9: src_inode← (folder_inode)disk.read(src) ;
10: tgt_inode← (folder_inode)disk.read(tgt) ;
11: src_file← src_inode[src_f];
12: tgt_file← tgt_inode[tgt_f];{

𝐼 (𝑠, 𝜌) ∧
(ownedby(𝑠, 𝛼) = {src, tgt} ∧
state𝑠 (𝑠) [src] = src_inode ∧ state𝑠 (𝑠) [tgt] = tgt_inode

)}
13: log.insert(src, tgt, src_f, tgt_f, src_file, tgt_file) ;𝐼 (𝑠, 𝜌) ∧

©­­«
ownedby(𝑠, 𝛼) = {src, tgt} ∧

logged2 (𝑠, src, tgt, src_f, tgt_f) ∧
state𝑠 (𝑠) [src] = src_inode ∧ state𝑠 (𝑠) [tgt] = tgt_inode

ª®®¬


14: disk.write(tgt, tgt_inode[tgt_f ↦→ src_file]) ;𝐼 (𝑠, 𝜌) ∧
©­­«

ownedby(𝑠, 𝛼) = {src, tgt} ∧
logged2 (𝑠, src, tgt, src_f, tgt_f) ∧

state𝑠 (𝑠) [src] = src_inode ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

ª®®¬


15: disk.write(src, src_inode[src_f ↦→ tgt_file]) ;𝐼 (𝑠, 𝜌) ∧
©­­«

ownedby(𝑠, 𝛼) = {src, tgt} ∧
logged2 (𝑠, src, tgt, src_f, tgt_f) ∧

state𝑠 (𝑠) [src] = src_inode[src_f ↦→ tgt_file] ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

ª®®¬


16: log.remove(𝛼) ;{
𝐼 (𝑠, 𝜌) ∧

(ownedby(𝑠, 𝛼) = {src, tgt} ∧
state𝑠 (𝑠) [src] = src_inode[src_f ↦→ tgt_file] ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

)}
{
𝐼 (𝑠′, 𝜌 ′) ∧

(
lin(𝜌) · 𝛼𝛼𝛼:::swap(src, tgt, src_f, tgt_f) · 𝛼𝛼𝛼:::ok ⊑ 𝜌 ′ ∧

ownedby(𝑠′, 𝛼) = {src, tgt}

)}
{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = {src, tgt} ∧ ∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok}

17: lock[src] .release() ;
18: lock[tgt] .release() ;

{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ ∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok}
19: }
{𝐼 (𝑠, 𝜌) ∧ ownedby(𝑠, 𝛼) = ∅ ∧ returned[swap] (Δ, 𝑠, 𝜌) }

Fig. 25. Proof of file system - swap

We first give the invariant of this object,

𝐼 (𝑠, 𝜌) ⇐⇒ state𝜌 (𝜌) = state𝑠 (𝑠)
We further require that at the boundary of overlay methods, all disk blocks match the content of

the possibility,

𝑃 𝑓 (Δ, 𝑠, 𝜌) ⇐⇒ 𝐼 (𝑠, 𝜌) ∧ ∀𝑖 .0 ≤ 𝑖 < 𝑁 =⇒ evalDiskBlock (𝑠↾DiskBlock[𝑁]
𝑖
) = state𝜌 (𝜌)

(−) 𝑄 𝑓 (Δ, 𝑠′, 𝜌 ′) ⇐⇒ 𝐼 (𝑠′, 𝜌 ′) ∧ ∀𝑖 .0 ≤ 𝑖 < 𝑁 =⇒ evalDiskBlock (𝑠′↾DiskBlock[𝑁]
𝑖
) = state𝜌 (𝜌 ′)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:89{
𝐼 (𝑠, 𝜌)

}
1: recovery() {
2: for(i = 0; i < |agents |; i + +) {{

𝐼 (𝑠, 𝜌) ∧ ∀ 𝑗 .0 ≤ 𝑗 < 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None
}

3: entry← log.get(agents[i]) ;
4: if (entry = None)
5: continue;
6: (src, tgt, src_f, tgt_f, src_file, tgt_file) ← entry;𝐼 (𝑠, 𝜌) ∧

©­­«
∀ 𝑗 .0 ≤ 𝑗 < 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None ∧

(src, tgt, src_f, tgt_f, src_file, tgt_file) = evalLog (𝑠↾Log) [agents[𝑖]] ∧
∃𝑝.𝜋𝛼 (𝜌)↾Log = 𝑝 · swap(src, tgt, src_f, tgt_f)

ª®®¬


7: src_inode← (folder_inode)disk.read(src) ;
8: tgt_inode← (folder_inode)disk.read(tgt) ;

𝐼 (𝑠, 𝜌) ∧
©­­­­«

∀ 𝑗 .0 ≤ 𝑗 < 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None ∧
(src, tgt, src_f, tgt_f, src_file, tgt_file) = evalLog (𝑠↾Log) [agents[𝑖]] ∧

∃𝑝.𝜋𝛼 (𝜌)↾Log = 𝑝 · swap(src, tgt, src_f, tgt_f) ∧
state𝑠 (𝑠) [src] = src_inode ∧ state𝑠 (𝑠) [tgt] = tgt_inode

ª®®®®¬


9: disk.write(tgt, tgt_inode[tgt_f ↦→ src_file]) ;
𝐼 (𝑠, 𝜌) ∧

©­­­­«
∀ 𝑗 .0 ≤ 𝑗 < 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None ∧

(src, tgt, src_f, tgt_f, src_file, tgt_file) = evalLog (𝑠↾Log) [agents[𝑖]] ∧
∃𝑝.𝜋𝛼 (𝜌)↾Log = 𝑝 · swap(src, tgt, src_f, tgt_f) ∧

state𝑠 (𝑠) [src] = src_inode ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

ª®®®®¬


10: disk.write(src, src_inode[src_f ↦→ tgt_file]) ;
𝐼 (𝑠, 𝜌) ∧

©­­­­«
∀ 𝑗 .0 ≤ 𝑗 < 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None ∧

(src, tgt, src_f, tgt_f, src_file, tgt_file) = evalLog (𝑠↾Log) [agents[𝑖]] ∧
∃𝑝.𝜋𝛼 (𝜌)↾Log = 𝑝 · swap(src, tgt, src_f, tgt_f) ∧

state𝑠 (𝑠) [src] = src_inode[src_f ↦→ tgt_file] ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

ª®®®®¬


11: log.remove(agents[i]) ;𝐼 (𝑠, 𝜌) ∧
©­­«

∀ 𝑗 .0 ≤ 𝑗 ≤ 𝑖 =⇒ evalLog (𝑠↾Log) [agents[𝑗]] = None ∧
∃𝑝.𝜋𝛼 (𝜌)↾Log = 𝑝 · swap(src, tgt, src_f, tgt_f) ∧

state𝑠 (𝑠) [src] = src_inode[src_f ↦→ tgt_file] ∧ state𝑠 (𝑠) [tgt] = tgt_inode[tgt_f ↦→ src_file]

ª®®¬
{

𝐼 (𝑠′, 𝜌 ′) ∧
(
∀ 𝑗 .0 ≤ 𝑗 ≤ 𝑖 =⇒ evalLog (𝑠

′↾Log) [agents[𝑗]] = None ∧
lin(𝜌) · 𝛼𝛼𝛼:::swap(src, tgt, src_f, tgt_f) · 𝛼𝛼𝛼:::ok ⊑ 𝜌 ′

)}
12: }{

𝐼 (𝑠, 𝜌) ∧ ∀𝛼 ∈ agents.evalLog (𝑠↾Log) [𝛼] = None
}

13: }
{𝐼 (𝑠, 𝜌) }

Fig. 26. Proof of file system - recovery

We can now define the crash-postcondition as preservation of invariant,

(𝑠, 𝜌) 𝑄 (𝑠′, 𝜌 ′) ⇐⇒ 𝐼 (𝑠′, 𝜌 ′)

since the invariant is preserved, the sole purpose of the recovery method is to re-establish the

universal precondition of normal routines.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:90 Oliveira Vale et al.

MDiskBlock:

Import blocks: DiskBlock[𝑁]

void write(block_data data) {

for (i ← 0; i < N; i ← i + 1) {

blocks[i].write(data);

}

}

block_data read() {

i ← random ();

block_data data ← blocks[i].read ();

return data;

}

void recover () {

data ← disks [0]. read ();

for (i ← 0; i < N; i ← i + 1) {

disks[i].write(data);

}

}

Fig. 27. Implementation for Replicated Disks

The rely and guarantee condition is trivial since the client policy effectively disallow any type of

interleaving,

(𝑠, 𝜌) G[𝛼] (𝑠′, 𝜌 ′) ⇐⇒ id

R[𝛼] ≜
⋃

𝛼 ′∈Υ,𝛼 ′≠𝛼
G[𝛼 ′] ∪ invoke𝛼 ′ (−) ∪ return𝛼 ′ (−)

With everything defined, the step through proofs are given in Figure 28, Figure 29, and Figure 30.

For brevity, we use evalDiskBlock[𝑁]
𝑖
(𝑠) as a abbreviation for evalDisk (𝑠↾DiskBlock[𝑁]𝑖).

{𝐼 (𝑠, 𝜌) }
1: write(data) {
2: disks[0] .write(data) ;

{𝐼 (𝑠, 𝜌) ∧ state𝑠 (𝑠) = state𝜌 (𝜌) = data}{
𝐼 (𝑠′, 𝜌 ′) ∧

(
state𝑠 (𝑠′) = state𝜌 (𝜌 ′) = data ∧
lin(𝜌) · 𝛼𝛼𝛼:::write(data) · 𝛼𝛼𝛼:::ok ⊑ 𝜌 ′

)}
{𝐼 (𝑠, 𝜌) ∧ (∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok) ∧ state𝑠 (𝑠) = state𝜌 (𝜌) = data}

3: for(𝑖 ← 1; 𝑖 < 𝑁 ; 𝑖 ← 𝑖 + 1){
𝐼 (𝑠, 𝜌) ∧ (∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok) ∧ ∀𝑖′ .0 ≤ 𝑖′ < 𝑖 =⇒ eval

DiskBlock[𝑁]
𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
4: disks[𝑖] .write(data) ;{

𝐼 (𝑠, 𝜌) ∧ (∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok) ∧ ∀𝑖′ .0 ≤ 𝑖′ ≤ 𝑖 =⇒ eval
DiskBlock[𝑁]

𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
{
𝐼 (𝑠, 𝜌) ∧ (∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · ok) ∧ ∀𝑖′ .0 ≤ 𝑖′ ≤ 𝑁 =⇒ eval

DiskBlock[𝑁]
𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
5: }
{𝐼 (𝑠, 𝜌) ∧ returned[write] (Δ, 𝑠, 𝜌) }

Fig. 28. Proof of Replicated Disks - write

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:91

{𝐼 (𝑠, 𝜌) }
1: read() {
2: 𝑖 ← random(0, 𝑁 − 1) ;

{𝐼 (𝑠, 𝜌) ∧ 0 ≤ 𝑖 < 𝑁 }
3: data← disks[𝑖] .read() ;

{𝐼 (𝑠, 𝜌) ∧ 0 ≤ 𝑖 < 𝑁 ∧ state𝜌 (𝜌) = data}{
𝐼 (𝑠′, 𝜌 ′) ∧ state𝜌 (𝜌 ′) [𝑏] = data ∧ lin(𝜌) · 𝛼𝛼𝛼:::read · 𝛼𝛼𝛼:::data ⊑ 𝜌 ′

}
{𝐼 (𝑠, 𝜌) ∧ (∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · data) }

4: return data;
5: }
{𝐼 (𝑠, 𝜌) ∧ returned[read] (Δ, 𝑠, 𝜌) }

Fig. 29. Proof of Replicated Disks - read

{𝐼 (𝑠, 𝜌) }
1: recover() {
2: data← disks[0] .read() ;

{𝐼 (𝑠, 𝜌) ∧ data = state𝜌 (𝜌) }
3: for(𝑖 ← 1; 𝑖 < 𝑁 ; 𝑖 ← 𝑖 + 1){

𝐼 (𝑠, 𝜌) ∧ ∀𝑖′ .0 ≤ 𝑖′ < 𝑖 =⇒ eval
DiskBlock[𝑁]

𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
4: disks[𝑖] .write(𝑏, data) ;{

𝐼 (𝑠, 𝜌) ∧ ∀𝑖′ .0 ≤ 𝑖′ ≤ 𝑖 =⇒ eval
DiskBlock[𝑁]

𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
{
𝐼 (𝑠, 𝜌) ∧ ∀𝑖′ .0 ≤ 𝑖′ < 𝑁 =⇒ eval

DiskBlock[𝑁]
𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
5: }{

𝐼 (𝑠, 𝜌) ∧ ∀𝑖′ .0 ≤ 𝑖′ < 𝑁 =⇒ eval
DiskBlock[𝑁]

𝑖′
(𝑠) = state𝜌 (𝜌) = data

}
Fig. 30. Proof of Replicated Disks - recovery

I.3.5 Write-Ahead Log Implementation. The implementation of the write-ahead log used in the file

system is presented in Figure 31. We omit the verification as it is straightforward in terms of crash

linearizability: all operations are immediately persisted and there is no in-between states for the

disk block.

Because the disk is equivalent to the horizontal composition of its blocks:

𝜈Disk � ⊗𝑏∈block_id𝜈DiskBlock
It follows that we may separate one location from the disk for the log, as follows:

(vol(𝜈Buffer) ⊗ vol(𝜈Lock)) ⊗ 𝜈Disk
� (vol(𝜈Buffer) ⊗ vol(𝜈Lock)) ⊗ (⊗𝑏∈block_id𝜈DiskBlock)
� (𝜈DiskBlock ⊗ vol(𝜈Buffer) ⊗ vol(𝜈Lock)) ⊗ ⊗𝑏∈block_id\logblk𝜈DiskBlock

so that

(vol(𝜈Buffer) ⊗ vol(𝜈Lock) ⊗ 𝜈Disk); (𝑀Log ⊗ crashcopy)
is linearizable to 𝜈Log ⊗ (⊗𝑏∈block_id\logblk𝜈DiskBlock) where logblk is the block id where the log is

located. That is to say, we obtain a log together with a disk with size one block less than before,

such that in the underlay the log lives in the same disk.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:92 Oliveira Vale et al.

MLog:

Import block:DiskBlock
Import buffer:Buffer
Import lock:Lock

void insert(block_id a, block_id b, file_id c, file_id d, block_id e, block_id f) {

lock.acquire ();

buffer[𝛼] = (a, b, c, d, e, f);

block.write(buffer);

lock.release ();

}

void remove(agent_id agent) {

lock.acquire ();

buffer[agent] = None;

block.write(buffer);

lock.release ();

}

void get(agent_id agent) {

return buffer[agent];

}

void recovery () {

buffer = (log) block.read ();

}

Fig. 31. Implementation of the Write Ahead Log

J PROOFS
J.1 Basic Semicategorical Structure
In the following we assume that the operation −;− is defined arbitrary sets of plays, instead of just

on strategies. The definition is exactly the same. Given 𝑠 ∈ 𝑃𝐴⊸𝐵 and 𝑡 ∈ 𝑃𝐵⊸𝐶 we write 𝑠; 𝑡 for

{𝑠}; {𝑡}. We also take the convention of writing, for 𝑠 ∈ 𝑃𝐴 with 𝐴 ∈ Crash,

𝑠 = 𝑠1 · · 𝑠2 · · . . . · · 𝑠𝑛+1
where for each 𝑖 , 𝑠𝑖 = epo𝑖 (𝑠).

The following important lemma characterizes composition in Crash using composition in Conc.

Lemma J.1. Given strategies 𝜎 : 𝐴 ⊸ 𝐵, 𝜏 : 𝐵 ⊸ 𝐶 ∈ Crash, for any play 𝑢 ∈ 𝜎 ;𝜏 , there exists
𝑠 ∈ 𝜎, 𝑡 ∈ 𝜏 such that

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
and, for all 𝑖 ,

𝑠𝑖 ∈ Pconc𝐴Υ⊸𝐵Υ and 𝑡𝑖 ∈ Pconc𝐵Υ⊸𝐶Υ

and such that 𝑢 decomposes as

𝑢 = 𝑢1 · · 𝑢2 · · . . . · · 𝑢𝑛+1
with 𝑢𝑖 ∈ 𝑠𝑖 ; 𝑡𝑖 for all 𝑖 .

Proof. Suppose 𝑢 ∈ 𝜎 ;𝜏 . By definition there exists 𝑢′ ∈ int(𝜎, 𝜏) such that 𝑢′↾𝐴,𝐵,− ∈ 𝜎 ,

𝑢′↾−,𝐵,𝐶 ∈ 𝜏 and 𝑢′↾𝐴,−,𝐶 = 𝑢, we claim that assigning 𝑠 := 𝑢′↾𝐴,𝐵,− and 𝑡 := 𝑢′↾−,𝐵,𝐶 the claim is

proven.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:93

Since all three of 𝑢′, 𝑠 , and 𝑡 are well-formed it follows that they can be written as (it will soon

be clear why all plays feature the same number of epochs):

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1 𝑢′ = 𝑢′
1
· · . . . · · 𝑢′𝑛+1

So let 𝑢𝑖 = 𝑢
′
𝑖↾𝐴,−,𝐶 . By definition we know 𝑢′↾−,𝐵,− = 𝑠↾−,𝐵 = 𝑡↾𝐵,− , so it follows that the 𝑖-th crash

signal in 𝑠 matches 𝑡 with the 𝑖-th crash signal in 𝑢′, and that they have the same number of crash

signals. Furthermore, since 𝑠 = 𝑢′↾𝐴,𝐵,− , the 𝑖-th epoch of 𝑢′, i.e. 𝑢′𝑖 , projects to the 𝑖−th epoch of 𝑠 ,

i.e. 𝑢′𝑖↾𝐴,𝐵,− = 𝑠𝑖 . Similarly, 𝑢′𝑖↾−,𝐵,𝐶 = 𝑡𝑖 . Hence, it follows that 𝑢
′
𝑖↾𝐴,−,𝐶 = 𝑢𝑖 ∈ 𝑠𝑖 ; 𝑡𝑖 . □

Proposition J.2. strategy composition is well-defined and associative.

Proof. Well-defined Suppose 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 , then we have 𝜖 ∈ 𝜎 and 𝜖 ∈ 𝜏 . Then
taking

𝜖 ∈ int(𝐴, 𝐵,𝐶)
we have 𝜖↾𝐴,−,𝐶 = 𝜖 ∈ P

𝐴⊸𝐶
which implies 𝜖 ∈ 𝜎 ;𝜏 . So 𝜎 ;𝜏 is non-empty

Now suppose 𝑠 ∈ 𝜎 ;𝜏 and that 𝑝 ⊑ 𝑠 , then there exists 𝑠′ ∈ int(𝜎, 𝜏) such that 𝑠′↾𝐴,−,𝐶 = 𝑠 . In

particular 𝑝 ⊑ 𝑠′↾𝐴,−,𝐶 . Hence there exists 𝑝′ ⊑ 𝑠′ such that 𝑝′↾𝐴,−,𝐶 = 𝑝 . Since 𝑠′↾𝐴,𝐵,− ∈ 𝜎
and 𝑠′↾−,𝐵,𝐶 ∈ 𝜏 and both 𝜎, 𝜏 are prefix-closed, so 𝑝′↾𝐴,𝐵,− ∈ 𝜎 and 𝑝′↾−,𝐵,𝐶 ∈ 𝜏 . So 𝑝′ ∈
int(𝜎, 𝜏). Since P

𝐴⊸𝐶
is prefix-closed, 𝑝′↾𝐴,−,𝐶 ⊑ 𝑠′↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶

so 𝑝′↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶
. Hence

𝑝 ∈ 𝜎 ;𝜏 .
Lastly, we show 𝜎 ;𝜏 is −receptive. Suppose 𝑠 ∈ 𝜎 ;𝜏 . So there exists 𝑠′ ∈ int(𝜎, 𝜏) such that

𝑠′↾𝐴,−,𝐶 = 𝑠 . Note then that we have 𝑠′ · ∈ int(𝐴, 𝐵,𝐶). By −receptivity, it holds that
𝑠′ · ↾𝐴,𝐵,− ∈ 𝜎 and 𝑠′ · ↾−,𝐵,𝐶 ∈ 𝜏 . So it follows that 𝑠′ · ↾𝐴,−,𝐶 = 𝑠 · ∈ 𝜎 ;𝜏 .

Associative Suppose 𝜎 : 𝐴 ⊸ 𝐵, 𝜏 : 𝐵 ⊸ 𝐶 and 𝜌 : 𝐶 ⊸ 𝐷 , fix 𝑠↾𝐴,−,𝐷 ∈ (𝜎 ;𝜏); 𝜌 where

𝑢 ∈ int((𝜎 ;𝜏), 𝜌). Applying J.1 between the composition of 𝜎 ;𝜏 and 𝜌 , and then applying the

lemma again to decompose its projection to 𝜎 ;𝜏 , we obtain that 𝑢↾𝐴,−,𝐷 can be written as

𝑢1 · · . . . · · 𝑢𝑛+1
and 𝑢′𝑖 ∈ (𝑠𝑖 ; 𝑡𝑖); 𝑟𝑖 where 𝑠𝑖 ∈ Pconc𝐴Υ⊸𝐵Υ , 𝑡𝑖 ∈ Pconc𝐵Υ⊸𝐶Υ and 𝑟𝑖 ∈ Pconc𝐶Υ⊸𝐷Υ , with, futhermore

𝑠 := 𝑠1 · · . . . · · 𝑠𝑛+1 ∈ 𝜎
𝑡 := 𝑡1 · · . . . · · 𝑡𝑛+1 ∈ 𝜏
𝑟 := 𝑟1 · · . . . · · 𝑟𝑛+1 ∈ 𝜌

From concurrent games [31] we already know that (𝑠𝑖 ; 𝑡𝑖); 𝑟𝑖 = 𝑠𝑖 ; (𝑡𝑖 ; 𝑟𝑖). So there exists

𝑢′𝑖 ∈ int(𝑠𝑖 , 𝑡𝑖 ; 𝑟𝑖) such that 𝑢′𝑖↾𝐴,−,𝐷 = 𝑢𝑖 , 𝑢
′
𝑖↾𝐴,𝐵,− = 𝑠𝑖 and 𝑢

′
𝑖↾−,𝐵,𝐷 ∈ 𝑡𝑖 ; 𝑟𝑖 Now let’s define

𝑢′′ := 𝑢′
1
· · . . . · · 𝑢′𝑛+1

Now we have 𝑢′′↾𝐴,𝐵,− = 𝑠1 · · . . . · · 𝑠𝑛+1 and 𝑢′′↾−,𝐵,𝐷 ∈ 𝑡 ; 𝑟 ⊆ 𝜏 ; 𝜌 . So 𝑢 = 𝑢′′↾𝐴,−,𝐷 ∈
𝜎 ; (𝜏 ; 𝜌).
The other direction is analogous.

□

We also prove that composition is monotonic and join-preserving, the main requirement to

obtain an enriched semicategory.

Proposition J.3. For strategies

𝜎 : 𝐴 ⊸ 𝐵, 𝜏 : 𝐵 ⊸ 𝐶

the following hold:
(1) if 𝜎 ⊆ 𝜎 ′ : 𝐴 ⊸ 𝐵 and 𝜏 ⊆ 𝜏 ′ : 𝐵 ⊸ 𝐶 then 𝜎 ;𝜏 ⊆ 𝜎 ′;𝜏 ′

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:94 Oliveira Vale et al.

(2) Given a family of strategies (𝜎𝑖 : 𝐴 ⊸ 𝐵)𝑖∈𝐼 it holds that(⋃
𝑖∈𝐼

𝜎𝑖

)
;𝜏 =

⋃
𝑖∈𝐼
(𝜎𝑖 ;𝜏)

(3) Given a family of strategies (𝜏𝑖 : 𝐵 ⊸ 𝐶)𝑖∈𝐼 it holds that

𝜎 ;

(⋃
𝑖∈𝐼

𝜏𝑖

)
=

⋃
𝑖∈𝐼
(𝜎 ;𝜏𝑖)

Proof. (1) Suppose 𝑠↾𝐴,−,𝐶 ∈ 𝜎 ;𝜏 then

𝑠↾𝐴,𝐵,− ∈ 𝜎 =⇒ 𝑠↾𝐴,𝐵,− ∈ 𝜎 ′

𝑠↾−,𝐵,𝐶 ∈ 𝜏 =⇒ 𝑠↾−,𝐵,𝐶 ∈ 𝜏 ′

Also since 𝑠 ∈ int(𝐴, 𝐵,𝐶), 𝑠↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶
so 𝑠↾𝐴,−,𝐶 ∈ 𝜎 ′;𝜏 ′.

(2) For one direction, since we have 𝜎𝑖 ⊆ ∪𝑖∈𝐼𝜎𝑖 so

𝜎𝑖 ;𝜏 ⊆
(⋃
𝑖∈𝐼

𝜎𝑖

)
;𝜏

hence ⋃
𝑖∈𝐼
(𝜎𝑖 ;𝜏) ⊆

(⋃
𝑖∈𝐼

𝜎𝑖

)
;𝜏

For the other direction, suppose 𝑠↾𝐴,−,𝐶 ∈ (
⋃

𝑖∈𝐼 𝜎𝑖) ;𝜏 which means 𝑠↾𝐴,𝐵,− ∈ (
⋃

𝑖∈𝐼 𝜎𝑖) and
𝑠↾−,𝐵,𝐶 ∈ 𝜏 .
so there exists 𝑖 such that 𝑠↾𝐴,𝐵,− ∈ 𝜎𝑖 , and therefore 𝑠↾𝐴,−,𝐶 ∈ 𝜎𝑖 ;𝜏 ⊆

⋃
𝑖∈𝐼 (𝜎𝑖 ;𝜏) so that

𝑠↾𝐴,−,𝐶 ∈
⋃
𝑖∈𝐼
(𝜎𝑖 ;𝜏)

(3) For one direction we have 𝜏𝑖 ⊆
⋃

𝑖∈𝐼 𝜏𝑖 so

𝜎 ;𝜏𝑖 ⊆ 𝜎 ;
(⋃
𝑖∈𝐼

𝜏𝑖

)
hence ⋃

𝑖∈𝐼
(𝜎 ;𝜏𝑖) ⊆ 𝜎 ;

(⋃
𝑖∈𝐼

𝜏𝑖

)
For the other direction, suppose 𝑠↾𝐴,−,𝐶 ∈ 𝜎 ; (

⋃
𝑖∈𝐼 𝜏𝑖) which means 𝑠↾𝐴,𝐵,− ∈ 𝜎 and 𝑠↾−,𝐵,𝐶 ∈⋃

𝑖∈𝐼 𝜏𝑖 .
so there exists 𝑖 such that 𝑠↾−,𝐵,𝐶 ∈ 𝜏𝑖 , and therefore 𝑠↾𝐴,−,𝐶 ∈ 𝜎 ;𝜏𝑖 ⊆

⋃
𝑖∈𝐼 (𝜎 ;𝜏𝑖) so that

𝑠↾𝐴,−,𝐶 ∈
⋃
𝑖∈𝐼
(𝜎 ;𝜏𝑖)

□

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:95

J.2 Volatile Lift and Idempotence
Proposition J.4.

vol(−) : Conc→ Crash
is a semi-functor.

Proof. For given

𝜎 : 𝐴 ⊸ 𝐵 ∈ Conc 𝜎 ′ : 𝐵 ⊸ 𝐶 ∈ Conc

we want to show

vol(𝜎); vol(𝜎 ′) = vol(𝜎 ;𝜎 ′)
For one direction, fix 𝑠 ∈ vol(𝜎); vol(𝜎 ′). By lemma J.1, we have that 𝑠 can be decomposed as

𝑠 := 𝑠1 · · . . . · · 𝑠𝑛+1
where for each 𝑖 , 𝑠𝑖 ∈ 𝜎 ;𝜎 ′. It then follows immediately by the definition of vol(−) that 𝑠 ∈ vol(𝜎 ;𝜎 ′).

For the other direction, fix 𝑠 ∈ vol(𝜎 ;𝜎 ′). We have that, by well-formedness, 𝑠 can be decomposed

as

𝑠 := 𝑠1 · · . . . · · 𝑠𝑛+1
where for each 𝑖 𝑠𝑖 ∈ 𝜎 ;𝜎 ′. So there exists 𝑠′𝑖 such that 𝑠′𝑖 ↾𝐴,𝐵,− ∈ 𝜎 and 𝑠′𝑖 ↾−,𝐵,𝐶 ∈ 𝜎 ′.

Let

𝑡 := 𝑠′
1
↾𝐴,𝐵,− · · . . . · · 𝑠′𝑛+1↾𝐴,𝐵,−

𝑡 ′ := 𝑠′
1
↾−,𝐵,𝐶 · · . . . · · 𝑠′𝑛+1↾−,𝐵,𝐶

It is immediate from the definition of vol(−) that 𝑡 ∈ vol(𝜎), 𝑡 ′ ∈ vol(𝜎 ′), and so it follows that

𝑠 ∈ vol(𝜎); vol(𝜎 ′).
We also need to show vol(𝜎) satisfies -receptivity. Suppose 𝑠 ∈ vol(𝜎), ∈ 𝑀

𝐴 ⊸𝐵
, 𝑠 · ∈

𝑃𝐴 ⊸𝐵 , by definition we know 𝑠 may be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
where for each 𝑖, 𝑠𝑖 ∈ 𝜎 and 𝑟𝑖 ∈ 𝑅. Since 𝜖 ∈ 𝜎 so we could set

𝑠′ := 𝑠1 · · . . . · · 𝑠𝑛+1 · · 𝜖
we obtain by definition that 𝑠′ ∈ vol(𝜎). □

Proposition J.5. The copycat strategy crashcopy𝐴 is idempotent, i.e.

crashcopy𝐴; crashcopy𝐴 = crashcopy𝐴

Proof. Note first that it is immediate from the definition of crashcopy𝐴 that

crashcopy𝐴 = vol(ccopy𝐴)
Then, observe that

crashcopy𝐴; crashcopy𝐴 = vol(ccopy𝐴Υ); vol(ccopy𝐴Υ) (Def. of crashcopy)
= vol(ccopy𝐴Υ ; ccopy𝐴Υ) (Prop. J.4)
= vol(ccopy𝐴Υ) (Prop. ccopy is idempotent)
= crashcopy𝐴 (Def. of crashcopy)

□

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:96 Oliveira Vale et al.

Proposition J.6. The restriction

vol(−) : Conc→ Crash

of vol(−) defines a functor.

Proof. We already argued that

crashcopy𝐴 = vol(ccopy𝐴)
in the proof of Prop. J.5. It remains to show that whenever 𝜎 is saturated with respect to ccopy i.e.

ccopy𝐴;𝜎 ; ccopy𝐵 = 𝜎 then vol(𝜎) is saturated with respect to crashcopy. For that, just note that:

crashcopy𝐴 ; vol(𝜎); crashcopy𝐵 = vol(ccopy𝐴); vol(𝜎); vol(ccopy𝐵)
= vol(ccopy𝐴;𝜎 ; ccopy𝐵)
= vol(𝜎)

□

J.3 Concrete Saturation for Crash-Aware Games
We start by providing the statement of the main result of this section, which concretely characterizes

what a saturated strategy in Crash looks like.

Proposition J.7. A strategy 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash is saturated with respect to crashcopy if and only
if it is
𝑂-receptive: ∀𝑠 ∈ 𝜎.∀𝛼 ∈ Υ.∀𝑚 ∈ 𝑀𝛼𝛼𝛼:::𝑂

𝐴⊸𝐵
.∃1 ≤ 𝑖 ≤ ∥𝑠 ∥ .epo𝑖 (𝑠) ·𝑚 ∈ 𝑃𝐴Υ⊸𝐵Υ =⇒

epo
1
(𝑠) · · . . . · · epo𝑖 (𝑠) ·𝑚 · · . . . · · epo∥𝑠 ∥ (𝑠) ∈ 𝜎

⇝-closed: ∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃𝐴⊸𝐵 .𝑡 ⇝𝐴⊸𝐵 𝑠 =⇒ 𝑡 ∈ 𝜎
𝑃-delaying: ∀𝑠 ∈ 𝜎.∀𝑚 ∈ 𝑀𝑃

𝐴⊸𝐵
.𝑠 = 𝑝 ·𝑚 · · 𝑡 ⇒ 𝑝 · · 𝑡 ∈ 𝜎

One might think that it is possible to directly use the proofs of concrete saturation for Conc from
Oliveira Vale et al. [31] across each epoch of a crash-aware strategy to obtain the corresponding

concrete saturation result for Crash. It turns out that those theorems made a key use of prefix-

closure of Conc strategies at specific points that make the proofs not translate to our setting, as

strategies in Crash do not have per-epoch prefix-closure. Because of this, we must reprove some of

the results appearing in their appendix, including the Synchronization Lemma.

In the following, we refer to 𝑂-receptive, 𝑃-delaying closure of a set of plays 𝑆 ⊆ 𝑃𝐴 with

𝐴 ∈ Conc by dr (𝑆). That is, dr (𝑆) is the smallest set of plays of 𝑃𝐴 such that

∀𝑠 ∈ dr (𝑆) .∀𝑚 ∈ 𝑀𝑂
𝐴 .𝑠 ·𝑚 ∈ 𝑃𝐴 =⇒ 𝑠 ·𝑚 ∈ dr (𝑆)

∀𝑚 ∈ 𝑀𝑃
𝐴 .∀𝑠 · 𝑡 ∈ 𝑃𝐴 .𝑠 ·𝑚 · 𝑡 ∈ dr (𝑆) =⇒ 𝑠 · 𝑡 ∈ dr (𝑆)

The following few re-statements of propositions from Oliveira Vale et al. [31] admit essentially

the same proofs as might be found there.

Proposition J.8 (Synchronization Lemma). Let 𝑠 = 𝑝 ·𝛼𝛼𝛼:::𝑚 ·𝛼 ′𝛼 ′𝛼 ′:::𝑚′ ·𝑝′ be a play of𝐴 ⊸ 𝐵 ∈ Conc.
Let 𝑆 = dr (𝑝 ·𝑚 ·𝑚′ · 𝑝′). Then,

𝑝 ·𝑚′ ·𝑚 · 𝑝′ ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 ⇐⇒ 𝑚′ ·𝑚⇝𝐴⊸𝐵 𝑚 ·𝑚′

Corollary J.9. Let 𝑠 ∈ 𝑃𝐴⊸𝐵 with 𝐴 ⊸ 𝐵 ∈ Conc and that 𝑡 is a play such that

∀𝛼 ∈ Υ.𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑠)
and moreover

𝑡 ∈ ccopy𝐴; dr (𝑠) ; ccopy𝐵

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:97

then,
𝑡 ⇝𝐴⊸𝐵 𝑠

Lemma J.10. For every set 𝑆 of plays of 𝑃𝐴⊸𝐵 :

𝑆 ⊆ ccopy𝐴; 𝑆 ; ccopy𝐵

The first lemma we need that does require a novel proof is the following.

Lemma J.11. For any 𝑂-receptive and 𝑃-delaying set 𝑆 of plays of 𝑃𝐴⊸𝐵 with 𝐴 ⊸ 𝐵 ∈ Conc
it holds that for all 𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 there exists 𝑠 ∈ 𝑆 such that 𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 and
∀𝛼 ∈ Υ.𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑠).

Proof. Fix 𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 there exists 𝑡 ′ such that 𝑡 ′↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑡 ′↾−,𝐴,𝐵,− ∈ 𝑆 and

𝑡 ′↾−,−,𝐵,𝐵 ∈ ccopy𝐵 .
Now, notice that for any 𝛼 ∈ Υ there are four possibilities for the lengths of 𝑡 ′↾𝐴,𝐴,−,− and

𝑡 ′↾−,−,𝐵,𝐵 .

Both are even-length: It is immediate from the definition of ccopy that 𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑡 ′↾−,𝐴,𝐵,−).
𝑡 ′↾𝐴,𝐴,−,− is even-length and 𝑡 ′↾−,−,𝐵,𝐵 is odd-length: Then either𝜋𝛼 (𝑡 ′↾−,𝐴,𝐵,−) differs from𝜋𝛼 (𝑡)

by having an extra𝑂-move in the end or by missing a 𝑃-move. Either way, we can find a new

𝑡 ′′ ∈ 𝑆 that either adds the required𝑂-move or removes the missing 𝑃-move by𝑂-receptivity

or 𝑃-delaying respectively.

𝑡 ′↾𝐴,𝐴,−,− is odd-length and 𝑡 ′↾−,−,𝐵,𝐵 is even-length: This case is similar to the previous one.

Both length are odd-length: This case is impossible by the switching conditions.

□

Proposition J.12. An 𝑂-receptive and 𝑃-delaying set 𝑆 of plays 𝑃𝐴⊸𝐵 , for 𝐴 ⊸ 𝐵 ∈ Conc is
saturated with respect to ccopy if and only if

∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃𝐴⊸𝐵 .𝑡 ⇝𝐴⊸𝐵 𝑠 ⇒ 𝑡 ∈ 𝜎

Proof. Suppose 𝑆 is saturated. It follows that if 𝑠 ∈ 𝑆 = ccopy𝐴; 𝑆 ; ccopy𝐵 and 𝑡 ⇝𝐴⊸𝐵 𝑠 then

there is a sequence of single steps:

𝑡 = 𝑡0 ⇝𝐴⊸𝐵 𝑡1 ⇝𝐴⊸𝐵 . . .⇝𝐴⊸𝐵 𝑡𝑛 = 𝑠

then by applying the Sychronization Lemma (Prop. J.8) starting with

𝑡𝑛−1 ⇝𝐴⊸𝐵 𝑠

to conclude that

𝑡𝑛−1 ∈ ccopy𝐴; dr (𝑠) ; ccopy𝐵 ⊆ 𝜎
in a finite number of applications we obtain that

𝑡 = 𝑡0 ∈ ccopy𝐴; dr (𝑡1) ; ccopy𝐴 ⊆ ccopy𝐴; dr (𝑠) ; ccopy𝐵 ⊆ 𝑆
as desired.

Note that for every set of plays 𝑆 that satisfies 𝑂-receptivity and 𝑃-delaying it holds that:

𝑆 =
⋃
𝑠∈𝑆

dr (𝑠)

But

ccopy𝐴; 𝑆 ; ccopy𝐵 =
⋃
𝑠∈𝑆

ccopy𝐴; dr (𝑠) ; ccopy𝐵

by the fact that composition is join-preserving. Hence,

𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 ⇐⇒ ∃𝑠 ∈ 𝑆.𝑡 ∈ ccopy𝐴; dr (𝑠) ; ccopy𝐵

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:98 Oliveira Vale et al.

moreover, by J.11, 𝑠 can be chosen so that

∀𝛼 ∈ Υ.𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑠)
by corollary to the Synchronization Lemma (Prop. J.8) it follows that

𝑡 ∈ ccopy𝐴; dr (𝑠) ; ccopy𝐵 ⇐⇒ 𝑡 ⇝𝐴⊸𝐵 𝑠

And hence

𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 ⇐⇒ ∃𝑠 ∈ 𝑆.𝑡 ⇝𝐴⊸𝐵 𝑠

So, suppose 𝑡 ∈ ccopy𝐴; 𝑆 ; ccopy𝐵 . Then, there is some 𝑠 ∈ 𝜎 such that 𝑡 ⇝𝐴⊸𝐵 𝑠 and hence by

assumption 𝑡 ∈ 𝜎 . Hence,
ccopy𝐴; 𝑆 ; ccopy𝐵 ⊆ 𝑆

the reverse containment is exactly lemma J.10 so that it follows that

ccopy𝐴; 𝑆 ; ccopy𝐵 = 𝑆

and hence 𝑆 is saturated. □

Finally, toward the concrete saturation theorem.

Lemma J.13. For every strategy 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash we have

𝜎 ⊆ crashcopy𝐴;𝜎 ; crashcopy𝐵

Proof. Suppose 𝑠 ∈ 𝜎 then we know 𝑠 can be decomposed as

𝑠1 · · . . . · · 𝑠𝑛+1
where 𝑠𝑖 ∈ Pconc𝐴Υ⊸𝐵Υ . Note then that we have dr (𝑠𝑖) ⊆ ccopy𝐴Υ ; dr (𝑠𝑖) ; ccopy𝐵Υ . So there exists

𝑡𝑖↾𝐴,−,−,𝐵 ∈ Pconc𝐴Υ⊸𝐵Υ such that 𝑡𝑖↾𝐴,𝐴,−,− ∈ ccopy𝐴Υ , 𝑡𝑖↾−,𝐴,𝐵,− = 𝑠𝑖 and 𝑡𝑖↾−,−,𝐵,𝐵 ∈ ccopy𝐵Υ .

So set

𝑠′ := 𝑡1↾𝐴,𝐴,−,− · · . . . · · 𝑡𝑛+1↾𝐴,𝐴,−,−
𝑠′′ := 𝑡1↾−,𝐴,𝐵,− · · . . . · · 𝑡𝑛+1↾−,𝐴,𝐵,−
𝑠′′′ := 𝑡1↾−,−,𝐵,𝐵 · · . . . · · 𝑡𝑛+1↾−,−,𝐵,𝐵

By definition we have 𝑠′ ∈ crashcopy𝐴, 𝑠′′ ∈ 𝜎 and 𝑠′′′ ∈ crashcopy𝐵 . Hence, 𝑠 ∈ 𝐾 𝜎 □

Proposition J.14. A strategy 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash is saturated with respect to crashcopy if and
only if it is
𝑂-receptive: ∀𝑠 ∈ 𝜎.∀𝛼 ∈ Υ.∀𝑚 ∈ 𝑀𝛼𝛼𝛼:::𝑂

𝐴⊸𝐵
.∃1 ≤ 𝑖 ≤ ∥𝑠 ∥ .epo𝑖 (𝑠) ·𝑚 ∈ 𝑃𝐴Υ⊸𝐵Υ =⇒

epo
1
(𝑠) · · . . . · · epo𝑖 (𝑠) ·𝑚 · · . . . · · epo∥𝑠 ∥ (𝑠) ∈ 𝜎

⇝-closed: ∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃𝐴⊸𝐵 .𝑡 ⇝𝐴⊸𝐵 𝑠 =⇒ 𝑡 ∈ 𝜎
𝑃-delaying: ∀𝑠 ∈ 𝜎.∀𝑚 ∈ 𝑀𝑃

𝐴⊸𝐵
.𝑠 = 𝑝 ·𝑚 · · 𝑡 ⇒ 𝑝 · · 𝑡 ∈ 𝜎

Proof.

(=⇒): suppose 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash is saturated i.e. crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎 . Let’s first show

that 𝜎 is 𝑂-receptive. Fix 𝑠 ∈ 𝜎 by definition 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
Note that for 𝑚 ∈ 𝑀𝛼𝛼𝛼:::𝑂

𝐴⊸𝐵
, if 𝑠𝑖 ·𝑚 = epo𝑖 (𝑠) ·𝑚 ∈ 𝑃𝐴Υ⊸𝐵Υ then 𝑠𝑖 ·𝑚 ∈ Pconc𝐴Υ⊸𝐵Υ . Thanks

to Oliveira Vale et al. [31] we know there exists 𝑢 𝑗 for each 𝑗 such that 𝑢 𝑗↾𝐴,−,−,𝐵 = 𝑠 𝑗 ·𝑚

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:99

if 𝑗 = 𝑖 , and otherwise 𝑢 𝑗↾𝐴,−,−,𝐵 = 𝑠 𝑗 , and 𝑢 𝑗↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑢 𝑗↾−,−,𝐵,𝐵 ∈ ccopy𝐵 and

𝑢𝑖↾−,𝐴,𝐵,− ∈ dr (𝑠𝑖).
Let

𝑢 := 𝑢1↾𝐴,𝐴,−,− · · . . . · · 𝑢𝑛+1↾𝐴,𝐴,−,−
𝑢′ := 𝑢1↾−,𝐴,𝐵,− · · . . . · · 𝑢𝑛+1↾−,𝐴,𝐵,−
𝑢′′ := 𝑢1↾−,−,𝐵,𝐵 · · . . . · · 𝑢𝑛+1↾−,−,𝐵,𝐵

Then, note that 𝑢 ∈ crashcopy𝐴, 𝑢′ = 𝑠 , 𝑢′′ ∈ crashcopy𝐵 and

𝑠1 · · . . . · · 𝑠𝑖 ·𝑚 · · . . . · · 𝑠𝑛+1 ∈ 𝑢;𝑢′;𝑢′′

so that

𝑠1 · · . . . · · 𝑠𝑖 ·𝑚 · · . . . · · 𝑠𝑛+1 ∈ crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎

as 𝜎 is saturated.

Now let’s show 𝜎 is⇝-closed. Fix 𝑠 ∈ 𝜎 , 𝑡 ∈ 𝑃𝐴⊸𝐵 and suppose 𝑡 ⇝𝐴⊸𝐵 𝑠 . More precisely

we can decompose 𝑠 and 𝑡 as:

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
And we have for all 𝑖 , 𝑡𝑖 ⇝𝐴⊸𝐵 𝑠𝑖 . Now we want to show 𝑡 ∈ 𝜎 . Since for all 𝑖 we have
𝑡𝑖 ⇝𝐴⊸𝐵 𝑠𝑖 , it follows that 𝑡𝑖 ∈ ccopy𝐴; dr (𝑠𝑖) ; ccopy𝐵 which means there exists 𝑢𝑖 such that

𝑢𝑖↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑢𝑖↾−,𝐴,𝐵,− = 𝑠𝑖 , 𝑢𝑖↾−,−,𝐵,𝐵 ∈ ccopy𝐵 and 𝑢𝑖↾𝐴,−,−,𝐵 = 𝑡𝑖 . Let

𝑢 := 𝑢1↾𝐴,𝐴,−,− · · . . . · · 𝑢𝑛+1↾𝐴,𝐴,−,−
𝑢′ := 𝑢1↾−,𝐴,𝐵,− · · . . . · · 𝑢𝑛+1↾−,𝐴,𝐵,−
𝑢′′ := 𝑢1↾−,−,𝐵,𝐵 · · . . . · · 𝑢𝑛+1↾−,−,𝐵,𝐵

we have 𝑡 ∈ 𝑢;𝑢′;𝑢′′ and 𝑢 ∈ crashcopy𝐴, 𝑢
′ ∈ strat (𝑠) and 𝑢′′ ∈ crashcopy𝐵 . So 𝑡 ∈

crashcopy𝐴; strat (𝑠) ; crashcopy𝐵 ⊆ crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎 .

Finally, we want to show 𝜎 is 𝑃-delaying. Fix 𝑠 ∈ 𝜎 such that moreover there is an epoch 𝑖

and a 𝑃-move𝑚 ∈ 𝑀𝛼𝛼𝛼:::𝑃
such that 𝑠𝑖 = 𝑝 ·𝑚. By definition 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
From J.12 we know there exists 𝑢 𝑗 for each 𝑗 such that 𝑢 𝑗↾𝐴,−,−,𝐵 = 𝑝 if 𝑖 = 𝑗 otherwise

𝑢 𝑗↾𝐴,−,−,𝐵 = 𝑠 𝑗 , and 𝑢 𝑗↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑢 𝑗↾−,−,𝐵,𝐵 ∈ ccopy𝐵 and 𝑢 𝑗↾−,𝐴,𝐵,− ∈ dr
(
𝑠 𝑗

)
Let

𝑢 := 𝑢1↾𝐴,𝐴,−,− · · . . . · · 𝑢𝑛+1↾𝐴,𝐴,−,−
𝑢′ := 𝑢1↾−,𝐴,𝐵,− · · . . . · · 𝑢𝑛+1↾−,𝐴,𝐵,−
𝑢′′ := 𝑢1↾−,−,𝐵,𝐵 · · . . . · · 𝑢𝑛+1↾−,−,𝐵,𝐵

Then, note that 𝑢 ∈ crashcopy𝐴, 𝑢′ = 𝑠 , 𝑢′′ ∈ crashcopy𝐵 and

𝑠1 · · . . . · · 𝑝 · · . . . · · 𝑠𝑛+1 ∈ 𝑢;𝑢′;𝑢′′

so that

𝑠1 · · . . . · · 𝑝 · · . . . · · 𝑠𝑛+1 ∈ 𝐾 𝜎 = 𝜎

as 𝜎 is saturated.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:100 Oliveira Vale et al.

(⇐=): Suppose 𝜎 : 𝐴 ⊸ 𝐵 satisfies the𝑂-receptive, 𝑃−delaying and⇝-closed conditions. We want

to show crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎 .

By lemma J.1 we know that for any 𝑢 ∈ crashcopy𝐴;𝜎 ; crashcopy𝐵 , there is
𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1

such that 𝑢 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
where all 𝑠𝑖 ∈ ccopy𝐴; dr (𝑡𝑖) ; ccopy𝐵 . Since 𝑠 satisfies the 𝑂-receptive, 𝑃−delaying and

⇝-closed conditions, whcih means there exists 𝑆𝑖 for each 𝑖 such that 𝑠𝑖 ∈ 𝑆𝑖 for all

𝑖 , 𝑆𝑖 satisfy the 𝑂−receptive, 𝑃−delaying and ⇝-closed. Thanks to J.12 we obtain that

ccopy𝐴; dr (𝑡𝑖) ; ccopy𝐵 ⊆ 𝑆𝑖 . So we have 𝑠 ∈ 𝜎 so crashcopy𝐴;𝜎 ; crashcopy𝐵 ⊆ 𝜎
The other direction follows from lemma J.13.

□

J.4 Symmetric Monoidal Structure of Crash
Proposition J.15. For any 𝜎 : 𝐴 ⊸ 𝐵 ∈ Conc and 𝜎 ′ : 𝐴′ ⊸ 𝐵′ ∈ Conc it holds that

vol(𝜎 ⊗ 𝜎 ′) = vol(𝜎) ⊗ vol(𝜎 ′)

Proof. For one direction, fix 𝑠 ∈ vol(𝜎)⊗vol(𝜎 ′). By definition of the tensor 𝑠 can be decomposed

as

𝑠 := 𝑠1 · · . . . · · 𝑠𝑛+1
where for each 𝑖 , 𝑠𝑖 ∈ 𝜎 ⊗ 𝜎 ′. It then follows immediately by the definition of vol(−) that 𝑠 ∈
vol(𝜎 ⊗ 𝜎 ′).

For the other direction, fix 𝑠 ∈ vol(𝜎⊗𝜎 ′). We have that, by well-formedness, 𝑠 can be decomposed

as

𝑠 := 𝑠1 · · . . . · · 𝑠𝑛+1
where for each 𝑖 , 𝑠𝑖 ∈ 𝜎 ⊗ 𝜎 ′. So 𝑠𝑖↾𝐴⊸𝐵 ∈ 𝜎 and 𝑠𝑖↾𝐴′⊸𝐵′ ∈ 𝜎 ′.

Let

𝑡 := 𝑠1↾𝐴⊸𝐵 · · . . . · · 𝑠𝑛+1↾𝐴⊸𝐵

𝑡 ′ := 𝑠1↾𝐴′⊸𝐵′ · · . . . · · 𝑠𝑛+1↾𝐴′⊸𝐵′

It is immediate from the definition of vol(−) that 𝑡 ∈ vol(𝜎), 𝑡 ′ ∈ vol(𝜎 ′), and so it follows that

𝑠 ∈ vol(𝜎) ⊗ vol(𝜎 ′). □

Lemma J.16.

crashcopy𝐴⊗𝐵 = crashcopy𝐴 ⊗ crashcopy𝐵

Proof. Note that

crashcopy𝐴⊗𝐵 = vol(ccopy(𝐴⊗𝐵)Υ) (Def. of crashcopy)
= vol(ccopy𝐴Υ ⊗ ccopy𝐵Υ) (Symm. Mon. Cat. Conc)
= vol(ccopy𝐴Υ) ⊗ vol(ccopy𝐵Υ) (Prop. J.15)
= crashcopy𝐴 ⊗ crashcopy𝐵 (Def. of crashcopy)

□

Lemma J.17.

− ⊗ − : Crash ⊗ Crash→ Crash
is a bi-semifunctor

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:101

Proof. For given

𝜎1 : 𝐴1 ⊸ 𝐴2, 𝜎2 : 𝐴2 ⊸ 𝐴3

𝜏1 : 𝐵1 ⊸ 𝐵2, 𝜏2 : 𝐵2 ⊸ 𝐵3

and fix 𝑠 ∈ (𝜎1;𝜎2) ⊗ (𝜏1;𝜏2) From lemma J.1 we know 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
each 𝑠𝑖 satisfies

𝑠𝑖↾𝐴1⊸𝐴3
∈ dr (𝑡𝑖) ; dr

(
𝑡 ′𝑖
)

𝑠𝑖↾𝐵1⊸𝐵3
∈ dr (𝑢𝑖) ; dr

(
𝑢′𝑖

)
where

𝑡 := 𝑡1 · · . . . · · 𝑡𝑛+1 ∈ 𝜎1
𝑡 ′ := 𝑡1 · · . . . · · 𝑡 ′𝑛+1 ∈ 𝜎2
𝑢 := 𝑡1 · · . . . · · 𝑢𝑛+1 ∈ 𝜏1
𝑢′ := 𝑡1 · · . . . · · 𝑢′𝑛+1 ∈ 𝜏2

futhermore we have for each 𝑠𝑖

𝑠𝑖 ∈ (dr (𝑡𝑖) ; dr
(
𝑡 ′𝑖
)
) ⊗ (dr (𝑢𝑖) ; dr

(
𝑢′𝑖

)
)

= (dr (𝑡𝑖) ⊗ dr (𝑢𝑖)); (dr
(
𝑡 ′𝑖
)
⊗ dr

(
𝑢′𝑖

)
)

so there exists 𝑠′𝑖 for each 𝑖 such that

𝑠′𝑖 ↾𝐴1⊗𝐵1⊸𝐴3⊗𝐵3
= 𝑠𝑖

𝑠′𝑖 ↾𝐴1⊗𝐵1⊸𝐴2⊗𝐵2
∈ dr (𝑡𝑖) ⊗ dr (𝑢𝑖)

𝑠′𝑖 ↾𝐴2⊗𝐵2⊸𝐴3⊗𝐵3
∈ dr

(
𝑡 ′𝑖
)
⊗ dr

(
𝑢′𝑖

)
let

𝑟 := 𝑠′
1
↾𝐴1⊗𝐵1⊸𝐴2⊗𝐵2

· · . . . · · 𝑠′𝑛+1↾𝐴1⊗𝐵1⊸𝐴2⊗𝐵2

𝑟 ′ := 𝑠′
1
↾𝐴2⊗𝐵2⊸𝐴3⊗𝐵3

· · . . . · · 𝑠′𝑛+1↾𝐴2⊗𝐵2⊸𝐴3⊗𝐵3

we have 𝑟 ∈ 𝜎1 ⊗ 𝜏1, 𝑟 ′ ∈ 𝜎2 ⊗ 𝜏2 futhermore we know 𝑠 ∈ strat (𝑟) ; strat (𝑟 ′) ⊆ (𝜎1 ⊗ 𝜏1); (𝜎2 ⊗ 𝜏2).
The other direction is similar.

The enrichment is obvious. First, if 𝜎 ⊆ 𝜎 ′ and 𝜏 ⊆ 𝜏 ′ it follows immediately from the definition

that

𝜎 ⊗ 𝜏 ⊆ 𝜎 ′ ⊗ 𝜏 ′

Unions are handled in the same way. □

Proposition J.18. (Crash,− ⊗ −, 1) defines an enriched symmetric monoidal category.

Proof. We start by showing that the structural morphisms assemble into natural isomorphisms:

𝐴 ⊗ (𝐵 ⊗ 𝐶) (𝐴 ⊗ 𝐵) ⊗ 𝐶

𝐴′ ⊗ (𝐵′ ⊗ 𝐶′) (𝐴′ ⊗ 𝐵′) ⊗ 𝐶′
𝜎𝐴⊗(𝜎𝐵⊗𝜎𝐶)

𝛼𝐴,𝐵,𝐶

(𝜎𝐴⊗𝜎𝐵)⊗𝜎𝐶

𝛼𝐴′,𝐵′,𝐶′

�

1 ⊗ 𝐴 𝐴

1 ⊗ 𝐵 𝐵

1⊗𝜎

𝜆𝐴

𝜎

𝜆𝐵

�

𝐴 ⊗ 1 𝐴

𝐵 ⊗ 1 𝐵

𝜎⊗1

𝜌𝐴

𝜎

𝜌𝐵

�

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:102 Oliveira Vale et al.

The left and right unital are straight-forward. Indeed, they are given by

𝜆′′𝐴 := vol(𝜆𝐴Υ) 𝜌 ′′𝐴 := vol(𝜌𝐴Υ)
where 𝜆 and 𝜌 are the left and right unitals in Conc. It is easy to note that, up to renaming, this

makes both unitals the same as crashcopy. Because of this, again, up to renaming, we essentially

have:

1 ⊗ 𝜎 = {𝑠′ ∈ 𝑃 (1⊸1)⊗(𝐴⊸𝐵) | ∃𝑠 ∈ 𝜎.({𝜖} ⊗ epo
1
(𝑠)) · · . . . · · {({𝜖} ⊗ epo∥𝑠 ∥ (𝑠))} = 𝜎

which differs from 𝜎 only in the shape of the crashes.Therefore, we easily check that:

(1 ⊗ 𝜎); 𝜆𝐵 = 𝜎 ; crashcopy𝐵 = 𝜎 = crashcopy𝐴;𝜎 = 𝜆𝐴;𝜎

(𝜎 ⊗ 1); 𝜌𝐵 = 𝜎 ; crashcopy𝐵 = 𝜎 = crashcopy𝐴;𝜎 = 𝜌𝐴;𝜎

Let 𝛽 be the braiding in Conc and 𝛼 be the associator in Conc. We define the associator and

braiding in Crash by

𝛽 ′′𝐴,𝐵 := vol(𝛽𝐴Υ,𝐵Υ) and 𝛼 ′′𝐴,𝐵,𝐶 := vol(𝛼𝐴Υ,𝐵Υ,𝐶Υ)
Now, for the associator, the equation essentially follows from the fact that:

𝑝𝛼 (𝜎𝐴 ⊗ (𝜎𝐵 ⊗ 𝜎𝐶));𝛼 ′𝐴′,𝐵′,𝐶 ′ = (𝑝𝛼 (𝜎𝐴) ⊗ (𝑝𝛼 (𝜎𝐵) ⊗ 𝑝𝛼 (𝜎𝐶)));𝛼 ′𝐴′,𝐵′,𝐶 ′
= 𝛼 ′𝐴,𝐵,𝐶 ; ((𝑝𝛼 (𝜎𝐴) ⊗ 𝑝𝛼 (𝜎𝐵)) ⊗ 𝑝𝛼 (𝜎𝐶))
= 𝛼 ′𝐴,𝐵,𝐶 ;𝑝𝛼 ((𝜎𝐴 ⊗ 𝜎𝐵) ⊗ 𝜎𝐶)

where for each 𝑠 ∈ 𝜎
𝑝𝛼 (𝑠) := 𝜋 ′𝛼 (epo1 (𝑠)) · · . . . · · 𝜋 ′𝛼 (epo∥𝑠 ∥ (𝑠))

𝜋 ′𝛼 is the corresponding projection in Conc this is the key step to establish that the naturality

square commutes. The reverse direction follows similarly.

For the braiding, let’s first show its naturality. For a given strategy 𝜎 : 𝐴 ⊸ 𝐶, 𝜏 : 𝐵 ⊸ 𝐷 we

want to show the following diagram commutes:

𝐴 ⊗ 𝐵 𝐶 ⊗ 𝐷

𝐵 ⊗ 𝐴 𝐷 ⊗ 𝐶

𝜎⊗𝜏

𝛽 ′′
𝐶,𝐷

𝛽 ′′
𝐴,𝐵

𝜏⊗𝜎

Note that since 𝛽 is a natural isomorphism, we have that for any 𝑠 ∈ 𝜎 , 𝑡 ∈ 𝜏 :

𝐴Υ ⊗ 𝐵Υ 𝐶 ⊗ 𝐷

𝐵Υ ⊗ 𝐴Υ 𝐷Υ ⊗ 𝐶Υ

𝛽
𝐴Υ ,𝐵Υ

dr(epo𝑖 (𝑠))⊗dr(epo𝑖 (𝑡))

dr(epo𝑖 (𝑡))⊗dr(epo𝑖 (𝑠))

𝛽
𝐶Υ ,𝐷Υ

commutes.

So for any given 𝑢 ∈ strat (𝑠) ⊗ strat (𝑡) ; 𝛽 ′′
𝐶,𝐷

we have for each 𝑖 ,

epo𝑖 (𝑢) ∈ dr
(
epo𝑖 (𝑠)

)
⊗ dr

(
epo𝑖 (𝑡)

)
; 𝛽𝐶Υ,𝐷Υ

= 𝛽𝐴Υ,𝐵Υ ; dr
(
epo𝑖 (𝑡)

)
⊗ dr

(
epo𝑖 (𝑠)

)
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:103

And we know for each 𝑖 , (𝐴, 𝐵) 𝛽 ′𝐴,𝐵 (𝐵, 𝐴) and (𝐶 , 𝐷) 𝛽 ′𝐶,𝐷 (𝐷 , 𝐶), so we have

𝑠 ∈ 𝛽 ′′𝐴,𝐵 ;𝜏 ⊗ 𝜎
so 𝜎 ⊗ 𝜏 ; 𝛽 ′′

𝐶,𝐷
⊆ 𝛽 ′′

𝐴,𝐵
;𝜏 ⊗ 𝜎 , other direction is similar. which let us to conclude that

𝐴 ⊗ 𝐵 𝐶 ⊗ 𝐷

𝐵 ⊗ 𝐴 𝐷 ⊗ 𝐶

𝜎⊗𝜏

𝛽 ′′
𝐶,𝐷

𝛽 ′′
𝐴,𝐵

𝜏⊗𝜎

commutes.

The coherence diagrams follow from functoriality of Vol − together with the fact that Vol −
distributes over −⊗− (Prop. J.15), by noting that all the structural morphisms in Crashwere defined

by lifting the corresponding structural morphisms in Conc and Rel, which is also why they are

isomorphisms. □

J.5 Crash-Aware Linearizability
Proposition J.19.

𝐾 : Crash→ Crash
is an enriched oplax semifunctor

Proof. Oplax semifunctor: So we want to show for any 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 we have

𝐾 (𝜎 ;𝜏) ⊆ 𝐾 𝜎 ;𝐾 𝜏
We have the composition is associative, crashcopy is idempotent and 𝜎 ⊆ 𝐾 𝜎 so

𝐾 (𝜎 ;𝜏) = crashcopy𝐴;𝜎 ;𝜏 ; crashcopy𝐶
⊆ crashcopy𝐴;𝜎 ; crashcopy𝐵 ;𝜏 ; crashcopy𝐶
= crashcopy𝐴;𝜎 ; crashcopy𝐵 ; crashcopy𝐵 ;𝜏 ; crashcopy𝐶
= 𝐾 𝜎 ;𝐾 𝜏

Enrichment: Suppose 𝜎 ⊆ 𝜎 ′ then
𝐾 𝜎 = crashcopy;𝜎 ; crashcopy ⊆ crashcopy;𝜎 ′; crashcopy = 𝐾 𝜎

′

by monontonicity of composition. Similarly

𝐾 (∪𝑖∈𝐼𝜎𝑖) = crashcopy;∪𝑖∈𝐼𝜎𝑖 ; crashcopy =
⋃
𝑖∈𝐼

crashcopy;𝜎𝑖 ; crashcopy =
⋃
𝑖∈𝐼

𝐾 𝜎𝑖

□

Proposition J.20. For 𝜏 : 𝐴 ⊸ 𝐵 ∈ Crash,
𝐾 𝜏 = {𝑠 ∈ 𝑃𝐴⊸𝐵 | 𝑠 is crash-linearizable with respect to 𝜏}

Proof. For one direction, let’s fix 𝑠 ∈ 𝐾 𝜏 then by lemma J.1 there exists 𝑡 ∈ 𝜏 such that 𝑠 and 𝑡

can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 and 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
where for each 𝑖 we have 𝑠𝑖 ∈ ccopy𝐴; strat (𝑡𝑖) ; ccopy𝐵 which implies that 𝑠𝑖 ; 𝑡𝑖 by [31]. Since

this is true for all 𝑖 , we have 𝑠 ; 𝜏 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:104 Oliveira Vale et al.

For the other direction, fix 𝑠 crash-linearizable with respect to 𝜏 . Then, there exists 𝑡 in 𝜏 such

that 𝑠 and 𝑡 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 and 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
and for all 𝑖 we have 𝑠𝑖 ; 𝑡𝑖 . So we have 𝑠𝑖 ∈ ccopy𝐴; dr (𝑡𝑖) ; ccopy𝐵 which implies there exists 𝑢𝑖
such that 𝑢𝑖↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑢𝑖↾−,𝐴,𝐵,− ∈ dr (𝑡𝑖), 𝑢𝑖↾−,−,𝐵,𝐵 ∈ ccopy𝐵 and 𝑢𝑖↾𝐴,−,−,𝐵 = 𝑠𝑖 . Let

𝑢 := 𝑢1↾𝐴,𝐴,−,− · · . . . · · 𝑢𝑛+1↾𝐴,𝐴,−,−
𝑢′ := 𝑢1↾−,𝐴,𝐵,− · · . . . · · 𝑢𝑛+1↾−,𝐴,𝐵,−
𝑢′′ := 𝑢1↾−,−,𝐵,𝐵 · · . . . · · 𝑢𝑛+1↾−,−,𝐵,𝐵

we have 𝑢 ∈ crashcopy𝐴, 𝑢′ ∈ strat (𝑡) ⊆ 𝜏 and 𝑢′′ ∈ crashcopy𝐵 so we have 𝑠 ∈ 𝐾 𝜏 . □

Proposition J.21. For 𝜈 ′ : 𝐴 ∈ Conc and 𝜈 : 𝐴 ∈ Conc, if 𝜈 ′ ; 𝜈 then vol(𝜈 ′) ; vol(𝜈).

Proof.

vol(𝜈 ′) = (𝜈 ′ ·)∗ · 𝜈 ′ (Def.)
⊆ ((𝐾Conc 𝜈) ·)∗ · 𝐾Conc 𝜈 (Lin. equiv. 𝐾Conc)
= ((𝜈 ; ccopy𝐴) ·)∗ · (𝜈 ; ccopy𝐴) (Def. of 𝐾Conc)
= ((𝜈 ·)∗ · 𝜈); ((ccopy𝐴 ·)∗ · ccopy𝐴) (Def. −;− in Crash)
= vol(𝜈); crashcopy𝐴 = 𝐾 vol(𝜈) (Def. vol(−))

□

Proposition J.22.

𝐾 𝜏 = {𝑠 ∈ 𝑃𝐴⊸𝐵 | 𝑠 is crash-linearizable with respect to 𝜏}

Proof. For one direction, let’s fix 𝑠 ∈ 𝐾 𝜏 then by lemma J.1 there exists 𝑡 ∈ 𝜏 such that 𝑠 and 𝑡

can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 and 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
where for each 𝑖 we have 𝑠𝑖 ∈ ccopy𝐴; strat (𝑡𝑖) ; ccopy𝐵 which implies that 𝑠𝑖 ; 𝑡𝑖 by the result

from Oliveira Vale et al. [31]. Since this is true for all 𝑖 , we have 𝑠 ; 𝜏 , as desired.

For the other direction, fix 𝑠 crash-linearizable with respect to 𝜏 . Then, there exists 𝑡 in 𝜏 such

that 𝑠 and 𝑡 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1 and 𝑡 = 𝑡1 · · . . . · · 𝑡𝑛+1
and for all 𝑖 we have 𝑠𝑖 ; 𝑡𝑖 . So we have 𝑠𝑖 ∈ ccopy𝐴; dr (𝑡𝑖) ; ccopy𝐵 which implies there exists 𝑢𝑖
such that 𝑢𝑖↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑢𝑖↾−,𝐴,𝐵,− ∈ dr (𝑡𝑖), 𝑢𝑖↾−,−,𝐵,𝐵 ∈ ccopy𝐵 and 𝑢𝑖↾𝐴,−,−,𝐵 = 𝑠𝑖 . Let

𝑢 := 𝑢1↾𝐴,𝐴,−,− · · . . . · · 𝑢𝑛+1↾𝐴,𝐴,−,−
𝑢′ := 𝑢1↾−,𝐴,𝐵,− · · . . . · · 𝑢𝑛+1↾−,𝐴,𝐵,−
𝑢′′ := 𝑢1↾−,−,𝐵,𝐵 · · . . . · · 𝑢𝑛+1↾−,−,𝐵,𝐵

we have 𝑢 ∈ crashcopy𝐴, 𝑢′ ∈ strat (𝑡) ⊆ 𝜏 and 𝑢′′ ∈ crashcopy𝐵 so we have 𝑠 ∈ 𝐾 𝜏 . □

Corollary J.23. 𝜈 ′ : 𝐴 is crash-aware linearizable with respect to 𝜈 : 𝐴 if and only if 𝜈 ′ ⊆ 𝐾 𝜈 .

Now, we move to locality and observational refinement. According to §6 of Oliveira Vale et al.

[31], it is enough to prove the following lemma.

Lemma J.24.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:105

• For any 𝜎 : 1 ⊸ 𝐴 ∈ Crash it holds that crashcopy1;𝜎 = 𝜎 .
• For 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ we have

𝜎 ⊗ 𝜎 ′ ⊆ 𝜏 ⊗ 𝜏 ′ =⇒ 𝜎 ⊆ 𝜎 ′ ∧ 𝜏 ⊆ 𝜏 ′

Proof.

• For one direction, fix 𝑠 ∈ crashcopy1;𝜎 , by J.1 we know 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
and 𝑠𝑖 ∈ 𝑡𝑖 ;𝑢𝑖 such that

𝑡 := 𝑡1 · · . . . · · 𝑡𝑛+1 ∈ crashcopy1
𝑢 := 𝑢1 · · . . . · · 𝑢𝑛+1 ∈ 𝜎

By definition of crashcopy we know 𝑡𝑖 ∈ ccopy1. Therefore, 𝑡𝑖 = 𝜖 for all 𝑖 so 𝑡𝑖 ;𝑢𝑖 = 𝑢𝑖 , and
therefore 𝑠𝑖 = 𝑢𝑖 . It then follows that 𝑠 ∈ 𝜎 .
For the other direction, fix 𝑠 ∈ 𝜎 , by definition we know 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
Now let

𝑡 := 𝜖 · · . . . · · 𝜖

it is easy to check 𝑡 ∈ crashcopy1. But then, 𝑠 ∈ 𝑡 ; 𝑠 , so 𝑠 ∈ crashcopy1;𝜎 .
• For given 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ suppose 𝜎 ⊗ 𝜎 ′ ⊆ 𝜏 ⊗ 𝜏 ′. We wish to show that

𝜎 ⊆ 𝜏 . Fix 𝑠 ∈ 𝜎 , by well-formedness 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
By −receptivity it follows that

𝑡 := 𝜖 · · . . . · · 𝜖 ∈ 𝜎 ′

But 𝑠 ⊗ 𝑡 = {𝑠} up to re-indexing, by definition. So, by monotonicity, 𝑠 ∈ 𝑠 ⊗ 𝑡 ⊆ 𝜏 ⊗ 𝜏 ′. But
then it follows that 𝑠 ∈ 𝜏 , so 𝜎 ⊆ 𝜏 .
The proof of 𝜎 ′ ⊆ 𝜏 ′ is similar.

□

Since by now we have proven all the requirements on the embeddable subcategory of the Karoubi

envelope that we have constructed, it follows that

Proposition J.25. Locality and the equivalence with observational refinement both hold for crash-
aware linearizability.

J.6 Crash Abstraction
We first prove a basic property about −♭.

Lemma J.26. For 𝑠 ∈ 𝑃𝐴⊸𝐵 ,

• if 𝜋Υ (𝑠↾−,𝐵) ∈ P𝐵♭ then 𝜋Υ (𝑠↾𝐴,−) ∈ P𝐴♭ ;
• 𝜋Υ (𝑠) ∈ P(𝐴⊸𝐵)♭ if and only if 𝜋Υ (𝑠↾𝐴,−) ∈ P𝐴♭ and 𝜋Υ (𝑠↾−,𝐵) ∈ P𝐵♭ .

Proof.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:106 Oliveira Vale et al.

• Let’s prove this result by contradiction. Suppose there exists 𝑠 ∈ 𝑃𝐴⊸𝐵 such that 𝜋Υ (𝑠↾−,𝐵) ∈
P𝐵♭ and 𝜋Υ (𝑠↾𝐴,−) ∉ P𝐴♭ . First of all, by definition 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
and for each 𝑖 , 𝑠𝑖 ∈ P𝐴Υ⊸𝐵Υ

Since 𝜋Υ (𝑠↾𝐴,−) ∉ P𝐴♭ , there exists a 𝛼 ∈ Υ such that 𝜋𝛼 (𝑠↾𝐴,−) is not a valid sequential play.

And, since for each 𝑖 , 𝜋𝛼 (𝑠𝑖↾𝐴) is a valid sequential play, there must exists 𝑖 such that there is

a pending 𝑂-move in 𝜋𝛼 (𝑠𝑖↾𝐴,−) and there exists 𝑗 > 𝑖 such that 𝜋𝛼 (𝑠 𝑗↾𝐴,−) is non-empty.

Since 𝜋𝛼 (𝑠𝑖) is also a valid sequential play, there must be a pending𝑂-move also in 𝜋𝛼 (𝑠𝑖↾−,𝐵)
by the switching condition, and 𝜋𝛼 (𝑠 𝑗↾−,𝐵) is also non-empty, since plays are 𝑂-starting.

But then, this means 𝜋𝛼 (𝑠↾−,𝐵) is not a valid sequential play. So 𝜋Υ (𝑠↾−,𝐵) ∉ P𝐵♭ which is a

contradiction.

• The forward direction is easy to see by definition, while the backward direction follows

immediately from the first bullet point.

□

Corollary J.27.

(𝐴 ⊸ 𝐵)♭ � 𝐴♭ ⊸ 𝐵♭

We now address the functoriality of −♭.

Proposition J.28. −♭ : Crash→ Conc defines an enriched oplax semifunctor.

Proof. Suppose 𝑠 ∈ (𝜎 ;𝜏)♭. Then, there is 𝑠′ ∈ int(𝜎, 𝜏) such that 𝑠 = 𝜋Υ (𝑠′↾𝐴,−,𝐶) and in

particular 𝜋Υ (𝑠′↾𝐴,−,𝐶) ∈ P𝐴⊸𝐵♭ . Note then that by Prop. J.26 it follows that 𝜋Υ (𝑠′↾−,𝐵,𝐶↾−,𝐶) =
𝜋Υ (𝑠′↾𝐴,−,𝐶↾−,𝐶) ∈ P𝐶♭ , so that by the same proposition it follows that 𝜋Υ (𝑠′↾−,𝐵,𝐶↾𝐵,−) ∈ 𝑃𝐵♭

and therefore 𝜋Υ (𝑠′↾−,𝐵,𝐶) ∈ P(𝐵⊸𝐶)♭ . At this point we have 𝑠′↾𝐴,𝐵,−↾−,𝐵 = 𝑠′↾−,𝐵,𝐶↾𝐵,− ∈ P𝐵♭

so that analogous reasoning gives that 𝑠′↾𝐴,𝐵,− ∈ P(𝐴⊸𝐵)♭ . But we also have 𝑠′↾𝐴,𝐵,− ∈ 𝜎 and

𝑠′↾−,𝐵,𝐶 ∈ 𝜏 , so that we have shown that 𝜋Υ (𝑠′↾𝐴,𝐵,−) ∈ 𝜎♭ and 𝜋Υ (𝑠′↾−,𝐵,𝐶) ∈ 𝜏♭. We then

obtain that 𝜋Υ (𝑠′)↾𝐴♭,𝐵♭,− = 𝜋Υ (𝑠′↾𝐴♭,𝐵♭,−) ∈ 𝜎♭ and 𝜋Υ (𝑠′)↾−,𝐵♭,𝐶♭ = 𝜋Υ (𝑠′↾−,𝐵,𝐶) ∈ 𝜏♭. Hence,
𝜋Υ (𝑠′) ∈ int(𝜎♭, 𝜏♭) and therefore 𝑠 = 𝜋Υ (𝑠′↾𝐴,−,𝐶) = 𝜋Υ (𝑠′)↾𝐴♭,−,𝐶♭ ∈ 𝜎♭;𝜏♭.
We move on to the enrichment. Suppose 𝜎 ⊆ 𝜎 ′, fix 𝑠 ∈ 𝜎♭, by definition there exists 𝑠′ ∈ 𝜎 such

that 𝜋Υ (𝑠′) = 𝑠 . Since 𝜎 ⊆ 𝜎 ′ so 𝑠′ ∈ 𝜎 ′ so 𝑠 ∈ (𝜎 ′)♭. So we have 𝜎♭ ⊆ (𝜎 ′)♭
Given a family of stratgies (𝜎𝑖 : 𝐴 ⊸ 𝐵)𝑖∈𝐼 . For one direction, fix 𝑠 ∈ (∪𝑖∈𝐼𝜎𝑖)♭ so there exists

𝑠′ ∈ ∪𝑖∈𝐼𝜎𝑖 such that 𝜋Υ (𝑠′) = 𝑠 . So there exists 𝑖 ∈ 𝐼 such that 𝑠′ ∈ 𝜎𝑖 and 𝜋Υ (𝑠′) = 𝑠 ∈ P𝐴♭ which

means 𝑠 ∈ 𝜎♭
𝑖
. So 𝑠 ∈ ∪𝑖∈𝐼𝜎♭𝑖 . For the other direction, fix 𝑠 ∈ ∪𝑖∈𝐼𝜎♭𝑖 , we know there exists 𝑖 ∈ 𝐼 such

that 𝑠′ ∈ 𝜎𝑖 and 𝑠′↾=𝑠 . So 𝑠′ ∈ ∪𝑖∈𝐼𝜎𝑖 and 𝜋Υ (𝑠′) = 𝑠 ∈ P𝐴♭ , so 𝑠 ∈ (∪𝑖∈𝐼𝜎𝑖)♭ □

Proposition J.29. (crashcopy𝐴)♭ = ccopy𝐴♭

Proof. By definition it is easy to see ccopy𝐴♭ ⊆ (crashcopy𝐴)♭.
For the other direction, fix 𝑠 ∈ (crashcopy𝐴)♭, by definition, 𝑠 can be decomposed as

𝑠 = 𝑠1 · 𝑠2 · . . . · 𝑠𝑛+1
where for each 𝑖 , 𝑠𝑖 ∈ ccopy𝐴♭ .

By the definition of copy we know for any two plays 𝑡, 𝑡 ′ ∈ copy, if 𝑡 · 𝑡 ′ is a valid play, then

𝑡 · 𝑡 ′ ∈ copy. So for any 𝛼 ∈ Υ we get that 𝜋𝛼 (𝑠) is in copy𝐴♭ so 𝑠 ∈ ccopy𝐴♭ □

Corollary J.30. For every 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash:

(𝐾 𝜎)♭ ⊆ 𝐾Conc 𝜎
♭

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:107

We now move to the functoriality like properties of re-crash operation −♯.

Proposition J.31. For strategies 𝜎 : 𝐴♭ ⊸ 𝐵♭, and 𝜏 : 𝐵♭ ⊸ 𝐶♭, the following hold:

• if 𝜎 ⊆ 𝜎 ′, for 𝜎 ′ : 𝐴♭ ⊸ 𝐵♭, then 𝜎♯ ⊆ (𝜎 ′)♯
• Given a family (𝜎𝑖 : 𝐴♭ ⊸ 𝐵♭)𝑖∈𝐼 it holds that (∪𝑖∈𝐼𝜎𝑖)♯ = ∪𝑖∈𝐼𝜎♯𝑖
• 𝜎♯;𝜏♯ ⊆ (𝜎 ;𝜏)♯

Proof.

• Suppose 𝜎 ⊆ 𝜎 ′, fix 𝑠 ∈ 𝜎♯ by definition we know 𝜋Υ (𝑠) ∈ 𝜎 . Since 𝜎 ⊆ 𝜎 ′, so 𝜋Υ (𝑠) ∈ 𝜎 ′
which implies 𝑠 ∈ (𝜎 ′)♯. So 𝜎♯ ⊆ (𝜎 ′)♯
• For a given family (𝜎𝑖)𝑖∈𝐼 . For one direction, fix 𝑠 ∈ (∪𝑖∈𝐼𝜎𝑖)♯ we know 𝜋Υ (𝑠) ∈ ∪𝑖∈𝐼𝜎𝑖 which
means there exists 𝑖 ∈ 𝐼 such that 𝜋Υ (𝑠) ∈ 𝜎𝑖 . By definition this means 𝑠 ∈ 𝜎♯

𝑖
, so 𝑠 ∈ ∪𝑖∈𝐼𝜎♯𝑖 .

For the other direction, let fix 𝑠 ∈ ∪𝑖∈𝐼𝜎♯𝑖 , by definition, there exists 𝑖 ∈ 𝐼 such that 𝜋Υ (𝑠) ∈
𝜎𝑖 ⊆ ∪𝑖∈𝐼𝜎𝑖 . So 𝑠 ∈ ∪𝑖∈𝐼𝜎♯𝑖
• fix 𝑠 ∈ 𝜎♯;𝜏♯, by definition there exists 𝑠′ ∈ int(𝜎♯, 𝜏♯) such that 𝑠′↾𝐴,−,𝐶 = 𝑠 , 𝑠′↾𝐴,𝐵,− ∈ 𝜎♯
and 𝑠′↾−,𝐵,𝐶 ∈ 𝜏♯.
Set 𝑡 := 𝜋Υ (𝑠′↾𝐴,𝐵,−), 𝑢 := 𝜋Υ (𝑠′↾−,𝐵,𝐶), it is easy to check

𝜋Υ (𝑠) = 𝜋Υ (𝑠′↾𝐴,−,𝐶) ∈ strat (𝑡) ; strat (𝑢) ⊆ 𝜎 ;𝜏

so 𝑠 ∈ (𝜎 ;𝜏)♯. Well-formedness of 𝜋Υ (𝑠) is guaranteed by well-formedness of 𝜋Υ (𝑠′↾𝐴,−,−),
𝜋Υ (𝑠′↾−,−,𝐶) by Prop. J.26.

□

Proposition J.32. For all 𝐴 ∈ Crash,

ccopy♯
𝐴♭
⊆ crashcopy𝐴

Proof. Fix 𝑠 ∈ ccopy♯
𝐴♭
, by definition we know there exists 𝑠′ ∈ ccopy𝐴♭ such that 𝑠 can be

decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
where 𝑠1 · . . . · 𝑠𝑛+1 = 𝑠′ and for each 𝑖 , 𝑠𝑖 is a play in P𝐴Υ . Furthermore we know for each 𝑖 ≠ 𝑛 + 1,
𝛼 ∈ Υ, there is no pending 𝑂 moves in 𝜋𝛼 (𝑠𝑖).

Now we want to show for all 𝑖 , 𝛼 ∈ Υ, 𝑝 ⊑even 𝜋𝛼 (𝑠𝑖) we have 𝑝↾𝐴,− = 𝑝↾−,𝐴 by contradiction.

Suppose 𝑖 is the smallest 𝑖 such that there exists 𝛼 ∈ Υ, 𝑝 ⊑even 𝜋𝛼 (𝑠𝑖) such that 𝑝↾𝐴,− ≠ 𝑝↾−,𝐴.
Since 𝑠′′ := 𝑠1 · . . . · 𝑠𝑖 ⊑ 𝑠′ so we know 𝑠′′ ∈ ccopy𝐴♭ which means for every 𝑞 ⊑even 𝜋𝛼 (𝑠′′) we

have 𝑞↾𝐴,− = 𝑞↾−,𝐴. Since there is no pending 𝑂 moves in 𝑠1, . . . , 𝑠𝑖−1 so 𝑝′ := 𝜋𝛼 (𝑠1 · . . . · 𝑠𝑖−1) has
to be an even prefix of 𝜋𝛼 (𝑠′′) so is 𝑝′ · 𝑝 . But it is easy to see 𝑝′ · 𝑝↾𝐴,− ≠ 𝑝′ · 𝑝↾−,𝐴 which is a

contradiction. So we know for each 𝑖 , 𝑠𝑖 ∈ ccopy𝐴♭ . By definition, 𝑠 ∈ crashcopy𝐴. □

We also take the opportunity to show that how −♯ interacts with horizontal composition.

Lemma J.33. For any 𝜎 : (𝐴1)♭ ⊸ (𝐵1)♭, 𝜏 : (𝐴2)♭ ⊸ (𝐵2)♭,

(𝜎 ⊗ 𝜏)♯ = 𝜎♯ ⊗ 𝜏♯

Proof. For one direction fix 𝑠 ∈ (𝜎 ⊗ 𝜏)♯, we know 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
for each 𝑖 we know there exists 𝑡𝑖 , 𝑢𝑖 such that 𝑠𝑖 ∈ 𝑡𝑖⊗𝑢𝑖 such that𝑢1 · . . .·𝑢𝑛+1 ∈ 𝜎 and 𝑡1 · . . .·𝑡𝑛+1 ∈ 𝜏

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:108 Oliveira Vale et al.

By definition we can see

𝑡 := 𝑡1 · · . . . · · 𝑡𝑛+1 ∈ 𝜎♯

𝑢 := 𝑢1 · · . . . · · 𝑢𝑛+1 ∈ 𝜏♯

so we know 𝑠 ∈ strat (𝑡) ⊗ strat (𝑢) ⊆ 𝜎♯ ⊗ 𝜏♯
For the other direction let’s fix 𝑠 ∈ 𝜎♯ ⊗ 𝜏♯ then there exists 𝑡 ∈ 𝜎♯, 𝑢 ∈ 𝜏♯ such that 𝑠 ∈

strat (𝑡) ⊗ strat (𝑢). Let 𝑠′ = 𝜋Υ (𝑡) ⊗ 𝜋Υ (𝑢) by definition we know 𝑠′ ∈ 𝜎 ⊗ 𝜏 and 𝜋Υ (𝑠) = 𝑠′ so
𝑠 ∈ (𝜎 ⊗ 𝜏)♯ □

J.7 Strict Linearizability
We start by showing some auxiliary lemmas.

Lemma J.34. For any given 𝜎, 𝜏 ∈ Conc we have

𝜎♯; crashcopy𝐵 ;𝜏
♯ = 𝜎♯; ccopy♯

𝐵♭
;𝜏♯

Proof. One direction follow from an already proved lemma.

𝜎♯; ccopy♯
𝐵♭
;𝜏♯ ⊆ 𝜎♯; crashcopy𝐵 ;𝜏♯

Now let’s try to prove the other direction by contradiction. Suppose 𝑠 ∈ 𝜎♯; crashcopy𝐵 ;𝜏♯, as-
sume 𝑠 ∉ 𝜎♯; ccopy♯

𝐵♭
;𝜏♯. So there exists 𝑠′ such that 𝑠′↾𝐴,𝐵,−,− ∈ 𝜎♯, 𝑠′↾−,𝐵,𝐵,− ∈ crashcopy𝐵 but

𝑠′↾−,𝐵,𝐵,− ∉ ccopy♯
𝐵♭
, 𝑠′↾−,−,𝐵,𝐶 ∈ 𝜏♯ and 𝑠′↾𝐴,−,−,𝐶 = 𝑠

Since we already know (crashcopy)♭ = ccopy, it follows that ccopy♯
𝐵♭

= (crashcopy♭)♯. So
we get that 𝑠′↾−,𝐵,𝐵,− ∉ (crashcopy♭)♯. But this means that at least one of 𝜋Υ (𝑠′↾−,𝐵,−,−) and
𝜋Υ (𝑠′↾−,−,𝐵,−) is not well-formed. But we know both 𝑠′↾𝐴,𝐵,−,− and 𝑠′↾−,−,𝐵,𝐶 are well-formed which

is a contradiction. □

Lemma J.35. For any given 𝜎, 𝜏 ∈ Conc we have

𝜎♯; crashcopy𝐵 ;𝜏
♯ = 𝜎♯;𝜏♯

Proof. For one direction, note that 𝜎♯;𝜏♯ ⊆ 𝜎♯; crashcopy𝐵 ;𝜏♯ follows from what we showed

about 𝐾 −.
For the other direction notice that

𝜎♯; crashcopy𝐵 ;𝜏
♯ = 𝜎♯; ccopy♯

𝐵♭
;𝜏♯

⊆ 𝜎♯; (ccopy𝐵♭ ;𝜏)♯

= 𝜎♯;𝜏♯

□

Proposition J.36.

crashcopy𝐴; ccopy
♯

𝐴♭
= ccopy♯

𝐴♭

Proof. One direction ccopy♯
𝐴♭
⊆ crashcopy𝐴; ccopy

♯

𝐴♭
follows readily from what we showed

about 𝐾 −.
The other direction, let’s fix 𝑠 ∈ crashcopy𝐴; ccopy

♯

𝐴♭
, then there exists 𝑠′ such that 𝑠′↾𝐴,𝐴,− ∈

crashcopy𝐴, 𝑠
′↾−,𝐴,𝐴 ∈ ccopy♯

𝐴♭
, and 𝑠′↾𝐴,−,𝐴 = 𝑠 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:109

Let’s first show that 𝜋𝛼 (𝑠) is well-formed by contradiction. By definition we know 𝑠 can be

decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
If 𝑠 is not well-formed, we know there exists 𝛼 ∈ Υ such that there exists 𝑙 and𝑚 > 𝑙 such that

𝜋𝛼 (𝑠𝑙 · 𝑠𝑚) is not well-formed and 𝜋𝛼 (𝑠𝑚) ≠ 𝜖 . Let𝑚 be the first𝑚 satisfies the property.

This means either 𝜋𝛼 (𝑠𝑙 · 𝑠𝑚)↾𝐴,− or 𝜋𝛼 (𝑠𝑙 · 𝑠𝑚)↾−,𝐴 is not well-formed. But we know 𝜋𝛼 (𝑠𝑙 ·
𝑠𝑚)↾−,𝐴 = 𝜋𝛼 (𝑠′𝑙 · 𝑠

′
𝑚)↾−,−,𝐴 which is well-formed by definition. So the only possibility left is

𝜋𝛼 (𝑠𝑙 · 𝑠𝑚)↾𝐴,− is not well-formed.

This means there is a pending 𝑂 move in 𝜋𝛼 (𝑠𝑙)↾𝐴,− which will become a 𝑃 move in 𝑠𝑙 and this

will force 𝜋𝛼 (𝑠𝑙)↾−,𝐴 has a pending𝑂 move. But we already know 𝜋𝛼 (𝑠𝑚)↾−,𝐴 is non-empty, so this

is a contradiction.

Now we want to show 𝜋Υ (𝑠) ∈ ccopy𝐴♭ . We only need to show for each 𝛼 ∈ Υ we have 𝜋𝛼 (𝑠) ∈
copy(𝐴♭)𝛼 . Let’s also show this by contradiction, suppose there exists 𝛼 ∈ Υ and 𝑝 ⊑even 𝜋𝛼 (𝑠) such
that 𝜋𝛼 (𝑝)↾𝐴,− ≠ 𝜋𝛼 (𝑝)↾−,𝐴
So there exists 𝑝′ ⊑ 𝜋𝛼 (𝑠′) such that 𝑝′↾𝐴,−,𝐴 = 𝑝 . Since 𝑝′↾𝐴,𝐴,− is in copy(𝐴♭)𝛼 so 𝑝′↾𝐴,−,− =

𝑝′↾−,𝐴,− . Same we can get 𝑝′↾−,𝐴,− = 𝑝′↾−,−,𝐴. So we know 𝑝′↾𝐴,−,− = 𝑝′↾−,−,𝐴 which means

𝑝↾𝐴,− = 𝑝↾−,𝐴 which is a contradiction. □

With all these lemmas proved, we are ready to show observational refinement.

Proposition J.37. Let 𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc and 𝜏 : 𝐵♭ ⊸ 𝐶♭ ∈ Conc, then
str(𝜎); str(𝜏) ⊆ str(𝜎 ;𝜏)

Proof.

str(𝜎); str(𝜏) = 𝐾 𝜎♯;𝐾 𝜏♯

= crashcopy𝐴;𝜎
♯
; crashcopy𝐵 ;𝜏

♯
; crashcopy𝐶

= crashcopy𝐴;𝜎
♯
;𝜏♯; crashcopy𝐶

⊆ crashcopy𝐴; (𝜎 ;𝜏)♯; crashcopy𝐶
⊆ 𝐾 (𝜎 ;𝜏)♯

= str(𝜎 ;𝜏)

□

Proposition J.38. If 𝜈 ′
𝐴
⊆ str(𝜈𝐴) then, for all 𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc that implements an object

linearizable to 𝜈𝐵 : 𝐵♭ using 𝜈𝐴, i.e.
𝜈𝐴;𝜎 ⊆ 𝜈𝐵

It holds that,
𝜈 ′𝐴; str(𝜎) ⊆ str(𝜈𝐵)

Proof. For the forward direction, we start by noting that since

𝜈𝐴;𝜎 ⊆ 𝜈𝐵
First, note that

𝜈 ′𝐴 ⊆ str(𝜈𝐴) ⊆ str(𝐾Conc 𝜈𝐴)
By the observational refinement property on Conc it follows that

𝐾Conc 𝜈𝐴;𝜎 ⊆ 𝜈𝐵

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:110 Oliveira Vale et al.

Then, by Prop. J.37

𝜈 ′𝐴; str(𝜎) ⊆ str(𝐾Conc 𝜈𝐴); str(𝜎) = str(𝐾Conc 𝜈𝐴;𝜎) ⊆ str(𝜈𝐵)

□

For locality, note first that:

Proposition J.39. For 𝜎 : 𝐴♭
1
⊸ 𝐵♭

1
and 𝜏 : 𝐴♭

2
⊸ 𝐵♭

2
,

str(𝜎 ⊗ 𝜏) = str(𝜎) ⊗ str(𝜏)

Proof.

str(𝜎 ⊗ 𝜏) = 𝐾 (𝜎 ⊗ 𝜏)♯ = 𝐾 (𝜎♯ ⊗ 𝜏♯) = 𝐾 𝜎♯ ⊗ 𝐾 𝜏♯ = str(𝜎) ⊗ str(𝜏)

□

Proposition J.40 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 ∈ Crash and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵 ∈ Conc:

𝜈 ′
𝐴
⊆ str(𝜈𝐴) and 𝜈 ′𝐵 ⊆ str(𝜈𝐵) if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵
⊆ str(𝜈𝐴 ⊗ 𝜈𝐵)

Proof. For the forward direction we have that by monotonicity:

𝜈 ′𝐴 ⊗ 𝜈 ′𝐵 ⊆ str(𝜈𝐴) ⊗ str(𝜈𝐵) = str(𝜈𝐴 ⊗ 𝜈𝐵)

For the reverse direction, first note that

𝜈 ′𝐴 ⊗ 𝜈 ′𝐵 ⊆ str(𝜈𝐴 ⊗ 𝜈𝐵) = str(𝜈𝐴) ⊗ str(𝜈𝐵)

since we have shown the tensor is an order-isomorphism the result follows. □

J.8 Durability
Lemma J.41. Let 𝑠 ∈ 𝑃𝐴⊸𝐵 for 𝐴, 𝐵 ∈ Crash.
• If 𝑠↾−,𝐵 is durable then 𝑠↾𝐴,− is durable.
• 𝑠 is durable if and only if 𝑠↾𝐴,− and 𝑠↾−,𝐵 are both durable.

Proof.

• Let’s prove this by contradiction. Suppose 𝑠↾−,𝐵 is durable, but 𝑠↾𝐴,− is not. Then there exists

𝑖 ≠ 𝑗 such that ∃𝛼 ∈ Υ.𝛼 ∈ Υ(epo𝑖 (𝑠↾𝐴,−)) ∩ Υ(epo𝑗 (𝑠↾𝐴,−)). Since both epo𝑖 (𝑠), epo𝑗 (𝑠) ∈
P𝐴Υ⊸𝐵Υ , it follows that 𝜋𝛼 (epo𝑖 (𝑠)), 𝜋𝛼 (epo𝑗 (𝑠)) ∈ P𝐴𝛼⊸𝐵𝛼 . So by the switching condition,

and since 𝜋𝛼 (epo𝑖 (𝑠)↾𝐴,−) is non-empty we have that 𝜋𝛼 (epo𝑖 (𝑠)↾−,𝐵) is also non-empty. The

same applies for 𝑗 . Again by the switching condition, 𝛼 ∈ Υ(epo𝑖 (𝑠↾−,𝐵)) ∩ Υ(epo𝑗 (𝑠↾−,𝐵)).
But we know 𝑠↾−,𝐵 is durable which is a contradiction.

• (⇒) It is easy to see by definition

(⇐) Suppose both 𝑠↾𝐴,− and 𝑠↾−,𝐵 are durable. Let’s prove 𝑠 is also durable by contradiction.

Suppose 𝑠 is not, so there exists 𝑖 ≠ 𝑗 such that ∃𝛼 ∈ Υ.𝛼 ∈ Υ(epo𝑖 (𝑠)) ∩ Υ(epo𝑗 (𝑠)).
So 𝜋𝛼 (epo𝑖 (𝑠))↾−,𝐵 and 𝜋𝛼 (epo𝑗 (𝑠))↾−,𝐵 both can’t be empty play. So 𝛼 ∈ Υ(epo𝑖 (𝑠)↾−,𝐵) ∩
Υ(epo𝑗 (𝑠)↾−,𝐵) by the switching condition. But we know 𝑠↾−,𝐵 is durable which is a con-

tradiction.

□

Proposition J.42. Durable strategies compose.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:111

Proof. Suppose 𝜎 : 𝐴 ⊸ 𝐵, 𝜏 : 𝐵 ⊸ 𝐶 , are both durable.

We already have that 𝜎 ;𝜏 : 𝐴 ⊸ 𝐶 is well-defined, it remains to show that it is also durable. By

definition of composition we know for any 𝑠 ∈ 𝜎 ;𝜏 there exists 𝑡 ∈ 𝜎,𝑢 ∈ 𝜏 such that 𝑠↾𝐴,− = 𝑡↾𝐴,−
and 𝑠↾−,𝐶 = 𝑢↾−,𝐶 .
Since both 𝜎, 𝜏 are durable, by proposition J.41 𝑡↾𝐴,− and 𝑢↾−,𝐵 are both durable. So thanks to

proposition J.41 again we know 𝑠 is also durable. □

This means that the restriction of Crash to durable strategies, Dur, defines a semicategory.

Lemma J.43. For sets of plays
𝑆 ⊆ 𝑃𝐴⊸𝐵 𝑇 ⊆ 𝑃𝐵⊸𝐶

and
(𝑆 ∩ 𝑃dur𝐴⊸𝐵); (𝑇 ∩ 𝑃

dur
𝐵⊸𝐶) = (𝑆 ;𝑇) ∩ 𝑃

dur
𝐴⊸𝐶

Proof. For one direction, fix 𝑠 ∈ (𝑆 ∩ 𝑃dur
𝐴⊸𝐵
); (𝑇 ∩ 𝑃dur

𝐵⊸𝐶
), we know there exists 𝑠′ such that

𝑠′↾𝐴,𝐵,− ∈ 𝑆 ∩ 𝑃dur𝐴⊸𝐵
, 𝑠′↾−,𝐵,𝐶 ∈ 𝑇 ∩ 𝑃dur𝐵⊸𝐶

and 𝑠′↾𝐴,−,𝐶 = 𝑠 .

In particular we know 𝑠′↾𝐴,𝐵,− ∈ 𝑆 and 𝑠′↾−,𝐵,𝐶 ∈ 𝑇 which implies 𝑠 ∈ 𝑆 ;𝑇 . By applying

proposition J.41 we know 𝑠↾𝐴,− = 𝑠′↾𝐴,−,− , 𝑠↾−,𝐶 = 𝑠′↾−,−,𝐶 are both durable. So also by proposition

J.41 we know 𝑠 is durable. So 𝑠 ∈ (𝑆 ;𝑇) ∩ 𝑃dur
𝐴⊸𝐶

.

For other direction, fix 𝑠 ∈ (𝑆 ;𝑇) ∩ 𝑃dur
𝐴⊸𝐶

. We know there exists 𝑠′ such that 𝑠′↾𝐴,𝐵,− ∈ 𝑆 ,
𝑠′↾−,𝐵,𝐶 ∈ 𝑇 , 𝑠′↾𝐴,−,𝐶 = 𝑠 . By proposition J.41 we 𝑠↾−,𝐶 is durable so is 𝑠′↾−,−,𝐶 . By proposition J.41

we know 𝑠′↾−,𝐵,− has to be durable. Then by applying proposition J.41 again we get 𝑠′↾𝐴,−,− is

durable.

So we know 𝑠′↾𝐴,𝐵,− ∈ 𝑆 ∩ 𝑃dur𝐴⊸𝐵
and 𝑠′↾−,𝐵,𝐶 ∈ 𝑇 ∩ 𝑃dur𝐵⊸𝐶

. □

Corollary J.44. The assignment:

𝐴 ↦−−−−−−−−−→ 𝐴 𝜎 : 𝐴 ⊸ 𝐵 ↦−−−−−−−−−→ 𝜎 ∩ 𝑃dur𝐴⊸𝐵

defines a semifunctor from Crash to Dur.

Corollary J.45. durcopy is idempotent.

Corollary J.46. For any given (lax, oplax, semi) functor 𝐹 : C→ Crash, we have

𝐹 (−) ∩ 𝑃dur𝐹 𝑋⊸𝐹 𝑌 : C→ Dur

also defines (lax, oplax, semi) functor respectively

Proposition J.47. A strategy 𝜎 : 𝐴 ⊸ 𝐵 ∈ Crash is saturated with respect to durcopy if and only
if it is a durable strategy and

durably 𝑂-receptive:

∀𝑠 ∈ 𝜎.∀𝛼 ∈ Υ.∀𝑚 ∈ 𝑀𝛼𝛼𝛼:::𝑂
𝐴⊸𝐵 .∃𝑖 ≤ ∥𝑠 ∥.

epo𝑖 (𝑠) ·𝑚 ∈ 𝑃𝐴Υ⊸𝐵Υ ∧ ∀𝑗 ≠ 𝑖 .Υ(𝑚) ∉ Υ(epo𝑗 (𝑠)) =⇒

epo
1
(𝑠) · · . . . · · epo𝑖 (𝑠) ·𝑚 · · . . . · · epo∥𝑠 ∥ (𝑠) ∈ 𝜎

⇝-closed: ∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃𝐴⊸𝐵 .𝑡 ⇝𝐴⊸𝐵 𝑠 =⇒ 𝑡 ∈ 𝜎
𝑃-delaying: ∀𝑠 ∈ 𝜎.∀𝑚 ∈ 𝑀𝑃

𝐴⊸𝐵
.∀𝑚 ∈ 𝑀

𝐴⊸𝐵
.𝑠 = 𝑝 ·𝑚 ·𝑚 · 𝑡 ⇒ 𝑝 ·𝑚 · 𝑡 ∈ 𝜎

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:112 Oliveira Vale et al.

Proof. For one direction, notice that

durcopy𝐴;𝜎 ; durcopy𝐵 = (crashcopy𝐴;𝜎 ; crashcopy𝐵) ∩ 𝑃dur𝐴⊸𝐵

By J.7 we know crashcopy𝐴;𝜎 ; crashcopy𝐵 satisfies 𝑂-receptive, 𝑃-delaying and⇝-closed. So

(crashcopy𝐴;𝜎 ; crashcopy𝐵) ∩ 𝑃dur𝐴⊸𝐵
will satisfies durably 𝑂-receptive and⇝-closed.

For the other direction, suppose 𝜎 is durable, durably𝑂-receptive, 𝑃-delaying and⇝-closed. We

want to show 𝜎 = durcopy𝐴;𝜎 ; durcopy𝐵 .
Set 𝜎 ′ be the smallest strategy contain 𝜎 and satisfies 𝑂−receptive and 𝑃-delaying. By definition

we know 𝜎 ′ ∩ 𝑃dur
𝐴⊸𝐵

= 𝜎 and 𝜎 ′ satisfies⇝-closed.

Since 𝜎 ′ satisfies𝑂-receptive, 𝑃-delaying and⇝-closed, 𝜎 ′ = crashcopy𝐴;𝜎
′
; crashcopy𝐵 . So we

have (crashcopy𝐴;𝜎 ′; crashcopy𝐵) ∩ 𝑃dur𝐴⊸𝐵
= 𝜎 .

Now we have

𝜎 = 𝜎 ′ ∩ 𝑃dur𝐴⊸𝐵

= (crashcopy𝐴;𝜎 ′; crashcopy𝐵) ∩ 𝑃dur𝐴⊸𝐵

= (crashcopy𝐴 ∩ 𝑃dur𝐴⊸𝐴); (𝜎
′ ∩ 𝑃dur𝐴⊸𝐵); (crashcopy𝐵 ∩ 𝑃

dur
𝐵⊸𝐵)

= durcopy𝐴;𝜎 ; durcopy𝐵
□

Proposition J.48. For any 𝐴, 𝐵 ∈ Crash and 𝜎 : 𝐴♭ ⊸ 𝐵♭ ∈ Conc, dur(𝜎) ∈ Dur.

Proof. We want to show dur(𝜎) = durcopy𝐴;𝐾Conc 𝜎
♯
; durcopy𝐵 . For the direction dur(𝜎) ⊆

durcopy𝐴; dur(𝜎); durcopy𝐵 follows from the analogous fact about 𝐾Conc − and monotonicity of

− ∩ 𝑃dur
𝐴⊸𝐵

.

Now for the other direction, fix 𝑠 ∈ durcopy𝐴; dur(𝜎); durcopy𝐵 first by definition 𝑠 can be

decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
and for each 𝑖 we know 𝑠𝑖 ∈ ccopy𝐴; 𝑠𝑖 ; ccopy𝐵 and we know for each 𝑖 ≠ 𝑗 we have Υ(𝑠𝑖) ≠ Υ(𝑠 𝑗)
So there exists 𝑠′𝑖 such that 𝑠′𝑖 ↾𝐴,𝐴,−,− ∈ ccopy𝐴, 𝑠

′
𝑖 ↾−,𝐴,𝐵,− = 𝑠𝑖 , 𝑠

′
𝑖 ↾−,−,𝐵,𝐵 ∈ ccopy𝐵 . Since we

already know for each 𝑖 ≠ 𝑗 we have Υ(𝑠𝑖) ≠ Υ(𝑠 𝑗) so we know Υ(𝑠′𝑖) ≠ Υ(𝑠′𝑗).
So we know

𝑡 := 𝑠′
1
↾𝐴,𝐴,−,− · · . . . · · 𝑠′𝑛+1↾𝐴,𝐴,−,−

𝑡 ′ := 𝑠′
1
↾−,𝐴,𝐵,− · · . . . · · 𝑠′𝑛+1↾−,𝐴,𝐵,−

𝑡 ′′ := 𝑠′
1
↾−,−,𝐵,𝐵 · · . . . · · 𝑠′𝑛+1↾−,−,𝐵,𝐵

such that 𝜋Υ (𝑡) ∈ ccopy𝐴♭ , 𝜋Υ (𝑡 ′′) ∈ ccopy𝐵♭ and 𝜋Υ (𝑡 ′) ∈ 𝜎 , so 𝑠 ∈ dur(𝜎).
For the -receptivity, notice that suppose 𝑠 ∈ dur(𝜎),𝑚 ∈ 𝑀

𝐴⊸𝐵
, 𝑠 ·𝑚 ∈ 𝑃𝐴⊸𝐵 , it is easy to

check 𝜋Υ (𝑠 ·𝑚) = 𝜋Υ (𝑠) ∈ 𝜎 . So 𝑠 ·𝑚 ∈ dur(𝜎) □

Proposition J.49.

dur(ccopy𝐴♭) = durcopy𝐴

Proof.

dur(ccopy𝐴♭) = (𝐾Conc ccopy𝐴♭)♯ ∩ 𝑃dur𝐴⊸𝐴

= ccopy♯
𝐴♭
∩ 𝑃dur𝐴⊸𝐴

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:113

Now we only need to show ccopy♯
𝐴♭
∩ 𝑃dur

𝐴⊸𝐴
= crashcopy𝐴 ∩ 𝑃dur𝐴⊸𝐴

. One direction just follows

from J.32. Now we only need to show crashcopy𝐴 ∩ 𝑃dur𝐴⊸𝐴
⊆ ccopy♯

𝐴♭
∩ 𝑃dur

𝐴⊸𝐴
.

Fix 𝑠 ∈ crashcopy𝐴 ∩ 𝑃dur𝐴⊸𝐴
, by definition we know 𝜋Υ (𝑠) is well-formed. Futhermore since for

each 𝑖 , epo𝑖 (𝑠) ∈ ccopy𝐴♭ so we know 𝜋Υ (𝑠) is in ccopy𝐴♭ . So 𝑠 ∈ ccopy♯
𝐴♭
. By assumption, 𝑠 is

durable. So 𝑠 ∈ ccopy♯
𝐴♭
∩ 𝑃dur

𝐴⊸𝐴
. □

Proposition J.50.

dur(−) : Conc→ Dur
behaves like an (enriched) lax semifunctor.

Proof. When 𝜎, 𝜏 ∈ Conc we have
dur(𝜎); dur(𝜏) = (𝜎♯ ∩ 𝑃dur𝐴⊸𝐵); (𝜏

♯ ∩ 𝑃dur𝐵⊸𝐶)

= (𝜎♯;𝜏♯) ∩ 𝑃dur𝐴⊸𝐶

⊆ (𝜎 ;𝜏)♯ ∩ 𝑃dur𝐴⊸𝐶

⊆ (𝐾Conc (𝜎 ;𝜏))♯ ∩ 𝑃dur𝐴⊸𝐶

= dur(𝜎 ;𝜏)
□

J.9 Symmetric Monoidal Structure of Dur
Proposition J.51.

Dur : Conc→ Dur
defined by

Dur 𝜎 := vol(𝜎) ∩ 𝑃dur𝐴⊸𝐵

is a functor

Proof. It follows immediately from the fact that Dur is by definition the composition of two

functors. □

Lemma J.52. For sets of plays

𝑆 ⊆ 𝑃𝐴⊸𝐵 𝑇 ⊆ 𝑃𝐴′⊸𝐵′

and
(𝑆 ∩ 𝑃dur𝐴⊸𝐵) ⊗ (𝑇 ∩ 𝑃

dur
𝐴′⊸𝐵′) ∩ 𝑃

dur
𝐴⊗𝐴′⊸𝐵⊗𝐵′ = (𝑆 ⊗ 𝑇) ∩ 𝑃

dur
𝐴⊗𝐴′⊸𝐵⊗𝐵′

Proof. Since 𝑆 ∩ 𝑃dur
𝐴⊸𝐵

⊆ 𝑆,𝑇 ∩ 𝑃dur
𝐴′⊸𝐵′ ⊆ 𝑇 , one direction is trivial.

For the other direction, fix 𝑠 ∈ (𝑆 ⊗𝑇) ∩𝑃dur
𝐴⊗𝐴′⊸𝐵⊗𝐵′ . By definition we know 𝑠 can be decomposed

as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
And for each 𝑖 , we know

𝑠𝑖 ∈ 𝑡𝑖 ⊗ 𝑢𝑖
and

𝑡 := 𝑡1 · · . . . · · 𝑡𝑛+1 ∈ 𝜎
𝑢 := 𝑢1 · · . . . · · 𝑢𝑛+1 ∈ 𝜏

Since for each 𝑖 , Υ(𝑡𝑖) ⊆ Υ(𝑠𝑖), and Υ(𝑢𝑖) ⊆ Υ(𝑠𝑖), 𝑠 is durable implies that both 𝑡 and 𝑢 are

durable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

352:114 Oliveira Vale et al.

So 𝑢 ∈ 𝜎 ∩ 𝑃dur
𝐴⊸𝐵

, 𝑡 ∈ 𝜏 ∩ 𝑃dur
𝐴′⊸𝐵′ . So 𝑠 ∈ (𝑆 ∩ 𝑃

dur
𝐴⊸𝐵
) ⊗ (𝑇 ∩ 𝑃dur

𝐴′⊸𝐵′) ∩ 𝑃
dur
𝐴⊗𝐴′⊸𝐵⊗𝐵′ □

It immediately implies that:

Proposition J.53. For any given

𝜎 : 𝐴 ⊸ 𝐵 ∈ Conc 𝜎 ′ : 𝐴′ ⊸ 𝐵′ ∈ Conc

we have

Dur (𝜎 ⊗ 𝜏) = Dur 𝜎 ⊠ Dur 𝜎 ′

Proposition J.54. (Dur,− ⊠ −, 1) defines a symmetric monoidal category.

Proof. Functoriality follows from the fact that − ⊠ − is the composition of two functors.

We start by defining the structural morphisms. The left and right unital are straight-forward.

Indeed, they are given by

𝜆′′𝐴 := Dur 𝜆𝐴 𝜌 ′′𝐴 := Dur 𝜌𝐴

where 𝜆 and 𝜌 are the left and right unitals in Crash. The braiding and associator are given b

Now we have enough tools to define the braiding and associator in Dur

𝛽 ′′𝐴,𝐵 := Dur 𝛽𝐴,𝐵 and 𝛼 ′′𝐴,𝐵,𝐶 := Dur 𝛼𝐴,𝐵,𝐶

It immediately follows from functoriality of − ∩ 𝑃dur− , the definitions of the unitals, associators

and braiding, and the fact the corresponding structural morphisms are natural transformations in

Crash that the naturality squares still commute (not that for durable 𝜎 , 𝜎 ∩ 𝑃dur = 𝜎).
The coherence diagrams follow from functoriality of Dur − together with the fact that Dur −

distributes over −⊠− (Prop. J.53), by noting that all the structural morphisms inDurwere defined by
lifting the corresponding structural morphisms in Crash, which is also why they are isomorphisms.

□

J.10 Durable Linearizability
Proposition J.55. For a strategy 𝜈 : 𝐴♭ ∈ Crash where 𝐴 is a durable game

dur(𝜈) = {𝑠 ∈ 𝑃dur𝐴 | 𝑠 is durably linearizable with respect to 𝜈}

Proof. Suppose 𝑠 ;dur 𝑡 with 𝑡 ∈ 𝜈 . So first, by definition, 𝑠 is durable. Then, ops(𝑠) ; 𝑡 , so that

ops(𝑠) ∈ 𝐾Conc 𝜈 . But then, note that 𝜋Υ (𝑠) = ops(𝑠) as 𝑠 is durable so that 𝑠 ∈ (𝐾Conc 𝜈)♯ ∩ 𝑃dur𝐴
⊆

dur(𝜈).
For the other direction, suppose 𝑠 ∈ dur(𝜈). Then, 𝑠 ∈ 𝑃dur

𝐴
and 𝑠 ∈ (𝐾Conc 𝜈)♯. But then,

ops(𝑠) = 𝜋Υ (𝑠) ∈ 𝐾Conc 𝜈 , so that ops(𝑠) ; 𝑡 [31], and therefore 𝑠 ;dur 𝑡 . □

Corollary J.56. For a game 𝐴 ∈ Crash, 𝜈 ′ : 𝐴 ∈ Crash is durable linearizable to 𝜈 : 𝐴♭ ∈ Conc if
and only if 𝜈 ′ ⊆ dur(𝜈).

Proposition J.57. For any durable 𝜎 : 𝐴 ∈ Conc and 𝜏 : 𝐵 ∈ Conc

dur(𝜎 ⊗ 𝜏) = dur(𝜎) ⊠ dur(𝜏)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

Compositionality and Observational Refinement for Linearizability with Crashes 352:115

Proof.

dur(𝜎 ⊗ 𝜏) = (𝐾Conc (𝜎 ⊗ 𝜏))♯ ∩ 𝑃dur𝐴⊗𝐴′⊸𝐵⊗𝐵′

= (𝐾Conc 𝜎 ⊗ 𝐾Conc 𝜏)♯ ∩ 𝑃dur𝐴⊗𝐴′⊸𝐵⊗𝐵′

= (𝐾Conc 𝜎
♯ ⊗ 𝐾Conc 𝜏

♯) ∩ 𝑃dur𝐴⊗𝐴′⊸𝐵⊗𝐵′

= (𝐾Conc 𝜎
♯ ∩ 𝑃dur𝐴⊸𝐵) ⊗ (𝐾Conc 𝜏

♯ ∩ 𝑃dur𝐴′⊸𝐵′) ∩ 𝑃
dur
𝐴⊗𝐴′⊸𝐵⊗𝐵′

= dur(𝜎) ⊠ dur(𝜏)
□

Proposition J.58. For 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 ∈ Dur and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ ∈ Dur we have
𝜎 ⊠ 𝜎 ′ ⊆ 𝜏 ⊠ 𝜏 ′ =⇒ 𝜎 ⊆ 𝜏 ∧ 𝜎 ′ ⊆ 𝜏 ′

Proof. For given 𝜎, 𝜏 : 𝐴 ⊸ 𝐵 and 𝜎 ′, 𝜏 ′ : 𝐴′ ⊸ 𝐵′ suppose 𝜎 ⊠ 𝜎 ′ ⊆ 𝜏 ⊠ 𝜏 ′.
Now let’s try to show 𝜎 ⊆ 𝜏 . Fix 𝑠 ∈ 𝜎 , by definition 𝑠 can be decomposed as

𝑠 = 𝑠1 · · . . . · · 𝑠𝑛+1
By −receptive we know

𝑡 := 𝜖 · · . . . · · 𝜖 ∈ 𝜎 ′

we know that 𝑠 ⊠ 𝑡 ∈ 𝜏 ⊠ 𝜏 ′ but by definition we know it force that 𝑠 ∈ 𝜏 . So 𝜎 ⊆ 𝜏
The proof of 𝜎 ′ ⊆ 𝜏 ′ is similar. □

Locality. For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 ∈ Dur and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵 ∈ Conc:

𝜈 ′
𝐴 ;dur 𝜈𝐴 and 𝜈 ′

𝐵 ;dur 𝜈𝐵 if and only if 𝜈 ′
𝐴
⊠ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵
□

Proof.

𝜈 ′𝐴 ⊠ 𝜈
′
𝐵 ⊆ dur(𝜈𝐴 ⊗ 𝜈𝐵) = dur(𝜈𝐴) ⊠ dur(𝜈𝐵) ⇐⇒ 𝜈 ′𝐴 ⊆ dur(𝜈𝐴) ∧ 𝜈 ′𝐵 ⊆ dur(𝜈𝐵)

□

Proposition J.59. Let 𝐴, 𝐵 ∈ Crash. Then 𝜈 ′
𝐴
: 𝐴 is durably linearizable to 𝜈𝐴 : 𝐴♭ if and only

if whenever 𝜎 : (𝐴 ⊸ 𝐵)♭ ∈ Conc implements a concurrent object linearizable to 𝜈𝐵 using 𝜈𝐴, then
dur(𝜎) : 𝐴 ⊸ 𝐵 implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

Proof. For the forward direction, we have that by assumption

𝜈𝐴;𝜎 ⊆ 𝐾Conc 𝜈𝐵

And by lax functoriality of dur(−)
𝜈 ′𝐴; dur(𝜎) ⊆ dur(𝜈𝐴); dur(𝜎) ⊆ dur(𝜈𝐴;𝜎) ⊆ dur(𝐾Conc 𝜈𝐵) = dur(𝜈𝐵)

For the backward direction, note that

𝜈𝐴; ccopy𝐴♭ = 𝐾Conc 𝜈𝐴

So, by assumption,

𝜈 ′𝐴; dur(ccopy𝐴♭) ⊆ dur(𝐾Conc 𝜈𝐴)
and hence,

𝜈 ′𝐴 = 𝜈 ′𝐴; durcopy𝐴 = 𝜈 ′𝐴; dur(ccopy𝐴♭) ⊆ dur(𝐾Conc 𝜈𝐴) = dur(𝜈𝐴)
□

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Three Linearizability Criteria under Crashes
	2.1 Preliminaries
	2.2 Linearizability Under Full-System Crashes
	2.3 Specifying a Buffered Memory Cell
	2.4 Contrasting Crash-Aware Linearizability

	3 A Concurrent Game Semantics with Crashes
	3.1 Games with Full-System Crashes
	3.2 Combining Games
	3.3 Crash-Aware Strategies
	3.4 Refinement and Horizontal Composition

	4 Three Linearizability Criteria Revisited
	4.1 Abstract Crash-Aware Linearizability
	4.2 Compositional Verification of a File System Fragment
	4.3 Crash Abstraction
	4.4 Strict Linearizability
	4.5 Durable Linearizability

	5 Program Logic
	5.1 Recovery
	5.2 Programming Language
	5.3 A Program Logic for Durable Objects
	5.4 Examples Revisited

	6 Related Works
	Acknowledgments
	References
	A A Concurrent Game Semantics with Crashes
	A.1 Concurrent Games
	A.2 Games with Full-System Crashes
	A.3 The Copycat Strategies and Saturation
	A.4 Refinement and Horizontal Composition

	B Crash-Aware Linearizability
	B.1 Crash-Aware Linearizability
	B.2 Observational Refinement and Locality

	C Crash Abstraction
	D Strict Linearizability
	E Durable Linearizability
	E.1 Durable Linearizability
	E.2 Observational Refinement and Locality
	E.3 FLiT Correctness Theorem

	F Imperative Programs
	F.1 Parallel Strategies
	F.2 The Crash-Aware Replay Modality
	F.3 Imperative Strategies

	G A Program Logic for Durable Overlay Objects
	G.1 Programming Language
	G.2 Object Interfaces
	G.3 The Rely-Guarantee Crash Linearizability Hoare Logic (CLHL) for Durable Linearizability
	G.4 Soundness

	H A Program Logic for Crash-Aware Overlay Objects
	H.1 Interfaces
	H.2 The CLHL for Crash-Aware Linearizability
	H.3 Soundness

	I Applications of the Program Logic
	I.1 The FLiT Memory Cell
	I.2 The Interval-Sequential Write-Snapshot Object
	I.3 Swap Operation in File System through Write-Ahead Logs

	J Proofs
	J.1 Basic Semicategorical Structure
	J.2 Volatile Lift and Idempotence
	J.3 Concrete Saturation for Crash-Aware Games
	J.4 Symmetric Monoidal Structure of Crash
	J.5 Crash-Aware Linearizability
	J.6 Crash Abstraction
	J.7 Strict Linearizability
	J.8 Durability
	J.9 Symmetric Monoidal Structure of Dur
	J.10 Durable Linearizability

