
Abstract

Real-Time CertiKOS: Compositional Verification of OS Kernels with Preemptive

Scheduling and Temporal Isolation

Mengqi Liu

2020

The reliability and security of safety-critical real-time systems are of utmost importance be-

cause the failure of these systems could incur severe consequences (e.g., loss of lives or failure

of a mission). Such properties require strong isolation between components and they rely

on enforcement mechanisms provided by the underlying operating system (OS) kernel. In

addition to spatial isolation which is commonly provided by OS kernels to various extents,

it also requires temporal isolation, that is, properties on the schedule of one component

(e.g., schedulability) are independent of behaviors of other components. The strict isolation

between components relies critically on algorithmic properties of the concrete implementa-

tion of the scheduler, such as timely provision of time slots, obliviousness to preemption,

etc. However, existing work either only reasons about an abstract model of the scheduler,

or proves properties of the scheduler implementation that are not rich enough to establish

the isolation between different components.

This thesis presents a novel compositional framework for reasoning about algorithmic

properties of the concrete implementation of preemptive schedulers. In particular, we use

virtual timeline, a variant of the supply bound function used in real-time scheduling analysis,

to specify and reason about the scheduling of each component in isolation. We show that

the properties proved on this abstraction carry down to the generated assembly code of

the OS kernel. Using this framework, we successfully verify a real-time OS kernel, which

extends mCertiKOS, a single-processor non-preemptive kernel, with user-level preemption,

a verified timer interrupt handler, and a verified real-time scheduler. We prove that in

the absence of microarchitectural-level timing channels, this new kernel enjoys temporal

and spatial isolation on top of the functional correctness guarantee. All the proofs are

implemented in the Coq proof assistant.

Real-Time CertiKOS: Compositional Verification of OS Kernels with Preemptive Scheduling and

Temporal Isolation

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Mengqi Liu

Dissertation Director: Zhong Shao

May 2020

c© 2020 by Mengqi Liu

All rights reserved.

Contents

Acknowledgments viii

1 Introduction 1

1.1 Existing Work on Isolation Between Components 2

1.2 Challenges in Verifying Temporal Isolation 3

1.3 Contributions and Scope of This Thesis . 5

2 Overview of the Virtual Timeline Framework 11

2.1 Overview . 11

2.2 Real-Time Scheduling and Virtual Timelines 13

2.3 Formalization of the Virtual Timeline . 16

3 Reasoning about Fixed-Priority Scheduling 19

3.1 The Schedulability Proof . 19

3.2 Extension with Variable Execution Time . 25

4 Case Study: CertiKOS with Fixed-Priority Scheduling 29

4.1 Background: CertiKOS, a Verified OS Kernel 30

4.2 Real-Time Extension on CertiKOS . 31

4.3 Connecting The Schedulability Proof with The Concrete Scheduler 35

4.4 The sys finish System Call . 39

4.5 Non-Interference Between Tasks . 42

5 Reasoning about Partitioned Scheduling 48

iii

5.1 Background: Partitioned Scheduling . 48

5.2 Temporal Isolation in Partitioned Scheduling 50

5.3 Schedulability in Partitioned Scheduling . 57

6 Case Study: CertiKOS with Partitioned Scheduling 59

6.1 Static partitions scheduled under TDMA . 59

6.2 Dynamically scheduled partitions . 62

6.3 A Perspective on the Interface for a Real-Time Partition 70

7 Generalization with Dynamic Priority Assignment 72

7.1 Earliest-Deadline-First and Compositionality of Workloads 73

7.2 Generalization: Virtual Timeline with Dynamic Priority Assignment 74

7.3 Earliest-Deadline-First: the Schedulability Proof 77

7.3.1 The Proof Sketch: Schedulability Through Transformation 77

7.3.2 The Virtual Time Map and Interference 81

7.3.3 Enlarging a Task . 85

7.3.4 Shrinking a Task Set . 96

8 Case Study: CertiKOS with Earliest-Deadline-First Scheduling 102

8.1 The Concrete Scheduler Implementation . 102

8.2 Refinement with the Virtual-Time-Based Scheduler 103

9 Related Work 107

9.1 Mechanized Schedulability Analysis . 107

9.2 Verification of OS kernels . 108

9.3 Enforcement of Algorithmic Level Isolation Properties 110

9.4 Intransitive Non-Interference . 111

9.5 Microarchitectural Level Isolation . 113

10 Limitations, Future Work, and Conclusion 115

10.1 Tasks with Dependencies . 115

10.2 Constraint-Based Scheduling . 118

iv

10.3 Multicore Scheduling . 120

10.4 Communicating Tasks . 121

10.5 Kernel Overhead . 123

10.6 Interrupt Driven Tasks . 124

10.7 Microarchitectural-Level Interference . 125

10.8 Conclusions . 126

v

List of Figures

2.1 Fitting the virtual timeline framework into the verification of an OS kernel 12

2.2 C code of the concrete scheduler . 14

2.3 A concrete schedule . 14

2.4 Comparing schedule on the global timeline (left) with the schedule on the

virtual timeline (right) . 15

2.5 The vertical computation of time maps . 17

2.6 A concrete time map . 17

4.1 Coq formalization of necessary data structures 33

4.2 Coq formalization of the abstract scheduler 34

4.3 Coq formalization of the abstract scheduler 35

4.4 C Illustration of the virtual-time-based scheduler (actually defined in Coq) 36

4.5 An example schedule in global and virtual time 36

4.6 The sys_finish system call . 40

4.7 C illustration of the virtual-time-based sys_finish 40

4.8 The noninterference framework with preemption 47

5.1 Partitioned scheduling . 49

5.2 The two-level scheduling . 50

5.3 Example for global scheduling . 50

5.4 Another example of local time map for a task 52

5.5 Another example of local time map for a task 55

5.6 A counter example against work-conserving scheduling 56

vi

6.1 The top-level TDMA scheduler . 60

6.2 The local scheduler for partition Πi . 61

6.3 C illustration of the virtual-time-based local scheduler for Πi 61

6.4 The intermediate local scheduler for Πi . 61

6.5 The global scheduler for dynamic partitions 64

6.6 The local scheduler for a partition . 65

6.7 The intermediate version of the local scheduler for a partition 66

7.1 The concrete and virtual-time-based scheduler 75

7.2 Enlarging all tasks to a common period . 79

7.3 The sequence of enlarging operations to be applied to a task set 79

7.4 Apply a sequence of enlarging operations to a task set 80

7.5 The computation of temporal interferences embedded in a virtual-time-based

scheduler . 82

7.6 The amount of interference τ j incurs on τ i: a breakdown 83

7.7 Categorization of types of the schedule . 87

7.8 Whole-period interference from τ j to τ i before and after the enlargement . 91

7.9 When the schedule of Π′ is busy, it leaks less remaining workload to the next

period compared to the schedule of Π . 92

7.10 When the schedule of Π′ is not busy, it leaks less remaining workload to the

next period compared to the schedule of Π 93

8.1 The C implementation of an EDF scheduler 103

8.2 Coq formalization of the priority queue . 104

8.3 The iteration over a priority queue, used in the intermediate abstraction . . 105

10.1 Illustration of the dynamic computation of time maps for m identical cores 120

vii

Acknowledgments

First and foremost, I owe many thanks to my advisor, Zhong Shao, who guided me with

his patience, insight, and taste. I benefited a lot from insightful and sparkling discussions

with him during the research, and also from his support and guidance on how to become a

good researcher. He made my years in graduate school exciting and unforgettable.

I would also like to express my sincere gratitude to my committee members, Ruzica

Piskac, Man-Ki Yoon, and Jan Hoffmann for valuable discussions and feedback from them.

I also learned a lot from the software analysis & verification course taught by Ruzica Piskac.

Further, I’d like to thank all past and current members of the Yale FLINT group. They

are wonderful people to work with. Special thanks go to Ronghui Gu, who offered help since

the initiation of this line of research. This work also benefited a lot from the collaboration

with Lionel Rieg, David Costanzo, Jung-Eun Kim, Man-Ki Yoon, and Hao Chen. Yuting

Wang, Wolf Honore, and Lucas Paul provided valuable feedback for its improvement. New-

man Wu, Quentin Carbonneaux, Jieung Kim, and Jérémie Koenig offered help every time

I ran into obstacles in the Coq proof.

Last but not least, I’d like to thank all my friends throughout grad school, for their

companion and all the fun together. I want to thank my parents for their constant encour-

agement and support. And I thank my wife, Che, for her love, support, and the happiness

she brought.

viii

Chapter 1

Introduction

Real-time systems often carry out safety-critical operations that require strong timing guar-

antees. For example, the flight controller of a quadcopter needs to send control signals to

its actuators in a timely manner, otherwise, the stability of the quadcopter will not be

ensured, potentially leading to a physical crash. Such constraints are usually specified as

the schedulability of a periodic task, meaning that a task must be scheduled for a certain

amount of time (budget) within each of its periods. Here, the period of a task is an interval

which dictates when this task should repeat itself.

Furthermore, this problem is exacerbated by the increasing trend of accommodating

multiple software components, not necessarily from the same vendor, onto a single platform.

On the one hand, different components compete with each other for time resources, leading

to inevitable and intricate interferences between them, which make it hard to examine

whether a safety-critical component always meets its timing requirements. On the other

hand, the co-residence of multiple components gives rise to security issues, such as whether

malicious components could infer information from other trusted ones that hold secrets. In

this sense, strong isolation between components is of utmost importance to the reliability

and security of such systems.

1

1.1 Existing Work on Isolation Between Components

A real-time system usually relies on an operating system (OS) kernel to manage and sched-

ule all its application-level constituent components, and it is the responsibility of the OS

kernel to enforce strong isolation between these components. Establishing an isolation guar-

antee is challenging because it requires a comprehensive analysis of all possible sequences of

interactions. Furthermore, due to the complexity of the concrete implementation of OS ker-

nels, formal verification is the only trustworthy way of guaranteeing functional correctness

and isolation properties on the source code level.

Functional Correctness and Spatial Isolation Traditionally, verification of OS ker-

nels emphasizes mostly functional correctness [1, 2] and spatial isolation [3, 4, 5]. Thanks

to hardware mechanisms such as virtual memory, and by carefully managing resources such

as memory quotas and process IDs (namespace) in software, an OS kernel provides to each

component an illusion of exclusive access to memory and various kernel objects, free from

interferences of other components.

However, isolation in the context of real-time systems also relies heavily on temporal

isolation, which means that a component’s capability to meet its temporal constraints is

not influenced by the behavior of others [6]. At a minimum, an OS kernel should take

advantage of hardware mechanisms such as timer interrupts to preempt a component from

monopolizing the CPU time. On top of preemption, ideally, an OS kernel should also enforce

temporal isolation at both the microarchitectural level and the algorithmic level.

Temporal isolation at the microarchitectural level Due to the complexity of modern

hardware, components may interfere with each other through shared cache lines [7], memory

banks [8], etc., also known as microarchitectural level timing channels. For example, when

two components share a common cache line, the execution of one of them might affect the

execution time of the other one, thus jeopardizing the other’s capability of meeting timing

constraints. Existing work [9, 10] mitigate this problem by partitioning physical resources

properly so as to reduce the non-deterministic temporal behavior due to sharing between

components.

2

Another aspect is the analysis of interrupt latency and context switch overhead. The OS

kernel relies on timer interrupts to allocate time resources. Even though interrupts occur

periodically, their handling may be delayed if the system is in an uninterruptible state,

and the context switch overhead also influences the actual execution time allocated to the

scheduled task. Existing work [11, 12] conduct worst-case execution time analysis on the

OS kernel to compute an upper-bound on both the interrupt latency and kernel overhead,

so that users of the system may compensate for this loss of execution time by declaring a

larger budget for their tasks.

Temporal isolation at the algorithmic level Temporal isolation also relies heavily on

the scheduler to properly allocate time slots (i.e., the duration between successive interrupts)

so that every component meets its temporal constraints. Such reasoning requires examining

algorithmic properties of the concrete schedule, which describes the exact time slots a task

occupies. Existing work [5] reason about a simple setting where tasks follow a static schedule

to avoid interferences among each other. However, real-time systems require much stronger

guarantees.

For example, to reason about the schedulability of a real-time task, one must check

whether this task is scheduled for its budgeted number of time slots during each period.

However, real-time scheduling algorithms often try to achieve high utilization of the pro-

cessor and schedule tasks in a preemptive way, leading to inevitable interferences between

them, which makes the reasoning of any individual component challenging. This problem

has not been fully addressed by existing work, and it is the main focus of this thesis.

1.2 Challenges in Verifying Temporal Isolation

Temporal isolation at the algorithmic level is essential for guaranteeing the security and

reliability of components scheduled by an OS kernel. It relies heavily on reasoning about

algorithmic properties of the concrete implementation of a preemptive scheduler, which is

challenging in the following ways.

3

Formalizing algorithmic properties of the scheduler implementation remains a

challenge Despite the rich literature in formal verification of real-time OS kernels [13,

14], most of them stop at the policy level, such as proving that the running task always

has the highest priority among ready ones, or proving that there is no priority inversion.

These policy-level properties are not strong enough to prove the algorithmic properties of

the scheduler implementation. For example, the schedulability of a task states that the

task never misses its deadline even in the worst-case, which requires more sophisticated

algorithmic reasoning than merely showing that the scheduled task indeed has the highest

priority.

The formal reasoning of such properties is challenging due to the lack of suitable ab-

stractions. Existing work [3] tackled memory resource by only exposing the virtual memory

space to a user, while properly managing its mapping into the physical memory space so

that it is never corrupted by other users. This takes advantage of the fact that a program’s

behavior can be entirely specified in the virtual space, leaving maximum flexibility for the

OS kernel to manage its mapping. On the contrary, when it comes to temporal resources, it

is not possible to describe the behavior of a task by only looking into the virtual space. This

greatly complicates temporal reasoning because any abstraction for temporal behavior must

include both the virtual space (e.g. a task’s execution time) and the physical space (e.g.

a task’s deadline), making it less obvious how an OS kernel manages to achieve temporal

isolation.

Algorithmic reasoning requires decomposition despite interferences between

components One important aspect of temporal isolation is schedulability, whose ver-

ification requires proving that tasks do not prevent each other from receiving sufficient

execution time as long as they have passed a certain schedulability test. However, in most

cases, the temporal behavior of a task inevitably depends on the behavior of others. For

example, in fixed-priority scheduling (see Sec. 2.2), the schedule of a task is influenced by

when and how long higher priority tasks execute. As a result, the OS kernel needs to en-

force budget constraints on each task so that no task can monopolize the CPU time. On

the other hand, a schedulability proof is needed to justify the sufficiency of those budget

4

constraints. This intertwining makes it difficult to scale the formal reasoning without a

proper abstraction of the interferences.

Partitioned scheduling brings more complexity On top of the above challenges for

flattened (i.e., task-level) scheduling, reasoning about more sophisticated policies such as

partitioned scheduling [15] brings more complexity. For example, in the QNX real-time

OS [16] and the framework presented in [17], tasks are scheduled following a global priority,

yet they are also subject to partition budgets. In this way, the schedule of a task is influenced

by tasks both within the same partition and from other partitions, making the reasoning

hard to scale. Furthermore, the isolation between components also requires that the local

schedule of tasks in a partition be independent of other partitions, which adds more proof

obligations to the algorithmic reasoning about the scheduler.

1.3 Contributions and Scope of This Thesis

This thesis studies the isolation properties of real-time OS kernels. In particular, we focus

on formal reasoning about algorithmic properties of the concrete implementation of a pre-

emptive scheduler, and make the following contributions to address the above challenges.

Our work is formalized in Coq and built on top of CertiKOS [1, 3].

• A novel application of supply and demand functions [18], called virtual timelines,

to describe temporal properties of real-time tasks and connect them with the actual

code. In this way, all high-level properties proved on this abstraction carry down to

the generated assembly code of the system.

• A novel approach that uses virtual timelines to address the isolation property of

a component’s schedule. For flattened fixed-priority scheduling, we prove that a

task’s schedule is independent of the behavior of lower-priority tasks. For partitioned

scheduling, we prove that the local schedule of tasks in a partition is independent of

other partitions.

• A compositional framework to reason about algorithmic properties (e.g. schedula-

bility) of each component’s schedule in isolation. In particular, we propose a way to

5

statically encapsulate interferences from other components in the system, and we show

how to reason about a component as if it were running on its own virtual timeline.

• Combining all of these together, we present a fully verified OS kernel with both tem-

poral and spatial isolation using our compositional framework.

Budget-Enforcing Scheduling The schedulability analysis of a real-time system relies

on knowing each task’s maximum execution time, which is usually achieved either through

budget enforcement or a worst-case execution time (WCET) analysis. With budget en-

forcement, the OS kernel sets up the timer to trigger periodic interrupts (asynchronous to

instruction execution), dividing the CPU time into time slots, which is the basic unit for

specifying the budget and period for a real-time task. The scheduler then suspends a task

if this task has used up its current budget, and only refills this task’s budget until the next

period. As a comparison, the latter approach simply uses the worst-case execution time of

each task for the system’s schedulability analysis.

The following difficulties make the WCET analysis approach less favorable. Firstly, a

safe and precise WCET bound is hard to obtain (elaborated in more detail in Sec. 9.5)

and varies across platforms, and erring on the safety side might lead to disproportionate

waste of CPU time. Secondly, this approach requires explicit accounting of kernel overhead.

Otherwise, a task set passing the schedulability analysis may as well experience deadline

misses if the context switch and scheduling overhead take away too much time resource.

Last but not least, it weakens the temporal isolation guarantee since a task has to depend

on the reliability of another task’s WCET analysis.

We adopt the budget enforcement mechanism in this work. It decouples the actual

instruction execution from the temporal resource management, thus is able to enforce tem-

poral isolation even if the WCET bound computation (specified as the budget) for one

component is not safe. In fact, it enables a fault-tolerant component: a component which

occasionally overruns its budget may register a handler for its recovery, while the OS kernel

guarantees that such overruns are properly contained and do not affect other components.

In this way, we achieve stronger temporal isolation than relying on the WCET bounds for

tasks.

6

Assumptions Our work makes the following assumptions. A task does not have direct

access to the global time (the RDTSC instruction is prohibited in the user mode). Com-

ponents do not communicate with each other. And the OS kernel only allows user-level

preemption, not kernel preemption. This may seem to be a restrictive setting, but we jus-

tify that it is still interesting as a real-time OS kernel and we leave more detailed discussions

on how to relax these restrictions in Sec. 10.4 and Sec. 10.5.

Firstly, a real-time task does not need direct access to the global time for its periodic

schedule. We require that a task specifies its budget and period, then it is the OS kernel’s

responsibility to properly schedule this task according to the global time.

Secondly, inter-component communication is prohibited as a consequence of strict iso-

lation. However, this is still practical because there are various ways of supporting commu-

nication under the current setting. One generic and straightforward way is to encapsulate

communicating tasks inside a partition (intra-partition communication is allowed), such

that they are free to influence each other, while the partition prevents their influence to

other partitions. In other words, this approach divides the system into subgroups accord-

ing to the desired isolation policy and allows general-purpose communication within each

of them. On the other hand, for special-purpose communications, e.g. when a task com-

municates with another I/O task to send/receive data, we can accommodate this need by

implementing the I/O task as a kernel object and transform the task-level communication

into system calls. Section 10.4 contains more detailed discussions.

Thirdly, our OS kernel achieves a reasonable response time even without kernel pre-

emption. The interrupt latency depends heavily on the maximum interrupt disable time,

during which interrupt is masked. This usually corresponds to the execution of system

calls. Kernel preemption reduces the interrupt disable time by allowing preemption inside

a time-consuming system call. Otherwise, a system call has to run to complete before the

interrupt can be handled. However, our work builds on top of CertiKOS, which takes a mi-

crokernel approach and does not have time-consuming system calls in the real-time setting.

In particular, sys_spawn is prohibited from real-time tasks and the page fault handling can

be avoided by pre-allocating physical pages for real-time tasks. Other system calls only con-

tain simple straight-line code that exhibits reasonable execution time. Sec. 10.5 discusses

7

how to reduce the interrupt latency with user-level preemption in more detail.

How does this work relate to microarchitectural level details? This work focuses

on algorithmic properties of the scheduler implementation, which is orthogonal to the mi-

croarchitectural level details. For instance, we rely on the user to declare a suitable budget

for each task, without worrying about whether the given budget is sufficient or not. How-

ever, we believe our work integrates easily with verification on the microarchitectural level

issues, such that if both efforts are successful, the user is guaranteed the exact number of

time slots per period, and also guaranteed that her task indeed finishes within these time

slots.

Are properties proved in this work specified in clock time? Properties proved

in this work, such as schedulability of a task, are specified in discrete logical time, i.e. in

units of time slots (or equivalently, number of timer interrupts). This makes sense under

the assumption that timer interrupts are strictly periodic, and that the interrupt latency

and context switch overhead are negligible so that a task is guaranteed the full amount of

time for its execution between successive interrupts. We believe our work is flexible enough

to integrate with trustworthy worst-case execution time analysis of kernel services so that

these assumptions could be relaxed and these overheads could be compensated properly

when a user declares the budget of a task.

Reusability of the virtual timeline abstraction This work uses CertiKOS as an

example to demonstrate the power of virtual timelines in a concrete OS kernel. However,

our technique is reusable in other systems. In fact, our approach gives a novel mechanized

formal semantics for algorithmic behaviors of preemptive scheduling, which allows us to

reason about various isolation properties, such as schedulability, obliviousness to other

components, etc. More importantly, we show how to instantiate this semantics with a

concrete runtime system, which in this case means the concrete implementation of a real-

time scheduler, in a structured way (detailed in Sec. 2.1). Once it is proved that the system

indeed implements this scheduling semantics, all high-level properties proved on the virtual

timeline abstraction carry down to the generated assembly code.

8

Low-level non-determinism and isolation Another concern regarding the isolation

between partitions is the possible low-level non-determinism in its behavior. If tasks within

a partition communicate with each other while also being able to preempt each other, the

overall behavior of this partition might be non-deterministic since the preemption point in

different runs might differ. Assume that both a high-priority and low-priority task access

and then increment a shared counter during their execution. Depending on when this low-

priority task is preempted, the order in which the two tasks access this shared counter might

differ, resulting in different overall low-level behavior of this partition.

Proving the isolation between partitions in the presence of such low-level non-determinism

is extremely challenging because it could involve complex probabilistic reasoning [19]. In-

stead, this work assumes that it is the user’s responsibility to specify a security property

(i.e. observation function) that tolerates such low-level nondeterminism. More detailed

discussions about isolation and communication are in Sec. 9.4 and Sec. 10.4.

Previous Publication This thesis incorporates and extends the work previously pub-

lished as follows.

Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo, Jung-Eun Kim,

and Man-Ki Yoon. 2020. Virtual Timeline: A Formal Abstraction for Verifying Preemptive

Schedulers with Temporal Isolation. Proc. ACM Program. Lang.4, POPL, Article 20

(January 2020), 31pages. [20]

Roadmap of the Thesis Chpt. 2 gives an overview of our reasoning framework for al-

gorithmic properties and introduces the concept of virtual timelines. Chpt. 3 discusses how

to use the virtual timeline to describe and reason about the properties of the fixed-priority

scheduling. Chpt. 4 describes how we connect virtual timelines with the concrete imple-

mentation of a preemptive scheduler in an OS kernel and finally obtain a formal guarantee

of temporal and spatial isolation. Chpt. 5 and 6 demonstrate how virtual timelines apply

to partitioned scheduling and address related isolation properties. Chpt. 7 and 8 generalize

the formalization of the virtual timeline to accommodate dynamic priority assignment and

demonstrate its application in verifying an earliest-deadline-first scheduler. Chpt. 9 dis-

9

cusses the related work. Chpt. 10 discusses the limitations of our work and possible ways

to extend it, then concludes.

10

Chapter 2

Overview of the Virtual Timeline

Framework

This chapter gives an overview of our reasoning framework for algorithmic properties of

the scheduler in real-time systems. We first explain how this framework fits in the overall

verification of an OS kernel. We then describe in more detail the idea of virtual timelines,

as well as the computation of virtual time maps.

2.1 Overview

Our work builds on top of the sequential version of CertiKOS, known as mCertiKOS [1, 3],

a verified single-core OS kernel with a cooperative round-robin scheduler. In the rest of this

thesis, when we refer to CertiKOS we generally mean this specific version of mCertiKOS.

CertiKOS adopts a layered approach for building specifications for the OS kernel, and

obtains a formal contextual refinement proof between the high-level specification and low-

level implementation of the kernel: a program linked with the kernel implementation and

running on top of the x86 assembly semantics exhibits the same behavior as the same

program running on top of the assembly semantics plus high-level specifications of system

calls.

As shown in Fig. 2.1, we make the following extensions on top of the original CertiKOS

(the itemized numbering below corresponds to circled numbers in the figure):

11

PURTSched Layer abs_sched

Lower Layer

......

......

TSysCall Layer intr_handler

PVTSched Layer vt_sched 𝑣𝑡! 𝑣𝑡"#$

Properties
of task 𝜏!

Properties of
task 𝜏"#$

Algorithmic Properties of
the Schedule

Layer

Specification of a Module

Properties of a Layer

implements
property proof

Legends

Virtual Timeline Framework

2

3

4

1
Implementation of a Modulesched

Figure 2.1: Fitting the virtual timeline framework into the verification of an OS kernel

1. We extend the cooperative CertiKOS with user-level preemption and a real-time

scheduler, and prove functional correctness of its implementation following a layered

approach. We prove that the C implementation of the scheduler, sched, faithfully

implements its Coq specification, abs_sched.

2. We introduce a virtual timeline abstraction for each task (denoted vtp for task τp).

It describes the temporal behavior of a task, and is used to specify and prove the

algorithmic properties of a task’s schedule. See Def. 2 and Cor. 1 for more details.

3. We introduce a virtual-time-based scheduler, vt_sched, that operates on each task’s

virtual timeline to decide its schedule. We then prove that the concrete scheduler in

the OS, abs_sched, faithfully implements vt_sched.

4. We connect a task’s virtual timeline with its concrete schedule by proving that vt_sched

schedules this task in the exact same way as indicated by its virtual timeline. See

Lemma 5 as an example.

The intuition is that it is difficult to reason about the concrete scheduler (abs_sched)

directly. On the one hand, the scheduler usually only maintains the current state, which is

insufficient for specifying temporal properties (which may require universal quantification

12

over all physical periods). On the other hand, exposing low-level details makes proofs less

reusable across systems with different scheduler implementations (possibly due to different

levels of optimization).

The above framework tackles both issues by introducing the virtual timeline abstraction

at step 2©. This abstraction contains information about a task’s entire schedule, thus is

able to specify and reason about various temporal properties. Further, steps 3© and 4©

establish the soundness of the abstraction: the schedule entailed by this abstraction is

always consistent with the schedule produced by the concrete scheduler. Thus, all properties

proved on the abstraction carry down to the generated assembly code of the system.

Finally, this abstraction layer based approach facilitates the reusability of this frame-

work, enabling its adoption beyond CertiKOS. The abstraction of virtual timelines is generic

in specifying and reasoning about fixed-priority scheduling, and it can be formally connected

with other systems with a similar scheduling scheme through context refinement proofs (i.e.

by repeating step 3©). In this way, all proofs in the upper layers (2© and 4©) directly apply

to this new system.

2.2 Real-Time Scheduling and Virtual Timelines

In this section, we explain in more detail intuitions behind virtual timelines, and we use

budget-enforcing fixed-priority scheduling as an example. Here, timer interrupts are set up

to occur periodically, dividing CPU time into regular time slots. Upon each timer interrupt,

its handler invokes the scheduler to decide which task to schedule for the next time slot. We

assume that the set of real-time tasks is known ahead of time, denoted as {τ0, τ1, ..., τN−1}.

Each task τp occupies a unique priority level p, with 0 being the highest priority level. When

several tasks have the same priority, a simple tie-breaker (e.g. task id) could be adopted

without affecting the schedulability of the whole system. A task τp is specified with (Cp,

Tp), representing this task’s budget and period, respectively. The budget and period are

integer values, in units of time slots.

Fig. 2.2 shows the C implementation of a budget-enforcing fixed-priority preemptive

scheduler. In particular, it uses an integer array, quanta, to keep track of the execution time

13

1 int sched() {

2 t++;

3 for(int i = 0; i < N; i++){

4 if (t % period[i] == 0){

5 quanta[i] = budget[i];

6 }

7 }

8

9 int pid = N;

10 for (i = 0; i < N; i++) {

11 if (quanta[i] > 0) {

12 quanta[i]--;

13 pid = i;

14 break;

15 }

16 }

17 return pid;

18 }

Figure 2.2: C code of the concrete sched-
uler

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

𝜏! = (1, 3)

𝜏" = (2, 5)

𝜏# = (1, 9)

Figure 2.3: A concrete schedule

of each task, and makes sure that a task cannot be scheduled for more than its budget in

any period. Fig. 2.3 shows a concrete schedule produced by such a scheduler, from time 0

to 10. On the bottom, we show how the schedules for different tasks are interleaved with

each other. And from the top, we show the exact schedule for each task in decreasing order

of priority. Here, a down arrow represents the start of a new period. We observe that the

number of time slots consumed by a task within each period does not exceed its budget,

thanks to the budget-enforcement mechanism. We also observe that the time consumption

exactly equals its budget, which entails the schedulability of a task: it is guaranteed in each

period the full number of time slots specified by its budget.

Then, the question is how to formalize the algorithmic properties of a task’s schedule

with isolation in mind. In particular, even though the schedule of tasks interleave with each

other, as suggested by both the scheduler implementation and the concrete example, they

also follow a strict conceptual hierarchy. For example, in Fig. 2.3, the schedule of task τ0

is regular (always occupying the first slot within each period) because it has the highest

priority. Then task τ1 is scheduled when τ0 is inactive. Lastly, task τ2 is scheduled when

both τ0 and τ1 are inactive.

This inspires the concept of virtual timelines. A virtual timeline for a task is intuitively

14

𝜏" = (1, 3)

𝜏) = (2,5)

𝜏, = (1, 9)

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

t

t

t

vt0

vt1

vt2

Figure 2.4: Comparing schedule on the global timeline (left) with the schedule on the virtual
timeline (right)

the time “available” to the task. A task’s virtual time includes all time that is not occupied

by higher priority tasks since a task cannot preempt higher priority ones. Notice that the

available time to a task may be allocated to this task, or lower priority ones when this task

has finished, or kept idle when there is no task to execute.

This idea stems from the time supply and time demand functions, from the original

time-demand analysis [18, 21]. The original design sums up the total time demand (bud-

get multiplying the number of periods) across all priorities (required execution time), and

compares it with the time supply (global time) to determine the schedulability of a system.

We embrace the idea of comparing supply with demand but change their meaning and

the way they are computed. Instead of accumulating demand across priorities, we remove

the time used by higher priority tasks by creating holes in the virtual timeline with respect

to global time. In Fig. 2.4, we show the schedule of tasks both on the global timeline (t)

and their corresponding virtual timelines (vtp for task τp). On each timeline, shaded boxes

represent time slots occupied by a task, and white boxes represent time slots available to

but not occupied by a task. The left side shows time slots available to a task on the global

timeline. These boxes may not be consecutive due to preemptions from higher-priority

tasks. The right side shows the same time slots on a task’s virtual timeline. They are

contiguous because the virtual timeline hides preemption from others. In particular, the

virtual timeline for τ0 is the same as the global timeline (no holes) as it is the highest

priority task. And the virtual timeline for τ1 is the result of removing all slots occupied by

τ0 from vt0. Lastly, vt2 is the result of removing all schedules of τ1 from vt1.

15

The benefit of using virtual time is that once we abstract away the time taken by

higher priority tasks, the current task becomes the highest priority one in the system, and

hence cannot be interrupted. This means we can ignore all tasks with higher priorities and

focus only on the current task, effectively creating an illusion of isolation. For example, in

Fig. 2.4, task τ1 is scheduled immediately after its arrival on the virtual timeline of vt1,

and finishes when its budget is exhausted. The downside is that the real-time assumptions

and requirements (deadlines, periods, etc.) are given in the global timeline and not in the

virtual one. As indicated by downward arrows in the figure, regular global periods may map

to irregular virtual periods. Thus, we need to be able to convert global time into virtual

time.

2.3 Formalization of the Virtual Timeline

As demonstrated in Fig. 2.4, to ease the reasoning about a task’s schedule, we encapsulate

interferences from higher-priority tasks in its virtual timeline. This requires a suitable

formalization of the virtual timeline that makes it easy to connect a task’s schedule in

global time to its counterpart in virtual time. We use PT and VT to denote global time and

virtual time, respectively. Notice that they are integer values in units of time slots. We use

σp to denote the connection between global and virtual time. There are various alternative

ways of defining σp.

1. σp: VT → PT. This is a close analogy to the virtual memory mechanism, where the

behavior of a process is determined by its virtual memory space, and the OS kernel

maintains its page table to make sure that the corresponding physical memory space

does not overlap with others. However, such a formalization complicates the reasoning

about temporal properties, which are usually specified in the global time. For example,

schedulability requires that a task be scheduled for its full budget within each period,

yet it is non-trivial to compute which virtual time duration corresponds to a global

period using this formalization of virtual timelines.

2. σp: VT → VT. This approach reflects our observation in Fig. 2.4: a task’s virtual

16

1 int instrumented_sched (){

2

3 // computing pid

4 // The same as sched()

5

6

7 for(int i = 0; i < N; i++){

8 if (i <= pid){

9 vt[i][t+1] = vt[i][t] + 1;

10 }else{

11 vt[i][t+1] = vt[i][t];

12 }

13 }

14 return pid;

15 }

Figure 2.5: The vertical computation of time
maps

0 1 2 3 4 5 6 7 8 9 10

𝜏" = (1, 3)
𝜏) = (2, 5)
𝜏, = (1, 9)

t 0 1 2 3 4 5 6 7 8 9 10

𝜎"(𝑡) 0 1 2 3 4 5 6 7 8 9 10

𝜎)(𝑡) 0 0 1 2 2 3 4 4 5 6 6

𝜎,(𝑡) 0 0 0 0 0 1 1 1 1 2 2

Figure 2.6: A concrete time map

timeline is the result of taking the virtual timeline of the adjacent higher priority and

removing slots already consumed by this high priority task. However, this makes the

reasoning tedious because we have to compose multiple time maps to describe one

virtual timeline. For example, the virtual timeline of τ2 is described as σ2 ◦ σ1 ◦ σ0.

3. σp: PT → VT. This is the approach we finally settle on. It takes advantage of the

recursive computation as in the second approach while avoiding the tediousness of

composing multiple time maps to describe one virtual timeline. We show the compu-

tation of such a time map in the following.

As explained above, we define the time map σp, a function from global time to virtual

time, as a formalization of the virtual timeline for τp. Fig. 2.5 demonstrates the general

principle of computing time maps, in the form of additional code instruments on top of

the sched function. In particular, vt is a two-dimensional array of integers, where vt[i][t]

represents σi(t). Whenever a time slot [t, t+1) is allocated to a task p, it is available in the

virtual timeline of both this task and all higher priority ones. Fig. 2.6 shows an example of

such a dynamic computation of time maps.

Although intuitive, this way of dynamic construction of time maps is inconvenient be-

cause it complicates the reasoning about their properties. Instead, we adopt an equivalent

approach of static computation for time maps. In particular, if we know beforehand when

17

each task arrives and what its execution time is, the time map can be pre-computed in the

decreasing priority order (we discuss the relaxation of these constraints in Sec. 3.2). This

is indeed the case when all tasks are periodic and always use up their budgets. Also, notice

that there is only one task per priority level.

In this setting, we know exactly when the highest priority task will be executed (at

the start of each of its periods) and thus build its timeline. For example, the time map

for τp+1 can be incrementally constructed from the one for task τp as follows. Below,

σp(t)− σp(
⌊
t

Tp

⌋
Tp) denotes the available virtual time for τp since the start of the current

period. Notice that the execution time of τp is also bounded by its budget, Cp, and thus

its actual time consumption is the minimum of the two. That means, if Cp is smaller than

σp(t)− σp(
⌊
t

Tp

⌋
Tp), task τp must have finished its execution at time t.

Definition 1 (Time map for periodic tasks in fixed-priority scheduling).

σ0(t) := t

σp+1(t) := σp(t)−
⌊
t

Tp

⌋
Cp︸ ︷︷ ︸

time spent in the past full periods

−min

(
Cp, σp(t)− σp(

⌊
t

Tp

⌋
Tp)

)
︸ ︷︷ ︸

time spent in the current period

18

Chapter 3

Reasoning about Fixed-Priority

Scheduling

This chapter discusses how the virtual timeline abstraction facilitates the reasoning about

algorithmic properties of the fixed-priority scheduling. In particular, we demonstrate the

proof of schedulability and a task’s obliviousness to other lower-priority ones.

3.1 The Schedulability Proof

In this section, we use fixed-priority scheduling as an example to demonstrate how the

virtual timelines could facilitate the reasoning about a task’s schedule.

As shown in Fig. 2.4, the virtual timeline of a task encapsulates interferences from higher

priority tasks and allows us to reason about the schedule of this task solely based on its

own time map. In particular, on its virtual timeline, a task is scheduled as soon as it arrives

and runs continuously until its budget is exhausted.

We use schedulability, which is essential for temporal isolation, as an example to demon-

strate how to reason about a task’s schedule. Schedulability requires that a task be sched-

uled for its full amount of budget within each period, despite the worst-case interferences

from others. We formalize this property in terms of a task’s virtual time.

19

Definition 2. Schedulability of task τp

∀i ≥ 0, Cp ≤ σp((i+ 1) ∗ Tp)− σp(i ∗ Tp)

This is a sufficient and necessary condition for schedulability, which states that a task

will receive enough virtual time in each of its physical periods. For example, in Fig. 2.4, the

virtual time available to task τ1 in its first and second period is 3, which is greater than its

budget of 2, so this task is schedulable in the first two periods. Notice that the exact amount

of available virtual time varies in different periods, depending on the actual interferences

from higher priority tasks. However, thanks to the budget-enforcing mechanism of the

scheduler, there is an upper bound on the interference that can be decided statically.

For strictly periodic tasks with no dynamic creation, the seminal work by Liu and

Layland [22] solves the scheduling problem by giving an optimal schedule. The essential

observation of their analysis is the critical instant theorem, stated as follows using our virtual

time concepts:

Theorem 1 (Virtual Critical Instant Theorem).

For all p, t0, t,
(
∀0 ≤ q < p,Cq ≤ σq(Tq)

)
=⇒ σp(t)− σp(0) ≤ σp(t0 + t)− σp(t0) .

This means that a task suffers the most interference (i.e., has the least available time)

during its first period since all higher priority tasks arrive simultaneously at time 0. Thus,

for any physical time window of length t, regardless of its starting point t0, the lower bound

of the amount of virtual time within this window is obtained by computing σp(t). Below

we explain how theorem 1 is proved in Coq, based on the time map computation given by

Def. 1.

We assume that each task τ i is schedulable in its first period, i.e. Ci ≤ σi(Ti). This

assumption is necessary to ensure that the recursive computation in Def. 1 is valid: if

Ci > σi(Ti) then task τ i is not schedulable and σi+1(Ti) would be negative, which does not

make sense.

We prove the above theorem by induction on i, and also by strengthening it with another

20

proof goal: at each moment, the virtual time of a task either stagnates or increments by 1.

We detail its reasoning as the following.

Lemma 1 (The virtual time for a task either stagnates or increments by 1 at any moment).

∀ τ i, t, σi(t+ 1) = σi(t) ∨ σi(t+ 1) = σi(t) + 1

Proof. We prove the above lemma by induction on i. In the base case, σ0(t) = t, the above

property holds.

Assume that the above property, as well as the critical instant theorem, holds for task

τ i. We examine the virtual time map for τ i+1. We consider an arbitrary time instant t and

compare σi+1(t+ 1) with σi+1(t).

• If (t+ 1) mod Ti = 0, t+ 1 marks the beginning of a new period for τ i. In this case,

b t+ 1

Ti
c = b t

Ti
c+ 1, and also b t+ 1

Ti
cTi = t+ 1.

Thus,

σi+1(t+ 1)− σi+1(t) = σi(t+ 1)− σi(t) + b t
Ti
cCi − b

t+ 1

Ti
cCi

+min(Ci, σi(t)− σi(b
t

Ti
cTi))−min(Ci, σi(t+ 1)− σi(b

t+ 1

Ti
cTi))

= σi(t+ 1)− σi(t)− Ci +min(Ci, σi(t)− σi(b
t

Ti
cTi))

We also know that σi(t+ 1)− σi(b
t

Ti
cTi) ≥ σi(Ti) ≥ Ci.

– If σi(t+ 1) = σi(t), we know

σi+1(t+ 1)− σi+1(t) = 0− Ci + Ci = 0

– Otherwise, if σi(t+ 1) = σi(t) + 1, we know

σi+1(t+ 1)− σi+1(t) = 1− Ci +min(Ci, σi(t)− σi(b
t

Ti
cTi))

21

And also Ci − 1 ≤ min(Ci, σi(t)− σi(b
t

Ti
cTi)) ≤ Ci. Thus,

0 ≤ σi+1(t+ 1)− σi+1(t) ≤ 1

• If (t + 1) mod Ti 6= 0, t and t + 1 belongs to the same period of τ i. In this case,

b t+ 1

Ti
c = b t

Ti
c.

Thus,

σi+1(t+ 1)− σi+1(t) = σi(t+ 1)− σi(t) + b t
Ti
cCi − b

t+ 1

Ti
cCi

+min(Ci, σi(t)− σi(b
t

Ti
cTi))−min(Ci, σi(t+ 1)− σi(b

t+ 1

Ti
cTi))

= σi(t+ 1)− σi(t) +min(Ci, σi(t)− σi(b
t

Ti
cTi))

−min(Ci, σi(t+ 1)− σi(b
t

Ti
cTi))

– If σi(t+ 1) = σi(t), it’s easy to see that σi+1(t+ 1)− σi+1(t) = 0.

– Otherwise, if σi(t+ 1) = σi(t) + 1, we know

−1 ≤ min(Ci, σi(t)− σi(b
t

Ti
cTi))−min(Ci, σi(t+ 1)− σi(b

t

Ti
cTi)) ≤ 0

Thus,

0 ≤ σi+1(t+ 1)− σi+1(t) ≤ 1

This lemma holds for τ i+1.

Below we show the proof of Thm. 1, which also goes by induction on i. In the base

case, σ0(t) = t and the theorem hold. For the inductive step, we assume that this theorem

holds for τ i, and then inspect the virtual time available to τ i+1 in an arbitrary window of

[t0, t0 + t). The goal is to prove that σi+1(t0 + t)− σi+1(t0) ≥ σi+1(t).

Proof. We perform case analysis on how this window overlaps with periods of τ i.

(1) If t0 mod Ti = 0, the start of the window aligns with the start of τ i’s period. In

22

this case, b t0 + t

Ti
c = b t

Ti
c+

t0
Ti

. We also prove that

σi+1(t0 + t)− σi+1(t0) = σi(t0 + t)− σi(t0)− b t
Ti
cCi

−min(Ci, σi(t0 + t)− σi(b
t0 + t

Ti
cTi))

Thus,

σi+1(t0 + t)− σi+1(t0)− σi+1(t) = σi(t0 + t)− σi(t0)− σi(t)

+min(Ci, σi(t)− σi(b
t

Ti
cTi))

−min(Ci, σi(t0 + t)− σi(b
t0 + t

Ti
cTi))

• If Ci ≤ σi(t)− σi(b
t

Ti
cTi), It’s easy to prove that

σi+1(t0 + t)− σi+1(t0)− σi+1(t) = σi(t0 + t)− σi(t0)− σi(t)

+Ci −min(Ci, σi(t0 + t)− σi(b
t0 + t

Ti
cTi))

≥ 0

• Otherwise, Ci > σi(t)− σi(b
t

Ti
cTi), and

σi+1(t0 + t)− σi+1(t0)− σi+1(t) = σi(t0 + t)− σi(t0)− σi(b
t

Ti
cTi)

−min(Ci, σi(t0 + t)− σi(b
t0 + t

Ti
cTi))

– If σi(t0 + t)− σi(b
t0 + t

Ti
cTi) ≤ Ci, we prove

σi+1(t0 + t)− σi+1(t0)− σi+1(t) = σi(b
t0 + t

Ti
cTi)− σi(t0)− σi(b

t

Ti
cTi)

= σi(b
t

Ti
cTi + t0)− σi(t0)− σi(b

t

Ti
cTi)

≥ 0

23

– Otherwise, σi(t0 + t)− σi(b
t0 + t

Ti
cTi) > Ci, we prove

σi+1(t0 + t)− σi+1(t0)− σi+1(t) = σi(t0 + t)− σi(t0)− σi(b
t

Ti
cTi)− Ci

≥ σi(t0 + t)− σi(t0 + b t
Ti
cTi)− Ci

= σi(t0 + t)− σi(b
t0 + t

Ti
cTi)− Ci

≥ 0

Thus, this lemma holds when the start of this window aligns with τ i’s period.

(2) If t0 mod Ti 6= 0 ∧ b t0 + t

Ti
c = b t0

Ti
c, this window is small enough that it fits within

one period of τ i. In this case, we prove that

σi+1(t0 + t)− σi+1(t0) = max(0, σi(t0 + t)− σi(t0)−max(0, Ci − σi(t0) + σi(b
t0
Ti
cTi)))

Similar to the previous case, we perform a case analysis to unfold the max/min operators

and prove that

σi+1(t0 + t)− σi+1(t0)− σi+1(t) ≥ 0

Details are omitted in this section.

(3) This is the most generic case, where this window overlaps with possibly multiple

periods of τ i. We prove that

σi+1(t0 + t)− σi+1(t0) = σi(t0 + t)− σi(t0)− (b t0 + t

Ti
c − d t0

Ti
e)Ci

−max(0, σi(b
t0
Ti
cTi) + Ci − σi(t0))

−min(Ci, σi(t0 + t)− σi(b
t0 + t

Ti
cTi))

Similarly, we perform case analysis on whether b t0 + t

Ti
c = b t0

Ti
c + b t

Ti
c or b t0 + t

Ti
c =

b t0
Ti
c+ b t

Ti
c+ 1, and also on how σi(t0) and σi(b

t0
Ti
cTi) + Ci compares to one another.

The intuition of the first case analysis is to distinguish whether t0 + t reaches one extra

period. The second comparison decides whether there may still be some computation for

the current period left at the start of this window. Proof details are omitted in this section.

Combining all three cases, this concludes the proof of Thm. 1.

24

An immediate corollary is the schedulability of the full system:

Corollary 1. The system is schedulable at all times if each task is schedulable for its first

period.

Said otherwise,

(
∀p, Cp ≤ σp(Tp)

)
=⇒ ∀p, i ≥ 0, Cp ≤ σp((i+ 1) ∗ Tp)− σp(i ∗ Tp)

3.2 Extension with Variable Execution Time

The previous section only handles a restrictive scenario where all tasks must use up their

budgets within each period. This section extends the reasoning with more flexibility, that

is, the actual execution time for each task may vary. We still require that the accounting of

time is in units of time slots. Under this setting, a task may relinquish its remaining time

slots in any period so that lower-priority ones get a chance to run earlier.

Although the actual number of time slots a task is going to occupy during an arbitrary

period can only be known at runtime, we conduct the schedulability analysis by considering

all possible values. In particular, we maintain an auxiliary data structure, O, to represent

an oracle for execution times. Specifically, Oi(k) is the execution time at the k-th period

[kTi, (k + 1)Ti) of task τ i. We then parameterize the computation of a time map over an

oracle, written as σOi .

Definition 3 (Computation of dynamic time map).

σO0 (t) = t

σOi+1(t) = σOi (t)−

⌊
t
Ti

⌋
−1∑

j=0
Oi(j)

−min
(
Oi
(⌊

t
Ti

⌋)
, σOi (t)− σOi

(⌊
t
Ti

⌋
Ti
))

Compared with Def. 1, this parameterized version follows the same idea of recursive

computation in decreasing priority order, while allowing variations in the actual execution

25

time. We still require the scheduler to enforce the budget constraint, such that

∀i, k, Oi(k) ≤ Ci

For any run of the system, it instantiates a concrete value for this oracle, which accu-

rately describes the actual execution time of each task. This section details the proof that

as long as this oracle respects the budget constraint, the system will be schedulable if all

tasks are able to receive their full budgets within the first period.

We prove that for any task τ i, the amount of available virtual time within any window

cannot decrease if tasks finish earlier, and also the virtual time either stagnates or increases

by 1 at any moment. We achieve this by induction on i.

Since σO0 (t) = t, both properties hold. For the inductive step, we assume that both

properties hold for τ i, and we look at the virtual time for τ i+1. The proof that

∀t, σO0 (t+ 1) = σO0 (t) ∨ σO0 (t+ 1) = σO0 (t) + 1

follows the same structure as in Lemma 1, and we omit its details in this section. Below,

we focus on the proof that the virtual time available within each window does not decrease.

Lemma 2 (Finishing early does not lead to less amount of virtual time). Assume that O is

a valid oracle representing the actual execution time and respecting budget constraints. For

any arbitrary task τ i+1 and window [t1, t2),

σOi+1(t2)− σOi+1(t1) ≥ σi+1(t2)− σi+1(t1)

Proof. Given that this property holds for τ i, we conduct a case analysis on whether t1, t2

belong to the same period of τ i.

• If they belong to the same period, there must exist an integer k such that kTi ≤ t1 <

t2 ≤ (k + 1)Ti. Similar to the second case in the proof of Thm. 1, we prove that

σOi+1(t2)− σOi+1(t1) = max(0, σOi (t2)− σOi (t1)−max(0, Oi(k)− σOi (t1) + σOi (kTi)))

26

Since the following inequalities hold

σOi (t2)− σOi (t1) ≥ σi(t2)− σi(t1)

Oi(k) ≤ Ci

σOi (t1)− σOi (kTi) ≥ σi(t1)− σi(kTi)

We prove

σOi+1(t2)− σOi+1(t1) ≥ σi+1(t2)− σi+1(t1)

• If they span multiple periods, we denote d t1
Ti
e = k1 and b t2

Ti
c = k2, where k1 ≤ k2.

We break down this window into different chunks and reason about the amount of

available virtual time as follows. Notice that t1 and k1Ti belong to the same period,

while t2 and k2Ti also belong to a same period. We prove that

σOi+1(t2)− σOi+1(t1) = σOi+1(t2)− σOi+1(k2Ti)

+σOi+1(k2Ti)− σOi+1(k1Ti)

+σOi+1(k1Ti)− σOi+1(t1)

≥ σi+1(t2)− σi+1(k2Ti)

+σi(k2Ti)− σi(k1Ti)−
k2∑
j=k1

Oi(j)

+σi+1(k1Ti)− σi+1(t1)

≥ σi+1(t2)− σi+1(k2Ti)

+σi(k2Ti)− σi(k1Ti)− (k2 − k1)Ci

+σi+1(k1Ti)− σi+1(t1)

= σi+1(t2)− σi+1(t1)

Thus, this lemma holds.

As an immediate corollary, we obtain the schedulability proof with variable execution

time.

Corollary 2. The system is schedulable at all times if each task is schedulable for its first

27

period. For any valid oracle O representing actual execution time,

(
∀i, Ci ≤ σi(Ti)

)
=⇒ ∀i, k ≥ 0, Ci ≤ σOi ((k + 1) ∗ Ti)− σOi (k ∗ Ti)

Obliviousness to lower priority tasks One of the benefits of fixed-priority scheduling

is its robustness, which states that the behavior of lower priority tasks can never affect

higher priority ones. In the current setting, this means despite the varying actual execution

time of lower priority tasks, the virtual timelines for higher priority ones stay the same.

Lemma 3 (Obliviousness to lower priority tasks). We consider the same task set with two

different oracles, O1 and O2. The behavior of an arbitrary task τ i does not change if all

higher priority tasks exhibit the same behavior.

∀O1, O2, (∀k < i,O1
k = O2

k) =⇒ σO
1

i = σO
2

i

This is straightforward by observing in Def. 3 that the computation only relies on the

execution time of higher priority tasks. We omit proof details in this section.

The above lemma illustrates one of the motivations for the virtual timeline, that is,

it facilitates the reasoning about isolation properties. Since σi serves as a comprehensive

description of τ i’s temporal behavior, any interference to τ i must also translate to the

interference on σi.

More importantly, comparing Lemma 3 with Corollary 2, we observe that the virtual

timeline abstraction also enables a flexible definition of isolation. In Lemma 3, we say τ i

is affected by others if σi changes. In this case, isolation means the exact value of σi is

not influenced by lower-priority tasks. However, Corollary 2 tolerates variations in a task’s

exact schedule as long as its schedulability still holds. In other words, the validity of a

specific predicate, ∀k, σi((k + 1)Ti)− σi(kTi) < Ci, must hold regardless of the exact value

of σi.

28

Chapter 4

Case Study: CertiKOS with

Fixed-Priority Scheduling

Chapter 3 demonstrates the high-level reasoning about a component’s schedule on its virtual

timeline, which corresponds to step 2© in Fig. 2.1. In this chapter, we discuss how to

connect temporal properties proved on the virtual timelines with the concrete scheduler

implementation of an OS kernel.

In particular, the high-level reasoning is based on schedules over individual virtual time-

lines, while the concrete scheduler (e.g. Fig. 2.2) exhibits a global view of the whole system

and produces a schedule mixing all components together. For any particular task, the

relationship between its schedule in the global view and its schedule in the virtual time-

line is demonstrated in Fig. 2.4. It is challenging to prove such a correspondence directly

based on the scheduler implementation. Instead, we use a virtual-time-based scheduler as

an intermediate step toward this connection. We first prove that the concrete scheduler is

equivalent to the virtual-time-based scheduler (step 3© in Fig. 2.1). We then prove that

for any task, its schedule on the virtual timeline is equivalent to the schedule produced by

the virtual-time-based scheduler (step 4© in Fig. 2.1). Combining both steps together, we

connect individual virtual timelines with the concrete scheduler implementation of an OS

kernel.

In this chapter, we first provide background on CertiKOS (Sec. 4.1), and our real-time

29

extension on top of it (Sec. 4.2). We then discuss in detail how we connect virtual timelines

with this real-time version of CertiKOS. In particular, we illustrate such a connection when

a task always uses up its budget (Sec. 4.3), and also an extension that allows a task to finish

earlier (Sec. 4.4). Last but not least, we demonstrate how to achieve complete isolation proof

between tasks (Sec. 4.5).

4.1 Background: CertiKOS, a Verified OS Kernel

CertiKOS [1, 3] is a verified kernel whose functional correctness has been mechanized in the

Coq proof assistant.

Abstraction layers. One of the highlighting features of CertiKOS is that its functional

correctness guarantees hold on the assembly level. This is achieved by dividing the kernel

into many small pieces, called abstraction layers. Each layer defines its own abstract state

and specifications of primitives operating on this state and proves that the underlying

implementation is equivalent to its abstraction. In this way, it exposes specifications instead

of implementations to higher layers, making it possible to scale the reasoning of a complex

software system.

We follow this approach in our work to achieve the same level of compositionality, and

more importantly, to carry end-to-end guarantees from specifications all the way down to

the assembly code.

Notice that temporal properties include safety and liveness. While the former is easily

preserved by refinement because high-level invariants also bound the set of possible behav-

iors of low-level code, the latter may not necessarily be preserved in general. However,

CertiKOS employs termination-sensitive and observation-preserving refinement, and every

system call is proven terminating. Thus, both safety and liveness properties are preserved

by refinement in this work.

The machine model. The CertiKOS kernel uses the CompCert compiler [23, 24] to

propagate the verification done at the C source code level down to the generated assembly

code. (Actually, it is a slightly modified version of CompCert that handles new instructions

30

and abstraction layers which is still verified.) This compiler enjoys a proof of correctness,

mechanized in Coq, which ensures that any behavior of the generated assembly code is also

an allowed behavior of the source code. This model does not include all hardware features

but only those that the compiler actually uses. States of the system are represented as a

register set (rs) and a memory state (m) [25].

The CertiKOS machine model builds on top of CompCert’s one by extending the memory

model with an abstract state that can contain arbitrary information.

The small step operational semantics remains the same with two additions: new instruc-

tions and primitives, which are internal functions abstracted as primitive operations, and

thus whose execution is seen as a single step instead of as a jump to a function body.

4.2 Real-Time Extension on CertiKOS

Preemption is essential for multiplexing the processor among multiple processes. Particu-

larly, the ability to preempt a running user process and schedule another one immediately

enables us to obtain properties that are not achievable in cooperative systems, such as

liveness of any user process.

We replace the cooperative scheduler of CertiKOS with a preemptive one (Fig. 2.2) and

prove its functional correctness following the layered approach (step 1© in Fig. 2.1). The

timer interrupt is set up to occur periodically, and this scheduler is invoked by the timer

interrupt handler.

Whenever a timer interrupt occurs, the interrupt handler acknowledges the receipt of

the interrupt and invokes the scheduler to decide whether to preempt the current task and

schedule a new one for the next time quantum. This is similar to FreeRTOS, which also

uses a constant-rate (or auto-reload) timer for scheduling. We leave the optimization of

using a one-shot timer for future work since it is orthogonal to the formal reasoning in this

work.

Verified interrupt handler. In addition to the preemptive scheduler, we also verify the

interrupt handler which invokes it. This requires extending the machine model with an

31

interrupt mechanism.

After each instruction, a processor checks the interrupt line to decide whether it is

going to execute the next instruction or to jump to an interrupt handler. The original

CertiKOS machine model only covers synchronous exceptions, e.g. page faults, but not

external interrupts. We model this behavior by a 2-step process at each instruction: first,

we detect interrupts with an abstract function intr_trigger, then we handle them using

an abstract interrupt handler intr_handler that dispatches execution to the corresponding

interrupt handler if there is a pending interrupt. Both functions are abstract in the definition

of LAsm semantics and are further instantiated in each layer with a concrete effect on the

corresponding abstract state.

We only model the timer interrupt in this way, since polling for other device inter-

rupts is the typical behavior for high-assurance systems [4, 5]. Nevertheless, our interrupt

mechanism is general enough to extend to any kind of device interrupts.

Restriction to the user mode. In order to keep the modifications to the existing verifi-

cation proofs of CertiKOS to a minimum, we only allow interrupts in user mode. This way,

all the proofs about the kernel do not need to be modified since the assembly semantics in

kernel mode has not changed.

The downside of this choice is that disabling interrupts in the kernel may hurt the

responsiveness of the system. However, CertiKOS keeps the kernel small and avoids in-

troducing tedious operations into the kernel mode in general. Further, it is possible to

adopt the same top-half and bottom-half mechanism of modern operating systems (such as

Linux and µC/OS-III), where the interrupt handler itself executes quickly, and the associ-

ated time-consuming work is deferred to a regular user/kernel process. On the other hand,

operations such as page fault handling can be avoided by pre-allocating required physical

memory for real-time applications, which may not rely on dynamic memory allocation. In

this way, the interrupt disable time could be reduced.

Coq formalization of the scheduler As shown in Fig. 2.1, we need to first define a

Coq formalization of the scheduler, abs_sched, and prove that it is equivalent to the C

32

1 Inductive prio_config: Type :=

2 | mkPrioConfigValid: Z (* period *) → Z (* budget *) → prio_config.

3

4 (* A mapping from integer to the task configuration *)

5 Definition PrioConfigPool: Type := ZMap.t prio_config.

6

7 (* A mapping from interger to integer *)

8 Definition QuantumPool: Type := ZMap.t Z.

9

10 (* Fields in RData *)

11 uticks: Z (* timer interrupt counter *)

12 quanta: QuantumPool (* remaining budget for each task *)

13 config: PrioConfigPool (* parameters for all tasks *)

Figure 4.1: Coq formalization of necessary data structures

implementation.

The C implementation, sched, is shown in Fig. 2.2. It relies on a quanta array to

maintain the remaining budget for each task, it also needs to query the period and budget

for each task. Finally, it maintains a global variable, t, to represent the current time (in

units of time slots). We list the Coq formalization of the above data structures in Fig. 4.1.

Here, Z is the Coq type for binary integers, and ZMap.t is a finite map from integer to a

specified value type. RData defines the abstract state in CertiKOS, i.e. all primitives are

specified as a transition function on RData [1].

We extend the original definition of RData with the following new fields to accommodate

real-time scheduling.

• uticks: the current time of the system.

• quanta: the array maintaining the remaining budget for each task. In particular, this

finite map ranges from 0 to N-1, where N represents the total number of tasks.

• config: parameters of each task. In particular, it records the period and budget for

each task. This field is not to be updated by the scheduler.

On top of these, we define the Coq formalization of the scheduler as shown in Fig. 4.2

and Fig. 4.3. Here, the abstract function tick_quanta corresponds to lines 3 - 7 in Fig. 2.2,

33

1 Fixpoint tick_quanta (t: Z) (pri: nat) (conf: PrioConfigPool) (quanta: QuantumPool) :=

2 match pri with

3 | O ⇒ quanta

4 | S p ⇒ match (ZMap.get (Z.of_nat p) conf) with

5 | mkPrioConfigValid T C ⇒
6 if (zeq (t mod T) 0) then

7 ZMap.set (Z.of_nat p) C (tick_quanta t p conf quanta)

8 else

9 tick_quantums t p conf quanta

10 end

11 end.

12

13 Fixpoint highest_pos_quanta (pri: nat) (quanta: QuantumPool) :=

14 match pri with

15 | O ⇒ N

16 | S p ⇒ let prio := N - Z.of_nat p - 1 in

17 if (zlt 0 (ZMap.get prio quanta)) then

18 prio

19 else

20 highest_pos_quanta p quanta

21 end.

Figure 4.2: Coq formalization of the abstract scheduler

where the scheduler iterates over each task and refills the budget if a new period arrives.

Function highest_pos_quanta corresponds to lines 10 - 16 in Fig. 2.2, where the scheduler

iterates over all tasks in decreasing order of priority and returns the first task that has a

remaining budget. Finally, function absched only decrements the quanta value if a real-time

task is scheduled.

The proof that the abstract function absched indeed captures all behaviors of its C

implementation follows the same approach established by Gu et al. [1]. We divide the

scheduler implementation into multiple layers and build up the contextual refinement proof

from these smaller components. We omit proof details in this section.

34

1 Function absched (adt: RData) : Z * RData :=

2 let ticks’ := (uticks adt) + 1 in

3 let quanta’ := tick_quanta ticks’ (N - 1) config (quanta adt) in

4 let prio := highest_pos_quanta N quanta in

5 if (zlt prio N) then

6 (prio, adt {uticks: ticks’}

7 {quanta: ZMap.set prio ((ZMap.get prio quanta’) - 1) quanta’})

8 else

9 (prio, adt {uticks: ticks’} {quanta: quanta’}).

Figure 4.3: Coq formalization of the abstract scheduler

4.3 Connecting The Schedulability Proof with The Concrete

Scheduler

In this section, we explain how we connect virtual timelines with the concrete scheduler

implementation (Fig. 2.2). We first introduce the virtual-time-based scheduler vt_sched.

Fig. 4.4 demonstrates the basic idea of vt_sched: it iterates over all tasks until it finds one

that is scheduled on the task’s virtual timeline. Notice that we use C code for illustrative

purposes only. The function vt_sched is actually formalized in Coq.

At the core of vt_sched is a predicate VTA (σi, t), which checks whether task τ i is

scheduled within global time duration [t, t+1). Fig. 4.5 gives a concrete example of a task’s

schedule in both the global and virtual timeline. In particular,

• VTA (σ1, 6) = 0 (τ1 is not scheduled at time 6), because the next time slot is not

available to τ1 (σ1(6) = σ1(7)).

• VTA (σ1, 7) = 1, since the higher priority task is finished, and task τ1 still has remaining

budget (σ1(7) < σ1(8) ∧ consumption = 1 < C1).

• VTA (σ1, 8) = 0, because its budget is exhausted at this point (consumption = 2 ≥ C1).

Connecting abs_sched with vt_sched This corresponds to step 3© in Fig. 2.1. The

concrete scheduler as shown in Fig. 2.2 operates on the quanta array to decide the next task

to schedule. It is consistent with the virtual-time-based scheduler (as shown in Fig. 4.4)

based on the following intuitions.

35

1 int VTA(int vti[], int t){

2 if ((vti[t+1] > vti[t])){

3 int start = t / Ti * Ti;
4 int consumption =

5 vti[t] - vti[start];

6 if (consumption < Ci){

7 return 1;

8 }

9 }

10 return 0;

11 }

12

13

14 int vt_sched (){

15 t++;

16

17 int pid = N;

18 for(int i = 0; i < N; i++){

19 if (VTA(vt[i], t)){

20 pid = i;

21 break;

22 }

23 }

24

25 return pid;

26 }

Figure 4.4: C Illustration of the virtual-time-based scheduler (actually defined in Coq)

0 1 2 3 4 5 6 7 8 9 10

𝜏" = (2, 5)

0 1 2 3 4 5 6 𝜎"(𝑡)

t

quanta[1] = 1 quanta[1] = 0

Figure 4.5: An example schedule in global and virtual time

Assume abs_sched schedules τ i at time t. The following must hold, and vice versa:

• All higher priority tasks are finished. That is, ∀j < i, quanta [j] = 0.

• There is no new arrival of higher priority tasks. That is, ∀j < i, t mod Tj 6= 0. This

corresponds to the first loop in Fig. 2.2. When a new period starts, the quantum

value will be reset to this task’s budget.

• Task τ i still has remaining budget, or a new period is arriving. That is, quanta[i] >

0 ∨ t mod Ti = 0.

Similarly, if vt_sched schedules τ i at time t, the following must hold, and vice versa:

• For each higher priority task τ j , VTA (σj , t) = 0.

36

• VTA (σi, t) = 1.

The above necessary and sufficient conditions indicate that the connection between

abs_sched and vt_sched relies on the relation between a task’s virtual time and its current

quantum value. In particular, we observe in Fig. 4.5 that a task’s quantum is decremented

along with the increment in its virtual time, and is eventually depleted so that this task

won’t be scheduled until the next period. To put it formally, we prove the lemma below to

facilitate the refinement proof between abs_sched and vt_sched.

Definition 4 (Equivalence between states of the abstract scheduler and the virtual-time-based

scheduler). Assume that the current quanta array is Q and the current time is t.

quanta_valid(Q, t) ≡ ∀i, Q[i] = Ci −min

(
Ci, σi(t)− σi

(⌊ t
Ti

⌋
Ti
))

It means that whenever the concrete scheduler finishes scheduling, the remaining quanta

is the budget minus the elapsed virtual time between the beginning of this period and the

end of the next time slot. We prove in Coq that this invariant is indeed preserved by the

scheduler.

Lemma 4 (The equivalence relation between the quanta array and the virtual time is

preserved by the scheduler). At an arbitrary moment t, assume that the current quanta

array is Q. The scheduler first checks new task arrivals and updates the quanta array to Q′.

It then schedules a task and further updates the quanta array to Q′′. The following must

hold.

quanta_valid(Q, t) =⇒ quanta_valid(Q′′, t+ 1)

Proof. We do a case analysis on whether the scheduled task is a real-time task or not.

1. Assume that a real-time task τk is scheduled at time t.

• For task τk itself,

– If t mod Tk = 0, this marks the beginning of a new period and Q′[k] = Ck

must hold. Since it is scheduled, Q′′[k] = Ck − 1. On the other hand,

37

Ck−min(Ck, σk(t+1)−σk(
⌊
t+ 1

Tk

⌋
Tk)) = Ck−min(Ck, 1) = Ck−1. Thus,

the equivalence holds.

– Otherwise, t and t + 1 belong to the same period of τk. Again, it’s easy to

see that Q′′[k] = Q′[k]− 1 = Q[k]− 1. Since τk is not finished by time t, we

know σk(t)− σk(
⌊
t

Tk

⌋
Tk) < Ck. We prove that

σk(t+ 1)− σk(
⌊
t+ 1

Tk

⌋
Tk) = σk(t) + 1− σk(

⌊
t

Tk

⌋
Tk) ≤ Ck

Thus, the equivalence holds.

• For a higher-priority task τ j where j < k, its virtual time increases while its

quantum value remains 0. We also prove that t mod Tj 6= 0, otherwise, τ j

would be able to preempt τk. Since σj(t + 1) − σj(

⌊
t+ 1

Tj

⌋
Tj) ≥ Cj at this

moment, the equivalence holds.

• For a lower-priority task τ j where j > k,

– If t mod Tj = 0, this marks the beginning of a new period such that Q′′[j] =

Cj . However, its virtual time does not increase, thus the equivalence holds.

– Otherwise, neither its virtual time nor its quantum value changes. Since t

and t+ 1 belong to the same period of τ j , the equivalence holds.

2. If a batch task is scheduled, this means t mod Ti 6= 0 holds for any task τ i. We also

prove that σi(t+ 1)−σi(
⌊
t+ 1

Ti

⌋
Ti) ≥ Ci since all tasks are finished. This entails the

equivalence relation at time t+ 1.

Finally, we prove that abs_sched and vt_sched always produce the same schedule. Proof

details are omitted in this section.

The sufficiency of individual virtual timelines To address one of the main challenges

of temporal reasoning, that all tasks are interleaved together in the schedule, we carry out

step 4© in Fig. 2.1 and prove that it is sufficient to examine the virtual timeline of a specific

38

task to reason about its schedule. This is consistent with Fig. 2.4, where the schedules of

different tasks never overlap with each other. In other words, the intuition is that, at any

moment, there can be at most one task τ i that satisfies VTA (σi, t).

Lemma 5 (The virtual timeline faithfully describes the schedule of a task). For each

arbitrary task τ i and time t,

vt_sched(t) = i⇔ VTA(σi, t) = 1

Proof. The forward direction is trivial: if τ i is scheduled it must satisfy VTA(σi, t) = 1. We

focus on the other direction and prove that if VTA (σi, t) = 1 for task τ i, then VTA (σj , t) =

0 must hold for any other higher-priority task τ j .

We prove this by contradiction. Assume that there is a higher priority task τ j such that

VTA (σj , t) = 1. Since the time slot [t, t+1) is occupied, it becomes unavailable to task

τ j+1 and all subsequent lower-priority tasks. Thus σi(t+ 1) = σi(t), which contradicts the

assumption that VTA (σi, t) = 1.

In this way, we formally establish the relation between a task’s schedule and its virtual

timeline, and we only need to examine the predicate VTA(σi, t) to decide task τ i’s schedule

at any time t.

The main theorem Combining everything together, on top of the functional correctness

of the system, we obtain a schedulability proof for each task, as formalized in Corollary 1.

And the schedulability property carries down to the generated assembly code of the system

since we connect the virtual timeline abstraction to the implementation of the scheduler.

4.4 The sys finish System Call

This section discusses how to allow a periodic task to finish early and give up its remaining

quanta to others. This model is more realistic and achieves better utilization for the whole

system, i.e., more CPU time can be given to batch tasks when periodic ones do not require

all their budgets. This requires a system call sys_finish, similar to periodic_wait in the

39

1 void sys_finish (){

2 quanta[cur_pid] = 0;

3 }

Figure 4.6: The sys_finish system call

1 void vt_sys_finish (){

2 int i = cur_pid;

3 int start = t / Ti * Ti;
4 int exec_time = σi(t)− σi(start);
5 O[i][t / Ti] = exec_time;

6 }

Figure 4.7: C illustration of the virtual-time-
based sys_finish

ARINC 653 standard [26]. The core of its C implementation is straightforward, as shown

in Fig. 4.6.

Despite the simplicity of its C implementation, sys_finish complicates both the compu-

tation of time maps and the connection between virtual timelines with the concrete sched-

uler. While the computation of time maps as well as various properties (e.g. schedulability

and obliviousness to lower-priority tasks) are addressed in Sec. 3.2, this section addresses

the connection between the virtual timeline abstraction with the concrete scheduler imple-

mentation under this more flexible setting.

Connecting the concrete scheduler with the virtual-time-based scheduler Under

this setting, the concrete scheduler is the same as in Sec. 2.2, and the virtual-time-based

scheduler is also similar, except with a parameterized version of time maps. In particular,

the oracle O is now part of the abstract state, which the virtual-time-based scheduler relies

on to compute the current time maps for each task. We update the equivalence relation

between states (Def. 4) as shown below.

Definition 5 (Equivalence between states of the abstract scheduler and the virtual-time-based

scheduler, under the setting of variable execution time).

quanta_valid(Q,O, t) ≡ ∀i, Q[i] = Oi(

⌊
t

Ti

⌋
)−min

(
Oi(

⌊
t

Ti

⌋
), σOi (t)− σOi

(⌊ t
Ti

⌋
Ti
))

We prove that this simulation relation is preserved by the scheduler, i.e. if the concrete

scheduler causes the transition from Q to Q’ at time t, then

quanta_valid(Q,O, t) =⇒ quanta_valid(Q′, O, t+ 1)

40

Notice that the scheduler does not update time maps, thus the oracle before and after

this invocation remains the same. Although seemingly different, its proof is achieved in the

same way as in Lemma 4, by conducting case analysis on the relative priority between an

arbitrary task with the scheduled task. On top of this equivalence relation, we further prove

the refinement between the concrete scheduler and the virtual-time-based scheduler. Both

proof details are omitted in this section.

Connecting sys_finish with its virtual-time-based abstraction The remaining proof

obligation is to connect the virtual-time-based system call, vt_sys_finish (illustrated in

Fig. 4.7 using C code), with sys_finish. Here, exec_time represents the actual execution

time of task τp. Its computation exploits the fact that all lower priority tasks are not

runnable until task τ i is finished, i.e., the entire virtual time duration is consumed by τ i.

We prove the equivalence of the two by showing that they also preserve the relation in

Def. 5.

Lemma 6 (The implementation and virtual-time-based abstraction of sys finish preserve

the equivalence relation). Assume that at time t, the concrete sys_finish causes the tran-

sition from Q to Q’, while the virtual-time-based sys_finish causes the transition from O

to O’.

quanta_valid(Q,O, t) =⇒ quanta_valid(Q′, O′, t)

Proof. Assume that the calling task is τ i. We prove that the only change regarding Q is

that Q′[i] = 0. And the only update regarding O is that O′i(t/Ti) = σOi (t+1)−σOi (b t
Ti
cTi).

1. For τ i itself, we prove that σO
′

i = σOi and also Q′[i] = 0. Given the definition of O′,

the equivalence relation holds.

2. For an arbitrary higher-priority task τ j where j < i, neither its quantum value nor

time map changes. Thus, we prove that the equivalence relation also holds for τ j .

3. For an arbitrary lower-priority task τ j where j > i, its quantum value and the oracle

value remains the same, while the time map is updated. However, we prove that this

update to the time map only affects future time instants. In other words, since the

41

schedule up to t+ 1 does not change,

∀x ≤ t+ 1, σO
′

j (x) = σOj (x)

This property is proved by induction on j, whose details are omitted in this section.

On top of it, we prove that the equivalence relation also holds.

This concludes the proof that Def. 5 is preserved by invoking sys_finish.

On top of the above equivalence proof, we prove that the concrete and virtual-time-

based sys_finish are equivalent. In this way, any system call that may affect the quanta

array is formally connected with its virtual-time-based abstraction, such that the virtual

timeline abstraction also applies to the extension with variable execution time.

4.5 Non-Interference Between Tasks

Our isolation guarantee relies on a proof of information flow non-interference. Non-interference

is a property that guards the way information is transmitted among different components

in a system. In particular, if two components are proved to be non-interfering with each

other, then any modification to the state of one of them cannot alter the execution of the

other. (Inter-component communications are prohibited, which would otherwise lead to

direct interference between components.) This is of significant value in safety-critical sys-

tems, where critical components must never be affected by non-critical ones. Existing work

mostly emphasizes spatial isolation, e.g. system calls do not leak information, so that non-

interference between components is preserved. In our work, the extension with preemption

brings more complexity regarding temporal isolation.

Scope of temporal isolation Temporal isolation refers to the absence of information

flow through scheduling, that is, a component’s observation on its own schedule (e.g. schedu-

lability of a task in flattened scheduling and the local schedule of tasks in partitioned

scheduling) is not affected by others. In particular, a component’s observation does not

include how often or how long it is preempted. Indeed, the current implementation of our

42

scheduler does not allow a component to observe the number or duration of preemptions:

timer interrupts and context switches are handled by the OS kernel, and a user task cannot

access the global time.

More specifically, a user task can execute user-mode instructions or invoke system calls

to interact with the OS kernel. We prohibit instructions such as RDTSC which may leak

information about the global time, and we also carefully craft system calls so that they are

either independent of the passage of time or only expose time consumption by the calling

task itself. In this way, a task is only sensitive to its schedulability, which holds as long as

the schedulability criterion is satisfied.

For example, in flattened fixed-priority scheduling, higher-priority tasks can choose to

either use up all the budget or yield early during a period, causing lower-priority ones to be

preempted longer (and more often) or shorter (and less often), respectively. However, since

real-time tasks must satisfy the schedulability test on their task parameters (budget and pe-

riod), the schedulability of lower-priority tasks always holds thanks to the budget-enforcing

mechanism of our scheduler. And since a low-priority task cannot observe preemptions

directly (a task is scheduled by the OS kernel according to global time and status of higher-

priority tasks, but that information is not exposed to this user task), there is no information

leakage from higher-priority ones through scheduling. In other words, the low-priority task’s

observation on its schedule, which only includes its schedulability property, is not affected

by others.

The above notion of temporal isolation differs from existing work [4, 5] in that it al-

lows flexibility in the global schedule of a component, which leads to better responsiveness

of tasks and higher utilization of the processor. As a comparison, existing work enforces

a more straightforward but rigid solution that makes the schedule of all tasks static. As

a consequence, access to global time or time-leaking external devices is prohibited in our

setting. External devices such as network cards could leak information about global time

directly (e.g. by attaching a timestamp to a message) or indirectly. For example, if one

knows the expected arrival rate of network packets, then that gives a pretty good indication

of the passage of global time by counting how many packets have arrived. Also, as dis-

cussed in Sec. 1.3, microarchitectural level details, such as nondeterminism in the number

43

of instructions a component executes during a time slot, are out of the scope of this work.

We only focus on algorithmic properties instead.

In this section, we explain how we extend the proof of non-interference between tasks

to the OS kernel with a fixed-priority scheduler.

Background: non-interference of cooperative CertiKOS The existing cooperative

version of CertiKOS enjoys a mechanized proof of non-interference by Costanzo et al. [3].

Unlike the usual approach based on security labels [27], it instead defines non-interference

with respect to an observation function O, which is a function from a state to an ab-

stract observation that intuitively represents everything that can be observed, directly or

indirectly. Two states are observably equivalent or observably indistinguishable regarding

an observer task if the task’s observation function returns identical values on both states.

Non-interference is then defined as “preserving (observational) indistinguishability”:

Definition 6 (Non-Interference). A system is said to be non-interferent if its execution

relation step preserves indistinguishability:

∀s1 s2 s
′
1 s
′
2, step s1 s

′
1 ⇒ step s2 s

′
2 ⇒

O(s1) = O(s2)⇒ O(s′1) = O(s′2)

This definition enables a flexible way of specifying security policies. For instance, the

case study in [3] specifies that a task’s virtual memory space should be independent of

other tasks while the exact physical pages backing up this virtual space might vary. The

non-interference proof is carried down to the assembly code, thanks to security-preserving

simulation relations [3].

The non-interference proof of the cooperative CertiKOS takes advantage of the fact that

the only way to trigger a context switch is through the sys_yield system call, in particular,

context switches always happen at the same places. Thus, this framework cannot handle

nondeterministic occurrences of preemption (triggered by timer interrupts).

Background: structure of the non-interference proof of cooperative CertiKOS

44

• The behavior of a task. As explained above, a task’s whole-execution behavior is

defined on top of its observation function in [3].

– Observation function. A task’s observation includes its register state, virtual

memory space, memory quota, number of children tasks, and the output buffer.

– Whole-execution behavior. It is specified with the execution status, e.g. Termi-

nate/Fault, etc. and a task’s observation of its final state. On top of this, the

whole-execution-based isolation property of a task is defined as follows. A task

enjoys non-interference if starting from two observably equivalent initial states, it

exhibits observably equivalent whole-execution behavior, e.g. the two executions

may terminate at observably equivalent final states.

• The non-interference lemmas and frame rule. The core isolation theorem in [3] states

that whole-execution behaviors from observably equivalent initialized states s1 and s2

are identical. It specifies non-interference on a particular level.

This is more of a frame rule, such that if a particular layer satisfies a group of pred-

icates, most importantly confidentiality (observably equivalent states step to observ-

ably equivalent next states) and integrity (an inactive task’s state is not tempered

with by others), then the above statement is true. Notice that in this cooperative set-

ting, context switches only happen upon voluntary yield, and this frame rule requires

that two executions of a task be matched step-by-step.

– Proof burden involving system services. Various properties, such as confiden-

tiality and integrity, are proved on all system services when the aforementioned

frame rule is instantiated at the top level of cooperative CertiKOS. System calls

available to a task include querying its memory quota, spawning new tasks,

yielding the current execution, and printing to its buffer.

• The end-to-end non-interference proof. The main theorem is an end-to-end property,

stating that if two high-level initialized states, S1 and S2, are observably equiva-

lent, then starting from the two corresponding low-level states, s1 and s2, the whole-

execution behaviors are also observably equivalent. Its proof is mainly about showing

45

that such security property is preserved by refinement, which is one of the main con-

tributions by [3]. This proof relies on the frame rule mentioned above.

Extension: non-interference with preemption Preemption breaks this existing proof

as context switches can be triggered by interrupts in a nondeterministic way, such that we

can no longer match two executions step-by-step. In particular, we now need to prove that

an execution in which a context switch is triggered is observably equivalent to an execution

in which no context switch happens, which entails the correctness of context switch. This

is a byproduct of the non-interference proof: it requires us to examine every kernel service

and make sure that its specification is tight enough to entail isolation. We discovered that

the original specification was not tight enough: the behavior of floating-point registers and

the control register is undefined, which prevents us from establishing the equivalence of

states before and after a context switch. Notice however that the existing specification was

non-interferent, so that the overall non-interference proof of the cooperative CertiKOS is

still correct, albeit less meaningful.

To that end, we narrow down the original specification to accurately reflect all details

in the context switch. We modify the observation function to be insensitive to the task

status, thus allowing to preserve indistinguishable states between a running execution and

a preempted one, provided the latter gets the values of registers from its saved context. A

task enjoys all system calls available in [3] (newly-spawned tasks are always batch tasks), in

addition to involuntary context switches triggered by preemption. These system services do

not rely on explicitly querying another task’s running status, thus they are compatible with

the updated definition of observation. Notice that access to global time and communications

between tasks are prohibited as a consequence of strict task-level isolation. A user task is

still able to perform operations periodically without access to global time since the OS

kernel is responsible for triggering new task periods according to global time.

We then extend the isolation frame rule which proves whole-execution non-interference

based on single-step lemmas and instantiate it with various proofs on individual system

calls and the scheduler. For example, we prove the integrity of all system calls, such that if

a task is inactive (preempted), its observation doesn’t change (as shown in Fig. 4.8, transi-

46

Active state Inactive state

Execution 1

Execution 2

Confidentiality

Integrity

Figure 4.8: The noninterference framework with preemption

tions from inactive states preserve a task’s observation). We also prove the confidentiality

of the scheduler, such that stepping from two observably equivalent active states, the next

states are observably equivalent as well (as shown in Fig. 4.8, transitions from observably

equivalent active states result in equivalent states). Unlike in cooperative CertiKOS, con-

fidentiality here does not require the two next states to be both active or both inactive.

Instead, we prove them to be equivalent regardless of whether this task is preempted or

not. In this way, this new framework allows non-deterministic preemption while still guar-

anteeing information-flow security between tasks.

This concludes the proof of spatial isolation. Combining it with the schedulability proof,

we obtain a fully-verified OS kernel with both temporal and spatial isolation between tasks.

47

Chapter 5

Reasoning about Partitioned

Scheduling

5.1 Background: Partitioned Scheduling

Partitioned scheduling is another common scheduling paradigm, where the CPU resource is

divided among multiple partitions, with each partition hosting its own set of tasks. Parti-

tions are useful for the administration of a system, e.g. applications independently developed

by different vendors could be kept in different partitions, so that tasks within a partition

are allowed to communicate and cooperate, while they are also free from interference by

other partitions.

Each partition Πi is reserved a certain proportion of the CPU resource, specified with a

partition budget Bi and period Pi, i.e., Πi = (Bi, Pi). The OS kernel guarantees to schedule

this partition for Bi time slots in every period, though the exact allocation of these slots may

vary depending on the behavior of other partitions. Fig. 5.1 shows an example of partitioned

scheduling. Here, we focus on partition Π0, which consists of two tasks τ0 and τ1, while

τ0 has higher priority over τ1. The upper half of the figure shows the schedule when Π0 is

the only partition in the system. Under this setting, this partition always occupies the first

two time slots within every period, and its tasks are only scheduled when the partition is

active. As a comparison, the lower half depicts the case when Π0 is interleaved with Π1.

48

0 1 2 3 4 5 6 7 8 9 10

Π" = (2, 5)

𝜏" = (1, 7)

𝜏, = (2, 13)
11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Π, = (2, 5)

Figure 5.1: Partitioned scheduling

Though the partition’s exact schedule varies, it is still guaranteed two time slots in every

period.

Also notice that white boxes in Fig. 5.1 represent idle tasks in partition Π0. We require

that a partition’s schedule within every period must be complete, that is, it is scheduled

even if there is no active real-time task in this partition. We explain in Sec. 5.2 that this is

necessary for ensuring temporal isolation between partitions.

Partitioned scheduling is a mechanism for confining groups of tasks, such that each

group enjoys its own share of the CPU resource. There are various ways of scheduling

partitions, among them are two-level scheduling and global scheduling.

Two-level scheduling Also known as hierarchical scheduling, this scheme first schedules

a partition, then schedules a task within this partition, as shown in Fig. 5.2. Notice that M

represents the number of partitions in the system, while parQuanta maintains the remaining

budget for each partition, similar to how quanta maintains the budget for each task. Also,

notice that the local scheduler for partition Πi is independent of the partition scheduling

algorithm. In other words, it has the flexibility to adopt either fixed-priority scheduling,

earliest-deadline-first scheduling, or even round-robin scheduling.

In this way, two-level scheduling can be viewed as a mechanism for allocating CPU

resources among partitions: the local scheduler within each partition is independent of one

another.

Global scheduling Despite all the flexibility provided by two-level scheduling, it is re-

strictive in the sense that it prohibits task preemption across partitions. For instance, it

49

1 int two_level_sched (){

2 t++;

3 // refill partition budgets

4 for(int i = 0; i < M; i++){

5 if (t % Pi == 0){

6 parQuanta[i] = Bi;

7 }

8 }

9

10 // schedule partition Πi

11

12 parQuanta[i]--;

13

14 // invoke the local scheduler

for Πi

15 return local_sched(i);

16 }

Figure 5.2: The two-level scheduling

1 int global_sched (){

2 t++;

3

4 // refill partition budgets

5

6

7 // refill budgets for all tasks

8 for(int i = 0; i < N; i++){

9 if (t % Ti == 0){

10 quanta[i] = Ci;

11 }

12 }

13

14 // schedule a task τi
15

16 quanta[i]--;

17

18 int par = get_par(i);

19 parQuanta[par]--;

20

21 return i;

22 }

Figure 5.3: Example for global scheduling

is possible for a critical task to be delayed by another non-urgent task simply because the

critical one’s partition does not get the chance to run.

Global scheduling is a scheme that achieves a good balance between isolation and re-

sponsiveness. Fig. 5.3 shows one way of scheduling tasks from all partitions globally, while

also requiring that each task being subject to its partition budget. On the one hand, a high-

priority task is able to preempt other lower-priority ones even if they belong to a different

partition. On the other hand, each partition is still guaranteed to receive its full budget

within each period.

The major difference between the two schemes is that the two-level scheduling imposes

an inherent priority among partitions, while the latter relies on the global task priority and

is thus more dynamic.

5.2 Temporal Isolation in Partitioned Scheduling

Notice that Fig. 5.1 demonstrates an interesting phenomenon: from partition Π0’s local

view, its tasks’ schedule varies depending on the exact schedule of this partition. For

50

example, when it is the only partition in the system (the upper half of Fig. 5.1), its tasks

interleave with each other as follows: τ0, τ1, τ1, idle, τ0, idle. As a comparison, when Π0 is

scheduled alongside Π1, the interleaving of its tasks is shown below: τ0, τ1, τ0, τ1, idle, τ1.

This is caused by the varying task arrival time in this partition’s local view, which

clearly leads to interferences between partitions and invalidates the isolation requirement

between partitions. On the one hand, if tasks need to cooperate with each other in the

same partition, the reordering of their schedule might jeopardize its correct operation. On

the other hand, this leads to information flow between partitions, weakening the security

guarantee each partition enjoys.

Existing work on isolation properties in partitioned scheduling [4] assumes a fixed sched-

ule for partitions (by using a round-robin scheduler to schedule a fixed set of partitions),

which is a restrictive setting as discussed above. They prove that there is no information

flow through the scheduler since the scheduling of partitions is statically determined. How-

ever, their verification framework does not extend to the issue presented in Fig. 5.1. For

instance, if the number of partitions differs in two different runs of the system, the afore-

mentioned isolation property vanishes. The fundamental limitation is that existing work

does not include temporal behavior in their semantics, thus unable to specify nontrivial

temporal properties such as schedulability and isolation. In this work, we address this issue

using the notion of virtual timelines.

The local time map for a task This section describes how to adapt the concept of the

virtual timeline to describe a task’s behavior from its enclosing partition’s point of view.

In particular, we differentiate different types of virtual timelines as follows. We use PT, VT,

and ST to represent the timeline for the global time, a task, and a partition, respectively.

All of them are of integer type, in units of time slots. Then we use π, ω and σ for time

maps of type parmap, localmap and timemap respectively.

1 Definition parmap: PT → ST. (*time map for a partition*)

2 Definition localmap: ST → VT. (*local time map for a task*)

3 Definition timemap: PT → VT. (*time map for a task*)

Under this notation, πi describes the schedule of partition Πi. In particular, πi(t)

represents the partition local time at global time t, meaning the accumulative amount of

51

0 1 2 3 4 5 6

0 1 2 3 4 5 6

local time of Π"

local time of Π"

lt 0 1 2 3 4 5 6

𝜔"(𝑙𝑡) 0 1 2 3 4 5 6

𝜔((𝑙𝑡) 0 0 1 2 3 3 4

lt 0 1 2 3 4 5 6

𝜔"(𝑙𝑡) 0 1 2 3 4 5 6

𝜔((𝑙𝑡) 0 0 1 1 2 3 4

𝜏"

𝜏(

Figure 5.4: Another example of local time map for a task

time slots allocated to this partition. Assume that the OS kernel indeed guarantees its full

budget within each period, the constraint below always holds.

∀k ≥ 0, πi(kPi) = kBi

The schedule of task τ j in its partition’s local view is thus denoted by ωj . Similar to the

discussion in Sec. 2.3, ωj(t) represents the amount of available virtual time for τ j , including

both time available to itself and available to lower-priority tasks. In this sense, ωj and σj

are computed in the same way as Fig. 2.5 (both of them increment at the same time), with

the only exception that the local time map is indexed by the local time of Πi. This makes

ωj a suitable description for a task’s local schedule: it ignores time slots not available to

the enclosing partition.

For example, Fig. 5.4 depicts the local time maps for τ0 and τ1 corresponding to the

schedule in Fig. 5.1. Here, ω0 includes all time slots available to this partition since τ0 has

the highest priority in this partition. Further, ω1 excludes time slots occupied by τ0, similar

to the way σ1 is constructed by removing the schedule of τ0 as shown in Fig. 2.6.

We further observe that the local time map for τ1 changes once partition Π0 is scheduled

together with Π1. This demonstrates that the local time map indeed captures a task’s local

behavior faithfully. The rest of this section investigates how to specify and reason about

temporal isolation between partitions using this new notion of local time map.

52

Temporal isolation between partitions The isolation property requires that the sched-

ule of tasks within Πi does not change no matter how πi is defined, as long as the partition

schedule is consistent with its period and budget. We use the local time map to describe a

task’s schedule within a partition. In addition, since this isolation property involves com-

paring two different executions, we define a canonical local time map for the same task,

rewritten ωΠi
j .

Definition 7 (The canonical local time map for task τ j ∈ Πi). We define ωΠi
j as the local

time map for task τ j, under the setting that Πi is the only partition in the system. In other

words, it is computed when the following holds.

∀t, πi(t) =

⌊
t

Pi

⌋
Bi +min(Bi, t−

⌊
t

Pi

⌋
Pi)

This means Πi always occupies the first Bi time slots in every period.

This is called the canonical schedule because it corresponds to the situation when there

is only one partition in the system. Again, this relies on the assumption that the partition-

level scheduling is complete, that is, a partition must receive its full budget within each

period even if there is no available task to schedule. In other words, it cannot save its

budget for future periods. We discuss why this is necessary at the end of this section.

Given the canonical local schedule, a partition is said to enjoy temporal isolation if its

local schedule of tasks is always consistent with the canonical schedule, regardless of other

partitions in the system.

Definition 8 (The local schedule of partition Πi is oblivious to other partitions).

∀p, τp ∈ Πi =⇒ ωΠ0...ΠM
p = ωΠi

p

Here, ωΠ0...ΠM
p denotes the local schedule of τp if there are M partitions in the sys-

tem. The above definition states that the local schedule of tasks within a partition is not

influenced by other partitions in the system. Since by definition, in each run of the sys-

tem, σΠ0...ΠM
p = ωΠ0...ΠM

p ◦ πΠ0...ΠM
i , we obtain an equivalent formalization of this isolation

property.

53

Definition 9 (The local schedule of partition Πi is oblivious to other partitions: alternative

formalization).

∀p, τp ∈ Πi =⇒ σΠ0...ΠM
p = ωΠi

p ◦ π
Π0...ΠM
i

This statement is equivalent to Def. 8: that the local schedule within a partition is

independent of other partitions. However, it also entails an analogy with the kind of spatial

isolation obtained through virtual memory mechanism. We can view ωΠi
p , πΠ0...ΠM

i and

σΠ0...ΠM
p as the virtual memory space, the page table, and the physical memory space,

respectively. Here, ωΠi
p (analogous to the virtual memory space) is decided solely on the

partition itself, similar to the case that an independent task’s virtual memory space only

depends on its own execution. When multiple components reside on the same platform, the

exact allocation of time slots (denoted by πΠ0...ΠM
i for the partition and σΠ0...ΠM

p for the

task) may vary depending on the behavior of other partitions, yet the interleaving of tasks

inside a partition does not change. This is analogous to the case that a task’s page table

and physical memory allocation are influenced by others, but not its virtual memory space.

We observe that this obliviousness holds if all tasks have a period that is a multiple

of their partition’s period, which is a common practice of assigning the partition period.

The intuition is that, under such a constrained setting, task arrivals have to occur at the

boundary of the partition’s period (i.e., ’bound’ task [15]), thus their arrival time in the

partition’s local view does not change. Fig. 5.5 gives an example of this constrained setting.

Here, the periods of tasks in Π0 always synchronize with the period of the partition, so that

the local schedule of tasks are not affected by other partitions in the system. In this way,

both the local time map for τ0 and τ1 does not change regardless of other partitions in the

system.

Further, under this constrained setting, there is a straightforward way of computing

ωΠi
p . Observe in Fig. 5.5 that tasks arrive at local time 0, 2, 4, ..., etc., as if they are still

periodic tasks, only with a smaller period. In this case, we define a shrunk period for each

task: T ′p =
Tp
Pi
Bi. Then we assume Πi = {τ0, τ1, ..., τN−1}, and compute local time map for

tasks as follows.

54

0 1 2 3 4 5 6 7 8 9 10

Π" = (2, 5)
)" = (1, 5)
)+ = (2, 10)

11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Π+ = (2, 5)

Canonical execution

Actual execution

lt 0 1 2 3 4 5 6
-".(/0) 0 1 2 3 4 5 6
-+.(/0) 0 0 1 1 2 2 3

lt 0 1 2 3 4 5 6
-"(/0) 0 1 2 3 4 5 6
-+(/0) 0 0 1 1 2 2 3

Figure 5.5: Another example of local time map for a task

Definition 10 (Local time map for periodic tasks with fixed-priority scheduling).

ωΠi
0 (t) := t

ωΠi
p+1(t) := ωΠi

p (t)−
⌊
t

T ′p

⌋
Cp −min

(
Cp, ω

Πi
p (t)− ωΠi

p (

⌊
t

T ′p

⌋
T ′p)

)

The intuition is that, when enclosed inside a partition, these tasks need to execute for

the same amount of time slots while only being given a smaller portion of the CPU resource.

This is equivalent to shortening their periods while keeping the same budgets since time

slots occupied by other partitions are not visible to these tasks.

An argument against work-conserving scheduling Now we briefly discuss why the

partition must receive its full budget within each period, even if there is no available task to

schedule. This is similar to periodic servers, where the server budget cannot be accumulated

55

0 1 2 3 4 5 6 7 8 9 10

Π" = (2, 5)𝜏" = (2, 10)

𝜏, = (4, 20)

11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

other partitions

Canonical execution

Actual execution

Figure 5.6: A counter example against work-conserving scheduling

for future periods.

Assume that we adopt other scheduling schemes that allow a partition to run more than

Bi time slots within a period. This is true for the constant bandwidth server, which lowers a

partition’s priority as it runs longer, but never really cuts it off until another higher-priority

partition is ready to run.

Fig. 5.6 shows a counterexample against work-conserving scheduling. In the canonical

execution, the partition budget is not strictly enforced since there is only one partition in

the system. This allows τ1 to finish before the next period of τ0. However, when there are

more partitions in the system, in the worst case, Π0 can only be scheduled for two time slots

within each period. In this way, τ1 will be preempted by τ0 in its second period, causing

inconsistency with the canonical execution.

What’s more, even if we force the actual schedule to mimic the canonical one, this will

lead to an unbounded delay of τ0 and jeopardize the schedulability of the system. Thus,

we don’t consider work-conserving scheduling for partitions as a suitable choice if they are

supposed to enjoy temporal isolation between each other.

56

5.3 Schedulability in Partitioned Scheduling

The isolation property between partitions also facilitates the reasoning about schedulabil-

ity properties. Recall that one of the main difficulties with schedulability analysis is the

interference between different components. However, under such a constrained setting,

Def. 9 ensures that there is no interference across partitions. Moreover, it connects a task’s

scheduling with its local behavior, allowing us to transform schedulability, which is specified

on the global timeline, into a property on the partition’s local timeline.

Lemma 7. The schedulability analysis of task τ j ∈ Πi is transformed into reasoning about

its local schedule ωj. That is, for any j and k ≥ 0, assume that each task’s period is a

multiple of the partition period, and this partition enjoys temporal isolation as defined in

Def. 9, the following must hold.

Cj ≤ σΠ0...ΠM
j ((k + 1) ∗ Tj)− σΠ0...ΠM

j (k ∗ Tj)

⇔ Cj ≤ ωΠi
j ((k + 1) ∗ Tj ∗

Bi
Pi

)− ωΠi
j (k ∗ Tj ∗

Bi
Pi

)

Proof. By Def. 9, we transform the requirement into a task’s local schedule.

σΠ0...ΠM
j ((k + 1) ∗ Tj)− σΠ0...ΠM

j (k ∗ Tj)

= ωΠi
j ◦ π

Π0...ΠM
j ((k + 1) ∗ Tj)− ωΠi

j ◦ π
Π0...ΠM
j (k ∗ Tj)

Since the OS kernel guarantees the full amount of budget for the partition within each

period, and that Tj is a multiple of the partition period Pi, we prove that

∀k, πΠ0...ΠM
j (k ∗ Tj) = kTj ∗

Bi
Pi

= kT ′j

This essentially transforms a physical period into a shrunk period from the partition’s

point of view, thus,

ωΠi
j ◦ π

Π0...ΠM
j ((k + 1) ∗ Tj)− ωΠi

j ◦ π
Π0...ΠM
j (k ∗ Tj)

= ωΠi
j ((k + 1)T ′j)− ω

Πi
j (kT ′j)

Thus, this lemma holds.

57

The above lemma transforms a task’s schedulability into the reasoning on its partition’s

local timeline, such that it is schedulable if and only if the shrunk task (τ ′j = (Cj , Tj
Bi
Pi

))

is schedulable.

58

Chapter 6

Case Study: CertiKOS with

Partitioned Scheduling

In this chapter, we discuss how we implement partitioned scheduling in CertiKOS and how

to connect it with the virtual timeline abstraction. In particular, we apply virtual timelines

in two different settings: TDMA (Time-Division Multiple Access) schedules and dynamic

schedules for partitions. Throughout this chapter, we assume that the period of a task

is a multiple of the period of its partition, which is common in choosing parameters for

partitions. We adopt the computation of canonical local time map, ωΠi
p as in Def. 10, and

we discuss how to connect it with the concrete scheduler implementation.

6.1 Static partitions scheduled under TDMA

We first focus on the TDMA-based partitioned scheduling as in ARINC 653 standards.

This is a restrictive setting where the schedule of a partition is fixed. In fact, it employs the

same period, P , for all partitions, and repeats the same partition schedule in every period.

Assume the scheduling offset of partition Πi is δi. Then in the k-th period, this partition is

scheduled during the interval [(k − 1)P + δi, (k − 1)P + δi +Bi). We use πi to denote the

schedule of Πi. It must be of the following form.

59

1 int TDMA_sched (){

2 t++;

3

4

5 if (δi <= t%P && t%P < δi + Bi){

6 return sched_local_i ();

7 }

8

9 }

Figure 6.1: The top-level TDMA scheduler

Definition 11 (Partition scheduling under TDMA).

πi(t) =

0 t < δi⌊
t− δi
P

⌋
Bi +min(B, t− δi−

⌊
t− δi
P

⌋
P) t ≥ δi

There are multiple alternatives to implementing the partition-local scheduler, depending

on whether we allow partitions to choose their local scheduling algorithm. For example, if

we require that all partitions must adopt fixed-priority scheduling, a suitable choice would

be to let them share the same scheduler but with different task lists. In this chapter, we

emphasize isolation and allow partitions the flexibility of choosing their own scheduler. As

a consequence, we need to maintain a separate scheduler for each partition.

Fig. 6.1 illustrates the top-level TDMA scheduler. It uses the current time to decide

which partition to schedule and invokes the corresponding partition’s local scheduler. This

essentially disentangles the top-level scheduling with the local scheduling. Instead of de-

signing a virtual-time-based top-level scheduler, we prove that invoking the implementation

of the local scheduler is equivalent to invoking its virtual-time-based abstraction. Thus, the

top-level scheduler is instead built on top of a series of virtual-time-based local schedulers.

This takes advantage of the abstraction layer approach, where only the specification, instead

of the implementation of lower layers, is exposed to upper layers.

We assume Πi uses the same fixed-priority scheduling for its tasks as discussed in Sec. 2.2.

However, its implementation is slightly different because this partition only occupies a fixed

portion of the processor time. As shown in Fig. 6.2, the local scheduler for partition Πi

first replenishes budgets for each task, then finds the highest-priority ready one in the same

60

1 int sched_local_i () {

2 for(int i = 0; i < N; i++){

3 if (t % Ti == δi){
4 quanta[i] = Ci;

5 }

6 }

7

8 // fixed -priority scheduling

9

10 }

Figure 6.2: The local scheduler for partition
Πi

1 int vt_sched_local_i (){

2 lt++;

3 int pid = N;

4 for(int j = 0; j < N; j++){

5 if(VTA(ωΠi
j , lt) == 1){

6 pid = j;

7 break;

8 }

9 }

10

11 return pid;

12 }

Figure 6.3: C illustration of the virtual-
time-based local scheduler for Πi

1 int sched_local_i () {

2 for(int j = 0; j < N; i++){

3 if (πi(t) %
Bi

P
Tj == 0){

4 quanta[j] = Cj;

5 }

6 }

7

8 // fixed -priority scheduling

9

10 }

Figure 6.4: The intermediate local scheduler for Πi

way as in Fig. 2.2. However, its virtual-time-line based abstraction (shown in Fig. 6.3) is

different from that in Fig. 4.4. It maintains a local time for this partition, instead of relying

on global time. It iterates over local time maps for tasks, instead of using global time maps.

All of these differences result from the fact that partition Πi is only given a portion of the

CPU resource.

Now the only proof obligation is to show that the local scheduler and its virtual-time-

based abstraction are indeed equivalent. This is more challenging than in Sec. 4.3 due to the

following discrepancy: the local scheduler implementation relies on original task parameters

while the virtual-time-based scheduler makes use of the shrunk set of task parameters. This

makes it hard to reuse existing proofs directly.

To mitigate this gap, we first prove that this local scheduler implementation is equivalent

to an intermediate version (Fig. 6.4) which uses the partition local time and the shrunk set

61

of task parameters. Notice that πi is defined in Def. 11.

Lemma 8 (The local scheduler is equivalent with the intermediate version which relies

on partition local time and the shrunk set of task parameters). Assume that the current

time slot belongs to partition Πi, and the quanta array for tasks is Q. The local scheduler

updates it to Q’ and schedules task τ l. The intermediate version must also update it to Q’

and schedule task τ l.

Proof. The only place that a task’s period matters is when the scheduler replenishes the

budget for each task. We prove that the period of a task in the global timeline is always

aligned to its shrunk period in the partition’s local time, such that

t mod Tj = δi ⇔ πi(t) mod T ′j = 0, where T ′j =
Bi
P
Tj

This is done through pure arithmetic reasoning. It exploits the fact that Tp is a multiple

of P , and indicates that ”arrival” events in both global time and partition local time are

indeed synchronized.

On top of this, we prove that the two schedulers refill budgets for the same set of tasks,

such that the resulting quanta array is the same, which leads to the same schedule and

identical resulting quanta array.

Finally, we prove that the intermediate version is equivalent to the virtual-time-based

abstraction, in the same way as described in Sec. 4.3. This relies on a proof that the local

time maintained by the virtual-time-based scheduler, lt, is always consistent with πi(t)

when this partition is scheduled.

In this way, we connect the virtual timeline abstraction with one partition scheduled

under TDMA. Scheduling algorithms used by other partitions are irrelevant to this partition.

6.2 Dynamically scheduled partitions

The scheduling scheme mentioned in the previous section indeed ensures temporal isolation

since it imposes a fixed schedule for each partition. However, it is also restrictive in the

62

sense that this policy may cause a high-priority task to be delayed while another low-priority

one from a ready partition gets the chance to run. This is not an ideal policy in terms of

responsiveness.

It is possible to make a tradeoff between isolation and responsiveness. Since tasks are

not allowed to access the physical time directly, they are oblivious to the exact schedule

in the global timeline, giving us the opportunity to vary the enclosing partition’s schedule.

However, this new scheme should still guarantee schedulability, since tasks are sensitive to

deadline misses. It should also preserve the relative ordering between tasks as discussed in

Sec. 5.2, which we can prove following the same approach in the previous section.

There are many partitioned scheduling algorithms that allow us to vary the schedule

of partitions to achieve better average case responsiveness [28, 15, 29]. They usually still

enforce the budget on each partition, i.e. each partition only receives a portion of CPU

resource specified by its period Pi and budget Bi. Yet, they differ in the actual way of

implementing this enforcement, such as whether the time instant for budget refill is fixed

or dynamic, whether the refill is achieved at once or supplied gradually, etc. Other than

responsiveness, we carefully weigh its implication for the isolation proof when making our

design decisions.

In this section, we focus on a scheme with dynamically scheduled partitions. Under

this setting, each partition still adopts a local scheduler to decide its own task schedules.

However, instead of imposing a fixed priority for each partition, we allow users to specify

priorities among tasks across partitions. In this way, the priority between two partitions

is decided by the priority between the task each of them proposes to execute, and is thus

dynamic.

This design draws inspiration from QNX. When all partitions adopt the same local

policy, say, fixed-priority scheduling, the overall behavior of the system is equivalent to

scheduling all tasks together, except that they are also subject to a partition budget. In

this sense, partitioning serves as a high-level mechanism for distributing time resources.

However, our current design is more generic in that it allows different partitions to adopt

different local policies. Yet, it keeps the benefit of imposing cross-partition priorities for

tasks that could lead to better average-case responsiveness.

63

1 int select(int id0 , int id1){

2 if (globalPrio[id0] <

globalPrio[id1] &&

3 parQuanta [0] > 0){

4 return 0;

5 }else{

6 return 1;

7 }

8 }

9

10 int dynamic_sched (){

11 t++;

12

13 // refill partition budgets

14

15

16 /* each partition proposes a

task to schedule */

17 int id0 = local_propose0(t);

18 int id1 = local_propose1(t);

19

20 // select a partition

21 int par = select(id0 , id1);

22

23 // schedules the partition

24 parQuanta[par]--;

25

26 if (par == 0){

27 return local_sched0 ();

28 }else{

29 return local_sched1 ();

30 }

31 }

Figure 6.5: The global scheduler for dynamic partitions

Implementation of the global and local scheduler Recall that Fig. 5.3 illustrates

the global scheduling when all partitions adopt the same local policy. In this section, we

demonstrate how to implement a more generic alternative such that each partition could

choose its own policy. For simplicity, we assume there are two partitions in the system, each

has a partition budget Bi and shares a common partition period P . The global scheduler is

shown in Fig. 6.5. Here, it lets each partition propose a task to execute (local_propose).

It then selects a partition to schedule based on the proposed task, decrements the parti-

tion’s budget, and finally schedules that partition. Notice that at any moment, invoking

local_propose and local_sched always returns the same task. However, the former does

not have side effects while the latter may update partition-local data structures.

Also, notice that the exact implementation of select can be diverse. It only needs to

guarantee that the selected partition indeed has remaining budget, but the policy for impos-

ing priorities can be arbitrary. Finally, even though this example code only accommodates

two partitions, it is straightforward to extend it with any arbitrary number of partitions.

The only requirement is that each additional partition implements its own local_propose

and local_sched, and make sure that they are consistent with each other.

Assume that the partition we investigate, Π0, uses fixed-priority scheduling for its tasks.

Fig. 6.6 shows its implementation of the two functions. Here, in addition to the quanta

64

1 int local_propose0 (){

2 int pid = N;

3

4 for(int i = 0; i < N; i++){

5 if (quanta[i] > 0 ||

6 index[i] != t / Ti){
7 pid = i;

8 break;

9 }

10 }

11

12 return pid;

13 }

14

15

16

17 int local_sched0 (){

18 lt++;

19

20 for(int i = 0; i < N; i++){

21 if (index[i] != t / Ti){
22 index[i] = t / Ti;
23 quanta[i] = Ci;

24 }

25 }

26

27 int pid = N;

28 for(int i = 0; i < N; i++){

29 if (quanta[i] > 0){

30 quanta[i]--;

31 pid = i;

32 break;

33 }

34 }

35

36 return pid;

37 }

Figure 6.6: The local scheduler for a partition

which maintains the remaining budget for each task, it uses an index array to track whether

there is a new period arriving for each task. Each time local_sched0 is invoked, it checks

whether a task’s index corresponds to the current period. If not, it updates both the

index value and this task’s remaining quantum. This is necessary because the progress of

task periods in a partition may no longer be aligned with its period in global time. More

specifically, a partition’s quanta array may not be updated even if t mod Ti = 0 holds for

a certain task τ i.

The distinction between local_propose and local_sched simplifies the reasoning of

this scheduler because it ensures that only the scheduled partition’s state will be updated. Of

course, there’re functionally equivalent ways of implementing the same scheduling scheme,

which update task arrivals for all partitions regardless of whether they will be scheduled or

not. It is possible to prove that they are equivalent to the scheduler as shown in Fig. 6.5

and Fig. 6.6, so that all properties proved in this section also hold on those alternative

implementations.

Refinement into an intermediate scheduler To connect the concrete scheduler with

the canonical local time maps of tasks, we need to first prove that it is equivalent to an

intermediate form that relies on local time instead of global time to schedule each partition.

65

1 int local_propose0_inter (){

2 int pid = N;

3

4 for(int i = 0; i < N; i++){

5 if (quanta[i] > 0 ||

6 index[i] != (lt+1) /
B0

P
Ti){

7 pid = i;

8 break;

9 }

10 }

11

12 return pid;

13 }

14

15

16

17 int local_sched0_inter (){

18 lt++;

19

20 for(int i = 0; i < N; i++){

21 if (index[i] != lt /
B0

P
Ti){

22 index[i] = lt /
B0

P
Ti;

23 quanta[i] = Ci;

24 }

25 }

26

27 int pid = N;

28 for(int i = 0; i < N; i++){

29 if (quanta[i] > 0){

30 quanta[i]--;

31 pid = i;

32 break;

33 }

34 }

35

36 return pid;

37 }

Figure 6.7: The intermediate version of the local scheduler for a partition

The global scheduler for partitions remains the same, as in Fig. 6.5. The local scheduler

is illustrated in Fig. 6.7. Instead of relying on the global time to trigger new task arrivals,

this intermediate version maintains a local time, lt, to schedule tasks within a partition.

Further, it uses the shrunk set of task parameters to accommodate this distorted view of

time.

The equivalence between the concrete scheduler implementation and its intermediate

abstraction relies on the fact that the global time and the local time are always aligned

when the local scheduler is invoked. Instead of proving an equivalence relation directly,

we maintain local time without using it in Fig. 6.6. This is purely an abstract variable,

incurring no runtime overhead. However, it helps us transform the equivalence proof into

an invariant proof, which is local to a single function and easier to verify. That proof again

relies on the remaining partition budget as a bridge. Through the rest of this section, we

use t and lt to represent the global and local time, respectively. And we use b to abbreviate

parQuanta[i], representing the remaining partition budget. The full partition budget is B

and its period is P .

Lemma 9 (The remaining partition budget correctly tracks the progress of partition local

66

time). At any moment, the following equivalence relation hold.

b 6= 0⇔ (lt+ 1) mod B + b = B

∧ b = 0 =⇒ (lt+ 1) mod B = 0

∧ (t+ 1) mod P = 0 =⇒ b = 0

Proof. Since only the scheduler might update time and schedule-related data structures,

the proof obligation rests on showing that invoking the scheduler (Fig.6.5 and Fig. 6.6) will

preserve the above invariants.

Assuming that these invariants hold at time t. We prove that they also hold at time t

+ 1. We perform a case analysis on whether this is the end of a partition period or not.

1. When (t+ 1) mod P = 0 holds, this is the end of a partition period.

• If this partition is scheduled, we prove that its partition budget must be 1 at

time t, which entails that

lt mod B = B − 1

At its schedule for one time slot, we know the current budget b = 0, and that

(lt+ 1) mod B = 0. Thus, these invariants hold.

• If this partition is not scheduled, we prove that it must have been finished, such

that its partition budget and local time stays the same. Thus, these invariants

hold.

2. When (t+ 1) mod P 6= 0 holds, this is the beginning or middle of a partition period.

• If this partition is scheduled, its partition budget must be decremented by 1

time slot, while its local time increments by 1. Thus, the relation that (lt + 1)

mod B + b = B is preserved.

• If this partition is not scheduled, its local time and partition budget stay the

same. Thus, these invariants hold.

This concludes the proof that a partition’s remaining budget and its local time are

always synchronized.

67

On top of the above lemma, we prove that the partition local time and global time are

always synchronized, as well. Notice that they may go out of sync when the partition has

finished its current period while the global time has not. As a result, we carefully specify

that this alignment only holds when the partition is still active.

Lemma 10 (The global time and partition local time are always aligned when the local

scheduler is invoked). At any moment, the following invariants hold for each partition.

(t+ 1) mod P 6= 0 ∧ b 6= 0 =⇒ (t+ 1)/P = (lt+ 1)/B

∧ (t+ 1) mod P 6= 0 ∧ b = 0 =⇒ (t+ 1)/P + 1 = (lt+ 1)/B

∧ (t+ 1) mod P = 0 ∧ b = 0 =⇒ (t+ 1)/P = (lt+ 1)/B

Notice that we already prove the schedulability of each partition, such that (t+1) mod P =

0 ∧ b 6= 0 is not a valid case.

Proof. Assuming that these invariants hold at time t. We prove that they also hold at time

t + 1. We again perform case analysis on whether time instant t is the end of a partition

period or not.

1. When (t + 1) mod P = 0 holds, this is the end of a partition period. Before the

scheduler is invoked, we know that (t + 1)/P = (lt + 1)/B. We also prove from

Lemma 9 that (lt+ 1) mod B = 0. In other words, this is the end of the period both

at the global timeline and at the partition’s local timeline.

After the invocation, the global time t must increment by 1, and the local time either

stays the same or increments by 1, as well. In either case, we prove that

(t+ 2)/P = (t+ 1)/P ∧ (t+ 2) mod P 6= 0

and

(lt+ 2)/B = (lt+ 1)/B

Thus, the invariants hold.

2. When (t+ 1) mod P 6= 0 holds, this is the beginning or middle of a partition period.

68

• If (t + 2) mod P 6= 0 ∧ b 6= 0, we know that t is in the middle of a partition

period. In this case, the local time either stays the same or increments by 1,

depending on whether this partition is scheduled or not.

– If lt stays the same, we prove that these invariants hold because (t+ 2)/P =

(t+ 1)/P , while (lt+ 1)/B stays the same.

– Otherwise, we prove that (lt+ 2)/B = (lt+ 1)/B since it will not finish the

current period right away.

• If (t+ 2) mod P 6= 0 ∧ b = 0, we know one of the following must hold.

– This partition is already finished at time t, and cannot be scheduled until

the next period. In this case, lt stays the same, and the invariants hold.

– This partition has only 1 remaining time slot at time t, and it is scheduled

and finishes at time t+1. In this case, we prove that (lt + 2)/B = (lt +

1)/B + 1, such that the invariants hold.

• If (t+ 2) mod P = 0∧ b = 0, we prove that (t+ 2)/P = (t+ 1)/P + 1. We know

that one of the following must hold regarding the execution of the partition.

– This partition is already finished at time t, and cannot be scheduled until

the next period. In this case, lt stays the same, and we prove that

(lt+ 1)/B = (t+ 1)/P + 1 = (t+ 2)/P

– This partition has only 1 remaining time slot at time t, and it is scheduled

and finishes at time t+1. In this case, we prove that

(lt+ 2)/B = (lt+ 1)/B + 1 = (t+ 1)/P + 1 = (t+ 2)/P

In both cases, the invariants hold.

This concludes the proof that the global time and a partition’s local time are always

synchronized.

On top of this, we prove that t/Ti is always consistent with lt/
B0

P
Ti, such that the

69

concrete scheduler and its intermediate abstraction maintains equivalent index array and

further equivalent quanta array. This helps us prove that the two schedulers are indeed

equivalent to each other.

Refinement into a virtual-time-based scheduler The virtual-time-based local sched-

uler is the same as shown in Fig. 6.3. More specifically, Fig. 6.3 shows the virtual-time-

based local_sched, while we only need to remove the update to the local time to obtain

local_propose. The intuition is that if a partition indeed enjoys isolation from other parti-

tions, its local scheduling of tasks does not depend on the top-level scheduling algorithm. In

other words, the isolation property allows us to disentangle a partition’s local schedule from

the system’s top-level scheduling of partitions. And we observe that the main obligation

rests in proving that the concrete scheduler implementation is equivalent to an intermediate

version that is oblivious to global time. As a comparison, the refinement proof between this

intermediate version and the virtual-time-based scheduler is straightforward: it follows the

same approach as described in Sec. 4.3.

6.3 A Perspective on the Interface for a Real-Time Partition

Previous sections discuss the implementation of various partitioned-scheduling schemes and

how to connect them with the virtual timeline abstraction. This section provides the au-

thor’s perspective on a different issue: the user interface. This section is largely orthogonal

to the real-time reasoning in this work, because it only matters for the initialization of the

system, while our reasoning always assumes that the system starts from a valid initial state.

First of all, the user needs to specify a common period for all partitions in the system.

This is necessary for both the TDMA scheduling and the top-level scheduler as shown in

Fig. 6.5.

To spawn a partition, the user specifies both the partition budget and the desired lo-

cal scheduling policy. The policy can be fixed-priority scheduling, earliest-deadline-first

scheduling, or round-robin scheduling (for batch tasks only). The OS kernel implements

the set of local_propose and local_sched to accommodate all these choices, such that

70

the local scheduler used by each partition is still verified, despite the flexibility regarding

scheduling policies.

Finally, when adding a task into a partition, the user needs to specify the period and

budget requirement for this task. These parameters can be ignored if that partition adopts

round-robin scheduling.

This is a general perspective on how different local scheduling policies could reside on

the same platform, and how they are exposed to the user. Again, they only matter for the

configuration of the system and are orthogonal to the reasoning of the temporal properties

of components.

71

Chapter 7

Generalization with Dynamic

Priority Assignment

Previous chapters demonstrate the successful application of the virtual timeline in the ver-

ification of fixed-priority scheduling and partitioned scheduling. Under these schemes, the

composition of multiple components onto one system either imposes constraints on the com-

ponent parameter (in partitioned scheduling, it is common to design partition periods to

be aligned with each other) or requires sophisticated schedulability test (in fixed-priority

scheduling, the priority, period and budget of each task has to be known a priori).

These are suitable for closed systems, where workloads are fixed and predictability is

preferred. However, in open systems with dynamic workloads, where tasks arrive on the fly

and the underlying OS kernel needs to decide whether to admit or reject them based on

the current capacity of the system, a more flexible scheduling scheme is needed from both

performance and verification perspectives.

This chapter discusses the generalization of the virtual timeline with a dynamic priority

assignment. In particular, we adopt the earliest-deadline-first scheduling algorithm and

show that the virtual timeline abstraction is powerful enough to address this more complex

algorithm.

72

7.1 Earliest-Deadline-First and Compositionality of Work-

loads

In systems with dynamic workloads, the task set is not fixed thus not known a priori. The

temporal parameters of real-time tasks, such as the budget and period, become known only

when they arrive. Hence, a run-time admission control algorithm is employed to decide

whether a new request can be granted without jeopardizing the schedulability of existing

workloads.

The admission control mechanism should be able to utilize the CPU resource as much

as possible while guaranteeing real-time tasks’ timing constraints. Furthermore, the al-

gorithmic complexity of its test should be low and implementable in an efficient way so

that frequent invocations of the algorithm do not incur too much overhead at the runtime.

Based on these criteria, fixed-priority scheduling is not suitable for dynamic workloads be-

cause (i) its exact test relies on iterative computation and is hard to scale and (ii) the

utilization-bound test may lead to under-utilization of the CPU.

On the contrary, as briefly mentioned above, the earliest-deadline-first (EDF) scheduling

permits a simple and exact schedulability test. In particular, Liu and Layland [22] showed

that any task set whose total utilization (i.e., the sum of a task’s budget over its period)

does not exceed 100% is schedulable under EDF. Thus, it suffices to implement an admission

controller that simply records the total utilization of exiting tasks and tests whether the

addition of a new task would cause the total utilization to exceed 100%.

This also benefits the reasoning side from the compositionality perspective. When mul-

tiple components reside on the same platform, the resource provisioning for one component

inevitably relies on the resource bound on others. However, the granularity of such bound

matters. In fixed-priority scheduling, the schedulability of one component is sensitive to the

exact period and budget of all higher-priority tasks. This is a restrictive setting because

an update to one component’s parameter may affect the schedulability of all lower-priority

components. As a comparison, in EDF scheduling, a component is only sensitive to the

total utilization of all others. This entails more flexibility since one or multiple components

are free to update their parameters as long as they satisfy a total utilization bound. This is

73

useful in the design phase of a system, where CPU resource is divided based on utilization

and distributed to components developed by different vendors. Each vendor can select its

component parameters independently as long as they satisfy the utilization bound.

An EDF scheduler works by scheduling the ready task whose deadline is the nearest, or

informally, most urgent. This is called dynamic priority assignment since a task’s relative

priority varies, depending on the current workload (i.e., the exact ordering of deadlines of

all admitted tasks). In other words, a task’s priority may range from the highest to the

lowest. This leads to intricate interferences among tasks, making the formal verification of

the scheduler challenging.

7.2 Generalization: Virtual Timeline with Dynamic Priority

Assignment

This section discusses how to extend the virtual timeline abstraction to accommodate dy-

namic priority assignment.

As explained in Sec. 2.3, the virtual time available to a task includes time available

to itself and all lower-priority tasks. This is suitable for fixed-priority scheduling, which

implicitly forms a hierarchy among tasks according to their priorities and allows a static

construction of the time map one task after another (Def. 1).

However, the formalization of the time map is not obvious with a dynamic priority

assignment. The scheduling no longer enjoys a static hierarchy which allows us to consider

the time maps in the priority order. For example, with EDF scheduling, even if task τ i has

the highest-priority at time 0, it is difficult to compute its schedule for all time since its

priority varies.

The challenge described above calls for a closer look into the original virtual timeline

abstraction. In particular, we consider its relevance by looking into a concrete scheduler

with a dynamic priority assignment and compare it with a fixed-priority scheduler.

Fig. 7.1(a) demonstrates a concrete scheduler with a dynamic priority assignment. It

is parameterized over a priority queue PriQ, while PriQt(p) represents the exact task at

priority level p at time instant t. Notice that this value may vary depending on the current

74

1 int dynamic_sched (){

2 t++;

3 for(int i = 0; i < N; i++){

4 if (t % period[i] == 0){

5 quanta[i] = budget[i];

6 }

7 }

8

9 int tid = N;

10 for (p = 0; p < N; p++) {

11 // The dynamic priority queue

12 int i = PriQt(p);

13 if (tid == N){

14 if (quanta[i] > 0){

15 quanta[i]--;

16 tid = i;

17 }

18 }else{

19 continue;

20 }

21 }

22 return tid;

23 }

(a) C code of the concrete scheduler with
dynamic priority assignment

1 int dynamic_vtsched (){

2 t++;

3

4 int tid = N;

5 for (p = 0; p < N; p++) {

6 // The dynamic priority queue

7 int i = PriQt(p);

8 if (tid == N){

9 σi[t+1] = σi[t] + 1;

10 if (VTA(i, t)){

11 tid = i;

12 }

13 }else{

14 σi[t+1] = σi[t];
15 }

16 }

17 return tid;

18 }

(b) The iterative computation of time maps
embedded in a virtual-time-based scheduler

Figure 7.1: The concrete and virtual-time-based scheduler

time t, thus is called dynamic priority. This is a generalized form of dynamic priority

scheduling. In fact, the fixed-priority scheduler in Fig. 2.2 can be viewed as one of its

special cases:

∀t, p, PriQt(p) = p

We make two interesting observations as follows.

1. At each moment, this scheduler can still be viewed as a fixed-priority scheduler: the

highest-priority ready task (has remaining budget) gets scheduled. This leads to

the same motivation when the virtual timeline is first introduced for fixed-priority

scheduling: encapsulate interferences from higher-priority tasks such that the schedule

of a task can be decided by looking at its virtual timeline alone. In particular, the

use of VTA (Fig. 4.5) still applies in this setting.

2. This scheduler also uses a quanta array to enforce budget constraints for each task. If a

75

task indeed has exclusive access to its virtual timeline, i.e. is scheduled immediately on

this timeline whenever it has remaining budget, the same virtual-time-based scheduler

(Fig. 4.4) can be applied and proven to be equivalent with the concrete scheduler

implementation.

As discussed above, the point of employing the virtual timeline is to hide time slots that

are occupied by higher-priority tasks, thus creating an illusion of exclusive access. Once

achieved, this enables an equivalent scheduler entirely based on virtual timelines. Though

it is impossible to adopt a static construction of time maps as shown in Def. 1, we define it

iteratively with the advancement of time as shown in Fig. 7.1(b). We highlight its difference

with Fig. 4.4 by attaching a comment before the dynamically computed priority queue.

Here, the virtual time map σ is a ghost variable only residing in the Coq abstraction

and is instantiated iteratively. At time t, all time maps ({σ0, σ1, ..., σN−1}) are valid up to

t. Then the scheduler increments the time counter to t+ 1 and selects the highest-priority

ready task to schedule. For this task and all higher-priority ones, their virtual time is

incremented by 1 because this time slot is available to them. For lower-priority tasks, their

virtual time stagnates because they are preempted.

This enables the same reasoning as in Sec. 4.3, that a virtual-time-based scheduler

connects the virtual timeline with the concrete scheduler implementation, which relies on

the following two steps.

Equivalence between VTA and the virtual-time-based scheduler. A task is sched-

uled if and only if it has remaining budget and that its virtual time indeed increments

(VTA(i, t) = 1). The justification is straightforward.

• Necessity. If task τ i is scheduled by dynamic_vtsched at time t, σi(t+ 1) = σi(t) + 1

must hold and the time consumption of τ i in this period must be smaller than Ci.

Thus, VTA(i, t) = 1 holds.

• Sufficiency. If VTA(i, t) = 1 holds, σi(t + 1) = σi(t) + 1 must also be true, thus

all higher priority tasks must have used up their budget. Otherwise, task τ i will be

preempted. As a result, τ i has the highest priority among ready tasks and is therefore

76

scheduled.

The contextual refinement between the virtual-time-based scheduler and the

concrete scheduler implemented in C. In fixed-priority scheduling, the virtual-time-

based scheduler is equivalent with the concrete scheduler because VTA faithfully describes a

task’s behavior: if a task’s budget is depleted judged on its virtual timeline, its remaining

budget value (quanta[i]) maintained by sched (Fig. 2.2) also reaches 0, and vice versa.

This reasoning applies to the case with a dynamic priority assignment. We observe

that the virtual-time-based scheduler with a dynamic priority assignment (Fig. 7.1(b)) only

differs from that in fixed-priority scheduling (Fig. 4.4) in the way it assigns priority to

tasks. Similarly, the concrete scheduler with a dynamic priority assignment differs from

that in fixed-priority scheduling in that it relies on a priority queue to calculate the exact

task occupying certain priority levels. Other than these differences, each time a task τ i

is scheduled, quanta[i] decrements while σi increments at the same pace, allowing us to

establish the equivalence between these two schedulers under the setting of a dynamic

priority assignment.

Chpt. 8 discusses in more detail how to connect the virtual timeline with an EDF

scheduler implementation.

7.3 Earliest-Deadline-First: the Schedulability Proof

This section discusses the schedulability proof for the EDF scheduling algorithm. We assume

that the set of tasks is fixed, that all tasks arrive in a strictly periodic fashion and always

use up their budgets in each period.

7.3.1 The Proof Sketch: Schedulability Through Transformation

This section explains the proof sketch for the EDF scheduling algorithm. Unlike fixed-

prority scheduling, there is no hierarchy among tasks since their relative priorities vary

depending on their deadlines at any particular moment. Thus, the proof by induction from

higher-priority tasks to lower-priority ones no longer makes sense under this setting.

77

Instead, we reflect on the schedulability test for EDF which only considers the utilization

of tasks. An interesting implication is that we are free to change a task’s parameters (period

and budget) without affecting the schedulability of the system as long as its utilization

remains the same. This makes the schedulability test intuitive: for any task set, we can

change tasks’ periods to be identical without affecting their schedulability. Given this new

task set, it’s trivial to see that it is schedulable if the total utilization of tasks does not

exceed 100%. Thus, the proof obligation rests in showing that tweaking a task’s parameters

preserves the schedulability of the system.

This is not a novel insight. Wilding’s proof [30] on the EDF scheduling also relies on its

optimality, which states that any schedulable task set is schedulable under EDF, enabling

the adjustment of task parameters. However, its proof involves a complex reordering of the

schedule and it is not obvious how that can be connected with the concrete implementation

of an EDF scheduler.

Consider a task set Π that contains the following tasks: τ0 = (1, 4), τ1 = (2, 5) and

τ2 = (3, 10). We use ΩEDF (Π) to denote that the task set Π is schedulable under EDF

scheduling. Then a schedulability proof for the task set Π is obtained as follows.

Example 1. The schedulability proof for Π = {τ0, τ1, τ2}

ΩEDF ({(5, 20), (8, 20), (6, 20)})

=⇒ ΩEDF ({(20, 80), (8, 20), (6, 20)})

=⇒ ΩEDF ({(20, 80), (40, 100), (6, 20)})

=⇒ ΩEDF ({(20, 80), (40, 100), (60, 200)})

=⇒ ΩEDF ({τ0, τ1, τ2})

The first step is to enlarge all tasks to the same period, which is 20 (i.e., the least

common multiple of the task periods) in the example. Here, enlarging a task by a factor of

k means multiplying both its budget and period by k such that its utilization is preserved.

In the following steps, we enlarge the first, second and third task by a factor of 4, 5 and 10

respectively. In the end, we shrink (the exact opposite of enlarge) all tasks by a factor of

20 to transform the task set back to its original parameters.

It’s easy to see that all tasks are schedulable if they have a common period and the total

78

1 Fixpoint enlarge_to_hyper (H: Z) (N: nat) (conf: PrioConfigPool) :=

2 match N with

3 | O ⇒ conf

4 | S n ⇒ match (ZMap.get (Z.of_nat n) conf) with

5 | mkPrioConfigValid T C ⇒
6 ZMap.set (Z.of_nat n) (mkPrioConfigValid H (H / T * C))

7 (enlarge_to_hyper H n conf)

8 end

9 end.

Figure 7.2: Enlarging all tasks to a common period

1 Inductive enlargeParam: Type :=

2 | EParam: Z (* task ID *) → Z (* factor *) → enlargeParam.

3

4 Fixpoint get_enlarge_params_aux (Ni: nat) (confi: PrioConfigPool) : list enlargeParam :=

5 match Ni with

6 | O ⇒ nil

7 | S n ⇒ match (ZMap.get (Z.of_nat n) confi) with

8 | mkPrioConfigValid T C ⇒
9 EParam (Z.of_nat n) T :: get_enlarge_params_aux n confi

10 end

11 end.

12

13 Definition enlarge_sequence: list enlargeParam :=

14 eparamsort.sort (get_enlarge_params_aux (Z.to_nat N) conf).

Figure 7.3: The sequence of enlarging operations to be applied to a task set

utilization does not exceed 100%. Subsequent steps in the above outline also rely on the

proof that both enlarging a task and shrinking the whole task set preserve the schedulability

of the system, which we detail in Sec. 7.3.3 and Sec. 7.3.4.

The rest of this section demonstrates the Coq formalization of the above outline.

Fig. 7.2 shows how we take a task set conf and adjust all its tasks to a common pe-

riod. Here, H represents the hyper period (i.e. the least common multiple of the task

periods) of this task set. N represents the number of tasks in this task set. We denote

enlarge_to_hyper H N conf as conf0. Relevant data structures, such as PrioConfigPool,

are explained in Fig. 4.1.

Fig. 7.3 shows how we prepare the sequence of enlarging operations to a task set. Here,

79

1 Function do_enlarge (id k: Z) conf: PrioConfigPool :=

2 match (ZMap.get id conf) with

3 | mkPrioConfigValid T C ⇒
4 ZMap.set id (mkPrioConfigValid (k * T) (k * C)) conf

5 end.

6

7 Fixpoint do_enlarge_sequence (confi: PrioConfigPool) (l: list enlargeParam) :=

8 match l with

9 | nil ⇒ confi

10 | EParam id k :: tl ⇒
11 do_enlarge_sequence (do_enlarge id k confi) tl

12 end.

Figure 7.4: Apply a sequence of enlarging operations to a task set

an enlarge operation, enlargeParam is defined with a task ID and the exact factor of this

enlarging. Function get_enlarge_params_aux computes the enlarging parameters for all

tasks. For each of the tasks, its factor of enlarging equals its original period, as shown

in Example. 1, which guarantees that each task shrinks to its original parameters after

the final shrinking operation. In the end, enlarge_sequence orders all operations in non-

decreasing order of the enlarging factor to obtain the sequence of operations to be applied.

This ordering is important for reducing some of the subsequent proof burdens. It actually

imposes one more constraint to the task set: after each step of enlarging, the enlarged task

has the longest period in the new task set. Sec. 7.3.3 shows how this additional constraint

helps eliminates some proof burden.

Fig. 7.4 demonstrates the application of the enlarging sequence to a task set. Based on

this, we prove the schedulability of a task set as follows.

Theorem 2. A task set conf is schedulable under EDF if the total utilization of its tasks

does not exceed 100%.

Proof. The schedulability criterion that the total utilization must not exceed 100% is defined

as the sum of task budgets of enlarge_to_hyper H N conf, also denoted as conf0, is less

than or equal to H. In conf0, all tasks have a common period of H, and the schedulability

of the system is trivial.

Then we prove that invoking do_enlarge_sequence leads to a schedulable task set.

80

This is done by proving that at any step, the schedulability of a task set is preserved by

do_enlarge, which also relies on the ordering of enlarge_sequence. We denote the result

of applying all operations as conf1.

In the end, we prove that every task τ ′i in conf1 is the result of enlarging τ i by a factor

of H in conf and that the schedulability of conf1 entails the schedulability of conf.

The above proof follows the same outline as in Example 1, where conf represents

{(1, 4), (2, 5), (3, 10)}, conf0 represents {(5, 20), (8, 20), (6, 20)}, and conf1 represents

{(20, 80), (40, 100), (60, 200)}. Proof obligations involved in individual steps are explained

in the following sections.

7.3.2 The Virtual Time Map and Interference

The dynamic computation of virtual time maps As shown in Fig. 7.1(b), EDF

scheduling no longer permits the static computation of time maps in decreasing order of

the task priority. Instead, it can only be defined by recursion on the time tick: time maps

for all tasks up to time t+ 1 can be computed based on time maps up to time t.

The computation relies on a concrete definition of the priority queue PriQt at any

arbitrary moment t. This is achieved by computing all task’s current deadline and then

sort them in increasing order. If multiple tasks have identical deadlines, we use the task ID

as a tie-breaker. In this way, we instantiate the time map computation in Fig. 7.1(b) with

a concrete dynamic priority assignment policy.

The accumulative interference The iterative computation of time maps discussed

above makes it difficult to reason about the schedulability of a task in a straightforward

way, which relies on examining the accumulative increments of the virtual time within any

physical period.

To bridge this gap, we introduce another ghost variable, Ii
(

t
t+Ti

)
, to represent the amount

of temporal interference task τ i receives in a period spanning [t, t+Ti). In particular, a task

is said to experience temporal interference from others during time slot [t, t+1) if this time

slot is occupied by a higher-priority task. We demonstrate the accounting of the amount of

interference in Fig. 7.5 and prove its connection with the virtual time map as follows.

81

1 int instrumented_dynamic_vtsched

(){

2 t++;

3

4 int tid = N;

5 for (p = 0; p < N; p++) {

6 int i = PriQt(p);

7 if (tid == N){

8

9 }else{

10 σi[t+1] = σi[t];

11 Ii
(

t/Ti∗Ti

t/Ti∗Ti+Ti

)
++;

12 }

13 }

14 return tid;

15 }

Figure 7.5: The computation of temporal interferences embedded in a virtual-time-based
scheduler

Lemma 11 (The amount of interference decides the increments of virtual time).

∀i, k, σi((k + 1) ∗ Ti)− σi(k ∗ Ti) = Ti − Ii
(

k ∗ Ti
k ∗ Ti + Ti

)

Proof. The virtual time for an arbitrary task τ i stagnates if and only if the temporal in-

terference it experiences increments. Thus, at any time tick, either the virtual time or the

interference increments by 1, and their total reaches Ti at the end of this current period.

Recall that τ i arrives at k∗Ti and the corresponding (implicit) deadline is (k+1)∗Ti for

k ≥ 0. Hence, Ii
(

k∗Ti
k∗Ti+Ti

)
represents the amount of temporal interference that τ i experiences

from its arrival to the deadline. Following Lemma 11, the schedulability proof is reduced to

showing that enlarging and shrinking a task set does not lead to more interference for each

of its tasks.

A breakdown on the interference The above definition provides us a measurement

to reason about the amount of interference a task experiences. However, to prove that the

schedulability is preserved by the enlarging/shrinking operation, it’s important to compare

the interference incurred under two different task sets. In other words, the schedulability of

a system is preserved if the amount of interference on each task does not increase. Thus, we

need to further break down the interference and account for contributions from individual

tasks.

Fig. 7.6 illustrates the temporal interference that τ i can experience due to another task

τ j . Here, we only consider the periods of τ j which have higher priority over τ i, since the

relative priority between tasks is time-dependent. In particular, ts and te denote the start

82

𝑡" 𝑡#

𝑎% 𝑒%

𝑇(

remaining
workload

whole
periods+ = interference from 𝜏%

𝜏%

𝜏(

Figure 7.6: The amount of interference τ j incurs on τ i: a breakdown

and end of the current period for τ i, aj and ej denote the first and last arrival of τ j within

the time interval [ts, ts + Ti). As can be seen from the figure, there are two main categories

of interference from τ j as follows.

• Remaining workloads wri(τj , σj , ts, te). It characterizes the case when ts is in the mid-

dle of a period of τ j , such that there might still be remaining quanta to be consumed

by τ j from ts to the end of its current period. The value of such interference depends

on the exact schedule of τ j . Notice that if ej is larger than te, or in other words, τ j

has a lower priority than τ i within [ts, te), the amount of remaining workloads would

be 0 since τ j can no longer preempt τ i.

• Whole periods of τj wwi(τj , ts, te). It represents the arrivals of τ j that must finish no

later than te, which also has a higher priority and can preempt τ i. This is true for

arrivals whose deadlines are earlier than te, and also for the arrival whose deadline

equals te but the task ID j is less than i. Such interference only depends on task

parameters, not the actual schedule of tasks.

The above two kinds of workloads are defined as follows.

Definition 12 (Remaining workloads wri(τj , σj , ts, te)).

wri(τj , σj , ts, te) =

Cj − vj(ts) vj(ts) < Cj ∧ (ts mod Tj 6= 0) ∧ (b ts

Tj
cTj + Tj , j) < (te, i)

0 otherwise

83

where vj(t) = σj(t)− σj(b
ts
Tj
cTj)

Definition 13 (Whole-period interference wwi(τj , ts, te)).

aj = (ts mod Tj = 0) ? ts : b ts
Tj
cTj + Tj

ej = ((te mod Tj = 0) ∧ i < j) ? te − Tj : b te
Tj
cTj

And

wwi(τj , ts, te) =

ej − aj
Tj

∗ Cj ts ≤ aj < ej ≤ te

0 otherwise

Note that τ j can never execute after ej as its priority becomes lower than τ i (due to the

deadlines, te ≤ ej + Tj .) We use wi(τ j , σj , ts, te) to represent the total workloads incurred

by one task, i.e., wri(τj , σj , ts, te) + wwi(τj , ts, te).

We also use WRi(Π, ts, te) and WWi(Π, ts, te) to represent the total remaining workloads

and whole period interferences from all other tasks in Π to τ i. The sum of the two is denoted

as Wi(Π, ts, te). We prove that it upper-bounds the amount of actual interference τ i receives

from other tasks.

Lemma 12 (Validity of the accumulative interference). For any task τi ∈ Π, and any of

its period [ts, ts + Ti)

Ii

(
ts

ts + Ti

)
≤Wi(Π, ts, ts + Ti)

Proof. We consider an arbitrary moment t within the window of [ts, ts+Ti). We prove that

if there is interference to τ i during [t, t+ 1), the corresponding workload must also increase.

In other words,

Ii

(
t

t+ 1

)
+Wi(Π, t+ 1, ts + Ti) ≤Wi(Π, t, ts + Ti)

This is true because the task scheduled at time t, denoted τk, must have a higher priority

than τ i. This task must still have remaining quantum at t and this quantum value is

decremented by 1 at t+ 1. Thus, 1 +wi(τ j , σj , t+ 1, te) ≤ wi(τ j , σj , t, te) must hold. Since

workloads for all other tasks do not change, the above statement holds.

84

Given the above statement, we perform induction on the value of t and prove that

Ii

(
ts

ts + Ti

)
+Wi(Π, ts + Ti, ts + Ti) ≤Wi(Π, ts, ts + Ti)

Since there can be no interference within an empty window, this overall lemma is proved.

Notice that the above lemma uses an inequality to characterize the relationship between

the amount of workloads and the amount of interference. This is because the accounting

of interference is precise: the computation decides whether there is interference by looking

at the exact schedule. However, the calculation of workloads only takes into account the

accumulative values. When the schedulability of a task set is not known, one can only prove

that the amount of workloads is an upper bound on the actual interference. This mismatch

appears in the proof when t+ 1 represents the beginning of a new period for task τk. The

exact interference at [t, t + 1) can at most be 1 time slot, yet Wi(Π, t, ts + Ti) −Wi(Π, t +

1, ts + Ti) can be larger then 1 if its schedulability is not known.

7.3.3 Enlarging a Task

This section details the reasoning that enlarging a task does not lead to more interfer-

ence on itself or on other tasks. Without loss of generality, we assume that task τ i is

enlarged by a factor of k, while other tasks remain the same. We denote Π′ = {τ ′i} ∪

{τ0, ..., τ i−1, τ i+1, ..., τN−1}, where τ ′i = (kCi, kTi).

Characterization of the actual schedule. To account for the overlapping of workloads

across periods in a comprehensive way, we further categorize the schedule of a time slot as

follows.

85

1 Inductive sched_type: Type :=

2 | Sched_self

3 | Sched_interference

4 | Sched_leftover

5 | Sched_overlap

6 | Sched_longoverlap

7 | Sched_low

8 | Sched_idle.

Notice that the above categorization characterizes the nature of the schedule of one time

slot from a task τ i’s perspective. Further, it is specified with regard to its current and next

period, denoted as [ts, te) and [te, t
′
e) respectively.

• Fig. 7.7(a) illustrates Sched_self. The shaded box labeled τ i represents the schedule

of τ i for one time slot. The down arrows labeled ai and ei represents the beginning

and end of the current period for τ i. A schedule of τ i is categorized as Sched_self if

its period [ai, ei) is enclosed by [ts, te).

• Fig. 7.7(b) illustrates Sched_interference. Here, τ j 6= τ i, and τ j has higher priority

over τ i, either because ej < te, or because ej = te ∧ j < i. There is no constraint on

the relation between aj and ts.

• Fig. 7.7(c) illustrates Sched_leftover. This is a special case when ej = te ∧ i < j,

such that τ j has a lower priority than τ i within [aj , te), but has higher priority than

tasks whose deadlines are later than te, in particular, those labeled as Sched_overlap.

• Fig. 7.7(d) illustrates Sched_overlap. It characterizes the period of τ j that starts

within [ts, te) and ends within [te, t
′
e). This case is particularly interesting because

it influences the amount of interference ”leaked” to the next period: more schedules

before te means fewer remaining workloads for [te, t
′
e). And the overall reasoning

largely depends on reasoning about the allocated workloads of Sched_overlap before

te, which is in turn influenced by others such as Sched_self, Sched_interference,

and Sched_leftover.

• Fig. 7.7(e) illustrates Sched_longoverlap. This is the case when the current period

of τ j starts before ts and must end within [te, t
′
e).

86

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(a) Sched self

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(b) Sched interference

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(c) Sched leftover

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(d) Sched overlap

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(e) Sched longoverlap

𝑡" 𝑡#

𝑎% 𝑒%

𝑡′#

𝜏%

(f) Sched low

Figure 7.7: Categorization of types of the schedule

• Fig. 7.7(f) illustrates Sched_low. This includes all tasks that have a lower priority

than τ i within the window [te, t
′
e). This is true when the deadline of τ j is later than

t′e.

• Sched_idle represents the schedule of the idle task.

We formalize in Coq the computation of the type of a schedule and implement a function

that counts the number of occurrences of each type within a time window. In particular,

φi(τ j , ty, cs, ce, ts, te, t
′
e) counts the occurrences of τ j within [cs, ce), where it has a type of

ty from the perspective of τ i and the window specified by ts, te, t
′
e.

Definition 14 (Counting the schedule of τ j that is of a given type ty).

φi(τ j , ty, cs, ce, ts, te, t
′
e) = |{t ∈ [cs, ce)|get_sched_type(τ i, τ j , t, ts, te, t

′
e) = ty}|

We also formalize in Coq a function that counts the occurrences of all tasks having a

particular type.

87

Definition 15 (Counting the schedule of all tasks that is of a given type ty).

Φi(ty, cs, ce, ts, te, t
′
e) =

∑
j

φi(τ j , ty, cs, ce, ts, te, t
′
e)

Lemma 13 (This categorization is comprehensive).

∀cs, ce, ts, te, t′e, cs ≤ ce =⇒
∑
ty

Φi(ty, cs, ce, ts, te, t
′
e) = ce − cs

Proof. By construction, at any time instant, if there is no real-time task scheduled, the type

would be Sched_idle. Otherwise, the type of the scheduled task must fall into one of the

above categories in Fig. 7.7.

The workloads and the actual schedule. We further define two additional measure-

ments as follows.

Definition 16 (Overlapping workloads count all other task periods that overlap with τ i).

is overlapi(τj , ts, te, t
′
e) =

 1 ts ≤ aj < te < ej ∧ (ej , j) < (t′e, i)

0 otherwise

where aj = b te
Tj
cTj ∧ ej = aj + Tj

Considering all other tasks, we have

WOi(Π, ts, te, t
′
e) =

∑
τj∈Π

is overlapi(τj , ts, te, t
′
e) ∗ Cj

Definition 17 (Leftover workloads count all other tasks whose schedule must be of type

Sched leftover).

is leftoveri(τj , ts, te) =

 1 ts ≤ te − Tj ∧ te mod Tj = 0 ∧ i < j

0 otherwise

88

And

WLi(Π, ts, te) =
∑
τj∈Π

is leftoveri(τj , ts, te) ∗ Cj

We prove in Coq the following relationships between the value of various workloads and

the counting of the real schedule.

Lemma 14 (The leftover workloads is an upperbound on the real schedule).

∀i, ts, te, t′e,Φi(Sched_leftover, ts, te, ts, te, t
′
e) ≤WLi(Π, ts, te)

Proof. The proof is achieved by showing that each task τ j satisfies the following constraint.

φi(τ j , Sched_leftover, ts, te, ts, te, t
′
e) ≤ is leftoveri(τ j , ts, te) ∗ Cj

1. If is leftoveri(τ j , ts, te) = 0, we prove that there is no schedule of τ j satisfying type

Sched_leftover, since the condition as depicted in Fig. 7.7(c) does not hold.

2. If is leftoveri(τ j , ts, te) = 1, we prove that for any time instant t ∈ [te − Tj , te), the

following is true.

φi(τ j , Sched_leftover, ts, t, ts, te, t
′
e) = min(Cj , σj(t)− σj(ts))

This is because if τ j is scheduled at t, both its virtual time and the accounting

increments by 1. Otherwise, neither of the two increments. We also prove that

the schedule of τ j is subject to its budget constraint, such that the number of actual

schedules cannot exceed Cj while the amount of available virtual time could be larger.

When t = te, we prove the above property.

Combining the contribution of all tasks together, we prove this lemma. Notice that

equality holds when the task set is proved to be schedulable.

The proof of the above lemma demonstrates how we connect the accumulative value of

a particular kind of workload to the actual schedule under EDF. It shows that the virtual

timeline abstraction faithfully tracks the actual schedule of a task, makes it easy to carry out

89

the budget constraint in the reasoning, but more importantly, connects the schedulability

with the concrete schedule in a straightforward way. It’s easy to prove that task τ j receives

its full budget if this task is schedulable (Def. 2). This proof also provides some insight into

the seemingly unusual inequality introduced in Lemma 12.

Similarly, we prove the following lemmas regarding the various workloads and the real

schedule. Most of their proofs follow the same approach as in Lemma 14, and proof details

are omitted in this section.

Lemma 15 (The schedule of a task is bounded by its budget constraint).

∀i, t, t′e, t mod Ti = 0 =⇒ Φi(Sched_self, t, t+ Ti, t, t+ Ti, t
′
e) ≤ Ci

Lemma 16 (The actual amount of the interference is bounded by the remaining and

whole-period workloads).

∀i, t,Φi(Sched_interference, t, t+ Ti, t, t+ Ti, t+ 2Ti) ≤Wi(Π, t, t+ Ti)

Lemma 17 (The overlapping workloads leak to the next period and becomes remaining

workloads).

∀ts, te, t′e,WOi(Π, ts, te, t
′
e)−WRi(te, t

′
e) = Φi(Sched_overlap, ts, te, ts, te, t

′
e)

Interference on τ i itself Now we examine temporal interferences incurred by other

tasks on τ ′i. Since its parameters are enlarged, a period now spans from ts to ts + kTi, as

shown in Fig. 7.8. In this case, the total whole-period interference experienced by τ ′i during

[ts, ts + kTi) equals that experienced by τ i (i.e., before the enlargement) during the same

interval [ts, ts + kTi), illustrated as shaded rectangles in the figure. This is because those

tasks that could preempt τ i during [ts, ts+kTi) will still have higher-priorities than τ ′i after

the period is enlarged. Thus, we focus on the remaining workloads from others.

We reason about the amount of workloads by induction on the index of the period.

We assume that workloads in period k are properly bounded, and prove that this leaves

enough time slots to accommodate workloads that overlap with the next period so that the

90

𝑡"

𝑎$ 𝑒$
𝑇'

𝜏$

𝑡" + 𝑘𝑇'

.....

.
𝑇'

𝜏$

𝑘𝑇'

𝑎$ 𝑒$

𝜏$ 𝜏$

𝜏$ on 𝜏'

𝜏$ on 𝜏′'

Figure 7.8: Whole-period interference from τ j to τ i before and after the enlargement

interference incurred on the next period is also sufficiently bounded.

Lemma 18 (Enlarging τ i does not increase the remaining workloads incured on it).

∀m ≥ 0,WRi(Π,m ∗ kTi, (m+ 1) ∗ kTi) ≥

WRi(Π
′,m ∗ kTi, (m+ 1) ∗ kTi)

Proof. As discussed above, we prove this lemma by induction on the period. The base

case corresponds to [0, kTi), which is trivial because the remaining workloads are 0 in the

schedule of both Π and Π′.

For the induction case, we assume this lemma holds for an arbitrary m, and we prove it

for m + 1. We define ts = mkTi, te = ts + kTi and t′e = te + kTi = ts + 2kTi. Notice that

one period of τ ′i (e.g. [ts, te)) spans k periods of τ i.

We perform case analysis on whether there are idle time slots in the schedule of Π′

within [ts, te).

1. Assume the schedule is busy through the whole interval [ts, te). As shown in Fig. 7.9,

the top half depicts the schedule of Π and the bottom half depicts that of Π′. We

observe that the overlapping workloads are equal in both cases since it only depends

on task parameters instead of the actual schedule. Then the question is how much of

its execution is in [ts, te) and how much is left over to [te, t
′
e) and contributes to the

remaining interference for the (m+ 1)th period.

Intuitively, since τ ′i suffers less total interference in [ts, te), there should be more

91

𝑡" 𝑡#
𝑘𝑇&

𝑡" 𝑡#
𝑇& 𝑇&

Overlapping
Workloads

Other Tasks
𝜏&

𝑊𝑅&(Π′, 𝑡#, 𝑡′#)

𝑊𝑅&(Π, 𝑡#, 𝑡′#)

𝑡′#

𝑡′#

𝑘𝑇&

Schedule of Π

Schedule of Π’

Figure 7.9: When the schedule of Π′ is busy, it leaks less remaining workload to the next
period compared to the schedule of Π

time slots devoted to these overlapping workloads, and hence lead to less remaining

workload for the next period.

• For the schedule of Π′, we prove that

WOi(Π
′, ts, te, t

′
e)−WRi(Π

′, te, t
′
e) ≥ kTi − kCi −Wi(Π

′, ts, te)−WLi(Π
′, ts, te)

This is done by proving that since kTi is the longest period in Π′, there can be no

schedule of type Sched_longoverlap or Sched_low. Thus, the whole period of

length kTi is occupied by Sched_self, Sched_interference, Sched_leftover,

and Sched_overlap. By applying Lemma 14, 15, 16 and 17, the above property

is proved. The intuition is that the first three types of schedules are all bounded

by their corresponding workloads, thus the last one is guaranteed a lower bound

of time slots.

• For the schedule of Π, since it is known to be schedulable, we prove that

WOi(Π, ts, te, t
′
e)−WRi(Π, te, t

′
e) ≤ kTi − kCi −Wi(Π, ts, te)−WLi(Π, ts, te)

This is true because the amount of workloads equals the accounting on the actual

schedule when this task set is schedulable. However, recall that there might be

92

𝑡" 𝑡#
𝑘𝑇&

𝑡" 𝑡#
𝑇& 𝑇&

Other Tasks

𝜏&

𝑣

......

𝑊𝑅&(Π, 𝑡#, 𝑡′#)

𝑊𝑅&(Π′, 𝑡#, 𝑡′#)

𝑘𝑇&
𝑡′#

𝑡′#
Schedule of Π

Schedule of Π’

Figure 7.10: When the schedule of Π′ is not busy, it leaks less remaining workload to the
next period compared to the schedule of Π

Sched_idle in this case, thus the total count of Sched_self, Sched_interference,

Sched_leftover, and Sched_overlap is less than or equal to kTi.

We also prove that the overlapping and leftover workloads only depend on task

parameters, such that WOi(Π, ts, te, t
′
e) = WOi(Π

′, ts, te, t
′
e) and WLi(Π, ts, te) =

WLi(Π
′, ts, te). Combining everything together with the induction hypothesis that

Wi(Π, ts, te) ≥Wi(Π
′, ts, te), we prove WRi(Π, te, t

′
e) ≥WRi(Π

′, te, t
′
e).

2. Assume there is at least one idle slot in the schedule of Π′, and there exists v ∈ (ts, te]

such that [v− 1, v) is the last idle slot. In this case, the schedule within [v, te) is busy

as shown in Fig. 7.10.

Intuitively, the amount of workloads leaking to the next period is determined by the

overlapping workloads within [v, te). Compared to the schedule of Π, the schedule

of Π′ allocates as many time slots as possible to accommodate those overlapping

workloads and should result in the least amount of remaining workload for the next

period. We prove it in Coq as follows.

• For the schedule of Π′, we prove that

WOi(Π
′, ts, te, t

′
e)−WRi(Π

′, te, t
′
e) ≥ te − v −WWi(Π

′, v, te)−WLi(Π
′, v, te)

93

This is true because the last busy window, [v, te), only contains Sched_interference,

Sched_leftover, and Sched_overlap. While the first two types are bounded by

their workload (Lemma 16 and 14), the last one equals its workload (Lemma 17).

• For the schedule of Π, we prove that

WOi(Π, ts, te, t
′
e)−WRi(Π, te, t

′
e) ≤ te−v−WWi(Π, v, te)−WRi(Π, v, te)−WLi(Π, v, te)

The proof follows the same reasoning as in the case when the entire window is

busy. Since there might be Sched_idle and extra schedules of τ i within [v, te),

time slots allocated to Sched_overlap are subject to an upper bound.

Since the overlapping and leftover workload stays the same, and also the whole-period

workload is identical in both cases, we prove WRi(Π
′, te, t

′
e) ≤WRi(Π, te, t

′
e)

This concludes the proof by induction.

Given that the whole-period interference does not change, we know the total interference

experienced by τ i does not increase after it is enlarged. Thus, τ ′i must also be schedulable.

Interference on other tasks Now we consider the interferences incurred on an arbitrary

task τ j , where τ j 6= τ i. Intuitively, τ i’s priority is lowered as its deadline is extended.

Starting from a burst of a busy schedule, i.e. there is no remaining workload, interferences

incurred on τ j cannot increase.

Before diving into the proof details, we define an extended version of the whole period

workload, so that all whole periods within a window is counted regardless of the relative

priority.

Definition 18 (Extended whole-period interference wewi(τj , ts, te)).

aj = (ts mod Tj = 0) ? ts : b ts
Tj
cTj + Tj

ej = b te
Tj
cTj

94

And

wewi(τj , ts, te) =

ej − aj
Tj

∗ Cj ts ≤ aj < ej ≤ te

0 otherwise

And we define

WEWi(Π, ts, te) =
∑
τ j∈Π

wewi(τ j , ts, te)

Lemma 19 (Enlarging τ i does not lead to more temporal interference on other tasks).

∀m ≥ 0,Wj(Π,mTj ,mTj + Tj) ≥

Wj(Π
′,mTj ,mTj + Tj)

Proof. Consider an arbitrary period of τ j : [mTj ,mTj+Tj). We denote ts = mTj , te = ts+Tj .

We define a function start_of_burst(ts, id, deadline), which searches for the longest

window [v, ts) such that any schedule within this window has a priority higher than or

equal to (deadline, id). This can be viewed as a generalized version for searching a busy

window since lower-priority slots are also ruled out in addition to idle slots. The result of

this function must be within the range [0, ts]. The return value is ts if The slot at [ts−1, ts)

is idle or accommodates a task whose priority is lower.

We apply this function on the schedule of Π′ and get v = start_of_burst(ts, te, j). By

definition, all time slots within [v, ts) are busy and have a priority higher than (te, j). On

the other hand, The slot at [v − 1, v) is either idle or has a lower priority.

• For the schedule of Π′, we prove that

WOj(Π
′, v, ts, te)−WRj(Π

′, ts, te) +WEWj(Π
′, v, ts) ≥ ts − v

This is because, in such a busy schedule, WOj(Π
′, v, ts, te) −WRj(Π

′, ts, te) equals

the count of Sched_overlap, while WEWj(Π
′, v, ts) is no less than the count of other

types that are possible within [v, ts) (i.e. Sched_interference and Sched_leftover).

• For the schedule of Π, we prove that

WOj(Π, v, ts, te)−WRj(Π, ts, te) +WEWj(Π, v, ts) ≤ ts − v

95

The task set Π is schedulable and its schedule within [v, ts) may contain tasks that

have lower priority. Thus, schedules corresponding to the above workload must be

less than or equal to ts − v.

• Comparing these two schedules, we prove that

WOj(Π
′, v, ts, te) +WEWj(Π

′, v, ts) +WWj(Π
′, ts, te) ≤

WOj(Π, v, ts, te) +WEWj(Π, v, ts) +WWj(Π, ts, te)

This actually compares the overall whole-period workload within [v, te), whileWEWj(Π
′, v, ts)

counts the portion entirely within [v, ts), WWj(Π
′, ts, te) counts those entirely within

[ts, te), and WOj(Π
′, v, ts, te) counts those spanning across these two windows. Since

enlarging a task can only result in less or equal whole-period workload (it might cause

a period to fall outside the window), the above property holds.

Combining everything together,

WWj(Π, ts, te) +WRj(Π, ts, te)−WWj(Π
′, ts, te)−WRj(Π

′, ts, te) ≥ 0

Thus, this lemma holds.

This concludes our reasoning for enlarging a task. Since the task itself and all other

tasks cannot experience more workload, the enlarged task set must also be schedulable.

7.3.4 Shrinking a Task Set

This section details the reasoning that shrinking a task set preserves its schedulability. In

particular, we define the following predicate.

Definition 19 (The task set Π is the result of shrinking Π′ by k).

taskset_k_times k Π Π′ ≡ ∀ τ i ∈ Π, τ ′i ∈ Π′, T ′i = kTi ∧ C ′i = kCi

Throughout this section, we use σi to denote the time map of task τ i in the schedule of

Π. Similarly, we use σ′i to denote the time map of τ ′i in the schedule of Π′.

96

Intuitively, we observe that the schedule of Π′ must consist of smaller chunks of size k.

In other words, within any window [pk, pk+k), all time slots schedule a common task since

all tasks’ budgets and periods are a multiple of k.

We define the following predicate.

Definition 20 (All task parameters are a multiple of k).

taskset_k_divisor k Π′ ≡ ∀ τ ′i ∈ Π′, T ′i mod k = 0 ∧ C ′i mod k = 0

We then prove the following property about the schedule of Π′.

Lemma 20 (The schedule of Π′ consists of smaller chunks of size k). Assume that

taskset_k_divisor k Π′ holds. At any time t, for any task τ ′i, one of the following must

be true. (i) τ ′i is blocked by another task at time b t
k
ck, and σ′i(t) = σ′i(b

t

k
ck). (ii) τ ′i is

not blocked by any task at time b t
k
ck, and σ′i(t) = σ′i(b

t

k
ck) + t mod k. Notice that case

(ii) does not mean τ ′i must be the running task. It is possible that the virtual time of τ ′i

increases while the task itself has exhausted its budget in the current period.

Proof. We strengthen the induction hypothesis with another proof goal:

∀t, t mod k = 0 =⇒ σ′i(t) mod k = 0

We prove by induction on the time t.

In the base case, t = 0, σ′i(0) = 0. It’s easy to see the above properties hold.

Assume that the above properties hold for t. Consider the case with t + 1.

• If (t+ 1) mod k = 0, we prove that the value of virtual time must also be a multiple

of k. This requires an inspection of σ′i(t).

– If τ ′i is blocked at b t
k
ck = t + 1 − k, it will also be blocked at time t since the

ordering in the priority queue does not change. Thus,

σ′i(t+ 1) = σ′i(t) = σ′i(t+ 1− k)

which is indeed a multiple of k.

97

– Otherwise, if τ ′i is not blocked at t+ 1− k, it is not blocked at t, either. Thus,

σ′i(t+ 1) = σ′i(t) + 1

= σ′i(t+ 1− k) + (t mod k) + 1

= σ′i(t+ 1− k) + (k − 1) + 1

= σ′i(t+ 1− k) + k

which is also a multiple of k.

• If (t+ 1) mod k 6= 0, we prove that the value of virtual time at this moment is valid.

Here, we know that t mod k 6= 0 also holds, and b t+ 1

k
ck = b t

k
ck.

We do case analysis on whether τ ′i is blocked at time b t
k
ck.

– If τ ′i is blocked at b t
k
ck, it will also be blocked at time t. Thus,

σ′i(t+ 1) = σ′i(t)

= σ′i(b
t

k
ck)

– Otherwise, if τ ′i is not blocked at b t
k
ck, it is not blocked at t, either. Thus,

σ′i(t+ 1) = σ′i(t) + 1

= σ′i(b
t

k
ck) + (t mod k) + 1

= σ′i(b
t

k
ck) + ((t+ 1) mod k)

= σ′i(b
t+ 1

k
ck) + ((t+ 1) mod k)

The value of σ′i(t+ 1) is valid in both cases.

Thus, this lemma holds for any task at any time.

The intuition of Lemma 20 is that the schedule of Π′ must be in units of k consecutive

time slots. Since all periods and budgets are multiples of k, and that we already impose the

task ID as a tie-breaker, the schedule within any window of [pk, pk+ k) must be consistent.

As a corollary, the value of time map at the boundary of any window must be a multiple

of k, which is exactly the strengthened goal in the above proof.

98

We then connect the schedule of Π′ with that of Π. Intuitively, they follow the same

schedule but with different granularity. Every k consecutive time slots in the schedule of Π′

correspond to one time slot in that of Π.

Lemma 21 (The schedule of Π′ maps to that of Π). Consider two task sets satisfying

taskset_k_times k Π Π′. For any arbitrary task τ i and time t, the following holds

σi(b
t

k
c) = bσ

′
i(t)

k
c

Proof. We prove by induction on the time t. In the base case, t = 0, σ′i(0) = 0 ∧ σi(0) = 0.

It’s easy to see this lemma holds.

Assume that the above properties hold for t. Consider the case with t+1. We inspect

the virtual time of an arbitrary task τ i.

• If (t + 1) mod k = 0, we know b t+ 1

k
c = b t

k
c + 1, which corresponds to one step in

the schedule of Π.

– if τ i is blocked at time b t
k
c, we prove that τ ′i is also blocked through the k

consecutive slots starting from b t
k
ck. Thus,

σi(b
t+ 1

k
c) = σi(b

t

k
c)

= bσ
′
i(t)

k
c

= bσ
′
i(t+ 1)

k
c

– if τ i is not blocked at time b t
k
c, we prove that τ ′i is not blocked either through

99

the k consecutive slots starting from b t
k
ck. Thus,

σi(b
t+ 1

k
c) = σi(b

t

k
c) + 1

= bσ
′
i(t)

k
c+ 1

= bσ
′
i(t+ 1− k) + (t mod k)

k
c+ 1

= bσ
′
i(t+ 1− k) + k

k
c

= bσ
′
i(t+ 1)

k
c

• If (t+ 1) mod k 6= 0, we know that t mod k 6= 0 also holds, and b t+ 1

k
c = b t

k
c.

We further prove that whether τ ′i is blocked or not at time b t
k
ck, the following holds.

0 ≤ σ′i(t+ 1)− σ′i(b
t

k
ck) ≤ (t+ 1) mod k < k

0 ≤ σ′i(t)− σ′i(b
t

k
ck) ≤ t mod k < k

Thus,

σi(b
t+ 1

k
c) = σi(b

t

k
c)

= bσ
′
i(t)

k
c

= b
σ′i(b

t

k
ck)

k
c

= bσ
′
i(t+ 1)

k
c

This lemma holds.

Finally, we prove in Coq that shrinking a task set preserves its schedulability.

Lemma 22 (Shrinking a task set preserves its schedulability). For two task sets Π and Π′,

if taskset_k_times k Π Π′ holds, and Π′ is schedulable, then Π must also be schedulable.

Proof. Without loss of generality, we examine an arbitrary task τ i ∈ Π. We pick an arbitrary

100

period [pTi, pTi + Ti), and denote ts = pTi, te = pTi + Ti. The schedulability proof of τ i in

this period requires a comparison between σi(te)− σi(ts) and Ci.

Firstly, we apply Lemma 21 and prove that

σi(te)− σi(ts) = σ′i(kte)/k − σ′i(kts)/k

Since σ′i(kte) mod k = 0 (Lemma 20), we know

σ′i(kte)/k − σ′i(kts)/k = (σ′i(kte)− σ′i(kts))/k

And the schedulability of Π′ implies that

σ′i(kte)− σ′i(kts) ≥ kCi

Thus,

σi(te)− σi(ts) ≥ Ci

Π must also be schedulable.

To this end, we have proved that both the enlarging and shrinking operations preserve

the schedulability of the system. They complete the proof in Thm. 2, such that a task set

is schedulable if its total utilization does not exceed 100%.

101

Chapter 8

Case Study: CertiKOS with

Earliest-Deadline-First Scheduling

In this chapter, we discuss how we implement and verify an EDF scheduler and connects it

with the virtual timeline abstraction.

8.1 The Concrete Scheduler Implementation

Fig. 8.1 depicts the concrete implementation of an EDF scheduler. It first refills budgets

for each task, then iterates over all tasks and records the one that has the nearest deadline

and also remaining budget. In the end, if such a task is found, the scheduler will deduct

one time slot from its remaining budget.

Notice that this implementation relies on the following two implicit assumptions.

1. Task arrivals exhibit regular periods. In this way, the scheduler tracks the start of a

new period and calculates the deadline of a task in a straightforward way.

2. As discussed in Sec. 7.3.2, we use the task ID as a tie-breaker when two tasks have a

common deadline. The scheduler in Fig. 8.1 iterates over all tasks in increasing order

of the task ID, thus implicitly carrying out this precedence rule.

Also notice that this linear-time search can be improved by adopting a more advanced

data structure, such as a balanced binary search tree, that enables a more efficient lookup.

102

1 int sched(){

2 t++;

3 for(int i = 0; i < N; i++){

4 if (t % Ti == 0){

5 quanta[i] = Ci;

6 }

7 }

8

9 int pid = N;

10 int dmin = 0;

11 for(int i = 0; i < N; i++){

12 if (quanta[i] > 0){

13 int d = t/Ti*Ti + Ti;

14 if (pid==N || d<dmin){

15 dmin = d;

16 pid = i;

17 }

18 }

19 }

20

21 if (pid < N){

22 quanta[pid]--;

23 }

24 return pid;

25 }

Figure 8.1: The C implementation of an EDF scheduler

However, incorporating such an improvement only relies on a proof of algorithmic equiva-

lence, which is not the focus of this thesis. Further, safety-critical real-time systems usually

only accommodate a moderate number of tasks per single processor, rendering the perfor-

mance optimization less significant.

8.2 Refinement with the Virtual-Time-Based Scheduler

To reason about the concrete scheduler, we need to prove its contextual equivalence with

an intermediate abstraction, whose structure is closer to that of the virtual-time-based

scheduler. In particular, this intermediate abstraction iterates over a priority queue instead

of over all task IDs consecutively.

Formalization of the priority queue Fig. 8.2 depicts the Coq formalization of the

priority queue at instant t. In particular, it is a list of priEntry, where each element

contains the current deadline and ID for a task. Function real_priqueue_aux initializes

such a list containing all tasks in the system, but in the order of task IDs.

The module prisort is an instantiation of Coq Sort with the element type priEntry

and comparison function priEntry_le. Thus, prisort.sort sorts the aforementioned list

such that all elements are in ascending order with respect to priEntry_le.

An intermediate abstraction The intermediate abstraction follows the structure of

Fig. 7.1(a). Similar to Fig. 8.1, it first refills budgets for each task, then selects the ready

103

1 Inductive priEntry: Type :=

2 | PriEntry: Z (* deadline *) → Z (* task ID *) → priEntry.

3

4 Function priEntry_le e1 e2 :=

5 match e1, e2 with

6 | PriEntry d1 id1, PriEntry d2 id2 ⇒
7 if (zlt d1 d2) then true

8 else (if zeq d1 d2 then

9 (if zle id1 id2 then true else false) else false)

10 end.

11

12 (* A list of entries, from high to low priority *)

13 Definition priQueue := list priEntry.

14

15 Fixpoint real_priqueue_aux (N: nat) (t: Z) (conf: PrioConfigPool):=

16 match N with

17 | O ⇒ nil

18 | S n ⇒
19 match (ZMap.get (Z.of_nat n) conf) with

20 | mkPrioConfigValid T C ⇒
21 PriEntry (t / T * T + T) (Z.of_nat n) :: (real_priqueue_aux n t conf)

22 end

23 end.

24

25 Definition real_priqueue (N: nat) (t: Z) (conf: PrioConfigPool) :=

26 prisort.sort (real_priqueue_aux N t conf).

Figure 8.2: Coq formalization of the priority queue

task with the nearest deadline. However, unlike the C implementation, it iterates over a

priority queue. The formalization of budget refills is the same as the function tick_quanta

explained in Fig. 4.2. Thus, we omit details in this section.

Figure. 8.3 depicts the iteration used in the intermediate abstraction. It is defined

as a recursive function, which searches over the priority queue and returns the first task

whose remaining budget is positive. At each invocation, the parameter queue is ordered by

(deadline, id) for each task, where the deadline for τ i is defined as b t
Ti
cTi + Ti.

We prove that invoking highest_pos_quantum is contextually equivalent to the iteration

over task IDs as defined in Fig. 8.1. The intuition is as follows.

• If highest_pos_quantum returns idle, all tasks’ quantum value must be 0. In this

104

1 Fixpoint highest_pos_quantum_queue_aux (queue: priQueue) (idle: Z)

2 (quantums: QuantumPool) :=

3 match queue with

4 | nil ⇒ idle

5 | (PriEntry deadline id) :: l ⇒
6 if (zlt 0 (ZMap.get id quantums)) then id else

7 highest_pos_quantum_queue_aux l idle quantums

8 end.

9

10 Definition highest_pos_quantum (queue: priQueue) (quantums: QuantumPool) :=

11 highest_pos_quantum_queue_aux queue N quantums.

Figure 8.3: The iteration over a priority queue, used in the intermediate abstraction

case, sched also schedules the idle task.

• If highest_pos_quantum schedules task τp, all other tasks either has 0 remaining

budget or is ready but has a lower priority than p. In other words, τp has the highest

priority among ready tasks at this moment. In this case, sched also schedules task

τp because pid would eventually be assigned the value of p and never updates again.

Proof details are omitted in this section since they mainly involve algorithmic equivalence.

Refinement into the virutal-time-based scheduler Finally, we prove the equiva-

lence between the intermediate abstraction and the virtual-time-based scheduler (similar to

Fig. 7.1(b)). For simplicity, we use abs_sched to denote the intermediate abstraction and

use vt_sched to denote the virtual-time-based scheduler.

We follow the same approach as in Sec. 4.3 and prove the equivalence relation as in Def. 4.

Then the equivalence between the two schedulers is straightforward. Since they iterate over

the same priority queue, at each step, they either skip this task or schedule the same task. In

fact, this largely resembles the existing proof in Sec. 4.3, with the exception that the fixed-

priority scheduling and earliest-deadline-first scheduling iterates over all tasks in different

orders. This concludes the connection between the concrete scheduler implementation with

the virtual timeline abstraction under the EDF scheduling.

The connection in this chapter largely follows the same approach as in Chpt. 4, other

than the gap between the concrete scheduler and its intermediate abstraction. This again

105

demonstrates the generality of the virtual timeline abstraction: the formalization of virtual

time is a common structure among preemptive schedulers. It faithfully captures the pre-

emption relation between tasks (even in the dynamic setting), making the connection with

the concrete scheduler straightforward.

106

Chapter 9

Related Work

9.1 Mechanized Schedulability Analysis

The first mechanized proof about schedulability is achieved by Wilding et al. [30]. They

use the Nqthm theorem prover to formalize the EDF scheduling algorithm and prove its

optimality. They motivate the need for a machine-checked proof by pointing out that the

original informal proof by Liu and Layland [22] contains errors, even though the proof goal

is correct. Dutertre [31] uses a state machine model in the automated theorem prover PVS

to describe and verify the behavior of the priority ceiling protocol. Zhang et al. [32, 33]

formalize the priority inheritance protocol using Isabelle/HOL and prove that it guaran-

tees a finite bound on the duration of priority inversion. They also leverage the insight

obtained during the proof development to guide the implementation of such a protocol.

The PROSA [34] project demonstrates readable mechanized proofs of various schedulabil-

ity analyses written in Coq. It defines an abstract model of real-time tasks and real-time

scheduling algorithms and formalizes and proves correct a response time analysis for tasks.

All of the above work is conducted on an abstract model of a real-time system.

Guo et al. [35] connect PROSA with the real-time extension of CertiKOS described in

Sec. 4.2, and obtain a schedulability proof for it. This connection requires a ghost variable

to map kernel states to Prosa schedules and is based on the proof that the scheduler indeed

follows a given scheduling policy. Unlike us, they only prove the schedulability of tasks

under fixed-priority scheduling and do not address isolation. Our work highlights a suitable

107

abstraction with isolation in mind. In addition to fixed-priority scheduling, our work also

addresses earliest-deadline-first scheduling and partitioned scheduling, which involves more

subtle isolation issues.

9.2 Verification of OS kernels

Both Klein [36] and Zhao et al. [37] have conducted a survey and provided a full overview

of the verification efforts about operating systems. Among all the OS verification works,

we place our emphasis mainly on those done at the C or assembly code level.

SeL4 [2] is a formally-verified operating system kernel. It achieves multitasking in the

kernel by polling timer interrupts at specified preemption points. Its machine model includes

interrupts as abstract events and user transitions as arbitrary non-deterministic updates to

the state, and the correctness of assembly routines is assumed [38]. As a comparison, the

machine model of this work is an extension of the CompCert assembly semantics, with

checking on interrupt lines and also incorporated instruction level resource measurement

such as instruction count. Most of the assembly routines are verified against this more

realistic machine model.

An early extension of CertiKOS [39] tackles the problem of an interruptible kernel.

By abstracting away interrupts using an approach based on abstraction layers, it proves

a simulation relation between different interrupt models, and eventually achieves a model

where regular kernel code still runs sequentially and the effect of interrupts is only visible

when the device driver code is invoked. However, it does not support preemption, i.e.

interrupts do not affect the scheduling of tasks. Concurrent CertiKOS (known as mC2) [40,

41] is the first verified kernel that can support multicore concurrency with fine-grained

locking but its scheduler is still not preemptive.

Nemati et al. [42] verify the design of a hypervisor for the ARMv7 platform. In par-

ticular, they extend a formal model of the ARMv7 hardware with MMU, then formalize

and prove that the hypervisor indeed guarantees spatial isolation of an untrusted guest

OS: the guest’s access to memory resources is indeed confined by the hypervisor. Unlike

us, however, their modeling of the system only resembles its C implementation, instead of

108

being formally connected to it.

Nelson et al. [43] report the push-button verification of a kernel using the z3 SMT

solver. In particular, they translate the implementation, specification, and their equivalence

relation into SMT formulas, and check whether they are indeed equivalent to each other.

Similarly, they translate invariants of the system as SMT formulas and check whether they

are preserved by the specification. To achieve that though, they must make compromises

on the interfaces to make them amenable to automated verification by avoiding complex

loops or linked data structures. None of the above work addresses real-time features of an

OS kernel.

Verification of real-time OS kernels. INTEGRITY-178B is, to the best of our knowl-

edge, the first real-time kernel to enjoy a machine-checked mathematical proof of non-

interference [44]. Nevertheless, this proof only applies to a model of the kernel, and has no

formal link with its implementation.

The eChronos OS [13] is a uniprocessor real-time operating system . It enables interrupts

in most parts of the kernel to achieve minimum latency. It uses an interleaving model of

the application code and different OS components [45] and proves that the scheduler always

schedules the highest-priority process. This work only models the behavior of different

components and hardware interrupts without an end-to-end proof.

Xu et al. [14] verify µC/OS-II [46], a real-time operating system featuring a preemp-

tive kernel, using an ownership-transfer semantics. They prove the contextual refinement

between the system’s implementation and specification. They also formalize and prove a

notion of priority inversion freedom, which specifies the desired behavior in the presence

of shared resources between tasks. However, their verification work stops at the policy

level: they do not address more sophisticated high-level properties such as schedulability or

temporal isolation.

109

9.3 Enforcement of Algorithmic Level Isolation Properties

Verified software systems with isolation Murray et al. [4] prove a non-interference

property for the seL4 kernel, which schedules partitions in a round-robin manner, and each

partition adopts preemptive priority-based scheduling for its tasks. The non-interference

proof depends on the setting that partitions are scheduled statically so that there is no infor-

mation flow from a partition to the scheduler. In contrast, our work focuses on formalizing

a different problem in which partitions can be scheduled dynamically (e.g. it can depend

on the global priority of its task), such that there can be information flow from a partition

to the scheduler, yet the local schedule of tasks within one partition remains uninfluenced

by others. Our work also addresses the schedulability analysis of real-time tasks, which is

essential for temporal isolation.

Sigurbjarnarson et al. [5, 47] prove the non-interference of a system so that only in-

formation flow explicitly allowed in the flow control graph can occur in the system. They

implement NiStar, an OS kernel with decentralized information flow control [48], and prove

that there is no covert channel among processes through the scheduler. This is achieved by

statically assigning each time quantum to a thread, and a thread cannot transfer its quan-

tum (by yielding) to others unless allowed by the information flow policy. It also addresses

the partition isolation of a formalization of the ARINC 653 specification, which assumes a

fixed schedule for partitions, in contrast to the dynamic partition schedule supported in our

work.

Vassena et al. [49] redesign the runtime system of GHC to close the timing channel

between concurrently running threads, in terms of reduction steps. On each single-processor,

they explicitly partition time resource, i.e. number of reduction steps, among different

threads to enforce a static schedule. For parallel execution on multiple cores, they design

the top-level scheduler in a way such that all threads execute in lock-step: they synchronize

after each step. In this way, they achieve deterministic parallelism.

Unverified temporal-constraint-aware systems Lyons et al. [50] tackle the issue of

specifying and enforcing temporal constraints on a user-level task. They propose to in-

110

tegrate sporadic-server-based scheduling into an OS kernel with capability-based resource

management. In particular, they provide to the user an interface for reserving a portion

of CPU time for a specific critical task and use a classical server-based scheduling scheme

to ensure an average-case resource guarantee. They report 2k lines of code on top of the

original implementation of the OS kernel, and they use testing to show that this mech-

anism indeed constrains the CPU utilization of a particular task. As a comparison, our

work focuses on strict temporal isolation, such as schedulability and obliviousness to other

components, and we formally prove these properties in Coq with more than 76k LoC. Our

work uses periodic servers for partitions, instead of sporadic servers used in [50]. However,

the same reasoning framework applies in both cases.

9.4 Intransitive Non-Interference

The non-interference proof in this work is based on an observation function, proposed by

Costanzo et al. [3]. However, there is also work relying on intransitive non-interference,

such as nickel [5]. In particular, it allows information flow from domain A to B, and also

from B to C, but can still guarantee that there is no information flow from A to C, i.e. the

behavior of C is not influenced by A.

The main motivation of intransitive noninterference is to allow declassification or down-

grading in a system. Assume that A is maintaining a file containing both a public and a

secret portion. B is a filter that is supposed to erase the secret portion then release the file

to the public. And C is a task reading from that file if permitted.

The original noninterference definition [51] compares two traces of actions. In particular,

it states that starting from the same initial state, a task’s behavior is not influenced by

others unless there is explicit information flow between them. For example, consider two

traces α1 = A.write(public, 1) :: B.downgrade :: C.read and α2 = B.downgrade :: C.read.

By the original definition, they should produce the same result since only B can influence

the behavior of C. However, it is apparent that the released file contains different public

sections and is distinguishable by C, rendering the original definition too restrictive for this

scenario. This is where intransitive noninterference comes into play. It keeps all actions

111

that might affect C transitively, thus tolerating the different behavior between α1 and α2.

In particular, the two traces are incomparable under this new definition, such that this

downgrading system satisfies the noninterference requirement. This notion is proposed by

Rushby [51] and is adopted by nickel [5].

However, it seems pointless to define an intransitive information flow policy when A actu-

ally influences C through an intermediary B. As shown in Fig. 4 in [5], the definition retains

the transitive closure of all actions that might affect the behavior of the observer, implying

that the influence is indeed transitive. Further, it is not strong enough to comprehensively

specify the desired constraint on a system. For example, assume the implementation of B

is buggy and it does not clean up the file before releasing it. Consider the following two

traces:

α3 = A.write(secret, 1) :: A.write(public, 1) :: B.downgrade :: C.read

α4 = A.write(secret, 2) :: A.write(public, 1) :: B.downgrade :: C.read

The very purpose of defining noninterference is to specify that the two traces must lead to

the same output from C’s perspective and to capture insecure implementations by showing

that they violate this definition. However, the definition used in [5] tolerates different results

produced by these two traces, thus is not able to capture bugs in the downgrader.

Both Roscoe et al. [52] and Meyden [53] notice this issue and propose fixes on defining

intransitive noninterference. Further, Meyden points out that the notion proposed in [52]

is not strong enough in that it leaks the information of the interleaving of multiple critical

components. In contrast, it draws inspiration from the definition of knowledge [54] and

proposes alternative definitions to specify the desired property of an access control system.

Yet, these fixes are ad-hoc and still lack a comprehensive description of the desired behavior

of a task.

This is a challenging problem because there is indeed information flow from A to C, and

the purpose of the isolation constraint is to control the amount of information transmitted,

which is extremely hard to quantify. The fundamental problem with previous definitions is

that they are specified on the trace of actions, instead of on the task’s behavior directly.

This indirection leads to the loose constraints as demonstrated above, which are not able

112

to capture buggy implementations.

As a comparison, our work advocates the observation-based noninterference proposed

by Costanzo et al. [3]. For example, C’s observation includes its virtual memory space,

registers, and file f defined as below.

obsC(f) =

 ε f.released = false

f.public f.released = true

Here, C’s observation on file f is empty if it is not released yet, and equals the public

portion of the file after its release. Further, instead of relying on an untrusted B, we

implement the downgrading as a library function for A to invoke. Then noninterference is

simple: starting from two observably equivalent states, if the released information from A

is also equivalent, the final states of C must also be observably equivalent. The intuition is

that we determinize C’s behavior by parameterizing its execution with the release operation

from A. On top of it, the execution of C is not influenced by others.

Now we show how this new definition specifies the isolation property. Firstly, it’s

straightforward to observe that a correct implementation satisfies this definition. Secondly,

a buggy implementation, which does not clear the secret portion of the file, might result in

different executions of C (reflected in the register state) and is thus caught by this defini-

tion. Thirdly, more subtle issues such as whether the downgrading operation can copy some

contents from the secret section into the public section, can only be resolved by a manual

inspection on the specification of downgrading. Fundamentally, this is part of the security

policy specification and users should have the freedom to specify their own needs.

To conclude, the observation function approach gives us much flexibility in defining

the isolation property in a straightforward way. As a comparison, specifications in the

intransitive noninterference approach are indirect and error-prone.

9.5 Microarchitectural Level Isolation

There is rich literature tackling the microarchitectural aspect, i.e. caching effects, kernel

overhead, etc. These low-level details might affect the actual execution time a critical

113

component may receive, and also affect the number of instructions it is able to execute

within the same time window.

One line of work focuses on calculating an upper bound on the kernel overhead. Black-

ham et al. [11] conduct a static WCET analysis on the seL4 compiled binary code’s interrupt

response time. Based on a particular ARM processor, they overestimate the cycle count for

different categories of instructions and use that to evaluate the cost of each execution path

of the kernel code. They show that the WCET is sufficiently low without making the kernel

fully preemptible. Sewell et al. [12] improve the trustworthiness of this analysis result by

ensuring the soundness of the loop bound estimation and the infeasible path elimination

phase. Both work relies on an overapproximation of the cycle count for instructions, in

order to compensate for cache misses or other similar penalties. It is possible to incorporate

such an analysis into our work by assigning each assembly instruction a worst-case cost.

Nevertheless, the trustworthiness of the analysis relies heavily on this cost model, which is

usually empirical and lacks a formal guarantee.

Another line of work aims to mitigate the caching effect by partitioning cache locations

among different components so that they do not interfere with each other’s rate of progress.

Ge et al. [10] propose a series of countermeasures in designing an OS kernel to mitigate

the microarchitectural level timing interference between components. In particular, they

propose a few general requirements, such as to always flush cache upon domain switch, to

partition OS kernel objects among domains, etc. These mechanisms reduce the sharing

of microarchitectural level hardware resources and indeed mitigate these low-level timing

channels. Heiser et al. [55] discuss the feasibility of proving such microarchitectural level

temporal isolation. They suggest that it is possible to design an abstract cost model, such

that the execution time of an instruction is deterministic w.r.t. a few microarchitectural

level states, such as the related cache. They argue that this should be sufficient for prov-

ing that a well-partitioned system indeed enjoys temporal isolation between components.

This approach is compatible with the assembly machine model used in our work, and its

integration could help us prove the mitigation of caching effects.

114

Chapter 10

Limitations, Future Work, and

Conclusion

10.1 Tasks with Dependencies

This work assumes independent tasks, i.e. a task’s arrival and deadline only depend on its

task parameters and a task is able to execute (though might be preempted) as soon as it

arrives in the system. This is a common and practical setting for many real-time systems.

However, there also exist systems that impose dependencies among tasks for various reasons.

Such dependencies can be roughly categorized as precedence dependency, data dependency,

and temporal dependency [18].

Precedence dependency There exists a precedence constraint between task τ i and τ j

if τ i has to finish before τ j can start its execution. This kind of dependency is useful if

deterministic communication is desired, i.e. τ j ’s execution relies on data sent from τ i [56].

In this way, communicating tasks follow the same rate and always synchronize with each

other. Under this setting, precedence constraint is a partial order, and dependencies among

all tasks form a directed graph.

One way of tackling this problem is to compute a schedule statically and let the scheduler

follow it repeatedly. This is called offline scheduling and is discussed in Sec. 10.2. This

section focuses on another approach called online scheduling, where the scheduler decides

115

the task schedule dynamically at runtime.

Given that all tasks follow a common period P , the precedence relation is not different

from the preemption relation: a high-precedence task blocks a lower-precedence one in the

same way a high-priority task blocks a lower-priority one. This gives rise to a modified EDF

scheduling algorithm, which modifies the task arrival time and deadlines to make them con-

sistent with the precedence graph and simply schedules them using an EDF scheduler [57].

Chpt. 8 discusses the verification of an EDF scheduler. Here, we discuss how to use the

virtual timeline abstraction to express and reason about precedence constraints.

Recall that under this setting, each task τ i is specified with a release time (ri) and

deadline (di), which repeats after every period of P . Since precedence constraints are

usually specified using a task’s start and end time, we define their computation as below.

Definition 21 (The start (si(k)) and end (ei(k)) time of task τ i in its k-th period).

gi(vt, k, t) =

 t σi(t)− σi(kP + ri) = vt

gi(vt, k, t+ 1) otherwise

And

si(k) = gi(1, k, kP + ri)− 1 ∧ ei(k) = gi(Ci, k, kP + ri)

Here, the function gi(vt, k, t) finds the first time instant after t such that the task’s

accumulative virtual time increments reach vt. On top of this, we can specify precedence

constraints such as ∀k, ei(k) ≤ sj(k), which states that τ j can only execute after τ i is

finished. And the framework guarantees that all properties proved on this abstraction carry

down to the concrete scheduler implementation.

Data dependency Data dependency refers to asynchronous communication between

tasks, e.g. through shared memory. Under this setting, communicating tasks do not need

to synchronize with each other. We defer its discussion in Sec. 10.4.

Temporal dependency Temporal dependency refers to requirements that involve tem-

poral distance between two consecutive executions of the same task. For example, a video

116

application may require that the difference between the display time for adjacent frames

cannot exceed an upper bound such that the discreteness is not noticeable. Han et al. [58]

define its task model as follows: a task τ i arrives as soon as it finishes in the previous period,

while the relative deadline, Pi, is fixed.

This is more generic and challenging than precedence dependency since it cannot be

reduced to a priority assignment problem. Han et al. tackle this problem by transforming

the task set into a periodic one, where periods of different tasks are harmonic (being mul-

tiples of each other) and satisfying Ti ≤ Pi for each task. The budget for each task does

not change. Then they use a fixed-priority scheduler to schedule tasks following this new

set of parameters, and they prove a utilization bound that guarantees the original temporal

distance constraints.

We first show that the virtual timeline abstraction is able to formalize this kind of

constraints. For simplicity, we assume that a task always uses up its budget within each

period. Otherwise, we follow the same approach as in Sec. 3.2 to accommodate variable

execution time. Since the constraint refers to the finishing time of each task, we define its

computation as follows.

Definition 22 (The finishing time fini(k) of τ i in its k-th period).

fini(k) = gi(Ci, k, kTi)

Here, gi is defined in Def 21, and the definition of the finish time also follows the idea

of ei(k). On top of it, we formalize the temporal constraint as below.

∀k ≥ 0, fini(k + 1)− fini(k) ≤ Pi

Since the system eventually uses a fixed-priority scheduler, the virtual time map for

each task can be computed and then connected with this scheduler following Sec. 2.3 and

Sec. 4.3. This transforms the reasoning of a scheduler into the abstract domain, and we can

use the above definitions to prove that a system indeed satisfies these temporal distance

constraints.

117

10.2 Constraint-Based Scheduling

The previous section discusses temporal dependencies between tasks and online scheduling

algorithms for accommodating them. This section discusses the literature on constraint-

based scheduling, which is a more generic way of scheduling tasks with temporal constraints.

In contrast to the periodic task model we have discussed throughout this work, constraint-

based scheduling defines its task model as a set of one-shot tasks. Each task has a release

time, deadline, and execution time. Depending on whether jobs can preempt each other,

the actual schedule of a task is either specified with a start time or is specified with a set

of active time instants [59, 60]. The validity of the schedule requires that the start and end

time of a task must be within its release time and deadline, and that the number of time

instants occupied must be equal to its execution time. On top of it, a system adds other

temporal constraints and use a solver to compute a feasible schedule. It can also optimize

the schedule based on a given metric.

This is called offline scheduling, where the set of tasks is known and the scheduler

carries out a fixed schedule (e.g. specified with a table containing the time slot allocation

at each time instant) instead of relying on a policy to decide the next task dynamically at

runtime [18]. The virtual timeline framework can be extended to accommodate constraint-

based scheduling and formally connect these abstract constraints with the concrete scheduler

implementation.

Firstly, we formalize these temporal constraints using the virtual timeline abstraction.

Under this setting, we define the virtual time map of a task in the same way as we define the

time map for a partition in Sec. 5.2. In particular, a task’s virtual time only includes time

occupied by this task since there is no preemption relation among them. Assume that the

release time and deadline for a task τ i is ri and di, respectively. The validity of a schedule

is straightforward:

 σi(di)− σi(ri) = Ci

∀t, σi(t+ 1) = σi(t) ∨ σi(t+ 1) = σi(t) + 1

The first condition means that this task indeed receives its full execution time. The second

118

condition specifies that a task either occupies a time slot or idles at that time instant. We

also define a virtual time for all tasks, Ξ(t) =
∑
σi(t), and we require that

∀t,Ξ(t+ 1) = Ξ(t) ∨ Ξ(t+ 1) = Ξ(t) + 1

This means at any moment, there could be at most one task scheduled.

Further, temporal constraints are specified using the start and end time of a task, which

is computed as below.

Definition 23 (The start (si) and end (ei) time of task τ i).

hi(vt, t) =

 t σi(t) = vt

hi(vt, t+ 1) otherwise

And

si = hi(1, 0)− 1 ∧ ei = hi(Ci, 0)

In this way, we are able to specify temporal constraints using tasks’ virtual time maps

and solving these constraints will produce feasible virtual timelines. In fact, we can view

the virtual timeline as an alternative to the finite set variable used in [60] which denotes

the schedule of a task. We can either implement these constraint programming techniques

in Coq or simply use external tools to generate feasible time maps then validate them in

Coq. In either way, we are able to prove that those constraints indeed hold on the virtual

timeline abstraction.

Finally, we connect these generated virtual timelines with a concrete scheduler. A con-

crete scheduler relies on a time table that is consistent with the feasible schedule produced

by the constraint solver. This allows us to construct it with the virtual timelines in a

straightforward way. The virtual-time-based scheduler is the same as in Fig. 4.4, and we

follow the same approach to prove that the concrete scheduler is contextually equivalent

with this virtual-time-based scheduler, which is further consistent with individual virtual

timelines. Thus, all properties proved on the virtual timeline also hold on the concrete

scheduler implementation. This concludes the extension with constraint-based scheduling.

119

1 void instrumented_sched (){

2

3 // refill budgets

4

5

6 int used = 0;

7 for(int i = 0; i < N; i++){

8 if (used < m){

9 vt[i][t+1] = vt[i][t] + 1;

10 if (quanta[i] > 0){

11 // schedule i on a core

12

13 used ++;

14 }

15 }else{

16 vt[i][t+1] = vt[i][t];

17 }

18 }

19 }

Figure 10.1: Illustration of the dynamic computation of time maps for m identical cores

10.3 Multicore Scheduling

Our work focuses on the scheduling on a uniprocessor. A natural extension is to adapt it

for multicore platforms, which are popular in the current world. There are two categories

of multicore scheduling, the global and the partitioned approach, depending on whether

task migration between cores is allowed or not. In the partitioned approach, the task set on

each core is fixed, which allows us to reuse existing proofs on the uniprocessor scheduling.

However, in the global scheduling scheme, tasks migrate between cores and the parallel

execution of multiple tasks on different cores is possible.

Leung et al. [61] point out that neither of the above two approaches is strictly bet-

ter than the other. This section focuses on how to extend the existing virtual timeline

framework to support global scheduling on multicore platforms since the other approach is

straightforward.

For example, Andersson et al. [62] propose a global rate-monotonic scheduling on m

identical processors, and prove a utilization bound for schedulable task sets. Even though

the scheduler still follows a fixed priority, the static construction of time maps as shown in

Def. 1 no longer works because it is based on the assumption that there could be at most

one task running at any moment. This requires us to extend the general principle described

in Fig. 2.5 to accommodate the situation that a time slot is available to a task if no more

than (m - 1) higher-priority tasks are running.

We demonstrate the extended principle in Fig. 10.1. It omits details about how to

assign a core to a task and only focuses on the construction of time maps. Here, the virtual

time of a task stagnates if and only if there are already m higher-priority tasks scheduled

120

for the coming time slot. In this way, if a task is schedulable in its virtual timeline, the

scheduler must be able to find a core to accommodate this task, such that the virtual

timeline abstraction is consistent with the concrete scheduler implementation.

Similarly, the virtual timeline framework can also be generalized with a dynamic priority

assignment in the multicore setting, by following the approach described in Chpt. 7. Thus,

it can accommodate dynamic algorithms such as the multiprocessor EDF scheduling [63] in

the same way as discussed above.

10.4 Communicating Tasks

Sec. 1.3 discusses how communications can be supported in our current framework. This

section provides more detailed discussion. In particular, we address issues related to the

schedulability of the system and the isolation property between tasks.

Kernel objects for I/O operations As mentioned in Sec. 1.3, one common motivation

for supporting communication is to allow tasks access to I/O operations. Under this setting,

we choose to hide the complex interactions into one of the abstraction layers. For example,

it is common to dedicate one processor for all I/O operations [9] to minimize its interference

on regular applications. We can implement them as kernel objects supporting (buffered)

read and write operations. On the I/O processor, we design the reader task to poll a device

periodically, and the system call for reading always returns the most recent result. Similarly,

the system call for writing also writes to a buffer, which is polled periodically by a writer

task. In this way, the execution of I/O operations does not interfere with regular tasks.

I/O also breaks the noninterference proof between tasks because it usually leads to the

nondeterministic behavior of a task. We can follow the same approach as discussed in

Sec. 9.4 and treat the reading operation as declassification. In this way, we explicitly allow

the information flow from the device, while also formally specifying what is the desired

behavior of declassification.

General-purpose communication For general-purpose communication between tasks,

their influences on each other are intentional. Under this setting, we enclose a group of

121

communicating tasks in a partition to ensure that components outside this partition are

not affected by them. And the isolation proof follows the approach discussed in Sec. 5.2.

Here, we focus on the schedulability aspect. For example, one common issue with shared-

memory communication is that access to the shared memory must be mutually exclusive to

ensure the atomicity of these transactions. However, this could lead to situations where a

low-priority task blocks a higher-priority one, which is called priority inversion [64] and may

hurt the schedulability of the system. The literature recognizes this problem and proposes

ways to reduce the corresponding blocking time incurred on a task. Among them are the

priority inheritance protocol and the priority ceiling protocol [65]. Both protocols rely on

an upper bound on the length of each task’s critical section, and they boost a task’s priority

when it’s holding the shared memory to achieve a bound on the total blocking time.

We can follow the general approach of the priority ceiling protocol since it achieves the

lowest blocking time. We model shared memory as objects and limit users’ access to them

through pre-defined methods associated with each object. Further, an object is tied to a

partition and is not accessible from outside this partition. We also ask tasks to declare

which objects they intend to access upon creation. In this way, the length of the critical

section (the execution time of the object’s methods) can be analyzed and controlled in

a disciplined manner, and the information about which tasks may access this object also

enables us to define a priority for this object. In particular, the priority of this object is

higher than any task that might invoke methods on it. In this way, mutual exclusion is

automatically achieved and the blocking time is at most the WCET of one method call [65].

In this way, the scheduling of this object also falls within the virtual timeline framework

since it is also scheduled according to a priority. The only difference is that it is not a

periodic task but is triggered by others. However, we can approximate its invocation rate

and treat it as a periodic task in the analysis, and further prove that the schedulability

analysis in [65] indeed applies to this scenario.

122

10.5 Kernel Overhead

User-level preemption Similar to [5], our current extension on CertiKOS only allows for

preemption at the user level. This assumption simplifies the correctness proof of CertiKOS,

which assumes that kernel functions are executed atomically. However, the downside is

that the lack of kernel preemption may result in longer interrupt disable time (interrupt

latency), lowering the responsiveness of the system. Nevertheless, this is not an inherent

limitation and could be mitigated in future work.

One solution is to reduce the interrupt latency without introducing kernel preemption.

This is possible if we adopt the bottom-halves mechanism (as used in µC/OS-III [66]) and

offload time-consuming work to user mode, effectively bounding the latency introduced

by kernel services. This approach achieves better responsiveness, while still only requiring

preemption in user mode so that the current functional correctness proof of CertiKOS would

still be applicable.

It should also be noted that our reasoning framework is compatible with the future

extension of kernel preemption. Indeed, enabling kernel preemption would require careful

handling of concurrent accesses to kernel objects even on a single-core machine, resulting

in more complexity in both the kernel implementation and its proof. However, in a setting

in which system calls do not block each other (which is reasonable for a single-core real-

time system), kernel preemption is largely irrelevant to the scheduler. The scheduler is still

invoked periodically by timer interrupts and selects the highest-priority available task in the

system. Likewise, the schedulability and obliviousness properties proved on the scheduler

still hold regardless of whether kernel preemption is supported or not. In this sense, our

reasoning framework is compatible with verified single-core preemptible kernels.

Kernel overhead A real-time OS kernel relies on the timer interrupt, which is triggered

at a constant rate, to preempt user tasks. However, if the interrupt happens in the middle

of a system call, its handling will be delayed until control is given back to user mode.

Similarly, the interrupt handler, as well as the scheduler themselves, also consume time. In

both cases, these small overheads prevent a task from executing for its full budget.

123

We have discussed in Sec. 1.3 that the budget enforcement mechanism ensures the

validity of the schedulability analysis since kernel overhead only eats into the available

execution time for a task instead of devastating the whole system. However, such overhead

can be accounted for without having to update our existing framework. At any timer

interrupt, the maximum delay incurred by the kernel is the interrupt latency plus the context

switch overhead. Given a trustworthy WCET on both overheads (which can be obtained by

a sound analysis if the underlying real-time processor exhibits predictable timing behavior

or a conservative estimation in case of a general-purpose processor), we can make this jitter

explicit so that users are aware of this loss of time and are able to compensate for it when

declaring budgets for their tasks.

Even though the WCET computation, in general, is a hard problem and relies heavily

on microarchitectural-level details such as caches, TLBs, and so on, we can implement the

OS kernel in a way that facilitates its computation. For example, as discussed in Sec. 1.3,

our work exposes a limited set of system calls to real-time tasks, which only contain simple

straight-line code without loops (we measure their average execution time to be 0.47µs on

a 2.8 GHz machine). This removes the challenge of computing loop bounds and makes the

WCET analysis on the assembly code level more tractable. Secondly, instead of relying on

dynamic memory allocation, kernel modules in CertiKOS rely extensively on pre-allocated

global memory for their data, resulting in more predictable caching behavior and simpler

code. Last but not least, there is no page fault in the kernel mode. All these characteristics

simplify the WCET analysis and make it more plausible even with an imprecise or imperfect

cost model.

10.6 Interrupt Driven Tasks

Currently, we only allow timer interrupts to preempt a task. However, users are able to

sample a device periodically for interrupts or new data, which is common in time-critical

cyber-physical systems [5, 4]. Thus the current periodic task set is already a reasonable

setting for verification work.

One possible extension is to consider sporadic tasks or interrupt-driven tasks, that are

124

not strictly periodic but triggered by interrupts. It is not difficult to support these tasks

in our reasoning framework. The critical instant theorem we prove (Thm. 1) states that as

long as the schedulability test is satisfied, a task enjoys its full budget within any physical

time window whose length equals its period, no matter when this time window starts.

This already entails schedulability in case of interrupt-driven tasks, whose minimum inter-

arrival time, called period in real-time literature, is bounded and known. Hence, if a task

is analyzed to be schedulable with the assumption of the minimum inter-arrival time, it is

always schedulable as long as actual inter-arrival times are not lower than the bound. We

leave this extension for future work.

10.7 Microarchitectural-Level Interference

We discuss upfront that this work focuses on the algorithmic instead of the microarchi-

tectural level aspect. For task-level isolation, this means that whether or not a task can

finish its execution within the number of time slots specified by its budget might depend

on the behavior of others due to caching effects. Similarly, for partition-level isolation, the

exact instruction location where one task is preempted by another may also depend on the

behavior of other partitions, thus leading to non-deterministic instruction-level interleaving.

Both are critical issues if one wants to achieve microarchitectural-level temporal isola-

tion. However, ultimately, the feasibility of closing such timing channels relies on a secure

interface/contract provided by the underlying hardware, which is not available yet [10]. Nev-

ertheless, even with commodity hardware today, there are ways of mitigating such channels

by partitioning and flushing shared microarchitectural-level hardware resources [10, 9, 7, 8].

The integration of the above mitigation mechanisms does not require too much restruc-

turing of existing code: they are local to the implementation of context switches or memory

allocation, and they do not interfere with other functionalities of the OS kernel. The rea-

soning of its guarantees is also compatible with the current temporal reasoning framework:

the propose of the above mechanisms is to ensure that a task exhibits deterministic behav-

ior within every time slot, which entails microarchitectural-level isolation if combined with

existing properties of the time slot allocation.

125

Finally, our current machine model is ready to incorporate such microarchitectural level

details. As discussed in Sec. 4.2, we maintain two abstract functions, intr_trigger and

intr_handler to model interrupt handling. It’s straightforward to extend the definition of

intr_trigger with a cost model, possibly in the form of an uninterpreted function over

microarchitectural level states as discussed in [55], such that we are able to formally compare

the execution time of a task over different runs.

10.8 Conclusions

This thesis presents a novel compositional framework for verifying preemptive schedulers

with temporal isolation. We introduce virtual timelines to describe temporal behaviors

of components and to connect them with the actual system implementation. Using this

abstraction, we prove the schedulability of each component and prove various isolation

properties regarding the schedule of components. In flattened fixed-priority scheduling, we

prove that a task’s schedule is not influenced by lower priority ones. In partitioned schedul-

ing, we prove that a partition’s local schedule of tasks is independent of other partitions,

under a constrained setting.

As a case study, we apply this framework to CertiKOS, a formally verified single-core

cooperative OS kernel. We extend it with a verified timer interrupt handler and a verified

preemptive scheduler. We connect virtual timelines with the concrete implementation of

the system by introducing a virtual-time-based scheduler and proving that it is consistent

with both the concrete scheduler and individual virtual timelines. In this way, all properties

we prove on virtual timelines carry down to the generated assembly code of the system. We

also prove that all services provided by our kernel preserve the integrity and confidentiality

of user tasks, by showing that non-interference holds for this kernel. Combining everything

together, we achieve both temporal and spatial isolation between different components.

Finally, we demonstrate that the virtual timeline abstraction is not restricted to fixed-

priority scheduling. We use it to reason about earliest-deadline-first scheduling, which

exhibits a dynamic priority assignment, and we connect it with the concrete implementation

of an EDF scheduler. This indicates that the virtual timeline abstraction is commonly

126

applicable to verifying preemptive schedulers.

127

Bibliography

[1] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng, H. Zhang,

and Y. Guo. Deep specifications and certified abstraction layers. In Proceedings of

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’15, pages 595–608, New York, NY, USA, 2015. ACM.

[2] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4:

Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd Sympo-

sium on Operating Systems Principles, SOSP’09, pages 207–220, New York, NY, USA,

2009. ACM.

[3] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification of information-flow security

for C and assembly programs. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’16), Santa Barbara,

CA, USA, June 13-17, 2016, pages 648–664, New York, 2016. ACM.

[4] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,

X. Gao, and G. Klein. sel4: From general purpose to a proof of information flow

enforcement. In 2013 IEEE Symposium on Security and Privacy (SP’13), Berkeley,

CA, USA, May 19-22, 2013, pages 415–429, Washington, DC, 2013. IEEE Computer

Society.

[5] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak, and X. Wang.

Nickel: A framework for design and verification of information flow control sys-

128

tems. In 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’18), pages 287–305, Carlsbad, CA, 2018. USENIX Association.

[6] M. T. Higuera-Toledano and A. J. Wellings. Distributed, Embedded and Real-Time

Java Systems. Springer Publishing Company, Incorporated, 2012.

[7] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time

cache management framework for multi-core architectures. In 2013 IEEE 19th Real-

Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54,

April 2013.

[8] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. Palloc: Dram bank-aware memory

allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-

Time and Embedded Technology and Applications Symposium (RTAS), pages 155–166,

April 2014.

[9] L. Sha, M. Caccamo, R. Mancuso, J. E. Kim, M. K. Yoon, R. Pellizzoni, H. Yun,

R. B. Kegley, D. R. Perlman, G. Arundale, and R. Bradford. Real-time computing on

multicore processors. Computer, 49(9):69–77, Sept 2016.

[10] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser. Time protection: The missing os ab-

straction. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys’19,

pages 1:1–1:17, New York, NY, USA, 2019. ACM.

[11] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser. Timing

analysis of a protected operating system kernel. In 2011 IEEE 32nd Real-Time Systems

Symposium (RTSS’11), pages 339–348, Washington, DC, Nov 2011. IEEE Computer

Society.

[12] T. Sewell, F. Kam, and G. Heiser. High-assurance timing analysis for a high-assurance

real-time operating system. Real-Time Systems, 53(5):812–853, Sep 2017.

[13] J. Andronick, C. Lewis, D. Matichuk, C. Morgan, and C. Rizkallah. Proof of os

scheduling behavior in the presence of interrupt-induced concurrency. In Proceedings

129

of 7th International Conference on Interactive Theorem Proving (ITP), pages 52–68,

Nancy, France, 2016. Springer International Publishing.

[14] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical verification frame-

work for preemptive os kernels. In S. Chaudhuri and A. Farzan, editors, Computer

Aided Verification: 28th International Conference (CAV’16), Toronto, ON, Canada,

July 17-23, 2016, Proceedings, pages 59–79, Berlin, Heidelberg, 2016. Springer Inter-

national Publishing.

[15] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Proceed-

ings of the 26th IEEE International Real-Time Systems Symposium, RTSS’05, pages

389–398, Washington, DC, USA, 2005. IEEE Computer Society.

[16] QNX. Neutrino rtos, 2019.

[17] J. Kim, T. Abdelzaher, and L. Sha. Budgeted generalized rate monotonic analysis for

the partitioned, yet globally scheduled uniprocessor model. In 21st IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS’15), pages 221–231,

Washington, DC, April 2015. IEEE Computer Society.

[18] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 2000.

[19] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.Sel.

A. Commun., 21(1):5–19, September 2006.

[20] M. Liu, L. Rieg, Z. Shao, R. Gu, D. Costanzo, J.-E. Kim, and M.-K. Yoon. Vir-

tual timeline: A formal abstraction for verifying preemptive schedulers with temporal

isolation. Proc. ACM Program. Lang., 4(POPL), December 2019.

[21] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: ex-

act characterization and average case behavior. In Proceedings. Real-Time Systems

Symposium (RTSS’89), pages 166–171, Washington, DC, Dec 1989. IEEE Computer

Society.

130

[22] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, January 1973.

[23] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,

52(7):107–115, 2009.

[24] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a c compiler front-end. In

Proceedings of the 14th International Conference on Formal Methods, FM’06, pages

460–475, Berlin, Heidelberg, 2006. Springer-Verlag.

[25] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert memory model. In

A. W. Appel, editor, Program Logics for Certified Compilers. Cambridge University

Press, Cambridge, UK, April 2014.

[26] ARINC. ARINC Specification 653 Part 1. ARINC, Annapolis, MD, 2015.

[27] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information

flow explicit in histar. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation, pages 19–19, Berkeley, CA, USA, 2006. USENIX

Association.

[28] B. Sprunt, L. Sha, and J. Lehoczky. Scheduling sporadic and aperiodic events in a

hard real-time system. Technical Report CMU/SEI-89-TR-011, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA, 1989.

[29] S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: Towards real-time hypervisor scheduling in

xen. In Proceedings of the Ninth ACM International Conference on Embedded Software

(EMSOFT), pages 39–48, New York, Oct 2011. ACM.

[30] M. Wilding. A machine-checked proof of the optimality of a real-time scheduling policy.

In Proceedings of the 10th International Conference on Computer Aided Verification,

CAV’98, pages 369–378, London, UK, UK, 1998. Springer-Verlag.

[31] B. Dutertre. Formal analysis of the priority ceiling protocol. In Proceedings 21st IEEE

Real-Time Systems Symposium (RTSS’00), pages 151–160, Washington, DC, 2000.

IEEE Computer Society.

131

[32] X. Zhang, C. Urban, and C. Wu. Priority inheritance protocol proved correct. In Inter-

active Theorem Proving (ITP’12), pages 217–232, Berlin, Heidelberg, 2012. Springer.

[33] X. Zhang, C. Urban, and C. Wu. Priority inheritance protocol proved correct. Journal

of Automated Reasoning, 64(1):73–95, 2020.

[34] F. Cerqueira, F. Stutz, and B. B. Brandenburg. Prosa: A case for readable mechanized

schedulability analysis. In 2016 28th Euromicro Conference on Real-Time Systems

(ECRTS’16), pages 273–284, Germany, July 2016. Schloss Dagstuhl.

[35] X. Guo, M. Lesourd, M. Liu, L. Rieg, and Z. Shao. Integrating formal schedulabil-

ity analysis into a verified os kernel. In Computer Aided Verification - 31st Interna-

tional Conference (CAV’19), July 15-18, Proceedings, pages 496–514, Berlin, Heidel-

berg, 2019. Springer.

[36] G. Klein. Operating system verification—an overview. Sadhana, 34(1):27–69, Feb 2009.

[37] Y. Zhao, Z. Yang, and D. Ma. A survey on formal specification and verification of

separation kernels. Front. Comput. Sci., 11(4):585–607, August 2017.

[38] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified

os kernel. In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI’13, pages 471–482, New York, NY, USA,

2013. ACM.

[39] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu. Toward compositional ver-

ification of interruptible os kernels and device drivers. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’16), Santa Barbara, CA, USA, June 13-17, 2016, pages 431–447, New York,

2016. ACM.

[40] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo. CertiKOS:

An extensible architecture for building certified concurrent OS kernels. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI’16), pages 653–

669, GA, 2016. USENIX Association.

132

[41] R. Gu, Z. Shao, J. Kim, X. Wu, J. Koenig, V. Sjöberg, H. Chen, D. Costanzo, and

T. Ramananandro. Certified concurrent abstraction layers. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI 2018, pages 646–

661, New York, 2018. ACM.

[42] H. Nemati, R. Guanciale, and M. Dam. Trustworthy virtualization of the armv7 mem-

ory subsystem. In SOFSEM 2015: Theory and Practice of Computer Science - 41st

International Conference on Current Trends in Theory and Practice of Computer Sci-

ence, Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings, pages 578–

589, Berlin, Heidelberg, 2015. Springer-Verlag.

[43] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and

X. Wang. Hyperkernel: Push-button verification of an OS kernel. In Proceedings of

the 26th Symposium on Operating Systems Principles (SOSP’17), Shanghai, China,

October 28-31, 2017, pages 252–269, New York, NY, USA, 2017. ACM.

[44] R. J. Richards. Modeling and Security Analysis of a Commercial Real-Time Operating

System Kernel, pages 301–322. Springer US, Boston, MA, 2010.

[45] J. Andronick, C. Lewis, and C. Morgan. Controlled owicki-gries concurrency: Rea-

soning about the preemptible echronos embedded operating system. In Proceedings of

2015 Workshop on Models for Formal Analysis of Real Systems (MARS), pages 10–24,

Suva, Fiji, 2015. EPTCS.

[46] J. J. Labrosse. Microc/OS-II. Focal Press, New York, 2nd edition, 1998.

[47] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak, and X. Wang.

A note on verifying information flow control systems with nickel. Technical Report UW-

CSE-2019-10-01, School of Computer Science & Engineering, University of Washington,

Oct 2019.

[48] A. C. Myers and B. Liskov. A decentralized model for information flow control. SIGOPS

Oper. Syst. Rev., 31(5):129–142, October 1997.

133

[49] M. Vassena, G. Soeller, P. Amidon, M. Chan, J. Renner, and D. Stefan. Foundations

for parallel information flow control runtime systems. In F. Nielson and D. Sands, edi-

tors, Principles of Security and Trust, pages 1–28, Cham, 2019. Springer International

Publishing.

[50] A. Lyons, K. McLeod, H. Almatary, and G. Heiser. Scheduling-context capabilities: A

principled, light-weight operating-system mechanism for managing time. In Proceedings

of the Thirteenth EuroSys Conference, EuroSys’18, pages 26:1–26:16, New York, NY,

USA, 2018. ACM.

[51] J. Rushby. Noninterference, transitivity, and channel-control security policies. Techni-

cal report, SRI, dec 1992.

[52] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In Pro-

ceedings of the 12th IEEE Workshop on Computer Security Foundations, CSFW ’99,

page 228, USA, 1999. IEEE Computer Society.

[53] R. van der Meyden. What, indeed, is intransitive noninterference? In J. Biskup

and J. López, editors, Computer Security – ESORICS 2007, pages 235–250, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg.

[54] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.

MIT Press, Cambridge, MA, USA, 2003.

[55] G. Heiser, G. Klein, and T. Murray. Can we prove time protection? In Proceedings of

the Workshop on Hot Topics in Operating Systems, HotOS ’19, page 23–29, New York,

NY, USA, 2019. Association for Computing Machinery.

[56] M. Spuri and J. A. Stankovic. How to integrate precedence constraints and shared

resources in real-time scheduling. IEEE Transactions on Computers, 43(12):1407–1412,

Dec 1994.

[57] K. Erciyes. Uniprocessor-Dependent Task Scheduling, pages 183–202. Springer Inter-

national Publishing, Cham, 2019.

134

[58] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance-constrained scheduling

and its applications to real-time systems. IEEE Transactions on Computers, 45(7):814–

826, July 1996.

[59] R. Barták. Constraint-based scheduling: An introduction for newcomers. IFAC Pro-

ceedings Volumes, 36(3):75 – 80, 2003. 7th IFAC Workshop on Intelligent Manufactur-

ing Systems - IMS 2003 [7th IFAC Workshop Preprints], Budapest, Hungary, 6-8 April

2003.

[60] P. Baptiste, P. Laborie, C. L. Pape, and W. Nuijten. Chapter 22 - constraint-based

scheduling and planning. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of

Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages 761

– 799. Elsevier, 2006.

[61] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation, 2(4):237 – 250, 1982.

[62] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiproces-

sors. In Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat.

No.01PR1420), pages 193–202, Dec 2001.

[63] T. P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In

RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, pages 120–129, Dec

2003.

[64] B. W. Lampson and D. D. Redell. Experience with processes and monitors in mesa.

Commun. ACM, 23(2):105–117, February 1980.

[65] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach

to real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, Sep.

1990.

[66] J. J. Labrosse. Microc/OS-III. Micrium Press, Austin, TX, 2011.

135

	Acknowledgments
	Introduction
	Existing Work on Isolation Between Components
	Challenges in Verifying Temporal Isolation
	Contributions and Scope of This Thesis

	Overview of the Virtual Timeline Framework
	Overview
	Real-Time Scheduling and Virtual Timelines
	Formalization of the Virtual Timeline

	Reasoning about Fixed-Priority Scheduling
	The Schedulability Proof
	Extension with Variable Execution Time

	Case Study: CertiKOS with Fixed-Priority Scheduling
	Background: CertiKOS, a Verified OS Kernel
	Real-Time Extension on CertiKOS
	Connecting The Schedulability Proof with The Concrete Scheduler
	The sys_finish System Call
	Non-Interference Between Tasks

	Reasoning about Partitioned Scheduling
	Background: Partitioned Scheduling
	Temporal Isolation in Partitioned Scheduling
	Schedulability in Partitioned Scheduling

	Case Study: CertiKOS with Partitioned Scheduling
	Static partitions scheduled under TDMA
	Dynamically scheduled partitions
	A Perspective on the Interface for a Real-Time Partition

	Generalization with Dynamic Priority Assignment
	Earliest-Deadline-First and Compositionality of Workloads
	Generalization: Virtual Timeline with Dynamic Priority Assignment
	Earliest-Deadline-First: the Schedulability Proof
	The Proof Sketch: Schedulability Through Transformation
	The Virtual Time Map and Interference
	Enlarging a Task
	Shrinking a Task Set

	Case Study: CertiKOS with Earliest-Deadline-First Scheduling
	The Concrete Scheduler Implementation
	Refinement with the Virtual-Time-Based Scheduler

	Related Work
	Mechanized Schedulability Analysis
	Verification of OS kernels
	Enforcement of Algorithmic Level Isolation Properties
	Intransitive Non-Interference
	Microarchitectural Level Isolation

	Limitations, Future Work, and Conclusion
	Tasks with Dependencies
	Constraint-Based Scheduling
	Multicore Scheduling
	Communicating Tasks
	Kernel Overhead
	Interrupt Driven Tasks
	Microarchitectural-Level Interference
	Conclusions

