
ADLP: Accountable Data Logging Protocol for
Publish-Subscribe Communication Systems

Man-Ki Yoon and Zhong Shao

Department of Computer Science
Yale University

Abstract—Reasoning about the decision-making process of
modern autonomous systems becomes increasingly challenging
as their software systems become more inexplicable due to
complex data-driven processes. Yet, logs of data production
and consumption among the software components can provide
useful run-time evidence to analyze and diagnose faulty op-
erations. Particularly when the system is run by a number
of software components that were individually developed by
different parties (e.g., open source, third-party vendor), it is
imperative to find out where the problems originated and
thus who should be responsible for the problems. However,
software components may act unfaithfully or non-cooperatively
to make the run-time evidence refutable or unusable. Hence, this
paper presents Accountable Data Logging Protocol (ADLP), a
mechanism to build accountability into data distribution among
software components that are not necessarily cooperative or
faithful in reporting the logs of their data production and
consumption. We demonstrate an application of ADLP to a
miniaturized self-driving car and show that it can be used in
practice with at a moderate performance cost.

Keywords-Accountability; data logging; publish-subscribe
communication; data distribution service;

I. INTRODUCTION

One of the greatest stumbling blocks for modern au-
tonomous systems is the lack of ability to reason about their
complex decision-making process. Unlike classical control
systems that are governed by analytic processes, modern
autonomous systems are operated by a plethora of software
components that interact with one another, making intelligent
decisions based on data processed by other components
in addition to sensory information from the surrounding
environment. Due to the high-complexity of their interactions
and the non-determinism of data-driven algorithms, it is often
impossible to analytically find out the cause of every fault.

Therefore, the importance of collecting run-time evidence
becomes more crucial as this can help reconstruct the sys-
tem’s behavior, which leads to improved ability to diagnose
faults and thus to enhanced overall safety. For instance, a
number of car makers have opted to equip their cars with an
‘automotive black box’ called Event Data Recorder (EDR) [1]
which, however, records only mechanical status (e.g., speed,
brake application, etc.). As self-driving cars are increasingly
deployed on the road and involved in accidents, the need for
a black box mechanism for the software system is pressing.
The software black box will keep track of the status of soft-
ware components, their decisions, and most importantly, the
record of data communicated among them. Self-driving car
manufacturers already collect a massive amount of data from

software as well as hardware components for debugging and
post-incident analysis. Such records helped reveal the causes
of recent incidents [2], [3]. However, the manufacturers often
use proprietary devices and formats for recording the data,
making it difficult for a third-party investigator (such as
the National Transportation Safety Board) to examine and
analyze them independently. Furthermore, such records can
hardly serve as legally-binding evidence due to the non-
transparency in log collection, and more importantly, the lack
of accountability in data production and consumption. Since
the software components are often developed by different
vendors, it becomes critical to assign responsibility to each
individual component for its association with data that they
produce, process, and consume, especially when a faulty
incident happens.

Hence, we propose Accountable Data Logging Protocol
(ADLP), a mechanism to build the accountability into data
communication among software components in data-driven
autonomous systems. The key element of ADLP is that soft-
ware components in a publisher-subscriber communication
model are enforced to prove that their records of actions (i.e.,
log of data production and consumption) conform to what
they actually performed. A well-constructed log of data flow
among software components can help detect the origin of a
faulty operation by keeping track of dependencies between
data production (output) and consumption (input). ADLP’s
goal is to make the log provable, serving it as irrefutable
evidence that can resolve a dispute between potentially re-
sponsible components.

The main challenge, however, is that components may act
freely and thus can be unfaithful and non-cooperative in the
logging process. For instance, a component may falsify or
even hide the logs that indicate its association with particular
data production/consumption to avoid any potential liability.
The problem becomes more difficult when components com-
municate in a decentralized (thus non-observable) way.

The challenges described above make the data logging
problem unique and thus make relevant techniques inef-
fective. For instance, in the traditional non-repudiation ser-
vices [4], [5], tamper-evident logging [6], [7], and data prove-
nance problems [8], [9], the participants’ goal is to prove their
correctness to the counterparts or protect the integrity of their
own log records. That is, every participant is assumed to be
faithful. On the other hand, in the problem discussed in this
paper, the participants (i.e., data publisher and subscribers)
are motivated to act unfaithfully (i.e., forge, hide, or alter

1149

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00116

Publisher
cx Subscriber

Log

Data

cy

Other
subscribers

D

Log
(published D)

Log
(received D)

Lx Ly

Figure 1. Data publication/subscription and logging model.

log and/or data) in order to make their potentially wrongful
operations unprovable or to accuse others of any incorrect or
inconsistent logs.

We show that novel applications of primitive cryptographic
functions in data transmission and logging processes can
enable an accountable data logging. We implemented an
instance of ADLP as part of ROS (Robot Operating System)
[10] that is transparent to the application layer. Hence, no
modification at the application level is required, facilitating
the support of legacy codebase. Using an example self-driving
application, as well as synthetic data, we demonstrate that
ADLP incurs a reasonable amount of overhead that is low
enough for a practical use.

II. SYSTEM MODEL

We consider a system of N software components, C =
{ci|i = 1, . . . , N}, that communicate with each other
via a publish-subscribe communication model (e.g., Robot
Operating System [10], OpenDDS [11]). Figure 11(b) in
Section V shows the data flows among components that
comprise an example autonomous navigation application run-
ning on a prototype self-driving car (more detail is provided
in Section V). Each component ci takes a set of inputs
Ii = {Ii,p|p = 1, . . . , |Ii|} by subscribing to relevant data
(e.g., camera image, LIDAR scan). After processing, each
component publishes outputs Oi = {Oi,q|q = 1, . . . , |Oi|}
(e.g., class of traffic sign, steering command). The input or
output sets can be empty (e.g., sensors and actuators). Each
data is accompanied with a sequence number (either as part
of the data or in the form of message header). An end-to-end
data flow (e.g., from Camera to Steering) can be formed by a
sequence of alternating publication and subscription of data.
We use Ii, Oi, or Di to denote an arbitrary input, output,
or any data item of component ci, respectively, when no
ambiguity arises or even drop the subscripts when necessary.
We assume that data is eventually delivered unless connection
is permanently lost.

There can be no two components who publish the same
data type (e.g., no two lane detectors). We use type(D) to
denote the type of data D. If any ambiguity arises (e.g., due
to redundancy), the types are uniquely labeled. Hence, given
a correct type label, the corresponding publisher of the data
is uniquely identified.

A data transmission from cx to cy for data of type D is
denoted by Dx→y . Upon receiving data, the subscriber cy
creates a log entry, Ly(D), stating the receipt of D and then
enters it to a local log file or a remote server, as shown in
Figure 1. Similarly, the publisher cx creates a new log entry,

Lx(D), stating the production of D. When no ambiguity
arises, we denote the above log entries as Lx and Ly .

The collected logs provide provenance records of data flow
among the components, which can be used later for finding
out faulty components or erroneous intermediate data. In this
paper, we do not consider the problem of verifying data
processing algorithms (e.g., correctness of vision algorithm
or machine learning model); an incorrect behavior (e.g., due
to logic error) would likely be reflected on erroneous outputs
which will be logged. A component may opt for maintaining
a separate, detailed provenance record of its internal data
processing for its own benefit (e.g., debugging trace) using
any data provenance technique [12], which is orthogonal to
our data logging problem.

A. Trust Model

Unfaithfulness: We consider non-cooperative components
that cannot be assumed to faithfully enter every log entries
about their data production/consumption correctly. A com-
ponent may forge or hide log entries in accordance with
its interests to, for instance, disturb future forensic analysis.
However, we do not need to know which components are
faithful or not. The system may contain as many unfaithful
components as possible.

An unfaithful component may not necessarily act unfaith-
fully in relation with every component that it communicates
with. For instance, in Figure 2, B may forge logs for DC→B

while it always correctly enters logs for DB→A.

Maximal Collusion Group

A

B

C

D

E

Figure 2. (Non-singleton) Maxi-
mal collusion groups.

Collusion: A group of com-
ponents may collude among
each other if, for exam-
ple, they are supplied by a
same non-compliant vendor.
Data transmissions within a
colluding group can be ar-
bitrarily forged and even
be hidden due to the non-
observability of transmis-
sion; the simplest scenario
is when both publisher and subscriber (e.g., B and C in
Figure 2) do not write any log entries even when there was
a data transmission between them, in which case there is no
way to tell if they were hiding or no actions have actually
taken place. We can define a collusion group as follows:

Definition 1 (Collusion Group). A collusion group, Ccg ⊆
C, is a set of components in which for any ci ∈ Ccg, either
(i) there exists ck ∈ Ccg (where i �= k) that colludes with ci
or (ii) Ccg is a singleton (i.e., |Ccg| = 1). A Ccg is maximal,
denoted by Cmcg, if it cannot be extended by including one
more cj ∈ C\Cmcg that colludes with some ci ∈ Cmcg.

Hence, an outside component cj ∈ C\Cmcg for a par-
ticular Cmcg (e.g, A in Figure 2) does not collude with any
ci ∈ Cmcg (e.g., B and C) as Cmcg is maximal. Also, by the
first definition, a single component itself forms a colluding
group (e.g., D), and it is maximal if it does not collude

1150

Image
Feeder

Traffic Sign
Recognition
T
R

LogL

D

D
Publisher Subscriber

D′

Figure 3. Example scenario when the subscriber received data D while
reporting that it received D′ �= D.

with any other. It is unknown if collusion groups exist in
the system.

A system is collusion-free if every Cmcg in the system
is a singleton. That is, every publisher-subscriber pair in the
system is a non-colluding pair. This paper does not make the
collusion-free assumption. In a later section we prove that no
unfaithful component can avoid a detection by ADLP when
the system is collusion-free.

Trusted Logger: Logs are entered to a trusted logger that
is not necessarily part of the underlying data distribution
system. It could be a remote log server, a local file, or even a
trusted hardware device/execution environment [13], [14], de-
pending on the need for on-line analysis, the level of integrity
protection, and the resource availability (CPU/storage). In
this paper, we do not address the security of the loggers and
we assume that a tamper-resistant or tamper-evident logging
mechanism is in place [7], [15] for the protection of log
integrity. We also assume that (i) each component is capable
of generating a pair of public key and private key [16], (ii)
its public key is securely transferred to the logger, and (iii) a
standard security mechanism is in place to protect the private
key in each component.

III. ACCOUNTABILITY IN DATA LOGGING

A. Motivational Example

Let us consider a two-components scenario depicted in
Figure 3. The image feeder component periodically publishes
a camera image which is subscribed by the traffic sign
recognition module. Suppose the image feeder captured an
image D (with stop sign) from a camera and reports to
the logger correctly. However, the subscriber writes to the
logger that it received D′ �= D. In fact, it may even always
log the receipt of D′ (that does not include stop sign)
no matter what data it actually receives, in case it fails
to recognize stop signs correctly and thus wants to avoid
potential liability. The component may even not enter any
log at all, as if the publisher did not send any data, to simply
attribute any faulty consequence to the publisher. Similar
situations can happen in the other direction. These unfaithful
actions would unlikely stem from a malicious intention to
actually disturb the system operation (e.g., faking image to
cause an accident). Instead, components could more likely
be motivated to act unfaithfully in order to make the logs
unusable. In such situations, log entries may conflict with

write write

publish subscribe

w e

ss

Oxcx cy
Iy

publish

Ox

Lx
Ly

D

Lx :
(
idx, type(O

′
x), out, tx, O

′
x

)
Ly :

(
idy, type(I

′
y), in, ty, I

′
y

)

Figure 4. Two components writing log entries about data transmission of
type D under the naive logging scheme.

one another or even be missing, leaving it difficult to decide
whose log is correct and thus which component is responsible
for a faulty consequence (e.g., accident due to running over
the stop sign).

B. Problems with Naive Logging Protocol

We first describe problematic situations in which compo-
nents’ faithfulness are unknown and discuss the challenges
that have not been addressed by relevant techniques. Let us
first consider a naive logging scheme as follows:

Definition 2 (Naive Logging Protocol). Component ci that
publishes or receives data D of type(D) at time tk enters
the following log entry:

Li :
(
idi, type(D), direction, tk, D

)
,

where idi is a unique identifier of ci and direction ∈ {out,
in} for data publication or subscription, respectively.

Now, let us consider data transmission Dx→y as shown
in Figure 4. Here Ox, O′

x are the actual data cx sent out
and the one it reported in the corresponding log entry Lx,
respectively. Similarly, Iy , I ′y are the actual data cy received
and the one it reported in the corresponding log entry Ly ,
respectively. Note that Ox = Iy always holds. Then, the
following actions can be taken by an unfaithful publisher cx
(or similarly by an unfaithful subscriber) for its own interest:

• Hiding: cx publishes Ox but does not report a log entry
about it. That is, Lx(Ox) cannot be found.

• Falsification: cx publishes Ox but enters a log entry
Lx(O

′
x) stating that it sent out O′

x where O′
x �= Ox.

• Fabrication: cx did not publish any data but enters a log
entry Lx(O

′
x) stating that it has sent out O′

x.
• Impersonation: cx publishes Ox but enters a log entry

Lz(O
′
z) as if another component cz sent out O′

z where
O′

z may or may not equal Ox.
• Timing Disruption: cx sets the timestamp tx incorrectly

so that causal relation among data transmissions become
unverifiable. A concrete scenario and analysis are pre-
sented in Section IV-B2.

For instance, a falsification by cx will result in

Lx:
(
idx,type(O

′
x),out,tx,O

′
x

)
,Ly:

(
idy,type(Ox),in,ty,Ox

)
.

However, it is equally possible that cy was being unfaithful
(as in Figure 3) and thus falsified Ly while cx indeed
published O′

x.
The problematic situations described above arise mainly

due to the lack of ability to observe actual data transmis-

1151

sion between the components. In fact, data transmission
in publish-subscribe communication system is often imple-
mented by a point-to-point transportation (e.g., TCP/IP for
ROS) due to its ability to reliably transfer critical data such as
sensor data and actuation commands [17]. Hence, Ox and Iy
in Figure 4 are not observable by others. Therefore, a compo-
nent may make up any log entries (even invalid ones) or even
stay stealthy in an attempt to make the logs unusable, without
ever being detected. Although having a central entity that
routes all data could solve most of the problems described
above, such a centralized approach is prone to a single-point
failure (due to software error or security attack) that would
be fatal especially to safety-critical systems. Hence, the
challenge is how to enforce components to report complete
and correct logs of their data production/consumption in such
a decentralized communication environment.

C. Accountability

Consider a transmission Dx→y from publisher cx to sub-
scriber cy for data D. The ideal ADLP system requires the
following properties to hold:

Definition 3 (Unforgeability). Neither Lx nor Ly must exist
in the log if Dx→y did not happen.

Definition 4 (Completeness). Both cx and cy must report the
publication and consumption of D in Lx and Ly , respectively.

Definition 5 (Correctness). Both Lx and Ly must correctly
reflect the publication and consumption of D, respectively.

Classification: Let L∗
C be the set of all log entries that the

system of components C are supposed to enter faithfully to
the log (i.e., the ideal system). Now, let us consider a non-
ideal system, and let LC be the set of log entries that are
entered by the components and thus observable by ADLP.

LH,c

LH,u

LI,f

LV,f

LH,f

L∗
C

LC

LV,cLV,u

LI,u LI,c

Figure 5. Classification of log entries
– H: hidden, V: valid, I: invalid, f:
faithful, u: unfaithful, c: collusion.

LC consists of sets of
valid and invalid log en-
tries (LV,• and LI,•, re-
spectively), as shown in
Figure 5. LH = L∗

C\LC

is the set of log entries
that are not entered. LH

consists of those that are
result of collusion, LH,c,
and those that are hidden
by non-colluding compo-
nents (i.e., purely unfaithful), LH,u. Note that LH,f = ∅ as
faithful components do not hide log entries. LC\L∗

C is the
set of log entries that are forged. Colluding components can
arbitrarily forge entries that look valid, LV,c, or (although
unlikely) invalid, LI,c. Non-colluding but unfaithful compo-
nents can also forge entries (LV,u and LI,u). If the system
is ideal, L∗

C = LC = LV,f hold.

Goal: The goal of ADLP is to identify the class of each
log entry correctly. ADLP classifies each Li ∈ LC into

either L̂V or L̂I (i.e., valid or invalid, respectively) and finds

hidden entries, L̂H. However, the possibility of collusion

cycx

Log

Ox, sx

Iy, sx, syOx, sx

sx = signx(h(Ox))

sy = signy(h(Iy))

Figure 6. Signed hash of data is used for non-repudiation of log entries.

may limit ADLP’s ability to identify them correctly and
completely. Nevertheless, we show that ADLP can prove that
the log entries entered by any faithful components are always

identified as valid (i.e., Li ∈ LV,f ⇒ Li ∈ L̂V). This means
that log entries that are results of data transmission between a
non-colluding pair cannot be hidden or misclassified. Hence,
if there is a dispute between a non-colluding pair, ADLP can
verify whose log entry conforms the reality. Due to this prop-
erty, in a collusion-free system, ADLP can unambiguously
identify any unfaithful component and thus correctly classify
every log entries. We will prove these in Section IV-B1.

IV. ACCOUNTABLE DATA LOGGING PROTOCOL

A. Design Principles of ADLP

The main limitation of the naive logging scheme pre-
sented in Section III-B is lack of a mechanism to assert an
interdependence between the log entries. For instance, the
publisher’s entry does not include any information about the
subscriber’s ‘view’ on the received data. Furthermore, the
naive protocol cannot force the participants to enter logs.
Hence, certain meta-information that can indicate the coun-
terpart’s faithfulness in log entry and a method to penalize
non-cooperating components are key ingredients of ADLP. In
what follows, we present the design principles of ADLP. In
Section IV-B, we formally prove the accountability property
of the protocol.

A partial, but incomplete, solution to the problems de-
scribed in Section III-B is the use of cryptographic signature1

to assert the origin of message (in our case, log entry) [4],
[5]. By forcing the software components to include a signed
hash of the data in the log entries, ADLP achieves the non-
repudiation property of the log entries. ADLP extends this
by having publisher send its signed hash, sx, along with the
data it intends to publish, Ox, as illustrated in Figure 6. The
subscriber is required to report the signed hash sx along with
the data it received and its own signed hash of the data in
its log entry. The key function of the publisher’s signature
sx is that it leads the publisher to act more faithfully (i.e.,
report what is actually published) because the subscriber,
whose faithfulness is unknown to cx, would likely report
what it receives from cx as is. From sx reported by the
subscriber, an auditor can verify the correctness of cx’s log
entry. Therefore, under an assumption of non-colluding pair,
the publisher cannot (i) pretend to have sent data O′

x when
the actual data was Ox (i.e., falsification) and (ii) make log

1We use the following notations – h(·) : a cryptographic hash function
that is preimage resistant and collision resistant. signi(·) : a cryptographic
signature with ci’s private key. verifyi(·, s) : a signature verification
function of signature s and a given digest, using ci’s public key.

1152

cycx

Log

Ox, sx

Iy, sx, syOx, sx, h (Iy) , sy

h (Iy) , sy

Figure 7. Extended logging policy for incorporation of subscriber’s
acknowledgement h(Iy) and sy .

entries look as if they were entered by other components (i.e.,
impersonation).

However, cy may act unfaithfully by accusing the publisher
cx of sending wrong data Iy �= Ox. This is possible
because cy can freely choose any Iy and sy (as long as
verifyy(h(Iy), sy) = True) for the false accusation. Fur-
thermore, components can be completely non-cooperative by
not reporting any log entries (i.e., hiding). Even more worse,
a component can still fabricate a log entry as if it has received
data when it actually did not (i.e., fabrication). Signing alone
cannot prevent these situations. Let us consider Figure 6
again. The subscriber cy may not write any log entry upon
receiving data from cx as if cx did not send any data to cy .
In this case, only the following entry would be found:

Lx :
(
idx, type(Ox), out, Ox, sx

)
.

This entry alone cannot prove cx’s publication of Ox, because
the log would look exactly same with what would be made
when cx indeed did not publish any data but fabricated it.
ADLP’s solution to such stealthy, non-cooperative compo-

nents is to force publisher and subscriber to exchange their
signed hashes. Hence the policy in Figure 6 is extended to
having the subscriber cy send its signed hash sy , along with
the hashed data h(Iy), to the publisher cx which in turn
reports them in its log entry Lx as shown in Figure 7. The
subscriber’s return message plays two important roles. First,
similar to the publisher’s signed hash, it makes the subscriber
less likely make up arbitrary data Iy and signature sy . More
importantly, it serves as an acknowledgement that exposes
cy’s receipt of the data, preventing cy from claiming that
it has not received any data from cx when it did. If the
subscriber does not commit itself on the receipt of data, the
publisher may penalize it by, for example, not sending data.

A further complication is that components may try to
reuse the counterpart’s signature. For instance, an unfaithful
subscriber cy may reuse Ox and sx received previously and
create a new log entry based on them, claiming that cx
has sent the same data when it has not. ADLP’s solution is
to incorporate freshness information (i.e., sequence number)
into signatures, log entries, and messages. Hence, for the
seqth publication of data D by publisher cx, sx now becomes
sx = signx(h(seq||D)), where || is the concatenation
operator, and the sequence number seq is sent along with
data D and also included in the log entry. The subscriber also
includes the sequence number in sy = signy(h(seq||D)). In
the rest of the paper, unless otherwise necessary, we do not
include sequence numbers and timestamps in the descriptions

Ox, sxOx, sr

Iy, sr, syIy(= Ox), sr, sy

invalid

invalid

cycx

s s

cycx
Ox, x

Figure 8. Publisher cx can falsely accuse subscriber cy of fabricating log
entry by sending an invalid pair of data Ox and signature sr . The two cases,
(a) and (b), are not differentiable from an auditor’s point of view.

for brevity and assume that they are embedded in message
digest (which is the case in ROS message).

For the logging protocol presented above to provide truly
provable logs of data flow among components, one key re-
quirement must be satisfied; publisher and subscriber cannot
send invalid signatures. For illustration, let us consider a
case when unfaithful publisher cx sends out data Ox while
reporting to the logger that it sent O′

x �= Ox. As will be
discussed in Section IV-B, it is in cx’s best interest to choose
an invalid pair of Ox and sx in order to avoid the detection of
sending Ox �= O′

x. This is because a valid pair of Ox and sx
can only be given by cx. Now, suppose cx has sent an invalid
pair of Ox and sr (e.g., by generating a random signature
sr) as shown in Figure 8(a). Then, the subscriber’s log entry
will include them, i.e., Iy = Ox and sr. When an auditor
tries to verify its validity, it will fail because sr is not a valid
signature for Iy . But, the auditor cannot accuse cx of sending
the invalid signature because cx can refute the accusation by
claiming that subscriber cy has arbitrarily fabricated Iy and
sr in the log entry as illustrated in Figure 8(b). Moreover,
cy cannot provide any proof that it did not fabricate them. A
similar situation can happen in the opposite direction.

Hence, it is important to enforce that the signatures ex-
changed between the components to be valid with regard
to the data that are sent along with. Among a number of
possible approaches, in our ROS-based prototype implemen-
tation (presented in Section V), we make the signing process
transparent to the logging process. That is, given data to
be published, a signature is computed and included in ROS
message together with the data at the ROS transport layer.

h(Iy) vs Iy: As shown in Figure 7, the subscriber’s log entry
contains the data it received from the publisher. However, this
is unnecessary because (i) the log verification is done using
the hashed version and (ii) the data is already reported in
the publisher’s log entry. Hence, subscriber can instead store
the hash of the received data, h(Iy). This could save storage
for the logs especially for large-size data (e.g., images).
Similarly, the subscriber can return data Iy instead of h(Iy)
to the publisher in the return message, especially when the
data is small. In Section VI, we evaluate the storage overhead
of ADLP with respect to data size and the use of h(Iy).

B. Protocol Analysis
In this section, we prove the accountability property of

ADLP. For this, let us consider a generalized diagram of
data transmission from publisher cx to subscriber cy , shown
in Figure 9. We use simplified notations for brevity. When

1153

cycx
Lx Ly

Mx : (Dx, sx)

My : (Dy, sy)

Lx :
(
idx, type (D

′
x) , out , D′

x, s
′
x, D

′
y, s

′
y

)
Ly :

(
idy, type

(
D′′

y

)
, in , D′′

y , s
′′
x, s

′′
y

)
Figure 9. Generalized diagram of data flow and logging protocol under
ADLP for the analysis in Section IV-B. Recall that sequence number and
timestamp are omitted for brevity.

cx publishes data Dx, it is sent along with its signed hash
sx. We call it message Mx. It is what the underlying data
distribution system delivers to the subscriber cy (e.g., an ROS
message). Then, cy returns an acknowledgement message My

that consists of Dy and sy .
If cx is faithful, it reports what it sent and received as is:

D′
x = Dx and s′x = sx and D′

y = Dy and s′y = sy (1)

hold, where sx = signx(h(Dx)). Similarly, if cy is faithful,

D′′
y = Dx = Dy and s′′x = sx and s′′y = sy (2)

hold, where sy = signy(h(Dy)). Recall that Dx, sx, Dy , and
sy are what the components are supposed to report in the logs,
but these are unobservable to the logger because of the point-
to-point communication. As explained in Section IV-A, the
subscriber may store the hashed data, h(D′′

y) in its log instead
of the data D′′

y itself (e.g., for space saving), and also in the
return message My . However, for brevity and consistency, we
simply use data symbols. Also recall that sequence number
and timestamp are omitted except where necessary and that
the former is a part of digest for signing.

Obvious Detection: Components would not likely risk ob-
vious detection. For example, since the components’ public
keys are known, the authenticities of Lx and Ly are easily
verifiable. Hence, at a minimum, s′x (resp. s′′y) must be valid
with regard to D′

x (resp. D′′
y) in Lx (resp. Ly):

verifyx(h(D
′
x), s

′
x) = verifyy(h(D

′′
y), s

′′
y) = True, (3)

Therefore, it is of little relevance to consider the cases when
these do not hold. This also implies that no component can
write a log entry as if it was created by someone else.

Also, we can assume that type(Dx) = type(D′
x) =

type(D′′
y) = type(Dy) always hold because otherwise it

is obviously detectable. In addition, as explained in Sec-
tion IV-A, the signatures exchanged between the components
(i.e., sx in Mx and sy in My) are valid with regard to data:

verifyx(h(Dx), sx) = verifyy(h(Dy), sy) = True, (4)

1) Proofs of the Accountability Property: We now prove
the accountability property (listed in Section III-C) of ADLP.
We first prove that components cannot pretend to have sent
or received data when there was no actual data transmission.

Lemma 1 (Unforgeability). Publisher (resp. subscriber) can-
not fabricate a log entry for data that it did not send (resp.
receive).

Proof: Suppose publisher cx tries to fabricate a log
entry Lx without publishing any data. This means cx should
fabricate cy’s signature s′y to include it in Lx (recall Figure 9).
cx may reuse a previously received message My which has
cy’s valid signature. However, remind that we use sequence
numbers to attach freshness information to log entries. Hence,
for cx to make up a log entry about the seqth publication, say
D′

x, without sending it out, cx should be able to successfully
forge s′y = signy(h(seq||D′

x)), which is not possible unless
cy’s private key is known to cx. Then, cx may claim that (i)
it indeed has sent D′

x but (ii) the subscriber cy returned a
wrong pair of Dy and sy , and (iii) cy did not write a log
entry about D′

x. However, (4) eliminates such a possibility.

Subscriber cannot fabricate a log entry either because of
the impossibility of creating a valid signature for publisher
(i.e., s′′x in Ly). The subscriber then may try reusing an
old data-signature pair Mx that it received previously, but
the sequence numbers deter such an attempt. Subscriber cy
may create a random signature instead, as in Figure 8, in
an attempt to accuse the publisher of giving an invalid Mx.
However, this is impossible due to (4).

Therefore, the publisher’s log entry Lx alone cannot prove
its publication unless it can forge the subscriber’s signature
s′y that is valid with regard to the sequence-numbered data.
A similar argument applies to the subscriber’s case.

The next lemma proves that components cannot hide their
data production and consumption.

Lemma 2 (Completeness). Publisher (resp. subscriber) can-
not hide its publication (resp. receipt) of data if subscriber
(resp. publisher) is faithful.

Proof: Suppose publisher cx sent out data in message
Mx. Subscriber cy will receive the valid pair of data and
signature in Mx due to (4) and will write log entry Ly

based on them. Hence, cy’s log entry will prove that cx has
published data that agrees Ly . cx may then claim that cy
replayed an old Mx, which is not possible due to the freshness
asserted by the sequence number as explained in the proof
of Lemma 1.

Now, in order for cy to keep receiving data from cx, the
protocol requires the subscriber to return an acknowledgment
message My to cx. Hence, even if cy does not write any log,
it should send a return message My to cx. Since My cannot
be an invalid one due to (4), the pair D′

y = Dy and s′y = sy
in the publisher’s log entry Lx reveals that the subscriber
acknowledged the receipt of cx’s data.

The following lemma proves that components cannot pre-
tend to have sent/received data that differs from what is
actually sent/received.

Lemma 3 (Correctness). (i) If subscriber cy is faithful,
publisher cx who sent Dx cannot write a log entry Lx such
that D′

x �= Dx. Simiarly, (ii) if publisher cx is faithful,
subscriber cy who received Dx cannot write a log entry Ly

such that D′′
y �= Dx.

Proof: (i) Suppose cx published Dx �= D′
x. Then,

1154

subscriber cy writes the following log entry:

Ly :
(
idy, type(Dx), in, Dx, sx, sy

)
,

cycx Dx, sx

Lx Ly

Dx, sx

cycx Dx, sx

Lx Ly

Dx, sx D′′
y , s

′′
x

D′
x, s

′
x

because D′′
y = Dx and s′′x = sx

by (2). From the data type in-
formation, which is unique, the
auditor can use cx’s public key
to verify (4) from sx in Ly , and
conclude that the data and sig-
nature must have been given by
cx. However, the auditor finds
D′

x from the publisher’s log en-
try Lx. Since the log entries do
not agree with each other (i.e.,
D′

x �= D′′
y = Dx), it must be

that Lx has been falsified. Therefore, cx cannot send Dx that
differs from D′

x without being detected.

(ii) The subscriber cy cannot prove that cx has sent D′′
y ,

not Dx, because the verification of s′′x for D′′
y in Ly will fail

(because cy cannot forge a correct signature for cx). cy may
refute by claiming that cx has sent a wrong data-signature
pair in Mx, which cannot be true because of (4). Therefore,
cy cannot accuse the publisher cx of sending wrong data as
long as cx is faithful, i.e., (1) holds.

Combining the results above, we now prove that ADLP can
attest the faithfulness of any faithful component that operates
under ADLP.

Theorem 1. If ci is faithful in logging under ADLP, Li(D)
for every Di→j (i.e., publication) and Dj→i (i.e., subscrip-
tion) must be found and identified to be valid by ADLP. That
is, Li ∈ LV,f ⇒ Li ∈ L̂V (see Figure 5 in Section III-C).

Proof: A direct application of Lemmas 1–3 proves
that for any non-colluding pair, ADLP can unambiguously
identify faithful and unfaithful components. That is, (i) by
the completeness, LH,f = ∅, and thus Li must be found,
and (ii) by the unforgeability and the correctness, LI,f = ∅.

Therefore, Li ∈ LV,f cannot be classified into L̂H or L̂I.

The theorem states that LV,f ⊆ L̂V holds. That is, no
valid entries can be incorrectly classified as invalid even when
collusion exist. However, due to the possibility of collusion

(thus LV,c may not be non-empty), L̂V ⊆ LV,f does not
necessarily hold. Nevertheless, Theorem 1 implies that any
‘edge’ component of a collusion group (e.g., B in Figure 2)
that communicates with an outside component cannot enter
invalid log entries or hide them for the transmission without
being detected. Extending this property, if the system is
collusion-free, any unfaithful act is always detectable.

Theorem 2. If the system is collusion-free, any unfaithful
component can be detected by ADLP.

Proof: In addition to LI,f = ∅ and LH,f = ∅, the
correctness property ensures LV,u = ∅. Also, due to the

non-collusion property, LV,c = ∅. Hence, L̂V = LV,f . Since
for each publisher-subscriber pair, at least one is faithful

and identifiable (due to Theorem 1), we can always verify
the validity of the counterpart with respect to the faithful

component. Therefore, L̂I = LI,u and L̂H = LH,u, i.e., log
entries that are invalid or hidden by unfaithful components
are identifiable.

2) Temporal Causality: Timestamps in log entries, to-
gether with sequence numbers embedded in data or message
header, can help establish temporal causal relations among
data transmission. For illustration, let us consider three com-
ponents, cx, cy , and cz , and data transmissions Dx→y and
Dy→z shown in Figure 10(a). Here, the data flow Dx→y

precedes Dy→z . The middle component, cy , enters two log
entries; upon receiving (resp. sending) data from cx (resp. to
cz). Let us denote them by Ly,in and Ly,out, respectively.
cx and cz also write logs entries. Let us denote them by
Lx,out and Lz,in, respectively. Now, let tx,out, ty,in, ty,out,
and tz,in denote the timestamps in the log entries. If all of
the components are faithful, tx,out < ty,in < ty,out < tz,in
must hold as shown in Figure 10(b), assuming a proper
time synchronization mechanism is in place. The following
lemma proves that an unfaithful component cannot change
the precedence relation between Dx→y and Dy→z without
being detected.

Lemma 4 (Temporal Causality). If Dx→y happened be-
fore Dy→z , the precedence relation between them cannot
be changed by any unfaithful component while avoiding a
detection unless all of the components collude together.

Proof: It is easy to show that cx alone cannot change
the precedence relation between Dx→y and Dy→z because
this would require cy to change the timestamps in Ly,in

and Ly,out such that ty,out < ty,in. However, this is not
possible because cx and cy is not a colluding-pair. For a
similar argument, cz cannot change the precedence relation.

Now suppose cy is unfaithful. It can alter its timestamps,
ty,out and ty,in, such that ty,out < ty,in. As can be seen
from Figure 10(c), cy alone cannot break the precedence
relation between Dx→y and Dy→z . For cy to avoid the
detection, it needs to collude with both cx and cz , as shown
in Figure 10(d) so that ty,out < tz,in < tx,out < ty,in would
hold. However, unless all of the them collude together, this
is not possible.

It should be noted that timestamps are only useful to
establish a precedence relation between data transmissions.
The timestamp value itself does not prove the exact timing

tx,out

cx cy cz
Dx→y Dy→z tx,out

tx,outty,in

ty,in

ty,in

ty,out

ty,out

ty,outtz,in

tz,in

tz,in

Dx→y

Dx→y

Dy→z

Dy→z

Dy→z

Dx→ycx cy

cz

cz

cy

t
cy

t
cx

t
cx cy

cz

t
cy

t
cy

Figure 10. Temporal causal relation between two data transmissions
generated by a chain of components.

1155

Image
Feeder

LIDAR

Lane
Detection

Traffic Sign
Recognition

Obstacle
Detection

Behavior Planning

Actuation
Control

ESC Servo

ectec o

image
20Hz

CTE
20Hz

sign_class, distance
20Hz

min_dist
40Hz

steering
20Hz

drive_cmd
20Hz

throttle steering
Camera

Obstacle Actua

zLIDAR
Interface

ecog

sign_class,
20Hz

image
20Hz

ed erfa

ncce

scan
40Hz

speed
20Hz

atiObstacle Actua

min_dist
40Hz

steering
20Hz

e m
4

20Hz20Hz

steerittl
ROS Serial

ssss

S/W

H/W

Data Size (bytes)

image 921641

CTE 20

sign_class, distance 28

min_dist 20

scan 8705

speed 20

steering 20

drive_cmd 24

ta dist

an

Figure 11. 1/10-scale self-driving car navigating an indoor tracking using
a camera and a LIDAR sensor.

of data production or consumption because it can be set at
an arbitrary point of the communication process by the log
entry owner.

V. PROTOTYPE IMPLEMENTATION

In this section, we present the implementation details of
ADLP on a miniaturized self-driving car platform.

A. Self-Driving Car Platform
We built a miniaturized self-driving car, shown in Fig-

ure 11(a), that can autonomously navigate an indoor track
using a camera and a LIDAR (Light Detection and Rang-
ing) sensor. The computing module is Intel NUC mini PC
[18] which has a dual-core Intel Core i5-7260U processor
operating at 2.20 GHz, and a main memory of 8 GB. The
actuation commands are sent from this main computer to a
microcontroller board that outputs control signals to the car’s
actuation modules.

We run unmodified Ubuntu 16.04 on which ROS (Robot
Operating System) Kinetic [10] is installed. The self-driving
application is comprised of a set of ROS nodes (equivalent
to components in this paper). Most of the them are written in
Python and thus use rospy [19], the Python client library
for ROS. Figure 11(b) shows the ROS nodes that comprise
the self-driving application, their publisher-subscriber chan-
nels, and data (called as topic in ROS) transferred via the
channels. These ROS nodes run concurrently on the quad-
core processor as individual Linux processes.

B. ADLP Implementation
We implemented ADLP as part of rospy. ROS uses

TCP/IP socket for data transmission from publisher to sub-
scriber (whether or not they are on the same machine). We
modified the ROS transport layer in rospy to instantiate
ADLP’s extended messaging scheme. For logging operations,

cx

Logging
Thread

ggin

Mx

cy

Log

SubscriberPublisher

Log Server

Keys

Oxx

sx

Iyy

syssyssx

My

Mx

My

Logging
Thread

ggin
(per node)

y

ROS
Application

Nodes

rospy
(TCPROS)

sx

Logging
Thread

Log Server

er

Connection Thread (per subscriber)

(per node)

h(·)

signx(·) signy(·)

h(·)
h(Iy)

Figure 12. ADLP implementation in rospy and the messaging and logging
processes. Mx = (Ox, sx),My = (h(Iy), sy)

we created a Logging Thread that runs in parallel with each
node’s main thread. One logging thread is created per ROS
node, no matter how many topics the node publishes and
subscribes. Figure 12 shows the ADLP implementation in
rospy as well as the messaging and logging process under
ADLP, which we detail in what follows. This process is
transparent to the ROS application layer. The key benefit
is that applications are not aware of ADLP’s operation and
even its presence, hence no modification is needed at the
application layer. This allows system developers to reuse
legacy applications while utilizing ADLP.

1© Key registration: When a logging thread starts up, it
first generates a pair of public and private keys. In our
implementation, we use RSA-1024. Each node generates
its keys using PyCrypto library [20]. The log server stores
the public keys so that they can be used for verifying log
entries later. As aforementioned, each ROS node runs as a
standalone Linux process. Hence each node’s private key
is protected from others as long as proper Linux-process
security mechanisms are in place.

2© Signing and publication: Publisher cx publishes data.
The hash of the data is computed and then signed by using
SHA-256 and PKCS#1 v1.5 [21], respectively. Using the
data and the signature, a message Mx is composed and sent
to each of the subscribers separately (ROS runs a connection
thread per subscriber, not per topic). Note that the hash and
the signature are computed just once for a single publication.
If the acknowledgement to the previously published message
has not been received from a particular subscriber, the new
message is not sent to the subscriber. The message Mx is
also stored at the logging thread for a future use in step 6©.

3© Receiving message: Subscriber cy’s ROS transport layer
receives the message Mx. It is decomposed into the data,
Iy = Ox, and the publisher’s signature, sx. sx is stored at
the subscriber’s logging thread for a future use in step 5©.

4© Sending ACK message: The hash of the received data is
computed and signed with the subscriber’s private key that is
stored in its logging thread. The acknowledgement message

1156

My is sent to the publisher while the data Iy is sent up
to the subscriber’s application layer. This acknowledgement
message has a fixed size of 160 bytes – 32 bytes for h(Iy)
and 128 bytes for sy due to SHA-256 and RSA-1024,
respectively.

5© Entering subscriber’s log entry: The message My is
given to the logging thread. It then creates a log entry based
on My and sx as well as the basic information (i.e., unique
node name, seq, time, data type, and data flow direction). sx
was obtained from the publisher in step 3©. We use Google
protocol buffers [22] for serializing the log entries on the
network and the disk at the log server. Note that the same
log entry structure (using only the required fields) is used for
the naive logging scheme (Definition 2).

6© Entering publisher’s log entry: Upon receiving the sub-
scriber’s acknowledgement message My , the logging thread
writes a log entry based on My and Mx, the latter of which
was obtained in 2©, as well as the basic meta-information.

Each ROS message includes a header field which we use
to set the sequence number. That is, the sequence number
is a part of the ROS message digest which is hashed and
signed. In addition, notice from Figure 12 that, there is no
dependence of the ROS side on the log server; log entries
are simply pushed into the server. Hence, ADLP is free from
a single-point failure – any failure at the log server does not
interrupt a normal operation of the ROS nodes.

VI. EVALUATION

In this section, we evaluate ADLP in terms of the overhead
due to the introduction of the cryptographic functions and the
extended messaging scheme under ADLP.

A. Message Latency

The use of cryptographic functions in ADLP incurs indis-
pensable computational overhead. Hence, we first measured
the times to perform hashing and signing on representative
data types that have different sizes. Table I shows the average
times to perform hashing-only and hashing + signing on dif-
ferent types of data for the sample size of 3000 respectively.
In order to see the impact of these overheads on the message
latency, we also measured the end-to-end message times
from publisher to subscriber for synthetic data of varying
size as shown in Figure 13. Here we compare ADLP, which
attaches signed hash of data in each message, against the
naive scheme (‘baseline’ defined in Definition 2), which
sends only data in each message. In the latter, no crypto
functions are used. We can see from the results that the
increases in latency under ADLP is approximately the twice
of hashing+signing time. This is because the subscriber also

Table I
HASHING AND SIGNING TIME FOR DIFFERENT DATA TYPES.

Type Size Hashing only Hashing + Signing
(bytes) Avg. time (stdev) Avg. time (stdev)

Steering 20 0.109 ms (0.025 ms) 3.042 ms (0.684 ms)
Scan 8705 0.201 ms (0.049 ms) 3.129 ms (0.671 ms)

Image 921641 2.638 ms (0.353 ms) 3.457 ms (0.460 ms)

101 102 103 104 105 106

Data size (bytes)

0

2

4

6

8

10

12

14

16

18

M
es

sa
ge

 L
at

en
cy

 (
m

s)

ADLP
Base

Figure 13. Average message latency from publisher to subscriber.

performs the crypto functions when receiving a message
from the publisher. Recall that the subscriber is required
to return an acknowledgment message that contains its own
version of hash, h(Iy), and the signed hash, signy(h(Iy))
(see Figure 7 in Section III or Figure 12 in Section V), as
soon as it receives data Iy . In the current implementation, this
is performed in the middle of message deserialization step
before passing the data to the subscriber’s application layer.
Hence, the latency at the subscriber’s side can be improved by
separating the acknowledgment step from the main execution
path and running them in parallel, which will hide the added
latency due to the crypto functions. Nevertheless, the current
implementation is practical enough to publish messages at
higher rates than that required. For instance, images can be
published as frequently as at 60 Hz without backlog which
is much faster than 20 Hz in our self-driving application.

B. CPU Utilization

The use of the crypto functions also results in increased
CPU utilization. For this experiment, we used one Image
publisher and a set of Image subscribers. The choice of Image
data is to see the impact of large-size data on the CPU
overheads. Figure 14 presents the average CPU utilization
of the publisher measured for 5 minutes and the standard
deviations (the error bars). We compare three methods – (i)
no logging, (ii) base (i.e., naive) logging, and (iii) ADLP. Note
that no crypto functions are used in (i) and (ii). Hence, by
comparing (i) and (ii), we can estimate the bare minimum

1 2 3 4
Number of Image subscribers

0

10

20

30

40

50

60

70

80

90

100

Im
ag

e
pu

bl
is

he
r's

 C
P

U
 U

til
iz

at
io

n
(%

)

No logging
Base logging
ADLP

Figure 14. Average CPU utilization of Image publisher for different number
of Image subscribers.

1157

Table II
AVERAGE SYSTEM-WIDE CPU UTILIZATION WHEN RUNNING THE

SELF-DRIVING APPLICATION ON THE PROTOTYPE PLATFORM.

Idle No Logging Base Logging ADLP

Average 26.03% 77.21% 83.24% 88.69%
Stdev 1.92% 2.63% 3.58% 3.36%

overhead due to the basic logging operations (i.e., sending
log with data to the log server). For one publisher-subscriber
pair, this overhead is about 1.8%, which accounts for the
additional operations to create and enter log entries (including
the data). The additional CPU utilization for the handling of
more subscribers approximately linearly increases.

Now, from (ii) and (iii) we can estimate the overhead
due to the crypto functions as well as the handling of sub-
scriber’s acknowledgement. For the case of single subscriber,
this overhead is about 6.7%. However, it does not linearly
increase with the number of subscribers; for the case of
four subscribers, the overhead is still about 8.5%. This is
because the publisher needs to execute the crypto functions
only once for each publication, regardless of the number of
subscribers. Hence, we can consider the cost of ADLP to be
relatively fixed when compared to the indispensable overhead
of base logging activities. Furthermore, the relative cost, i.e.,
(iii)−(ii)
(ii)−(i) , becomes smaller as more subscribers are served.

Table II shows the average system-wide CPU utilization
when running the self-driving car application. As above,
we compare the three cases as well as the case when the
application is not running (labeled ‘Idle’). We can first see
that the application without any logging uses nearly 50%
of the CPU utilization (equivalent to 2 logical cores out
of 4). Additional 6% is used to enable the base logging
operations. Consistent with what was observed above, the
CPU resource needed for ADLP, which accounts for about
5.45%, is relatively smaller than that for the basic logging
operation.

C. Message and Log Entry Sizes
We also evaluate the overheads in message and log en-

try sizes due to ADLP’s extended messaging and logging
schemes. Table III shows message sizes for different types of
data under ADLP scheme. For a data of size |D|, the actual
message size is |D| + 4 + 128 due to (i) a 4-byte length
preamble attached by the ROS transport layer (to indicate
the message digest size) and (ii) a 128-byte length signed-
hash due to RSA-1024. Hence, the overhead is calculated
by 128

|D|+4 . While the overhead is merely 0.014% for Image

data, it can be a significant increase for small-size data such
as Steering angle.

Table III
MESSAGE AND LOG ENTRY SIZES (ALL IN BYTES).

Type Message Log entry size
size Scheme Publisher’s Subscriber’s

Steering 152
Base 69 84
ADLP 359 337

Scan 8837
Base 8752 8767
ADLP 9042 350

Image 921773
Base 921687 921702
ADLP 921977 350

Table III also shows the log entry sizes for the different
data types. With the base logging scheme, both publisher
and subscriber simply store data as is along with the node’s
name, data type, transmission direction, and time as defined
in Definition 2. ADLP generally increases the log entry sizes
due to the addition of signed hashes. However, the overhead
becomes smaller as the data size increases. For instance, each
log entry entered by Image publisher needs only 0.03% more
extra bytes under ADLP. More importantly, subscribers do
not need to store data as is. By storing the hashed version
instead, the logger can save significant space; the entry size
for an Image subscription is only 350 bytes, which is 0.08%
of what it would have been when storing the data as is. For
small-size data, however, the space can be saved by storing
data itself instead of the hash.

D. Log Generation Rate
Data-driven applications generate a massive amount of data

at high frequency. For instance, even a single Image Feeder
node in our prototype generates about 18 MB/s of image data
(about 900 KB/image at 20 Hz). The storage requirement be-
comes more significant when considering (possibly a number
of) subscribers that also need to create log entries for their
own accountability. In order to evaluate the storage overhead,
we measured the log generation rate.

Base h(D''
y
) D''

y
Steering data

0

10

20

30

40

50

60

70

80

90

100

Lo
g

ge
ne

ra
tio

n
ra

te
 (

kb
/s

)

Base h(D''
y
) D''

y
Image data

0

0.5

1

1.5

2

2.5

3

3.5

4
×104

Figure 15. Log generation rates for
Steering data (Left) and Image data
(Right). Notice the Y-axis scales.

Figure 15 shows the
log generation rates for
(i) Steering angle and
(ii) Image. For each data
type, we compare three
cases - (a) base logging
scheme with the sub-
scriber storing data as
is (labeled ’Base’), (b)-
(c) ADLP with the sub-
scriber storing hashed
data (labeled h(D′′

y)) or
data as is (labeled D′′

y), respectively. As discussed in Sec-
tion VI-C, for large-size data such as Image, storing the
hashed data in the subscriber’s log entry can reduce a signi-
fication amount of log size. Also, the extra storage required
by ADLP compared to the base logging is small.

Table IV
THE LOG GENERATION RATES.

Average (Stdev)

Base 36.893 (0.462) Mb/s
ADLP 37.297 (0.474) Mb/s

We also measured the
system-wide log generation
rates. Table IV shows the
results of the basic logging
and ADLP, in both of which

the subscribers store hashed data. As we can see, ADLP
generates about 1.1% more log than the base logging. In
other words, ADLP uses 400 KB more per second, which is
equivalent to a half of single image used in our self-driving
application. Therefore, we can conclude that ADLP incurs a
small overhead in storage space.

E. Limitations and Possible Improvements
Support for roscpp: The current version of ADLP is
implemented in Python as part of rospy library. Cer-

1158

tain legacy ROS codes are written in C++ using roscpp,
the C++ implementation of ROS library. By extending to
roscpp, the coverage of ADLP in ROS-based systems can
be increased. Also, ADLP’s computational overhead, mostly
from the crypto and socket functions, can be greatly reduced.

Aggregated Logging: The storage and CPU overheads can
be reduced by aggregating log entries: for instance, a pub-
lisher creates a single log entry per publication, regardless of
the number of subscribers, containing all of the subscribers’
hashes and signatures. This will significantly save the log
storage especially for large-size data such as images. This
kind of optimization can also be done at the log server-side.

Scalability: Full-scale autonomous systems use a number
of high-throughput devices that generate a significantly large
amount of data. Hence, a further validation is required to
evaluate the scalability of ADLP. We envision that high-
performance computing platforms (such NVIDIA Drive [23])
on such systems can facilitate the ADLP operations. We
intend to investigate engineering solutions (e.g., lightweight
crypto functions, log structure optimization, hardware accel-
erator) and their impact on the ADLP’s scalability, as well
as extension to other data distribution frameworks such as
OpenDDS [11].

VII. RELATED WORK

Logging is a useful technique as a forensic tool to collect
system events, detect intrusions, and diagnose faults [6], [14],
[24], [25]. Many work have focused on securing log from
tampering by adversaries. Logs can be made tamper-evident
by employing cryptographic solutions such as message au-
thentication codes (MAC) [26], hash chains [7], [15], and
Merkle tree [27]. The key idea is to frequently compute
and update a MAC or hash over the current log in a way
that an attacker’s modification on the prior log cannot be
hidden from detection. As aforementioned, tamper-evident
logging is orthogonal to the problem discussed in this paper
because it addresses how to ensure the integrity of the logs
created by participants whose goal is to provide correct
logs and/or keep their log intact. Whereas, ADLP concerns
potentially unfaithful participants who are not guaranteed
to log correctly. Nevertheless, a tamper-evident logging can
provide added security and robustness to data logging.

Provenance has been used in scientific workflow to keep
track of ownership and processing of scientific data when
multiple parties are involved [8], [12]. Data provenance can
provide useful information for forensic, auditing, test/de-
bugging processes [9], [25], [28]–[30] and thus have been
applied to distributed systems [31], networking [32], storage
systems [33], etc. Data provenance shares similar challenges
with tamper-evident logging – namely, protecting provenance
record from adversaries who are motivated to alter the
provenance history. Hence, similar measures, such as hash
chain and signing, are employed for integrity protection or
tamper detection [34]. Data provenance has become more
important in cloud computing as data resides in shared en-
vironments [35]. However, the openness of cloud computing

also brings in confidentiality issue [36] which often conflicts
with accountability requirement.

Data privacy is becoming important also in robotics and
autonomous systems because many sensory data (e.g., lo-
cation, camera image) contain sensitive information [37].
This trend has elicited increasing interest in the security
of robotics software system often powered by ROS. In
particular, the publish-subscribe model poses a broad range of
security challenges including unauthorized data subscription
or data injection, denial of service, integrity protection, node
authentication, and so on [38], [39]. A number of solutions
based on secure communication using TLS (Transport Layer
Security) [40] or application layer encryption [41] have been
proposed, and these can help improve the security and thus
safety of autonomous systems by being employed together
with an accountable data logging mechanism.

VIII. CONCLUSION

Autonomous system developers wish to analyze systems
behavior which are often non-deterministic due to the data-
driven nature of modern intelligent computing. The technol-
ogy for assigning responsibility for data production and use
to software components in autonomous systems will have a
profound impact on the industry since there is a pressing need
for safety-critical autonomous systems to accommodate such
advanced applications. This work explored the opportunity to
instantiate an accountable data logging mechanism through
a novel application of primitive cryptographic functions in
data production, consumption, and recording. ADLP will
drastically reduce the efforts to verify the validity of the run-
time evidence, making the complex software system easier
to understand and thus increasing the safety of systems.

ACKNOWLEDGMENT

This work is supported in part by NSF grants 1521523,
1715154, and 1763399. Any opinions, findings, and conclu-
sions or recommendations expressed here are those of the
authors and do not necessarily reflect the views of sponsors.

REFERENCES

[1] National Highway Traffic Safety Administration, “Event data
recorder,” https://www.nhtsa.gov/research-data/event-data-
recorder.

[2] “Report: Software bug led to death in ubers
self-driving crash,” ARS TECHNICA, May 2018,
https://arstechnica.com/tech-policy/2018/05/report-software-
bug-led-to-death-in-ubers-self-driving-crash.

[3] “Self-driving car companies should not be allowed to
investigate their own crashes,” The Guardian, April 2018,
https://www.theguardian.com/science/political-science/2018/
apr/13/self-driving-car-companies-should-not-be-allowed-to-
investigate-their-own-crashes.

[4] J. Zhou and D. Gollmann, “Evidence and non-repudiation,”
Journal of Network and Computer Applications, vol. 20, no. 3,
July 1997.

[5] T. Coffey and P. Saidha, “Non-repudiation with mandatory
proof of receipt,” Computer Communication Review, vol. 26,
1996.

1159

[6] B. Schneier and J. Kelsey, “Secure audit logs to support
computer forensics,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 2,
May 1999.

[7] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Ac-
countable virtual machines,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation,
2010.

[8] S. B. Davidson and J. Freire, “Provenance and scientific
workflows: Challenges and opportunities,” in Proceedings of
the ACM SIGMOD International Conference on Management
of Data, 2008.

[9] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical
provenance tracing by alternating between logging and taint-
ing,” in Proceedings of the Network and Distributed Systems
Security Symposium, 2016.

[10] Robot Operating System (ROS). http://www.ros.org.

[11] OpenDDS. http://opendds.org.

[12] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and
P. Paulson, “The open provenance model: An overview,” in
International Provenance and Annotation Workshop, Springer,
Berlin, Heidelberg, 2008, pp. 323–326.

[13] C. N. Chong, Z. Peng, and P. H. Hartel, “Secure audit
logging with tamper-resistant hardware,” in IFIP International
Information Security Conference, 2003.

[14] V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-log:
Securing system logs with sgx,” in Proceedings of the ACM on
Asia Conference on Computer and Communications Security,
2017.

[15] B. Schneier and J. Kelsey, “Cryptographic support for secure
logs on untrusted machines,” in Proceedings of the 7th Con-
ference on USENIX Security Symposium, 1998.

[16] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, Feb. 1978.

[17] Y. Liu and B. Plale, “Survey of publish subscribe event
systems,” Indiana University, Bloomington, Tech. Rep., May
2013, technical Report TR574.

[18] Intel NUC Kit NUC7i5BNK. https://www.intel.com/content/
www/us/en/products/boards-kits/nuc/kits/nuc7i5bnk.html.

[19] rospy: Python client library for ROS. http://wiki.ros.org/rospy.

[20] Python cryptography toolkit (pycrypto). https://pypi.org/
project/pycrypto.

[21] Rfc 8017 - pkcs #1: Rsa cryptography specifications version
2.2. https://tools.ietf.org/html/rfc8017

[22] Google protocol buffers. https://developers.google.com/
protocol-buffers/.

[23] NVIDIA Drive. https://www.nvidia.com/en-us/self-driving-
cars/drive-platform/.

[24] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen, “Revirt: Enabling intrusion analysis through
virtual-machine logging and replay,” in Proceedings of the 5th
Symposium on Operating Systems Design and Implementation,
2002.

[25] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma,
X. Zhang, D. Xu, S. Jha, G. Ciocarlie et al., “Mci: Modeling-
based causality inference in audit logging for attack investi-
gation,” in Proceedings of the 25th Network and Distributed
System Security Symposium, 2018.

[26] M. Bellare and B. S. Yee, “Forward integrity for secure audit
logs,” University of California, San Diego, Tech. Rep., Nov.
1997.

[27] S. A. Crosby and D. S. Wallach, “Efficient data structures for
tamper-evident logging,” in Proceedings of the 18th USENIX
Conference on Security Symposium, 2009.

[28] A. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustworthy
whole-system provenance for the linux kernel,” in Proceedings
of the 24th USENIX Conference on Security Symposium, 2015.

[29] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie,
A. Gehani, V. Yegneswaran, D. Xu, and S. Jha, “Kernel-
supported cost-effective audit logging for causality tracking,”
in Proceedings of USENIX Annual Technical Conference, 2018

[30] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr, “Secure network provenance,” in Proceedings of
ACM Symposium on Operating Systems Principles, 2011.

[31] Y. S. Tan, R. K. Ko, and G. Holmes, “Security and data
accountability in distributed systems: A provenance survey,”
in Proceedings of the 15th IEEE International Conference on
High Performance Computing and Communications, 2013.

[32] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo,
“Diagnosing missing events in distributed systems with nega-
tive provenance,” in Proceedings of the ACM Conference on
SIGCOMM, 2014.

[33] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer, “Provenance-aware storage systems,” in Proceed-
ings of the Annual Conference on USENIX Annual Technical
Conference, 2006.

[34] R. Hasan, R. Sion, and M. Winslett, “The case of the fake
picasso: Preventing history forgery with secure provenance,”
in Proccedings of the 7th Conference on File and Storage
Technologies, 2009.

[35] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy
challenges in cloud computing environments,” IEEE Security
and Privacy, vol. 8, no. 6, Nov. 2010.

[36] R. Lu, X. Lin, X. Liang, and X. S. Shen, “Secure provenance:
The essential of bread and butter of data forensics in cloud
computing,” in Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, 2010.

[37] C. Bloom, J. Tan, J. Ramjon, and L. Bauer, “Self-driving
cars and data collection: Privacy perceptions of networked
autonomous vehicles,” in Proceedings of the 13th Symposium
on Usable Privacy and Security, July 2017.

[38] R. Dóczi, F. Kis, B. Sütő, V. Póser, G. Kronreif, E. Jósvai,
and M. Kozlovszky, “Increasing ROS 1.x communication
security for medical surgery robot,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics,
2016.

[39] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the robot operating system,” Robot.
Auton. Syst., vol. 98, no. C, Dec. 2017.

[40] B. Breiling, B. Dieber, and P. Schartner, “Secure communi-
cation for the robot operating system,” in Proceedings of the
11th Annual IEEE International Systems Conference, 2017.

[41] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández, F. M.
Rico, and V. Matellán, “Cybersecurity in autonomous systems:
Evaluating the performance of hardening ROS,” in Workshop
on Physical Agents, 2016.

1160

