An Open Framework for Foundational Proof-Carrying Code

Xinyu Fend Zhaozhong Ni Zhong Shab Yu Gud

TDepartment of Computer Science *Department of Computer Science and Technology
Yale University University of Science and Technology of @i
New Haven, CT 06520-8285, U.S.A. Hefei, Anhui 230026, China

Abstract A R o

Software systems usually use many different computatiatufes ! ﬁ i m FPCC Package
and span different abstraction leveésd.,user code level and the | C, : SP

runtime system level). To build foundational certified syss, it | '

is hard to have one verification system supporting all coatpuri
features. In this paper we present an open framework fordaun
tional proof-carrying code (FPCC). It allows program mauto
be specified and certified separately using different tystesys
or program logics. Certified modules (code + proof) can bieelih . Lt

to compose fully certified systems. The framework suppoidsg-m
ular verification and proof reuse. It is extensible, and jsregsive

enough to allow invariants established in verification egst to Figure 1. Building FPCC Package by Linking Certified Modules

be maintained when they are embedded in. Our framework is the o

first FPCC framework that systematically supports interatien ulesCy, C; ....Cy. Some of them are system libraries or code of the

between different verification systems. Itis fully mechzmiinthe ~ run-time system, others are compiled from user modulesh Eais

Coq proof assistant with machine-checkable soundness$.proo certified using certain verification system, with specifimas about
imported and exported interfaces. We want to reuse proofthéo

1. Introduction modules and link them to generate the proof about the saféheo

whole system. It is a challenging job because modules ate cer
fied separately using different specification languagesvanitica-
tion systems. When some of the modulegy(,system libraries) are
specified and verified, the programmer may have no idea abeut t
context where the code gets used and the verification systédm w
which they will interoperate.

To compose the certified modules, we need an open FPCC
framework which satisfies the following requirements:

Foundational certified systems are packages containindninec
code and mechanical proof about safety properties [15, @]dB
ing foundational certified systems is hard because softsyatems
usually use many different computation features (stackshaaps,
strong and weak memory update, first- and higher-order iimmct
pointers, sequential and concurrent control floats,), and span
different abstraction levelse(g.,user level code and run-time sys-
tem code such as thread schedulers and garbage collectors).

Although many type systems and program logics have been pro- e modularity: modules can be specified and certified sepgratel
posed in the last decades to certify properties of low-leeele, when they are linked the proof for each module can be reused;

Ithey work at d(|jffer_ent abs”(‘;"ﬁt'on Ig\f/fels, lise dlﬁergrmsbcat_lon . « extensibility: instead of being designed specifically fertain
fan?uages ?jn axmrps, ag .av;e ! er?kr: ?mpda&s on car:pu combination of verification systems, the framework showdd b
eatures and properties. For instance, the typed assearigyage (mostly) independent with specification languages andivari

(TAL) [14] uses types to specify assembly code and proves typ ti t forei t h fter): t b
safety. TAL code is at a higher abstraction level than machode ollggi;r{?,\c? Q:d(ir?tr:é?gtggsin?? %is?igﬁwe%)c’)rz'ew systems ean
because it uses the abstraall1oc instruction for memory alloca- '

tion, while the actual implementation @411oc cannot be certified * expressiveness: invariants enforced in foreign systeroalgh
using TAL itself. In addition, TAL also assumes a trustechgae be maintained in the framework, so that we can infer intargst
collector in the run-time system. Recent works on certifyion- properties about the composed program other than an overly-
current assembly code [23, 9] apply the rely-guarantee odeith conservative safety policy.

prove concurrency properties. They also use abstract meshiith

abstract instructions such asrk andyield. Existing work on FPCC [3, 12, 8] only shows how to construct

foundational proof for each specific verification system doés

Itis hard (if possible) to design a verification system suppg not support interoperation between systems, with the oxtpe
all the computation features. It may not be necessary to @itiser tion of [11] which shows the interoperation between two #iec
because, fortunately, programmers do not use all theserésaait  systems (TAL and CAP). It is not trivial to make existing FPCC
the same time. Instead, in each program module, only cestain frameworks open either. The syntactic approach to FPCCH]L2,
bination of limited features are used at certain abstradggel. If simply formalizes the global syntactic soundness proof esffiv
each module can be certified using existing systems (whiabuis cation systems in a mechanized meta-logic framework. Itis u
ally the case), it will be desirable to link each certified natecs clear how different foreign verification systems can inpenate.
(code + proof) constructed in different verification syssetmcom- The Princeton FPCC [3, 4, 19] uses a semantic approach. Biney ¢
pose a completely certified system. struct FPCC for TAL by building semantic models for typeseTh

Suppose we want to build FPCC package [2] which contains semantic approach may potentially have nice support ofdpss-
the machine cod€ and a proof showing tha satisfies the safety  ability as long as consistent models are built for foreigstesms.
policy SP, as shown in Fig. 1. The systéhtonsists of code mod- However, sometimes it is hard to build and use semantic rsodel



Most importantly, the step-indexed model [4] is defined dizdly (Program) P = (C,S,pc)
for type safetyi(e., program never gets stuck). It is hard to use the (CodeHeap C = {f~s1}"
indexed model for embedded code pointers to support Hagle-s (State S = (H,R)
program logics, which usually certifiess the partial camess of (Memory H = {1~ ul*
programs with respect to program specifications. More disiom . o x
) . . . (RegFile R i={r~w}
about related work will be given in section 7. i K
. (Registej r = {ry k{031

In this paper, we propose an open framework, OCAP, for devel- Labeld £.1.pc e "
oping foundational proof carrying code. OCAP is the first EPC (Labels £, ’pcf_n (.na nums
framework which systematically supports interoperatidndis- (Word) —w  :=i (integers
ferent verification systems. It lays a set of Hoare-styleriahce (Instr) I = addurq,rs 1t | addiu rg,rs,w | bgtz rs, £
rules above the raw machine semantics, so that proofs caorbe c | w ri,w(rs) | suburg,rs,rt | swre,w(rs)
structed following these rules instead of directly using mhecha- [jf|jal £ |jrrs
nized meta-logic. Soundness of these rules are proved iméite- (InstrSeq T ==1|;I

logic framework with machine-checkable proof, therefonese
rules are not trusted. OCAP is modular, extensible and sz
therefore it satisfies all the requirements mentioned atfavean
open framework. Our work on OCAP builds upon previous work 2.
on program verification but makes the following new conttiitos:

Figure 2. The Target Machine TM

Basic Settings for FPCC

In the FPCC framework, the operational semantics of machine
instructions is formalized in a mechanized meta-logic.gPam
logics or type systems are formally defined in the meta-legth
machine checkable soundness proof, resulting in small& fbC
the safety proof. In this Section, we introduce the metaeloge

e OCAP is built to reason about real machine code, but it still
allows user level code to be specified and certified with highe
level abstractions. Instead of introducing higher-lev@hjtive
operations in the machine, we let user code call runtime lwhic use for OCAP and present the formulation of our target machin
implements the required functionality. Runtime code can be
fully certified in a different verification system. 2.1 The Mechanized Meta-Logic

OCAP supports modular verification. When user code and run- We use the calculus of inductive constructions (CiC) [18pas
time code are specified and certified, no knowledge about the meta-logic, which is an extension of the calculus of corstru

other side is required. Modules certified in one verificaips-
tem can be easily adapted to interoperate with other modules
a different system without redoing the proof.

tions (CC) with inductive definitions. CC corresponds to s
higher-order predicate logic via the Curry-Howard isonfsm.
CiC is supported by the Coq proof assistant [6], which we ose t

OCAP uses an extensible and heterogeneous program specifi-'mloIement the results presented in this paper.
(Term) A,B::=Set | Prop | Type | X | AX:A.B|AB

cation. Taking advantage of Coq’s support of dependentstype
| A—B | V¥X:A. B|inductive def] ...

any program specification definable in Coq can be incorpo-
rated as OCAP program specification. The heterogeneous pro- .

prog p J P Syntax of some of mostly common-used CiC terms are shown
above, whereProp is the universe of all propositions, arfgipe

gram specification also allows OCAP to specify embedded code
is the (stratified) universe of all term&.— B represents function

pointers following the XCAP [16] approach, which enables
spaces. It also means logical implicatioAiandB have kindProp.

OCAP’s support for modularity.

The assertions used in OCAP inference rules are expressivepeanings of other terms will be explained at the time theyuses.
enough to specify invariants enforced in most type systerds a

program logics. The soundness of OCAP ensures that these2.2 The Target Machine

invariants are maintained when foreign systems are embedde The syntax of machine programs is defined in Fig. 2. A machine
in the framework. programP contains a code heaP, an updatable program state
S and a program countgic pointing to the next instruction to
executeC is a partial mapping from code labelg) o instructions.
The program state consists of a data hBagnd a register fil®. H

is a partial mapping from memory locatioris) o word valuesR

Our applications of OCAP to support interoperation of vesifi
tion systems are interesting in their own right. In the fipgbla
cation, we show how to link user code in TAL with a simple cer-
tified memory management library. TAL only supports weak- | X .
memory update and the free memory is invisible to TAL code. IS & total function from registers to word values.

The memory management library is specified in SCAP [10], To simplify the presentation, we do not model the Von Newman
which supports reasoning about operations over free memory architecture since reasoning about self-modifying codgejgond

and still ensures that the invariants of TAL code is mairgdin ~ the scope of this paper. We model the code and data heaps sepa-
In our second application, we show how to construct FPCC for rately and make the code heap read-only. This allows us t avo
concurrent codevithouttrusting the scheduler. The user thread formulating the encoding/decoding of instructions andptetec-

code is certified using the rely-guarantee method [13], kwvhic
supports thread modular verification; the thread schedsler
certified as sequential code in SCAP. They are linked in OCAP
to construct FPCC package.

Inthe rest of this paper, we first present in section 2 thectsast
tings of the meta-logic and the machine we use to construCd=P
We propose our OCAP framework in section 3. In section 4 we
illustrate the embedding of a specific verification systef@AB,
in the OCAP framework. Then we show our two applications in-
volving interoperation between different systems in sect and
6. Finally we discuss related work and conclude in Section 7.

tion of code heaps, which is straightforward and is orth@djtmthe
interoperability issue we are trying to address. Also, Wiy show
a small set of common-used instructions. Adding more icsons
to the framework is straightforward.

To lay some structure over the flat code h&pwe use the
instruction sequenckto represent a basic code blo€Kz£] extracts
from C a basic block ending with a jump instruction.

C(£) if C(f)=jforC(f)=jrrs
C(£); I  if £ edomC)andl = C[f+1]
undefined otherwise

Clf]
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Figure 4. OCAP: an open framework for FPCC

(C,(H,R),pc) — P
if C(pc) = | thenP = [if
if (C,(H,R),£)
jrrs ((Cv (HvR)7R(rS>>
jal £ (Cv(HvR{r?»l’\” pC+1})7f)
botz rs,f | (C,(H,R),pc+1) R(rs) <0
(C,(H,R),£) R(rs) >0
other| (C,Next, (H,R),pc+1)

where

| thenNext, (H,T) = |
(H, R{rg~ R(rs) +R(rt) })
(H, R{rg~ R(rs) +w})
(H,R{ri~H(R(rs)+w)})

whenR(rs)+w € domH)
(H, R{rg~R(rs) —R(rt)})
(H{R(rs)+u~R(re)}, R)

whenR(rs)+w € dom(H)

[if1=

addu rg,rs, 1t
addiu rqg,rs,w
Iw re,w(rs)

subu ry,rs,rt
sw ry,w(rs)

Figure 3. Operational Semantics of TM

Such ansP can be trivially implied by the invariant-based proof
method. On the other hand, suppose we have a program specifi-
cationW which defines the loop-invariants at certain points of the
program. We can defingpP as:

SP(PP) £ OneStep(P) A (P.pc € domW) — W(P.pc) P.S),

which says that the program can make one step, and that if it
reaches the point where a loop invariant is specified ithe loop
invariant will hold over the program state. In this way, wettae

the partial correctness of programs.

An FPCC package represented in the meta-logical framework
is then a paiF containing the program and a proof showing that
the program satisfies the safety policy [12]. Through Cuttoward
isomorphism, we know that

F ¢ ZP:Program VP'. (P —* P') — SP(P),
whereXx: A.P(x) represents the type of a dependent pair.

3. The OCAP Framework
The OCAP framework, as shown in Fig. 4, lays a set of Hoarke-sty

We define the operational semantics of machine programs in jnference rules over the raw machine semantics. Soundhtssse

Fig. 3. One-step execution of a program is modeled as a ti@msi
relation® — P'. P —K P’ meansP reachesP’ in k steps, and
—"* is the reflexive and transitive closure of the step-relation
The auxiliary (partial) functionNext, () defines the effects of
sequential instructions over program states. It is pargahuse the
operational semantics for memory access instructionsdsfimed

if the memory address is not in the domainthf

2.3 Program Safety

rules are proved in the meta-logic with machine checkabiefpr

so they are not in the TCB. OCAP rules are expressive enough
to embed most existing verification systems for low-levetleo

To embed a verification system, we define an interpretatioictwh
maps specifications in that system to assertions used in Q@&

we prove system specific rules/axioms as lemmas based ohehe t
interpretation and OCAP rules. Proofs constructed in egstem

can be incorporated as OCAP proof and be linked to compose the
complete safety proof.

The FPCC framework is used to construct the mechanized proof3.1  Overview of Certified Assembly Programming

about program safety. Safety of the program means the ézacut
of the progranmP satisfies certain safety policsP, which can be
formalized as follows:

VP (P—*P') — SP(P).

Usually we use the invariant-based proof to prove the pragra
safety. We first define a program invarianty which is stronger
than the safety policy. Then we prove that

1. the initial progran®y satisfiedNv, i.e., INV(Pg);
2. VP. INV(P) — 3P (P— P') AINV(P).

Using CiC as the meta-logic, we can support very generalspec
ifications of the safety policy, which may range from simplpe

We first give an overview of our previous work on certified asse
bly programming, upon which we develop our OCAP framework.

3.1.1 The CAP system

Yu et al. proposed a simple Hoare-style program logic CAP [22]
to certify assembly code. CAP expects a program specifitatio
Y which collects the loop invariants asserted for each basile ¢
block. Instead of defining its own assertion language in tleégam
logic, CAP uses the meta-logic as the assertion languagea(a.
shallow embedding) and each assertjois a predicate over the
program state, as shown below.

(CHSpeg W < Labels— StatePred
(StatePred p € State— Prop

safety (.., programs never get stuck) to correctness of programs CAP inference rules. Fig. 5 shows inference rules in CAP. Using

with respect to their specifications (a.k.a. partial cdrmess). For
instance, we can ensure the type safety by defisi@) as:

OneStep(P) 2 IP'. P+ P,

the invariant-based proof, CAP enforces the program iava¥ —
P. As shown in theeroacrule, the invariant requires that:

e Y characterize the code he@pand guarantee the safe execu-
tionof C,i.e., WH C:W.



WYEP| (Well-formed progran)

(pS) Wk{p}pc: Clpc]
WY (C,S,pc)

YEC:W | (Well-formed code heap

forall £ € domW): WH{W(f)}£: C[f]
WEC:W

WH{p}f: I| (Well-formed instruction sequenge

| €{addu,addiu, lw, subu, sw}
WH{p'}£+1:1 p=p’ oNext

WH{p}f: ;I

WECW

(PROG)

(CDHP)

(sEQ

VS.pS — 3p’. codeptr(S.R(rs),p’) WAP' S
WH{p}f:jrrs

(R)

Figure 5. Selected CAP Rules

e There exist a preconditiop for the current instruction se-
quenceClpc] (recall our definition ofC[f] in section 2.2).
Given the knowledgeV about the complete code heap, the
preconditionp will guarantee the safe execution ©fpcl, i.e.,
WH{p}pc: C|pc].

e The current program stafesatisfyp.

To certify a program, we only need to prove that the initia-pr
gram (C,Sp, pcg) satisfies the invariant. Soundness of CAP guar-
antees that the invariant holds at each step of execution.

The coHp rule defines well formed code hedp- C:W'. The
rule says that it is safe to execute codenf the loop invariant
asserted at each lahelin W' guarantees the safe execution of the
corresponding basic block[£], i.e., W {W (£)}£: C[£]. TheW
on the left hand side specifies the preconditions of code whic
may be reached fror€[£]. In other words ¥ specifies imported
interfaces for each basic block @

Rules for well-formed instruction sequences ensure that it
safe to execute the instruction sequence under certainnuigion.
For sequential instructions, tlsgqrule requires that the user find a
preconditionp’ and prove that the remaining instruction sequence
I is well-formed with respect tp’. Also the user needs to prove
that the precondition’ holds over the resulting state of Here
p = p’ oNext, is the shorthand for

vS.pS — 3" .(S' = Next, (S))Ap'S'.
Itimplies thatp must ensure the safe execution gdinceNext, (-)
is a partial function. Usually’ can be the automatically derived
strongest postconditiokS. 3Sg.p So A (S = Next; (Sp))-
TheJrrule essentially requires that the precondition for the tar

get address hold at the time of jump. The propositiadeptr(£,p) ¥
is defined as:

codeptr(£,p) W £ £ € domW) AW(f) =p.

Above definition also ensures that the target address iseinldh
main of the global code hedp, following Lemma 3.1.

Lemma 3.1
If WEC:W¥, thendomW) C domC).

Soundness. The soundness of CAP ensures that well-formed pro-
grams never get stuck, as shown in Theorem 3.2. Proof fohtee t
rem follows the syntactic approach to proving type sounslfi2s].

Theorem 3.2 (CAP-Soundness)
If W P, then for alln there exists & such that? —" P’.

3.1.2 Specifications of embedded code pointers

CAP is a general framework for assembly code verification,itbu
does not support modularity very well, as pointed out by Ni an
Shao [16]. That is because CAP’s specification languageligat
over state) is not expressive enough to expreseptr(f,p) ¥,
which requires the reference . A quick attack to this problem
may be extending the specification langauge as follows:

(CHSpeg W < Labels— Assert
(Asserj a € CHSpec— State— Prop

and a code pointefr with specificatiora is defined as:
codeptr(f,a) = AW,S. £ € domW)AW(f) =a.

Unfortunately, this simple solution does not work becatme t
definitions ofCHSpecand Assertmutually refer to each other and
are not well-founded. To break the circularity, Ni and Sha6] [
defined a syntactic specification language. In their XCA® ptto-
gram specification is in the following form.

(CHSpeg W < Labels— Assert

(PropX) P = ...

(Assery a € State— PropX

(Interp) [-] € PropX— (CHSpec— Prop)

The meaning of extended propositiBris given by the interpre-
tation [P]ly. A code pointer specificationodeptr(f,a) is just a
built-in syntactic construct iffropX whose interpretation is:

[codeptr(£,a)]ly = £ € domMW) AW(f) = a.

“State— PropX' does not have to be the only form of specifi-
cation language used for certified assembly programmingirFo
stance, the register file type used in TAL can be treated asdifsp
cation language. We can generalize the XCAP approach tosupp
different specification languages [10]. Then we get theofaihg
generic framework:

(CHSpeg W < Labels— CdSpec
(Cdspeg 6 € ...

(Interp) [-] € CdSpec— (CHSpec— State— Prop)

where the code specificatidhcan be of different forms, as long
as appropriate interpretations are defined. A code poihtgith
specificatiorB is now formulated as:

codeptr(£,0) £ AW.S. £ € domW) AW(£) =6.

Although generic, this framework is not “open” because Ilyai-
lows homogeneous program specificatiBmvith a specific type of
0. If program modules are specified in different specificatam
guages, the code pointeg specified in the specification language
L, is formulated asodeptr(£1, 0, ), while code pointefy in L, is
specified agodeptr(f2,0,,). To make bothcodeptr definable, we
need a heterogeneous program specificatian OCAP.

3.2 OCAP Specifications

The first attempt to define the program specifications for OGAP
to take advantage of the support of dependent types in Ci@acid
each code specificatidhwith its corresponding interpretation.

(LangTy L = (CiCtermg € Type
(Cdspeg © := (CiCtermg € L
(Asserf a € CHSpec— State— Prop
(Interp) [-], € L — Assert
(OCdsper m = (L,[-],,8) € ZIX.(X— AsserjxX
(CHSpeg W ¢ Labels— OCdSpec

As shown above, specifications in each specification lareyuaidy
be encoded in CiC &, whose typeL is also defined in CiC. The



(LanglD) p = n(natnum$
(LangTy L == (CiCtermg € Type
(CdSpe¢ 6 = (CiCtermg € L
(OCdSper m = (p,L.6) € LanglDx (ZX.X)
(CHSpe¢ W € Labelsx OCdSpec
(Asserj a € CHSpec— State— Prop
(Interp) [-], € L — Assert
(LangDicy D € LanglD— XX.(X — Asser}

Figure 6. Specification Constructs of OCAP

interpretation]_] , for the languagel maps6 to the OCAP asser-
tion a. The language-specific specificatibris lifted to an “open”
specificationrt, which is a dependent package containing the lan-
guage type’, its interpretation functiof_] , and the specification

0. The heterogeneous program specificatibis simply defined as

a partial mapping from code labels to the lifted specifiaatio

Unfortunately, this obvious solution introduces circitiaagain,
because definitions dEHSpecand OCdSpeaefer to each other.
To break the circularity, we remove the interpretation frarand
collect all the interpretations into an extra “languagdiditary”.

The final solution. The final definition of OCAP program specifi-
cation constructs is shown in Fig. 6. To embed a system intal)C
we first assign a unique 1P to its specification language. Specifi-
cations in that language and their type are still represiessé and
L. Both are CiC terms. The lifted specificatiommow contains the
language IDp, the corresponding language typeand the specifi-
cation®. The program specificatio# is a binary relation of code
labels and lifted code specifications. We do not defthas a par-
tial mapping because the interface of modules may be speaifie
more than one specification language.

As explained above, the interpretation for languagenaps
specifications inL to assertiona. To avoid circularity, we do not
put the interpretatiorf_] . in 1. Instead, we collect the interpre-
tations and put them in a language dictiond?ywhich maps lan-
guage IDs to dependent pairs containing the language tyghéhan
corresponding interpretation.

Given a lifted specificatiom, the following operation maps it to
an assertion:

(P, £.6)]p =AW, S. 3] . (D(P)=(L, [-].) A ([8]. ¥S)-

It takes the language 1P and looks up the interpretation frof.
Then the interpretation is applied to the specificaBiolf there is
no interpretation found, the result is simply false.

We allow a specification language to have more than one
interpretation, each assigned a different language IDt iBhahy
we usep instead of~ to look up the interpretation frord.

3.3 OCAP Inference Rules
Fig. 7 shows OCAP inference rules. Threocrule is similar to the
one for CAP, but with several differences:
¢ In addition to the program specificatidd, OCAP requires a
language dictionary to interpret code specifications.
¢ The well-formedness df is checked with respect t& and¥.

e The assertion is now a predicate over code heap specifications
and states. It holds ov&/ and the current stat&

e We check the well-formedness of the current instruction se-
quence[pc] with respect taD anda.
As in CAP, to certify programs using OCAP, we only need to

prove that the invariant holds at the initial progrdf@,So, pcg).
The preconditiora specifies the initial statgy. It takesW to be able

D;WEP |  (Well-formed progran

DWEC:WY (a¥WS) DrH{a}pc:Clpc]

PROG
D;WH (C,S,pc) ( )
D;WHC:W | (Well-formed code hegp
forall (f,) e W a=([n],), Dr{a}f: C[f]
(cpHP)
D;WEC:W

D; W1 FCq: LP;_ Do;Wo - CzILP/z Di#D, C1#Co ( )
LINK*

DU Do W1 UW, - CLUC: WU Y,

DrH{a}f: 1| (Well-formed instruction sequenge

a= AW'S. 3. (codeptr(f, ) A[T( ] ) WS
Dr{a}f:jf

Q)

a= AW¥',S. 31t (codeptr(S.R(xs), M)A [T ]5) WS
DH{a}f: jrrg

(R)

a= AV¥'.S. 3. (codeptr(£',0) A[T(] ) W' §
whereS = (S.H,S.R{rz1~£+1})

Dr{a}f: jal £;1

(9AL)

| €{addu,addiu, lw, subu,sw}
DH{a'}£+1:1 a= V. (a W)oNex

DH{a}f: ;1

(sEQ

D {a"}1
a= A S. (SR(rs) <0—a" ¥'S)
A (S.R(xs)>0—
3. (codeptr(£', M) A [T ]4) W'S)

Dr{a}f: bgtz rs,£'; 1

(BGTZ)

a=a DH{a}f:I
Dr{a}f:1

(WEAKENY)

Figure 7. OCAP Inference Rules

to specify embedded code pointersSi as explained before. The
soundness of OCAP will guarantee that the invariant holdsah
step of execution and that the invariant ensures progragrese.

Well-formed code heaps. The cpHp rule checks that the specifi-
cation asserted at ea¢hin W’ ensures safe execution of the corre-
sponding instruction sequen@s£]. As in CAP, theW on the left
hand side specifies the code to which e@¢h| may jump. Instead
of using the specificatiol’ (£) directly, we first map it to an as-
sertion ((W'(£)],) by applying the corresponding interpretation
defined in?D. Then we do another lifting ), which is defined as:

/\ codeptr(£,1) | Aa.
(f.mew

@)y

Herecodeptr(£, 1) is defined as the following assertion:
codeptr(£,1) £ AW,S. (f,1) € W.
We also overload the conjunction connectof for assertions:
afna 2 AW S.aWSAa' WS.

Therefore, the lifted assertiod[[¥'(£)]),)y) carries the knowl-
edge of the code pointers which may be reached f&d#j). When
we checkC|[£], we do not need to carly, but we need to carrp

to interpret the specificationfor eachcodeptr (£, ).



Linking of modules. The C checked in thecoHp rule does not
have to be the global code heap used infkecrule. Subset£;
of the complete code heap can be certified with local inted4g;,
W; and¥. Then they are linked using the admissiblex rule. We
use a “*” in the name to distinguish admissible rules frommar
rules. The compatibility of partial mappingsandg is defined as

f#g £ vx. x e domf) Ax e domg) — f(x) =g(x).

TheLink rule shows the openness of OCAPR;: andC, may be
specified and certified in different verification systemshwitter-
pretations defined irD; and D, respectively. Proofs constructed
in foreign systems are converted to proofs of OCAP judgments
DWW G LP{ at the time of linkage. We will demonstrate this
in the following sections.

Lemma 3.3 is used to prove the admissibility of thex rule.

Lemma 3.3
If D;WHC:W', DC D, and¥ C WV, we haveD ;W - C:¥".

Well-formed instruction sequences.Rules for jump instructions

(3, 3R and saL) are simple. They require that the target address be
a valid code pointer with specification/, and that there be an
interpretation forr? in D. The interpretation oft should hold at
the resulting state of the jump. Here we use- a’ as a shorthand
forv¥,S.aWs — a’ WS.

The seqrule for sequential instructions is similar to the CAP
seqrule. It requires no further explanation. TheTz rule is like
a simple combination of the rule and theseq rule, which is
straightforward to understand.

Theweaken rule. Theweaken rule is also admissible in OCAP.
It is a normal rule in Hoare-style program logics, but plagsra-
portant role in OCAP to interface foreign verification syste The
instruction sequencemay have specificatiorand®’ in different
foreign systems. Their interpretations aranda’, respectively. If
the proof of D-{a’} £ : T is converted from proof constructed in
the system whergis certified with specificatio, it can be called
from the other system as long ass stronger thara’. The use of
this rule will be shown in section 5.2.3.

3.4 Soundness of OCAP

The soundness of OCAP inference rules is proved followirgy th
syntactic approach [21] to proving type soundness. We refibt
prove the progress and preservation lemmas.

Lemma 3.4 (Progress)
If D; W P, there exist® such thatP — P’.

Lemma 3.5 (Preservation)
If D;WF P andP+—— P, then we haveD; W - P,

We prove two soundness theorems for OCAP. The first one
shows that we can use OCAP to certify type safety (the non-
stuckness property); while the second one shows that wedan a
ditionally certify the partial correctness of programs.

Theorem 3.6 (Soundness-Type Safety)
If D; WP, then forn there exist® such thal? —" P’

Before we present Theorem 3.7, we first deffité(£) ], as:
A \/(f:rn)ellJ UITE]]]@ 3T[.(f7T[) eV
[¥®)1» = { FALSE -In(f,mew
where V" is lifted for assertions.

Theorem 3.7 (Soundness-Correctness)
If D;WI (C,S,pc), for all natural numben there exis§’ andpc’
such tha{C, S, pc) —" (C,§',pc’), and

1

: getm sec.5 |newpair ==scheduler sec q ] threads :

1 - [ I G Y BN

I I h L =

TAL SCAP CCAP
sec. 5.1 sec. 4 sec. 6.3
[ OCAP
Figure 8. Case Studies for OCAP

1. if C(pc) =j £, then[[W(£) ], ¥S;
2. if C(pc') =jal £, then[[W(£) |, W (S H, S .R{r31~pc'+1});
3. if C(pc) =jr rs, then[W(S' R(xs)) ] P T;

4. if C(pc’) = bgtz rs, £ andS’ R(xs) > 0, then[W(£) ], ¥ S'.

Therefore, if the interpretation for a specification langgiaap-
tures the invariant enforced in the corresponding verificasys-
tem, the soundness of OCAP ensures that the invariant hdide w
the modules certified in that system get executed.

A similar soundness theorem was also proved for CAP [22].
Yu et al. [22] exploited CAP’s support of partial correctness to
certify an implementation omalloc and free libraries. CAP and
OCAP’s ability to support partial correctness of prograranddits
from the way we specifyodeptr. As we will discuss later, it is
unclear how this soundness theorem can be proved usingejre st
indexed semantic model obdeptr.

3.5 Applicability of OCAP

In the rest of the paper, we will explore the applicability tbé
OCAP framework by showing how to embed existing type systems
and program logics into the framework, and how to suppogrint
operations between different systems at different akstratevels.

As shown in Fig. 8, we embed SCAP into OCAP to certify runtime
library code. We also show how to embed TAL as a type system and
CCAP as a program logic for concurrency verification. In isech

we link TAL code with a simple memory management library cer-
tified in SCAP. In section 6, user-level threads certified QAP

is linked with a simple implementation of a scheduler cextifin
SCAP. Since we mainly focus on interfacing systems, no famil

ity of specific systems is required to understand these ebemmp

4. Case Study: Embedding SCAP in OCAP

In general, it takes three steps to embed a foreign system int
OCAP: first identify the invariant enforced in the systenerntde-
fine an interpretation for code specifications and embedntreir

ant in the interpretation; finally prove the soundness oftinded-
ding by showing that inference rules in the original system be
proved as lemmas in OCAP based on the interpretation. [is&uis
tion, we show how to embed SCAP into OCAP.

SCAP is a compositional Hoare-style program logic proposed
in [10] for assembly code verification. It supports reasgrabout
function call/return without requiring specifications efurn code
pointers (which is a special form of embedded code pointers)
SCAP specification. SCAP uses a pair of predicat€s,g) as
code specificationsBf. As shown belowp is a predicate over a
state; the guaranteg is a predicate over a pair of stateSscap
specifies the type dd. The code heap specificatign maps code
labels tobs.

(StatePreg p

(Guaranteg g

€ State— Prop
€ State— State— Prop

(Cdspeg 6 = (p,g) € Lscap
(LangTy) Lscap £ StatePred« Guarantee
(LocalSpeg ¢ = {f~8}* € Labels— Lscap



(Well-formed code heap
forall £ e domy’): @H{Y ()} £: C[f]
YrC:y

(Well-formed instruction sequenge

(CDHP)

YH{(p.g)}tf: 1

(p'.g) =w(t) (®".g") =W(£+1)
VS.pS —p' (SH,S.R{rz1~£f+1})
vS,S'.pS—¢g (SH,S.R{rz1~£f+1})S

— p// S/ A (VS”. g// S/ S// — g S S//)
vS,S. g’ SS — S.R(r31) =S R(rs1)

WH{(p.g)}t£: jal £ 1
VS.pS—gS$
YH{(p,g)}£f:jrra1

wH{(p'g)}f+1:1

(cALL)

RET)

| €{addu,addiu, lw, subu, sw}

p=poNext VS,S.pS—g (Next (S))S —gS¥ (s£0
SEQ
YH{(p,g)}f: ;1
(P.g)=uv() p=p V¥5,5.pS—g S —gS¥
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Figure 9. Selected SCAP Rules

Program invariant. The idea behind SCAP is very intuitive. The
predicatep is the precondition, which plays the same role asphe
in CAP. We usg to specify the behavior of code from the specified
point to the return point of a function. A function call is neath
SCAP by executing thl instruction. Function returns by jumping
to the registerrg;. The program invariant enforced in SCAP is
formalized [10] as

INV(S) £ pSA3In wist(n,g S, 1),

where (p,g) is the SCAP specification for the current program
point. Y is the code heap specification. It requires that, at any
program point, the state satisfy the current preconditiand there

be a well-formed control stack with certain depthThe predicate
wfst is defined as:

wfst(0,q, ) 2 -3S.qS
wist(n+1,q,4) £ V8. g — 3p,¢". W(S"R(ra1)) = (¢p',&")A
P’ S Awfst(n,g’ S, W).

At the return point of the current function (whegehas been
fulfilled), if the stack depth is greater than s, contains a code
pointer with certain specificatiofp’,g’). After the current function
returnsp’ holds so that it is safe to run the return continuation; and
the stack is still well-formed with depths decreased by 1.ewh
stack depth is 0, we are executing the topmost function andata
return .e.,the guarantee cannot be fulfilled).

The reT rule simply require that a function fulfill its guarantee
before it returns. Therefore an identity transition wiltisty the
remaining guarantee.

The rest instruction rules are easy to understand. Intstest
readers can refer to [10] for more details.

Embedding and soundness.To embed SCAP into OCAP, we first
use the lifting functiony_p to convert thep in SCAP to OCAP’s
specificatiorl, wherep is the language ID assigned to SCAP.

LWop = {(£, (P, Lscar, (p.8))) | W(E) = (p,g)}

For anyp, the following interpretation function takes the SCAP
specificationp, g) and transforms it into the assertion in OCAP.

[(p.g)]2” £ AW,S.pS A INWFST(ngS,D,W)

Here D is an open parameter which describes the verification
systems used to verify the external world around SCAP cobe. T
interpretation simply specifies the SCAP program invasané
have just shown, except that we reformulate the previousitiefi
of wfst to adapt to OCAP code heap specificatibn
WFST(0,q, D, W) £
vS'. q S — 31 (codeptr(S" . R(rz1), ) A[1] ) WS
WFST(n+1,q,D,W) £
V8. qS — 3p'.g". (S R(ra1), (P, Lscar, (P',8))) €W
AP'S' A WFST(ng'S',D,W).

WFST is similar towfst, but we look up code specifications from
OCAP’s Y. Since we are now in an open world, we allow SCAP
code to return to the external world even if the depth of thdBC
stack is 0, as long asz; is a valid code pointer and the interpreta-
tion of its specificationtis satisfied at the return point. The open
parametetD is used here to interpret the specification

Itis important to note that we do not nep@nd? to use SCAP,
although they are open parameters in the interpretatioren/Mre
certify code using SCAP, we only use rules shown in Fig. 9. The
interpretation isnot used until we want to link the certified SCAP
code with code certified in other systems. We instantfatend
D in each specific application scenarios. Theorem 4.1 shows th
soundness of SCAP rules and their embedding in OCAP, which is
independent with these open parameters.

Theorem 4.1 (Soundness of the Embedding of SCAP)
Supposep is the language ID assigned to SCAP. For @llfor

foreign code, et = D{p~ (Lscap, [-] P21

LSCAP
1L If g-{(p,g)}£:1, we have D' {(a)y}£: 1, where¥ =
Lop anda = [ (p.g) I

2. If g+ C:y/, we haveD'; g - Ciod p.

5. Case llI: TAL with Certified Runtime

In this section, we will show how to link TAL code with certifle
memory allocation libraries. Unlike traditional TALs [14] which
are based on abstract machines with primitive operationsém-

Fig. 9 shows selected SCAP rules. These rules ensure that theOry allocation, we present a variation of TAL for our TM (degfth

invariant specified above is maintained during program &xea.
The call rule (forjal) requires that, if the specification for the
callee is(p’,g’) and the return continuatiohis well-formed with
specification(p”,g”), then

« the preconditiorp’ of callee be satisfied afté;

« the preconditiop” for the return continuation be satisfied when
the callee returns and has fulfilled its guarantge

e composing the behavior of the callee and the return cortinua
tion fulfill the guaranteed behavigy; and

e the callee reinstate the return address when it returns.

in section 2.2).

We use a simple functionewpair to do memory allocation.
The code fomewpair is specified and verified in SCAP without
knowing about the future interoperation with TAL. User cdde
certified in TAL. There is also a TAL interface faewpair so that
the call tonewpair can be type-checked. To allow the interoper-
ation, we first embed both systems in OCAP. Then we show that,
given the interpretations for TAL and SCAP, the TAL inteddor
newpair is compatible with the SCAP interface.

The tricky part is that TAL and SCAP have different views abou
machine states. As shown in Fig. 10, TAL (the left side) omlgks
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Figure 10. Interoperation with TAL and SCAP F[ALT {rz1~ V[A"].T"} < [A].T
W {ATIE: @t 1 (9AL)
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Figure 12. Selected TAL typing rules

Figure 11. Type Definitions of TAL ] ] ) )
and certain register file tyda].I". Judgment for well-typed state is
the heap reachable from the user code. It believesithatair will represented ag) - S:[A].T . The TAL state typings and subtyping
magically generate a memory block of two-word size. The liste rules are shown in Fig. 13.

of memory blocks KList) and other parts of the system resource is  Embedding of TAL The code specificatiof in TAL is the regis-
invisible to TAL code and type. SCAP (on the right side) ordyes ter file type[A].l. The type of its CiC encoding i§a. . Then we
about operations over the free list. It does not know whahtep define the mapping between the TAL code heap specificatimmnd
for TAL is. But when it returns, it has to ensure that the inwar the OCAP code heap specificatith

in TAL is not violated. As we will show in this section, the weye .

use specification interpretations and our SCAP have nicpostip LWop = {(£, (P, Lrac, [A]T)) | (£,[A].T) € W}

of memory polymorphism. They help us achieve similar effafct YL — {(£,0) | (£, (p,L,0)) € W}

the frame rule in separation logic [17]. ' U

We first embed into OCAP a TAL over TM. The embedding
follows similar steps we did for SCAP.

The lifting function .y, assigns a language ol to TAL, and
packs each code specification ynwith p into an OCAP spec-
ification 1. The sink function"WP-L collects from OCAP’sW

5.1 Embedding TAL into OCAP the specifications of code certified in languggeand constructs
TAL types and typing rules. Figure 11 shows the definition of & language-specific code heap specification.

TAL types, including polymorphic code types, mutable referes, To link TAL programs with run-time systems, the interpraiat
existential types, and recursive types. Definitions forew/@re function for TAL specification is defined with an open paraenef

similar to the original TALT is the type for the register fil&/[A].l which is the invariant about memory invisible from TAL (theey

is the polymorphic type for code pointers, which means thdgeco  blocks in Fig. 10):

pointer expects a register file of typewith type variables declared o) &

in A. The flagd is used to mark whether memory cell has been [[A].F]; " = AW,S. JH, Hp. S.H=H;wH A

initialized or nOt.<TT17...,T2"> is the type for a mutable reference ("YWL |- (Hy, S.R):[A].T) A r WH,.
pointing to a tuple in the heap. The fresh memory cells rettitny
memory allocation libraries will have types with flag 0. Tleader
should keep in mind that this TAL is designed for TM, so thened
“heap values” as in the original TAL. Also, since we sepacatge

heap and data heap in our TM, specifications for them are ateghar that the invariant is a predicate ovel and H only. Although
too. We usey for code heap type antt for data heap type. expressiveness is limited, this should be sufficient fotire re-

We present selected typing rules of TAL in Fig. 12 and 13. The source because usually runtime does not reserve regiatseshis
TAL typing rules are similarto the original TAL [14] and are not Jimitation can be lifted if we model the register fie as a partial
explained in details here. Readers who are not familiar Wih mapping (like data heap).
can view[A].[' as assertions about states and the subtyping relation
as logic implication. Then the rules in Fig. 12 look very damito
CAP rules shown in Fig. 5. Actually this is exactly how we emhbe
TAL in OCAP below.

The invariant enforced in TAL is that, at any step of exeautio
the program state is well-typed with respect to the code gz Theorem 5.1 (TAL Soundness)

Herep is the language ID assigned to TAIf;W g means union
of partial mappings with disjoint domains. Instead of bintg
semantic models for TAL types, we reuse the TAL state typing
(WF S:[A].T as shown in Fig. 13) as the interpretation. Also note

Soundness. Theorem 5.1 states the soundness of TAL rules and
the interpretation for TAL specifictions. It shows that, ejivthe
interpretation, TAL rules are derivable as lemmas in OCARe T
soundness is independent with the open parameter

Forallp andr, let D = {p~> (LaL, [ }]ﬂf}}.
1But we do not need aroGrule to type check whole progranifsbecause . (p.r)
this TAL will be embedded in OCAP and only be used to type chemde L if gH{[ALT}IthenD{(a)y} ], wherea = [[A].T] ;" " and

heaps which may be a subset of the whole program code. W= _y_p;
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Figure 13. TAL typing rules — Il
2. if Yk C:y thenD; g F Croy/ L. The user will certify the calle€ra. by constructing the follow-
ing derivations in TAL.
Lemma 5.2 is used to prove the soundness theorem. It shows the .
TAL subtyping relation is sound with respect to the intetatien. Yt F {U(getm)} getn: Igern @
Lemma 5.2 (Subtyping Soundness) Wt F{W(cont)}cont : Leont (2)
For anyp, r, [Al.T and [A'].T, let a = [ [A],r}]&? and 2/ — wherelgety = Crac [getm] andlcony = Crac [cont].
o). r/ﬂ(LpT;I‘L)_ If - [A].T < [A).T7, we havea = 2. 5.2.2 Certifying newpair in SCAP.

The following code schema shows the implementafityap of
newpair, which largely follows thenalloc function in [22]. We
omit the actual code here.

newpair:

5.2 Linking TAL with newpair

Since we have already embedded SCAP, our next step is to link
TAL code with an implementation afewpair certified in SCAP.
The newpair function takes no argument and returns a memory
block of two-word size. The reference to the memory bloclaissl

in the registetr3g. The callee-save registers arg ..., rg.

jr r31

Before we specify thaewpair function in SCAP, we first define
5.2.1 Certifying the caller in TAL. separation logic connectors in our meta-logic:

Thltle foIIowing c(;)d]? ISIChgm%ALl)'Sh?WSt'part' OT tgeI c((j)%e for the 1 i 2 AS.domSH) = {1} A SH(1) =i
callergetm. Code following thgal instruction is labeled byont, N ) T e
which will be passed taewpair as the return address. p1*pz = A(H,R).3H',H". H= HWH' A
P1 (H 7R) A P2 (H 7R)
getm: P N
jal  newpair q *ID = A(Hp,Ryp), (Hp,Ry).
cont: ... ; r30 points to a pair VH,H’l. leH/le A p (H/le) N
We use the following TAL code heap specification to type check JHS,. Hp=H, WH A q (H), Rp)
the above cod€q,. . In addition to specifications fogetm and . . . . .
cont, newpair is also specified here, so that the function call toit ~ Following [22], we use an assertiofgist to specify the list
can be type checked in TAL. of free memory blocks maintained hgwpair. The SCAP code

A specification fomewpair is (p,,g,) Where
Yt = {newpair~~ [01,...,09].{r1~01,...,T9~ Og,

r31~ V[ {r1~0ai,...,r9~> 0o, pn £ FlList
3o~ (10,179}, A ,

getm ~ [A].{r1~T1,...,r9~Tg,...}, &n= (Vre{rl,...,rg,rgl}.[r] = [I‘] ) A

cont  ~ [A] {r1~Ti,...,r9~To,r30~ 1% 19} FList / ! ) *1D
From TAL's point of view,newpair takes no argument and returns Flist  [rgof' = - [raol'+1—
a reference irr3g pointing to two fresh memory cells with types Recall thatg in SCAP specifies the guarantee of functions. We use
andt’ (tagged by 0). Also values of callee safe registers have to be [r] to represent the value afin the first state (the current state),
maintained, which is enforced by the polymorphic type. while the primed valugr] means the value of in the second



state (the return state). Hepg says the function will reinstate
the value of callee-save registers and the return addrdesehie
returns. Also, as shown in Fig. 10, the origirlist is split into a
smallerFList and a memory block of two-word size. The rest of the
memory is not changed.

The specification for theewpair codeCscap is as follows:

Ws £ {newpair ~+ (P80} -
We certifynewpair by constructing the SCAP derivation of

Ws F{(Pn: gn) f newpair ! lheypair ©)
whereleypair = Cscap[newpair].
5.2.3 Linking the caller and callee

So far, we have specified and certified the caller and callde-in
pendently in TAL and SCAP. Our next step is to link the called a
the callee in OCAP.

Suppose the language ID for TAL and SCAP areand p’
respectively. We us€List to instantiate the resource invariant
used in the interpretation for TAL. Therefore TAL's integpation

is [[_}](L‘:’FUS[) The language dictionar®ra, is defined as:
(p,FList)

Dra. £ {p~ (Lrar, [[_HLTAL )}
We feed Dra to the interpretation for SCAP, which is now

[[_}](p/c'g’“) (see section 4 for the SCAP interpretation). The lan-
guage dictionary for both languages is:

Degr 2 Dra UL ~ (Lscap, [-]P 2

LSCAP

)}
Merging the code of the caller and the callee, we get
CruL 2 {getm~ Igetn, cont~» Ieone, newpair~»Iyp}.

TAL and SCAP specifications are lifted to OCAP spig, :

{( getm , (p, LraL ,Yt(getm)) ),
(cont , (P, LraL ,Yt(cont)) )s
( newpair, (p', Lscap, Ws(newpair)) ),
( neWPaiI: <p ) LTAL ’ Lpt (newpair) > )

To certify Cry ., we need to construct the proof for 4.

Dryirs Wrue F Crui - WruL (4)

By applying the OCARbHPrule, we need derivations for the well-
formedness of each instruction sequence. By theorems 8.4.an
we can get most of the derivations for free from derivatioh (
(2) and (3). The only tricky part is to show thewpair code is
well-formed with respect to the TAL specificatiare.,

Deurr F{(a)y,, tnevwpair : Ineupair
wherea = [(p, Lra. , Yt (newpair) )], -
To prove (5), we prove the following implication,

a=[[{p', Lscar, (Ws(newpair))) [Ip -

which says the TAL specification farewpair is compatible with
the SCAP one under their interpretations. Then we apply BAP
WEAKEN rule and get (5).

6. Case lll: Certified Threads and Scheduler

As an important application of OCAP, we show how to construct
FPCC for concurrent codwithout putting the thread scheduler
code in the TCB, yet still support modular verification.

6.1 The Problem

Almost all work on concurrency verification assumes builtan-
guage constructs for concurrency, including recent workemifi-
cation of concurrent assembly code [23, 9].

(5)

10

{(A, G} {A, G}
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Figure 14. Concurrent Code at Different Abstraction Levels

The top part of Fig. 14 shows a (fairly low-level) abstract-ma
chine with built-in support of threads. Each threkcdas its own
code heap and program counter. The indgwints to the current
running thread. This index and tipe of the corresponding thread
decide the next instruction to be executed by the machine nTd
chine provides a primitivgield instruction. Executingield will
change the indekin a nondeterministic way, therefore the control
is transferred to another thread. All threads share the ozspH
and the register fil&.

The classic rely-guarantee method [13] allows concurredec
in such a machine to be certified in a thread modular way, asrsho
in CCAP [23]. The method assigns specificatibrandG to each
thread.A andG are predicates over a pair of states. They are used
to specify state transitions. The guaranfespecifies state transi-
tions made by the specified thread between yiet points. The
assumptiom\ specifies the expected state transition made by other
threads while the specified thread is waiting for the promessall
threads satisfy their specifications, the following noteiference
property ensures proper collaboration between threads:

NI([(A1,G1),...,(An,Gn)]) £ Gi=Aj Vi#j.

To certify concurrent code, we prove that each thread fsiffid
guarantee as long as its assumption is satisfied. When wig/ cert
one thread, we do not need knowledge about other threadse-The
fore we do not have to worry about the exponential state space

However, this beautiful abstraction also relies on thethnil
thread abstraction. In a single processor machine suchras\bu
there is no built-in abstractions for threads. As shown i ltbt-
tom part of Fig. 14, we have multiple execution contexts déwne
heap as the thread queue. Cdtjecalls the thread scheduler (im-
plemented byCs), which switches the current contexic] with
one in the thread queue apgmpsto thepc saved in the selected
context. All we have at this level is sequential code.

It is hard to use the rely-guarantee method to certify thelevho

system Cj andCsg). We cannot treaf’s as a special thread because
the context-switching behavior cannot be specified unless- fi



cth (StPred p,q € State— Prop

(Assumption A € State— State— Prop

(Th-Guarant) .G € State— State— Prop
(CdSpeg 6 = (p.£.A.G)

(CHSpe¢ ¢ 1= {f~ 8}

pS -

tq
e T el + -
Figure 15. Current thread and the thread queue

T
class code pointers is supported. We do not know any existing | %~ C:¥'|  (Well-formed code hedp

work supporting first-class code pointers in a rely-guaesiiased forall £ € dom(y'): W {W/(£)}£: C[f]
framework. On the other hand, certifying all the code as srtjal v
code loses thread modularity, thus impractical. vECy

(Well-formed instruction sequendge

In our approach, we use CCAP to certify user thread ddde
Although the machine is low-level, the code can be specifietl a
certified as if they are working at the higher-level machiheven
in Fig. 14. The scheduler codes is certified as sequential code in

Figure 16. Specification Constructs for CCAP

(CDHP)

YH{(p.g)}f: 1

YpH{(P,g.AG)}E+1: 1 1 €{addu,addiu, Iw, subu,sw}
p=poNext VS,S.pS—g (Next (S))S —gS¥

SCAP. From SCAP point of view, the context switching is no enor WH{(p,g,A,G)}f: ;1 (sEQ
special than memory load and store, as we will show belownThe 5
the certified code can be linked in OCAP. VS.pS — &S (SH,SR{rai~£f+1})
vS,S' pSAASS —pS  (p,G,A,G)=Y(f+1)
6.2 Certifying The Scheduler Code in SCAP (YIELD)

; i . . WH{(p.g,A,G)}£: jalyield; I
User threads yield by calling the scheduler with the retamtioua-
tion saved in registers;. The scheduler will saves; in the current
context, put the context in the thread queue, pick anotherigion

context, restoresy, and finally return by jumping tog;. Then the Selected CCAP rules are shown in Fig. 17. Since CCAP uses a
control is transferred to the selected thread. built-in yield, we revise its originavieLp rule here to adapt to our
We have made several simplifications in the above procedure: TM, whereyield is done by calling the runtime. To certify the user
we do not save the register file in the thread context becduse i  thread codeCj, we use CCAP rules and construct the following
shared by threads in CCAP. There is no stack either becaub®CC  derivationy - C;: /. We will not explain these rules in detail here

Figure 17. Selected CCAP Rules

threads do not make function calls. Data structures for¢cheduler
is thus very simple, as shown in Fig. 15. Each thread contelyt o
contains the savaet. The global constanith points to the context
of the current thread, anth points to the other threads’ contexts
which are organized in a linked list. We us@(tq, Q) to represent
the linked list pointed by q containingQ. Q is a (honempty) list of
code labeldpcy, ..., pc,]. Definition of TQ is omitted here.

The scheduler is then given the following specificatipg g5),
where|Q| represents the set of elements in the@st

3Q. cth— _ * cth+1ls_  TQ(tq,Q) * True

Ps

> 1>

(Vr € ro,...T30.[1] = [r])A

¥Q.3pcy € [QU{[raa]}.3Q.(IQ| = [QIU{[raa]} \ {pcx A
cth—_ # cth+1l— _ % TQ(tq,Q) D
cthi— pey * cth+1— _ % TQ(tq,Q) ) *

The guarantegg requires that, at the return point of the scheduler,
the register file (excepts1) be restored; a labek, be picked from

Q (or it can still be oldrs1]) and be saved in31; the thread queue
be well-formed; and the rest part of data heap not be chamzd.

gs leaves the scheduling strategy unspecified.

The scheduler cod€s can be certified usinfpg, g¢) in SCAP
without knowing about CCAP.

6.3 CCAP for User Thread Code

The code specifications in CCAP is atupteg, A, G), as shown in
Fig. 16.A andG are the assumption and guarantees a predicate
over the current state. Since the specified program pointhaay
the middle of yield points, we ugetd specify the “local” guarantee
from the specified program point to the yield point. If theafied
point immediately follows a yieldg Will be set toG.

We useLccap to represent the type 6f(in CiC). The following
lift function converts for CCAP to OCAP code heap spec.

‘—"IJJD £ {(fv <p:LCCAF'7 (pvévAvG») ‘ llJ(f) = (p,é,A,G)}

[rgl]/ =pcy A\
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because they are not essential to understand the intetiopera

Program invariants and the interpretation. During program ex-
ecution, we want the following invariants to hold at eachiesteith
specification(p, g, A, G):

p holds on the state visible to the user thread;

there are well-formed thread que@and other runtime data
structures as specified in section 6.2;

eachpc; in Qis a code pointer with specificatidp;, Gi, Ai, Gi);
assumptions and guarantees of threads (including the &xgcu
one) are compatible.e.,NI([..., (A}, Gj),...,(A,G)]);

if p; holds at a statB, any state transition satisfies the assump-
tion Aj does not breals;, i.e.,VS,S.p; SAA SS — p; §;

when we reach a state thats'satisfied i(e., the current thread
can yield), it is safe for all threads i@ to take over the control,
i.e.,(gS)=p; foralli, whereS is the current program state.

The following interpretation for CCAP specificatiqp, g, A, G)
simply specifies these invariants.

[(0.£.4.G)]f,,, SAWS.

JH,H,Q. HywHy =S.HAp (Hl,S.R)/\
(cth— _kcth+1— _xTQ(tq,Q)) (Hz,S.R)A
WFTQ(Q, g (H1,S.R),A,G,¥)

where
WFTQ([pcy ... peol, 9. 4,G, W) £
vi. 3p;, Aj, Gi. (pcia<p~LCCAP~(piaGi~Ai~Gi)>) cw
ANI([..., (A}, Gi), ..., (A,G)])
A(YS,S' . pi SAAI SS' —p; ')A (a=pj)

Linking the scheduler with threads. To link the certified sched-
uler with user code, we assign language [Dendp’ to SCAP and
CCAP respectively. The following dictionag; contains the inter-



pretation for CCAP.

De = {p'~ (Lecaps [[—HPLCCAP>}~
Using D to instantiate the open parameter, SCAP interpretation is

now [[_]}Z’f? (see section 4 for the definition). Since the scheduler
has been certified, applying Theorem 4.1 will automaticatigvert
the SCAP proof into OCAP proof.

However, CCAP derivations does not immediately give us a
complete OCAP derivation. Readers may have notice thahen t
YIELD rule, we jump to therield without checking the specifica-
tion of yield. It is not surprising that we cannot prove thegLp
rule as an OCAP lemma derivable from the OCAR rule. Fortu-
nately, the following theorem helps us construct sound O @aiBf
from CCAP derivations after we know the specificationyagld
at the time of linkage.

Theorem 6.1 (CCAP Soundness)
Let D = DeU {p~ (Lscars [-]P7F))} and

CAP

Ws = {(yield, (P, Lscar: (Ps:8s) ) )}

‘1. Ifwe havep -{(p,g,A,G)} £ : I, thenD+{(a)y} £ : I, where
W=y UWsanda = [ (p.5.4.G)])}

Lecar”
2. If we havey + C:{/ in CCAP, thenD; W+ C: Ly Ly, where
W=y UWs.

7. Related Work and Conclusion

Semantic approaches to FPCC.The semantic approach to FPCC [3,
4, 19] builds semantic models for types. Based on type diefirsi
typing rules in TAL are proved as lemmas. Our work is simitar t
this approach in the sense that a uniform assertion is us#tein
OCAP framework. Interpretations are used to map foreigwifipe
cations to OCAP assertions. Based on the interpretatifereince
rules of foreign systems are proved as OCAP lemmas.

However, our interpretation does not have to be a semantic
model of foreign specifications. For instance, when we eniid¢d
into OCAP, we simply use TAL's syntactic state typing as the
interpretation for register file types. This makes our iptetation
easier to define than semantic models. For instance, it iealging
to define models for mutable weak references, and the negulti
indexed model is heavyweight to use [1].

OCAP also uses a different specification for embedded code
pointers than the step-indexed semantic model [4, 19] usdidei
Princeton FPCC. Following our previous work on CAP systems,
specification of embedded code pointers is interpreted axla c
label specified in the code heap specificatldn This approach
allows our framework to support partial correctness of prots
with respect to its specifications, as shown in Theorem 3.7.

The step-indexed model is designed specifically for typetgaf
A code pointerf with preconditiona will be defined as:

codeptr(f,a) £ Ak,C,S.VS'.Vj <k ajCS — Safe(j,(C,S,£)).

the syntactic approach, TALs are designed for a highei-lave
stract machine with its own mechanized syntactic soundoress.
FPCC is constructed by proving bisimulation between tygde sa
TAL programs and real machine code. In our framework, wenallo
users to certify machine code directly, but still at a highlestrac-
tion level in TAL. The soundness of TAL is shown by proving TAL
instruction rules as lemmas in OCAP. Runtime code for TALeis c
tified in a different system and is linked with TAL code in OCAP

Hamid and Shao [12] shows how to interface XTAL with CAP.
XTAL supports stubs which encapsulate interfaces of ruatim
brary. Actual implementation of library is certified in CABur
work on linking TAL with runtime is similar to theirs, but witsev-
eral differences. XTAL is also defined for a higher-level tedost
machine. With stubs, the machine does not have a self-cautai
operational semantics. They present XTAL as a stand alcstersy
with syntactic soundness proof. Our TAL is just a set of rwagch
is proved as OCAP lemmas under appropriate interpretatibns
does not even have a tepocrule for complete programs. In [12]
CAP serves two roles from our point of view: the underlyirafre-
work (like OCAP) and the system to certify runtime (like oselnf
SCAP). Both OCAP and SCAP have better support of modularity
than CAP. By splitting the underlying framework and the systo
certify runtime, our work is more general and conceptudibarer.

Previous work on CAP systems.CAP is first used in [22] to
certify malloc/free libraries. The system used there does not
have modular support of embedded code pointers. Ni and 3630 [
solved this problem in XCAP by defining a specification largpia
with a built-in construct for code pointers. XCAP specifioas are
interpreted into a predicate taking as argument. This approach
is extended in [10] to support single or fixed combinations of
specification languages, which is not open and extensiiBARD

is built upon previous work, but it is the first framework weeus
to support interoperability of different systems in an esible
and systematic way. All our previous CAP systems can beatlyvi
embedded in OCAP, as discussed in section 3.1.

The open verifier framework. Changet al. proposed an open ver-
ifier for verifying untrusted code [5]. Their framework cae bus-
tomized by embedding extension modules, which are exeleutab
verifiers implementing verification strategies in pre-8rig sys-
tems. However, the paper does not show how multiple extansio
modules can coexist and collaborate in the framework. Ealhgc
since their support of indirect jumps needs to know all theside
target addresses, it is unclear how they support separdfeae
tion of program modules using different extensions. Opetifige
emphasizes on implementation issues for practical proo$tcac-
tion, while our work explores the generality of FPCC framekgo
OCAP provides a formal basis with clear meta propertiesritari
operation between verification systems.

Conclusion. We propose OCAP as an open framework for con-
structing FPCC. OCAP lays a thin layer of Hoare-style infiees
rules over a bare meta-logic. Assertions in OCAP rules isesxp
sive enough to specify the invariants enforced in foreigrifica-

wherea is an indexed predicate over the code heap and state, andjgn, systems. We have embedded in OCAP a program logic (SCAP)

Safe(n,P) meansP can execute at leaststeps. It is unclear how
Theorem 3.7 could be proved if this model is used: when we do an
indirect jump to a code pointeodeptr(R(r),a), we do not know

the relationship betweena" and the loop invariant assigned to
R(r) in program specificatiok (unless we sacrifice the support of
separate verification of modules), because the definiti@oddptr

is independent with¥. More detailed discussion of this issue is
shown in Appendix A.

Syntactic approaches to FPCC.The OCAP framework is quite
different from the original syntactic approach [12, 8] toG®P. In
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for certifying run-time code, a type system (TAL) and a peogr
logic for concurrency verification (CCAP). OCAP also sugpor
separate verification of program modules in different fonesys-
tems. We showed two applications of OCAP’s support of system
interoperations. The first one shows how to use OCAP to link TA
code with certified libraries; the second one shows how tstroot
FPCC for concurrent code without trusting the schedulenede
uler code and user thread code are certified in differenesystind
linked in OCAP. The OCAP framework has been implemented in
the Coq proof assistant with machine checkable soundnes$. pr
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A. Indexed Model for Code Pointers Revisited
Appel and McAllester proposed an indexed model [4] for type
systems. Based on the indexed model, Tan and Appel [19, 20]
defined a compositional Hoare-logic systé&gwhich serves as an
intermediate level to translate LTAL to the meta-logic, they did
not show how first-class code pointers can be supporteg.in

In this section, we first present an indexed Hoare-logicesgst
for TM, which is similar toL¢ but with modular support of indirect
jumps. Then we explain why such a system, based on the indexed
semantic model, cannot be used to prove general partisgcogss
of programs.

In the indexed Hoare-logic system, the specification foctae
heap is a partial mapping from code labels to indexed prestica
over the whole machine stat€ @ndS):

(CHSpeg W 1= {f~a}”
(CdSpe¢ a € nat— CodeHeap— State— Prop

To support general indirect jumps, we need to give a speeifica
tion for code pointers. Following the indexed model, a valig to
k steps) code pointefr with preconditiona is defined as:

codeptr(f,a) £
Ak, C,S.VS'.Vj <k a (C,S') — Safen(i, (C,8, 1)),

whereSafe(j,P) means the prograifi can execute at leagtsteps:
safe(k,P) 2 Vj <k 3P P+ P'.
We also definssafe(P) as:
Safe(IP) = k. Safe(k,P).

The code heafi satisfies its specificatiow up tok steps only
if each code label itV is a valid one up td steps:
E C:W 2 domW) € domC)A
Vi € domW).VS. codeptr(f,W(£)) kCS.
In the following discussion, we will assume thdomW¥) =

dom(C). This is not necessary. We want it simply because we want
to make our presentation to be as close to [4] as possible.

The safety of cod€ at stateSy andpcg can be proved using the
following theorem, a paraphrase of the Theorem 40 in [4].

Theorem A.1 (Indexed-Sound)

vk. ECW a=WY(pc)

Safe(C, S, pc)

vk ax CS

To use above theorem, the challenging part is to piduer
C:kW. By induction ovelk, we need to prove (6):
vk. (FCW) — (F Cia¥), (6)
which, as suggested in [4] (Theorem 44), can be proved from:
VE € domW). safe_at(C, W, f), @)
where
safe_at(C,W,f) &
vk, S. (ECkW)AW(£)kKCS —
38, #.(C,S,£) — (C,S', £ ) AW(£) k—=1CS'.
The framework looks good so far. In addition to the “non-
stuckness” property specified ISafe(IP), we can prove partial

correctness as a by-product of (7). The partial correctnassbe
formalized as:

Safe(C,S,pc)A
vk, S, pc’. ((C,S,pc) —K (C,S,pc’)) — Vn.W(pc ) nC S’ .



YHC:¥W | (Well-formed code heap

forall £ edomW¥'): a=(¥Y(f))y WH{a}f: C(f)

WEC:Y

WH{a}f: 1| (Well-formed instructior

a= W)
WH{a}f:jf

(CDHP)

©)

a = Ak,C,S. Ja’.Monotone(a’)A
(codeptr(S.R(xs),

WH{a}f: jrrs

a’yna')kCS

(OR)

| € {addu,addiu,lw,sw} a= Ak,C. (W(£+1) k C) o Next,

Wk{a}f:1

(SEQ

Figure 18. Indexed Hoare-style rules

This is not surprising because (7) essentially formuldteptogress
and preservation properties.

However, Appel and McAllester did not give any guidance to
construct the proof of (7)L¢ is supposed to play such a role, but
there is no rules for indirect jumps. We extengland present a set
of Hoare-style rules in Figure 18. Here the lifting of preatiea is
defined as:

(a)y = Ak, C,S. Monotone(a) A (F CxW) A (ax C S),
whereMonotone(a) means:
Monotone(a) 2 Vk,C,S.akCS —Vj <k ajCS.

Readers can see that the definition(afy, is similar to the lifted
assertion we defined in OCAP (see section 3.3) if we unfoldéfie
inition of E C:xW. The extra monotonicity requirement faicorre-
sponds to the requirement for types in [4]. As usual, weaisea’
as a shorthand fork,C,S. akC S — a’ k C S. The conjunction
connector A” is overloaded for assertions.

Instead of proving (7) directly, we want to let the user prove
Y+ C:Winstead. Unfortunately, based on the definitiorafeptr
and thesrrule, we cannot prove (7) from{+ C:W). TheJrrule
only tells us thatrs is a code pointer with certain preconditiah
anda’ holds at the time of the jump. Since the definitiorcofieptr
is independent with, we do not know whether the target address
is specified in¥ or not, and, if specified, whether the specification
is the same with (or weaker thasl)or not.

To solve this problem, we have to use a weaker definition of
safe_at:

safe_at(C,W,f) =
VK S.(F ChW) AW(£) KT S —
Ja/,§',#.(C,S,f) — (C,S,£)A
(codeptr(£’,a’) Aa’) kCS.

With this weaker definition, we can prove (7) frdih C: W, and
(7) still implies (6). Tan [19] essentially uses the weakersion of
(7) to prove the soundness of TAk indirect jump rule.

However, the problem with this weaker definition eife_at
is that the preservation cannot be proved. As a result, waatan
use the system to prove the partial correctness of programs a
formulated above. We can construct a counter example to show
that, there exist &, S, pc andW, even though we hav¢’ - C: W
(thereforevk. F C:W) andvk. W(pc) kCS, we can find ar$’ and
pc’ such thatC,S, pc) —* (C,S',pc’) but vk.W(pc') k C S’ does
not hold.
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f: addiu r31, r0, cont ;save return addr
Jj h ;call function h
cont: j cont ;infinite loop
h: addiu ri1, r0, 1 ;update ril
jr r31 ;return

For the code heaf shown above, we first give it a specification
Wy

W, £ {f ~ Ak, C,S.TRUE, ..., cont ~ Ak, C,S.TRUE,
h~> codeptr(S.R(r31), Ak,C,S.TRUE),...}.

We can prove that’1 = C: W (which impliesvk. F C:Wq),
therefore we know that

vk, S. codeptr(cont, Ak, C,S.TRUE) kC S (8)

Then we defingV as:
W, £ Wy {cont ~+ Ak,C,S. (S.R(r1) = 0)}.

We can also provél, - C: W, by using (8), which was proved
in the last round. However, it is trivial to see that when the-p
gram reaches code labebnt, the program state cannot satisfy
W, (cont), so we cannot prove the partial correctness of the pro-
gram with respect to the code specificatigp.
One way to solve the problem is to use a differemtule, as
shown below:
a = Ak,C,S. Ja’.Monotone(a’) A (2’ = W(S.R(xs)))A
(codeptr(S.R(rs),a’) Aa') kKCS ,
WH{a}f: jrrs (9R)
Using thesr' rule, we cannot certify the code shown above using
the specificatioriV,. However, this rule requires the knowledge
about all the possible target addresses of the indirect juvhich
breaks modularity of the system [16].

One may want to change the definition $dfe to specify the
partial correctnes®.g.,to defineSafe as:

safe(k, (C,S,pc)) £
W(pc) kCS A
38, pc’. (C,S,pc) — (C,S',pc’) A Safe(k—1, (C,S',pc’)).
However, the definition of now becomes circular becaugeuses
codeptr, which usessafe, which useg¥.




