
Refinement-Based Game Semantics for Certified
Abstraction Layers∗

Jérémie Koenig
Yale University

jeremie.koenig@yale.edu

Zhong Shao
Yale University

zhong.shao@yale.edu

Abstract
Formal methods have advanced to the point where the func-
tional correctness of various large system components has
been mechanically verified. However, the diversity of seman-
tic models used across projects makes it difficult to connect
these component to build larger certified systems. Given this,
we seek to embed these models and proofs into a general-
purpose framework where they could interact. We believe
that a synthesis of game semantics, the refinement calculus,
and algebraic effects can provide such a framework.
To combine game semantics and refinement, we replace

the downset completion typically used to construct strategies
from posets of plays. Using the free completely distributive
completion, we construct strategy specifications equipped
with arbitrary angelic and demonic choices and ordered by
a generalization of alternating refinement. This provides a
novel approach to nondeterminism in game semantics.
Connecting algebraic effects and game semantics, we in-

terpret effect signatures as games and define two categories
of effect signatures and strategy specifications. The resulting
models are sufficient to represent the behaviors of a variety
of low-level components, including the certified abstraction
layers used to verify the operating system kernel CertiKOS.

CCS Concepts: • Theory of computation → Logic and
verification; Program specifications; Program verifica-
tion; • Software and its engineering → Formal soft-
ware verification; Functionality; Abstraction, model-
ing and modularity.

Keywords: certified abstraction layers; dual nondetermin-
ism; game semantics; strategy specification; program refine-
ment; interaction specification; algebraic effects
∗Minor revision published by the authors on June 24, 2020

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394799

ACM Reference Format:
Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game
Semantics for Certified Abstraction Layers. In Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’20), July 8–11, 2020, Saarbrücken, Germany. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3373718.3394799

1 Introduction
Certified software [43] is software accompanied by mecha-
nized, machine-checkable proofs of correctness. To construct
a certified program, we must not only write its code in a
given programming language, but also formally specify its
intended behavior and construct, using specialized tools, evi-
dence that the program indeed conforms to the specification.

1.1 Certified systems at scale
The past decade has seen an explosion in the scope and scale
of practical software verification. Researchers have been
able to produce certified compilers [30], program logics [8],
operating system kernels [22, 28], file systems [15] and more,
often introducing new techniques and mathematical models.
In this context, there has been increasing interest in making
these components interoperable and combining them—and
their proofs of correctness—into larger certified systems.
This is exemplified by the DeepSpec project [9], which

seeks to connect various components specified and verified
in the Coq proof assistant. The key idea behind DeepSpec
is to interpret specifications as interfaces between compo-
nents. When a component providing a certain interface has
been verified, client components can rely on this for their
own proofs of correctness. Standardizing this process would
make it possible to construct large-scale certified systems by
assembling off-the-shelf certified components.
To an extent, these principles are already demonstrated

in the structure of the certified C compiler CompCert [30],
where the semantics of intermediate languages serve as inter-
mediate specifications for each compilation pass. The correct-
ness of each pass is established by proving that the behavior
of its target program refines that of its source program. As
passes are composed to obtain the overall C-to-assembly
compiler, the correctness proofs are composed as well to
construct a correctness proof for the whole compiler. The
final theorem does not mention the intermediate programs
or language semantics, so that a user only needs to trust the

https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/3373718.3394799

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

accuracy of the C and assembly semantics, and the soundness
of the proof assistant.
Building on this precedent, the CertiKOS verification ef-

fort [22–24] divided the kernel into several dozen abstraction
layers which were then specified and verified individually.
Layer specifications provide an abstract view of a layer’s
functionality, hiding the procedural details and low-level
data representations involved in its implementation. Client
code can be verified in terms of this abstract view in order
to build higher-level layers. Certified layers with compatible
interfaces can then be chained together in the way passes
of a compiler can be composed when the target language of
one corresponds to the source language of the other.

1.2 Semantic models for verification
While this approach is compelling, there are difficulties asso-
ciatedwith extending it to build larger-scale certified systems
by connecting disparate certified components. A key aspect
enabling composition in CompCert and CertiKOS is the uni-
formity of the models underlying their language semantics
and correctness proofs. By contrast, across projects there
exist a great diversity of semantic models and verification
techniques. This makes it difficult to formulate interface spec-
ifications to connect specific components, let alone devising
a general system to express such interfaces.

Worse yet, this diversity is not simply a historical accident.
The semantic models used in the context of individual verifi-
cation projects are often carefully chosen to make the verifi-
cation task tractable. The semantic model used in CompCert
alone has changed multiple times, addressing new require-
ments and techniques that were introduced alongside new
compiler features and optimizations [31]. Given the difficulty
of verification, preserving this flexibility is essential.
Then, to make it possible to link components verified

using a variety of paradigms, we need to identify a model
expressive enough to embed the semantics, specifications
and correctness proofs of a variety of paradigms.

1.3 General models for system behaviors
Fortunately, there is a wealth of semantics research to draw
from when attempting to design models for this task.

The framework of symmetric monoidal categories, which
allows components to be connected in series (◦) and in paral-
lel (⊗), captures structures found in various kinds of systems
and processes [12], and appears in different forms in many
approaches to logic and programming language semantics.
A particularly expressive instance of this phenomenon

is realized in game semantics [1], an approach to composi-
tional semantics which uses two-player games to model the
interaction between a component and its environment, and
represents the externally observable behavior of the com-
ponent as a strategy in this game. The generality of games
as descriptions of the possible interactions of components

makes this approach broadly applicable, and the typed as-
pect of the resulting models makes it ideal to the task of
describing the behavior of heterogeneous systems.

However, the generality of gamemodels often translates to
a fair amount of complexity, which imposes a high barrier to
entry for practitioners and makes them difficult to formalize
in a proof assistant. While more restricted, the framework
of algebraic effects [40] is sufficient for many modeling tasks,
fits within the well-known monadic approach to effectful
and interactive computations, and can be adapted into a
particularly simple version of game semantics. Along these
lines, interaction trees [46] have been developed for use in
and across several DeepSpec projects.

Finally, while game models have been proposed for a wide
variety of programming languages, there has been compara-
tively less focus on specifications and correctness properties.
By contrast, the general approach of stepwise refinement sug-
gests a uniform treatment of programs, specifications and
their relationships. It has been studied extensively in the
context of predicate transformer semantics [20] and in the
framework known as the refinement calculus [11].

1.4 Contributions
Our central claim is that a synthesis of game semantics, al-
gebraic effects, and the refinement calculus can be used to
construct a hierarchy of semantic models suitable for con-
structing large-scale, heterogeneous certified systems. To
provide evidence for this claim, we outline general tech-
niques which can realize this synthesis and demonstrate
their use in the context of certified abstraction layers:

• We adapt the work of Morris and Tyrrell [35, 36],
which extends the refinement calculus to the level of
terms by using free completely distributive completions
of posets, to investigate dual nondeterminism in the
context of game semantics and construct completely
distributive lattices of strategy specifications, partially
ordered under a form of alternating refinement [7].
• In §3, we define a version of the free monad on an effect
signature which incorporates dual nondeterminism
and refinement. The result can be used to formulate
a theory of certified abstraction layers in which layer
interfaces, layer implementations, and simulation rela-
tions are treated uniformly and compositionally.
• In §4, we outline a more general category of games
and strategy specifications; its object are effect signa-
tures regarded as games and its morphisms specify
well-bracketed strategies. The behavior of certified ab-
straction layers can then be represented canonically,
and reentrant layer interfaces can be modeled.

The model presented in §3 was designed to be simple but
general enough to embed CompCert semantics, certified ab-
straction layers, and interaction trees. The main purpose for

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

the model presented in §4 is then to hide state and charac-
terize certified abstraction layers through their externally
observable interactions only.

Note that rather than providing denotational semantics for
specific programming languages, our models are intended as
a coarse-grained composition “glue” between components
developed and verified in their own languages, each equipped
with their own internal semantics. In this context, themodels’
restriction to first-order computation applies only to cross-
component interactions, and conforms to our interest in
connecting low-level system components.

2 Background and approach
The work presented in this paper draws from a broad range
of existing research. This section summarizes the relevant
aspects of these various lines of work, and outlines how we
combine them to develop refinement-based game semantics.

2.1 Dual nondeterminism and refinement
Correctness properties for imperative programs are often
stated as triples of the form P{C}Q asserting that when the
program C is started in a state which satisfies the predicate
P (the precondition), then the state in which C terminates
will satisfy the predicate Q (the postcondition). For example:

x is odd {x := x ∗ 2} x is even

In the axiomatic approach [26] to programming language
semantics, inference rules corresponding to the different
constructions of the language determine which triples are
valid, and the meaning of a program is identified with the
set of properties P{−}Q which the program satisfies.
Axiomatic semantics can accommodate nondeterminism

in two different ways. In the program C1 ⊓ C2, a demon
will choose which of C1 or C2 is executed. The program
x := 2 ∗ x⊓ x := 0may be executed arbitrarily as x := 2 ∗ x or
x := 0, with no guarantee as to which branch will be chosen.
The demon works against us, so that if we want C1 ⊓C2 to
satisfy a given property, we need to make sure we can deal
with either choice. This corresponds to the inference rule:

P{C1}Q P{C2}Q

P{C1 ⊓C2}Q

Conversely, in the program C1 ⊔ C2, an angel will decide
whetherC1 orC2 is executed. If possible, the angel will make
choices which validate the correctness property. This implies:

P{C1}Q

P{C1 ⊔C2}Q

P{C2}Q

P{C1 ⊔C2}Q

The statement x := x ∗ 2 ⊔ x := 0 is more difficult to inter-
pret than its demonic counterpart, but can be thought of as
a program which magically behaves as x := x ∗ 2 or x := 0
depending on the needs of its user.

Program refinement. Instead of proving program cor-
rectness in one go, stepwise refinement techniques use a more
incremental approach centered on the notion of program re-
finement. A refinement C1 ⊑ C2 means that any correctness
property satisfied by C1 will also be satisfied by C2:

C1 ⊑ C2 := ∀PQ · P{C1}Q ⇒ P{C2}Q

We say that C2 refines C1 or that C1 is refined by C2.
Typically, under such approaches, the language will be

extended with constructions allowing the user to describe
abstract specifications as well as concrete programs. Then
the goal is to establish a sequence of refinements C1 ⊑ · · · ⊑

Cn to show that a program Cn involving only executable
constructions correctly implements a specificationC1, which
may be stated in much more abstract terms.

If the language is sufficiently expressive, then a correctness
property P{−}Q can itself be encoded [34] as a specification
statement ⟨P,Q⟩ such that:

P{C}Q ⇔ ⟨P,Q⟩ ⊑ C .

In the context of refinement, the properties associated with
demonic and angelic choice generalize as:

C ⊑ C1 ∧ C ⊑ C2 ⇒ C ⊑ C1 ⊓C2

C ⊑ C1 ∨ C ⊑ C2 ⇒ C ⊑ C1 ⊔C2

Given the symmetry between the demon and angel, it is then
natural to interpret demonic and angelic choices respectively
as meets and joins of the refinement ordering.
Until this point, we have discussed demonic (⊓) and an-

gelic (⊔) choices as implementation constructs (appearing to
the right of ⊑), taking the point of view of a client seeking
to use the program to achieve a certain goal. However, in
this work we use them primarily as specification constructs
(appearing to the left of ⊑), and are interested in what it
means for a system to implement them. As a specification,
C1 ⊓ C2 allows the system to refine either one of C1 or C2,
while C1 ⊔C2 requires it to refine both of them:

C1 ⊑ C ∨ C2 ⊑ C ⇒ C1 ⊓C2 ⊑ C

C1 ⊑ C ∧ C2 ⊑ C ⇒ C1 ⊔C2 ⊑ C

In other words, demonic choices give us more implementa-
tion freedom, whereas angelic choices make a specification
stronger and more difficult to implement. Therefore we can
think of demonic choices as choices of the system, and think
of angelic choices as choices of the environment.

The refinement calculus. These basic ingredients have
been studied systematically in the refinement calculus, dat-
ing back to Ralph-Johan Back’s 1978 PhD thesis [10]. In
its modern incarnation [11], the refinement calculus sub-
sumes programs and specifications with contracts featuring
unbounded angelic and demonic choices.
However, the refinement calculus only applies to imper-

ative programs with no side-effects beyond changes to the
global state. Recent research has attempted to extend the

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

paradigm to a broader setting, and the present work can be
understood as a step in this direction as well.

Dually nondeterministic functions. Morris and Tyrrell
were able to extend the lattice-theoretic approach used in the
refinement calculus to functional programming [35, 36, 45]:
if types are interpreted as posets, dual nondeterminism can
be added at the type level using free completely distributive
completions. This allows dual nondeterminism to be used in
a variety of new contexts.

Definition 2.1. A completely distributive lattice L is a free
completely distributive completion of a poset C if there is a
monotonic function ϕ : C → L such that for any completely
distributive lattice M and monotonic function f : C → M ,
there exists a unique complete homomorphism f ∗ϕ : L→ M

such that f ∗ϕ ◦ ϕ = f :

C L

M

ϕ

f
f ∗ϕ

A free completely distributive completion of a poset always
exists and it is unique up to isomorphism. We write FCD(C)
for the free completely distributive completion of C .

Morris [35] shows that the free completely distributive
completion of (A, ≤) can be constructed as one of:

FCD(A, ≤) := DU(A, ≤) FCD(A, ≤) := UD(A, ≤)
ϕ(a) := ↓↑a ϕ(a) := ↑↓a .

In the expressions above, D andU are themselves comple-
tions. A downset of a poset (A, ≤) is a subset x ⊆ A satisfying:

∀a,b ∈ A · a ≤ b ∧ b ∈ x ⇒ a ∈ x .

Unions and intersections preserve this property, giving rise
to the downset latticeD(A, ≤), which consists of all downsets
of (A, ≤), ordered by set inclusion (⊆) with unions as joins
and intersections as meets. The dual upset lattice U(A, ≤) is
ordered by set containment (⊇) with intersections as joins
and unions as meets.

Categorically speaking, FCD : Poset→ CDLat is the left
adjoint to the forgetful functor U : CDLat → Poset from
the category CDLat of completely distributive lattices and
complete homomorphisms to the category Poset of partially
ordered sets and monotonic functions. As such,U ◦ FCD is
a monad over Poset, and can be used to model dual nonde-
terminism as an effect. In the remainder of this paper, we
identify FCD with the monadU ◦ FCD, and we refer to the
functionU (f ∗ϕ) as the FCD extension of f .

Computationally, the FCDmonad can be used to interpret
dual nondeterminism as an effect. As usual, ϕ(a) ∈ FCD(a)
corresponds to a computation which terminates immediately
with the outcome a ∈ A. For a computation x ∈ FCD(A) and
for f : A → FCD(B), the computation f ∗ϕ (x) ∈ FCD(B)

replaces any outcome a of x with the computation f (a). We
will use the notation a ← x ; f (a) for f ∗ϕ (x), or simply x ;y
when f is constant with f (a) = y.

A computation x ∈ FCD(a) can be understood as a struc-
tured collection of possible outcomes. More precisely, each
element x ∈ FCD(A) can be written as x =

d
i ∈I

⊔
j ∈Ji ϕ(ai j)

where the index i ∈ I ranges over possible demonic choices,
the index j ∈ Ji ranges over possible angelic choices, and
ai j ∈ A is the corresponding outcome of the computation.
Note that f ∗ϕ (x) =

d
i ∈I

⊔
j ∈Ji f (ai j).

The algebraic properties of lattices underlie the model’s
insensitivity to branching. Complete distributivity:

l

i ∈I

⊔
j ∈Ji

xi , j =
⊔

f ∈(
∏
i Ji)

l

i ∈I

xi ,fi

further allows angelic and demonic choices to commute, and
the status of f ∗ϕ as a complete homomorphism enables the
following properties:

a ←

(⊔
i ∈I

xi

)
;M[a] =

⊔
i ∈I

(a ← xi ;M[a])

a ←

(
l

i ∈I

xi

)
;M[a] =

l

i ∈I

(a ← xi ;M[a])

a ← x ;b ← y;M[a,b] = b ← y;a ← x ;M[a,b]

Finally, the least element ⊥ :=
⊔
�, traditionally called

abort, merits some discussion. As a specification construct,
it places no constraint on the implementation (it is refined
by every element). As an implementation construct, we use
it indiscriminately to interpret failure, silent divergence, and
any other behavior which we want to exclude (it refines
only itself). The assertion {P} ∈ FCD(1) of a proposition
P evaluates to the unit value ϕ(∗) when the proposition is
true and to ⊥ otherwise. We will use it to formulate guards
blocking a subset of angelic choices.

2.2 Game semantics
Game semantics [2, 13, 27] is an approach to compositional
semantics which interprets types as two-player games be-
tween a program component (the system) and the context in
which it appears (the environment). Terms of a given type are
then interpreted as strategies for the corresponding game,
specifying for each position in the game the next action to
be taken by the system.

For example, in a simple game semantics resembling that
of Idealized Algol [3], sequences of actions corresponding to
the execution of x := 2 ∗ x could have the form:

run · rdx · n · wrx[2n] · ok · done (n ∈ N)

The moves of the system have been underlined. The environ-
ment initiates the execution with the move run. The system
move rdx requests the value of the variable x, communicated
in response by the environment move n. The system move

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

wrx(n) requests storing the value n into the variable x, and
is acknowledged by the environment move ok. Finally, the
system move done expresses termination.

Traditional strategy models. The plays of a game are
sequences of moves; they identify a position in the game and
describe the succession of actions that led to it. Most game
models of sequential computation use alternating plays, in
which the system and environment each contribute every
other move. It is also common to require the environment
to play first and to restrict plays to even lengths, so that
they specify which action the system took in response to the
latest environment move. We write PG for the set of plays of
the game G, partially ordered by the prefix relation ⊑.
Traditionally [4], strategies are defined as prefix-closed

sets of plays, so that strategies σ ∈ SG for the game G are
downsets of PG satisfying certain requirements:

SG ⊆ D(PG , ⊑)

A play s ∈ PG can be promoted to a strategy ↓s ∈ D(PG , ⊑):

↓s := {t ∈ PG | t ⊑ s}

Set inclusion corresponds to strategy refinement, and the
downset completion augments PG with angelic choices.
Angelic nondeterminism allows us to range over all pos-

sible choices of the environment and record the resulting
plays. For instance, the strategy for x := 2 ∗ x would be:

σ :=
⋃
n∈N

↓(run · rdx · n · wrx[2n] · ok · done)

= { ϵ,
run · rdx,
run · rdx · n · wrx[2n],
run · rdx · n · wrx[2n] · ok · done | n ∈ N}

Note that this strategy admits refinements containing much
more angelic nondeterminism, including with respect to
moves of the system. For instance:

σ ⊆
⋃
n∈N

⋃
−1≤δ ≤1

↓(run · rdx · n · wrx[2n + δ] · ok · done)

These refinements do not correspond to interpretations of
concrete programs, and in gamemodels which seek to achieve
definability they are usually excluded. In our context, re-
taining them is algebraically important, and they can in fact
appear as intermediate terms in some applications. In the con-
struction above, although δ appears in a system move, it is
still associated with an angelic choice. This can be interpreted
as a choice of the environment which is not directly observed
(perhaps as a result of abstraction), but which nonetheless
influences the behavior of the system.

This is quite different from allowing the system to choose
an answer in the interval [2n − 1, 2n + 1]. The model and
refinement lattice which we have presented so far are insuf-
ficient to express such a specification, because the downsets

do not add enough meets, forcing the would-be specification
to become much coarser:

σ ′ :=
⋃
n∈N

⋂
−1≤δ ≤1

↓(run · rdx · n · wrx[2n + δ] · ok · done)

= {ϵ, run · rdx | n ∈ N} .

We will remedy this by using a richer completion.

Dually nondeterministic strategies. Our approach to
demonic nondeterminism in game semantics will be to sub-
stitute FCD forD in the construction of strategies presented
earlier. The more permissive strategy specification σ ′ which
we attempted to construct above can then be expressed as:

σ ′ :=
⊔
n∈N

l

−1≤δ ≤1

ϕ
(
run · rdx · n · wrx[2n + δ] · ok · done

)
Because of the properties of FCD, the strategy specification
σ ′ will retain not only angelic choices, but demonic choices
as well, expressing possible behaviors of the system.

For the construction FCD := UD, strategy specifications
correspond to sets of traditional strategies, ordered by con-
tainment (⊇). This outer set ranges over demonic choices.
Writing sn,δ := run · rdx · n · wrx[2n + δ] · ok · done, the
strategy specification σ ′ will be encoded as:

σ ′ = {σ ∈ D(PG) | ∀n ∈ N · ∃δ ∈ [−1, 1] · sn,δ ∈ σ } .
Upward closure ensures that a strategy specification which
contains a strategy σ contains all of its refinements as well.
For instance, the only strategy specification containing the
completely undefined strategy� is the maximally permissive
strategy specification ⊥ = D(PG).

2.3 Algebraic effects
The framework of algebraic effects [40] models computations
as terms in an algebra whose operations represent effects:
a term m(x1, . . . xn) represents a computation which first
triggers an effectm, then continues as a computation derived
from the subcomputations x1, . . . xn . For example, the term:

readbit(print[”Hello”](done), print[”World”](done))

could denote a computation which first reads one bit of
information, then depending on the result causes the words
“Hello” or “World” to be output, and finally terminates.

Note that somewhat surprisingly, the arguments of opera-
tions correspond to the possible outcomes of the associated
effect. For instance the readbit operation takes two argu-
ments. Moreover, effects such as print which take parame-
ters are represented by families of operations indexed by the
parameters’ values, so that there is a print[s] operation for
every s ∈ string.

Under this approach, effects can be described as algebraic
theories: a signature describes the set of operations together
with their arities, and a set of equations describes their be-
haviors by specifying which computations are equivalent.
The example above uses a signature with the operations

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

done of arity 0, readbit of arity 2, and a family of operations
(print[s])s ∈string of arity 1. An equation for this signature is:

print[s](print[t](x)) = print[st](x) ,

which indicates that printing the string s followed by printing
the string t is equivalent to printing the string st in one go. In
this work, we use effect signatures to represent the possible
external interactions of a computation, but we will not use
equational theories. We will however make it possible to
interpret effects into another signature, modeling a limited
form of effect handlers [41].

Definition 2.2. An effect signature is a set E of operations
together with a mapping ar, which assigns to each e ∈ E
a set ar(e) called the arity of e . We will use the notation
E = {e1 : ar(e1), e2 : ar(e2), . . .} to describe effect signatures.

Note that in this definition, arities are sets rather than
natural numbers. This allows the representation of effects
with a potentially infinite number of outcomes. The examples
above use effects from the following signature:

Eio := {readbit : 2, print[s] : 1, done : � | s ∈ string}

The most direct way to interpret an effect signature is the
algebraic point of view, in which it induces a set of terms
built out of the signature’s operations.
An effect signature can also be used for describing the

interface of a monad T , where each effect e ∈ E corresponds
to a computation of type T (ar(e)). Presented as a monadic
expression of type T (�), the example above corresponds to:

b ← readbit ; print[sb] ; done

where s0 = ”Hello” and s1 = ”World”. Monads which offer
this structure include the free monad on the signature E,
which leaves effects entirely uninterpreted; roughly, its com-
putations of type A correspond to terms over the signature
E ⊎ {v : � | v ∈ A}. The interaction specification monad IE
presented in §3 is a version of the free monad which com-
bines the dual nondeterminism of FCD with uninterpreted
effects taken in the signature E.
Finally, an effect signature can also be seen as a particu-

larly simple game, in which the proponent chooses a question
m ∈ E and the opponent responds with an answer n ∈ ar(m).
Then the terms induced by the signature are strategies for
an iterated version of this game. Indeed, the abstract syntax
tree of our example term can directly be read as the strategy:

readbit

print[”Hello”] print[”World”]

done done

0 1

∗ ∗

where we interpret node labels as moves of the system, and
edge labels as moves of the environment.

2.4 Certified abstraction layers
To demonstrate the applicability of our results, we will use
them to construct increasingly expressive theories of certified
abstraction layers. As described in Gu et al. [22], a certified
abstraction layer consists of a layer implementation together
with two layer interfaces: the underlay provides specifica-
tions for the primitives available to the layer implementation;
the overlay provides specifications for the procedures which
the layer implements. A layer M implementing the over-
lay interface L2 on top of the underlay interface L1 can be
depicted as follows:

L2
M

L1

A layer interface L has three components. First, a signature
enumerates primitive operations together with their types,
given as op : A → B where A and B are sets. In terms of
Def. 2.2, this corresponds to a family {op[a] : B | a ∈ A}.
Second, the set S contains the abstract states of the layer in-
terface. Finally, for each primitive op : A→ B, a specification
is given as a function:

L.op : A × S → P1(B × S) .

Throughout the paper, we will use v@k ∈ V × S to denote a
pair containing the value v ∈ V and the state k ∈ S . In the
type of L.op above, P1 corresponds to the maybe monad:

P1(A) := {x ⊆ A : |x | ≤ 1} ,

where the empty set � ∈ P1(A) serves a purpose similar to
the one discussed for ⊥ at the end of §2.1.
As a running example, we will use the certified layer de-

picted in Fig. 1, which implements a bounded queue with
at most N elements using a circular buffer. The underlay in-
terface Lrb contains an array f ∈ V N with N values of type
V and two counters which will take values in the interval
0 ≤ c1, c2 < N . The array can be accessed through the primi-
tives get and set; the primitives inc1 and inc2 increment the
corresponding counter and return the counter’s old value.

The overlayLbq features two primitives enq and deqwhich
respectively add a new element to the queue and remove the
oldest element. If we attempt to add an element which would
overflow the queue’s capacity N , or remove an element from
an empty queue, the result is � (i.e., the operation aborts).

The layer implementationMbq stores the queue’s elements
into the array, between the indices given by the counters’
values. This is expressed by the simulation relation R, which
explains how overlay states are realized byMbq in terms of
underlay states. The code of Mbq can be interpreted in the
monad Srb → P

1(− × Srb), with calls to primitives of Lrb
replaced by their specifications. We will write Mbq[Lrb] to
denote the result. Correctness is proved by showing for each
operation op ∈ {enq(v), deq(∗) | v ∈ V } the simulation:

Lbq.op [R → P≤(= × R)] Mbq[Lrb].op , (1)

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Lbq Sbq := V ∗

enq : V → 1 Lbq.enq(v)@®q := {∗@®qv | | ®q | < N }

deq : 1→ V Lbq.deq(∗)@®q := {v@®p | ®q = v ®p}

Mbq R ⊆ Sbq × Srb

Mbq.enq(v) := i ← inc2; set(i,v) ®q R (f , c1, c2) ⇔ (c1 ≤ c2 < N ∧ ®q = fc1 · · · fc2−1) ∨

Mbq.deq(∗) := i ← inc1; get(i) (c2 ≤ c1 < N ∧ ®q = fc1 · · · fN−1 f0 · · · fc2−1)

Lrb Srb := V N × N × N

set : N ×V → 1 Lrb.set(i,v)@(f , c1, c2) := {∗@(f ′, c1, c2) | i < N ∧ f ′ = f [i := v]}
get : N→ V Lrb.get(i)@(f , c1, c2) := { fi@(f , c1, c2) | i < N }

inc1 : 1→ N Lrb.inc1@(f , c1, c2) := {c1@(f , c ′1, c2) | c
′
1 = (c1 + 1)modN }

inc2 : 1→ N Lrb.inc2@(f , c1, c2) := {c2@(f , c1, c
′
2) | c

′
2 = (c2 + 1)modN }

Figure 1. A certified abstraction layer Lrb ⊢R Mbq : Lbq implementing a bounded queue of size N using a ring buffer. The
left-hand side of the figure shows the signatures of the overlay and underlay interfaces, and the code associated with the layer.
The right-hand side shows primitive specifications and the simulation relation used by the correctness proof.

where the relators→, ×, P≤ are defined by:

f [R1 → R2] д ⇔ ∀xy · x R1 y ⇒ f (x) R2 д(y)
x [R1 × R2] y ⇔ π1(x) R1 π1(y) ∧ π2(x) R2 π2(y)
s P≤(R) t ⇔ ∀x ∈ s · ∃y ∈ t · x R y .

We will write Lrb ⊢R Mbq : Lbq to express that condition (1)
holds for each operation op in the Lbq layer interface.

3 The interaction specification monad
We begin our formal development by defining the interaction
specification monad, a variant of the free monad on an effect
signature which incorporates dual nondeterminism.

3.1 Overview
Given an effect signature E, we construct a prefix-ordered
set of plays P̄E (A) corresponding to the possible interactions
between a computation with effects in E and its environment,
including the computation’s ultimate outcome in A. The
interaction specification monad IE (A) is then obtained as the
free completely distributive completion of the poset P̄E (A).

For each effect e ∈ E, the interaction specification monad
has an operation IeE ∈ IE (ar(e)) which triggers an instance
of e and returns its outcome. Given a second effect signature
F , a family (f m)m∈F of computations f m ∈ IE (ar(m)) can be
used to interpret the effects of F into the signature E. This is
achieved by a substitution operator r[f], which transforms a
computation x ∈ IF (A) into the computation x[f] ∈ IE (A),
where each occurrence of an effectm ∈ F in x is replaced by
the corresponding computation f m .
Effect signatures are used as simple games, and a family
(f m)m∈F as described above can be interpreted as a certain

kind of strategy for the game !E ⊸ F . We use this approach
to define a first category of games and strategy specifications
Gib⊑ , where (IeE)e ∈E is the identity morphism for E and the
substitution operator is used to define composition.

3.2 Plays
We first introduce the partially ordered sets of plays which
we use to construct the interaction specification monad.
Since we intend to describe active computations, we use
odd-length plays which start with system moves, by contrast
with the more common approach presented in §2.2.

Definition 3.1. The set P̄E (A) of interactions for an effect
signature E and a set of values A is defined inductively:

s ∈ P̄E (A) ::= v | m | mns ,

where v ∈ A,m ∈ E and n ∈ ar(m). The set P̄E (A) is ordered
by the prefix relation ⊑ ⊆ P̄E (A) × P̄E (A), defined as the
smallest relation satisfying:

v ⊑ v , m ⊑m , m ⊑mnt ,
s ⊑ t

mns ⊑mnt .

A play corresponds to a finite observation of an inter-
action between the system and the environment. At any
point in such an interaction, the system can terminate the
interaction with a given value (v), or it can trigger an effect
m ∈ E and wait to be resumed by an answer n ∈ ar(m) of
the environment (mns). A play which concludes before the
environment answers a query from the system (m) denotes
that no information has been observed after that point. It can
be refined by a longer observation of an interaction which
begin with the same sequence of questions and answers.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

3.3 Interaction specifications
We define our monad as the free completely distributive
completion of the corresponding poset of plays.
For the sake of conciseness and clarity, we will use the

order embedding associated with FCD implicitly, so that an
element of a poset s ∈ P can also be regarded as an element
of its completion s ∈ FCD(P). Likewise, for a completely
distributive latticeM , we can implicitly promote amonotonic
function f : P → M to its extension f : FCD(P) → M .
These conventions are at work in the following definition.

Definition 3.2. The interaction specification monad for an
effect signature E maps a set A to the free completely dis-
tributive completion of the corresponding poset of plays:

IE (A) := FCD(P̄E (A))

An element x ∈ IE (A) is called an interaction specification.
The monad’s action on a function f : A→ B replaces the

values in an interaction specification with their image by f :

IE (f)(v) := f (v)

IE (f)(m) :=m
IE (f)(mns) :=mn IE (f)(s) .

The monad’s unit ηEA : A → IE (A) is the embedding of a
single play consisting only of the given value:

ηEA(v) := v

Finally, the multiplication µEA : IE (IE (A)) → IE (A) carries
out the outer computation and sequences it with any com-
putation it evaluates to:

µEA(x) := x

µEA(m) :=m

µEA(mns) :=m ⊔mnµEA(s) .

The most subtle aspect of Def. 3.2 is the case for µEA(mns),
which includesm as well asmnµEA(s). This is both to ensure
that the effects of the first computation are preserved when
the second computation is⊥, and to ensure the monotonicity
of the underlying function used to define µEA. Consider for
examplem ⊑ mn⊥ ∈ P̄E (IE (A)). Since µEA(⊥) = ⊥ and the
FCD extension of the function s 7→ mns preserves ⊥, it is
not the case thatm ⊑mnµEA(⊥).

As usual, the Kleisli extension of a function f : A→ IE (B)
is the function f ∗ = µEB ◦ IE (f). We extend the notations
used for FCD to the monad IE .

3.4 Interaction primitives
The operations of an effect signature E can be promoted to
interaction specifications of IE as follows.

Definition 3.3 (Interaction primitive). For an effect signa-
ture E and an operationm ∈ E, the interaction specification

ImE ∈ IE (ar(m)) is defined as:

ImE :=
⊔

n∈ar(m)

mnn

Note that in the playmnn, the first occurrence of n is the
environment’s answer, whereas the second occurrence is the
value returned by ImE .

To model effect handling for a signature F , we use a family
of interaction specifications (f m)m∈F to provide an interpre-
tation f m ∈ IE (ar(m)) of each effect m ∈ F in terms of
another effect signature E. This allows us to transform an
interaction specification x ∈ IF (A) into an interaction speci-
fication x[f] ∈ IE (A), defined as follows. The constructions
⊥ and {P} were discussed in §2.1; they carry similar mean-
ings in the context of the interaction specification monad.

Definition 3.4 (Interaction substitution). Given the effect
signatures E, F and the set A, for an interaction specification
x ∈ IF (A) and a family (f m)m∈F with f m ∈ IE (ar(m)), the
interaction substitution x[f] ∈ IE (A) is defined by:

v[f] := v
m[f] := r ← f m ;⊥

mns[f] := r ← f m ; {r = n}; s[f] .

The outcome of the interaction specification is left un-
changed, but effects are replaced by their interpretation.
Whenever that interpretation produces an outcome r , the
substitution process resumes with the remainder of any
matching plays of the original computation.

3.5 Categorical structure
As presented so far, the interaction specification monad can
be seen as an extension of the refinement calculus able to
model effectful computations for a given signature. We now
shift our point of view to game semantics and show how
interaction substitutions can be used to define a simple cate-
gory of games and strategies featuring dual nondeterminism
and alternating refinement.

Definition 3.5 (Morphisms). Consider the effect signatures
E, F andG . We will write f : E → F whenever (f m)m∈F is a
family of interactive computations such that f m ∈ IE (ar(m)).
For f : E → F and д : F → G, we define д ◦ f : E → G as:

(д ◦ f)m = дm[f] .

The completely distributive lattice structure of IF (−) can
be extended pointwise to morphisms, so that for a family
(fi)i ∈I with fi : E → F , we can define

⊔
i ∈I fi : E → F andd

i ∈I fi : E → F . For f ,д : E → F we define refinement as:

f ⊑ д ⇔ ∀m ∈ F · f m ⊑ дm .

A morphism f : E → F can be interpreted as a well-
bracketed strategy for the game !E ⊸ F . In this game, the
environment first plays a movem ∈ F . The system can then

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

ask a series of questions q1, . . .qk ∈ E to which the environ-
ment will reply with answers ri ∈ ar(qi), and finally produce
an answer n ∈ ar(m) to the environment’s initial questionm.
The plays of !E ⊸ F are restricted to a single top-level ques-
tionm. In addition, the well-bracketing requirement imposes
that at any point, only the most recent pending question
may be answered.
Compared with the usual notion of strategy, our model

introduces arbitrary demonic choices and relaxes constraints
over angelic choices. The definition of д ◦ f given above oth-
erwise corresponds to the traditional definition of strategy
composition. The identity strategy is given by IE : E → E.

Lemma 3.6. Consider the effect signatures E, F ,G,H and the
morphisms f : E → F , д : F → G and h : G → H . The
following properties hold:

IF ◦ f = f ◦ IE = f

h ◦ (д ◦ f) = (h ◦ д) ◦ f

Composition preserves all extrema on the left, and all non-
empty extrema on the right.

Proof. Using properties of FCD and inductions on plays. □

Having established the relevant properties, we can now
define our first category of games and strategies.

Definition 3.7. The category Gib⊑ has effect signatures as
objects. Morphisms, identities and composition have been
defined above. The hom-sets Gib⊑ (E, F) are completely dis-
tributive lattices, with composition preserving all extrema
on the left, and all non-empty extrema on the right.

3.6 Products
Effect signatures can be combined in the following way.

Definition 3.8. We define the effect signature 1 := �. For a
family of effect signatures (Ei)i ∈I , we define:⊗

i

Ei := {(i, e) : ar(e) | i ∈ I , e ∈ Ei }

For example, the signature Eio above is equivalent to the
following composite one:
{readbit : 2} ⊗ {print[s] : 1 | s ∈ string} ⊗ {done : �}
The construction ⊗ gives products in the category Gib⊑ , as

demonstrated below.

Theorem 3.9. The category Gib⊑ has all products. Objects are
given by

⊗
i ∈I Ei and projection arrows are given for each

i ∈ I by the morphism:

πi :
⊗
j ∈I

Ej → Ei πmi := (i,m) .

Proof. We need to show that for an effect signature X and a
collections of morphisms (fi)i ∈I with fi : X → Ei , there is a
unique ⟨fi ⟩i ∈I : X →

⊗
i ∈I Ei such that for all i ∈ I :

fi = πi ◦ ⟨fj ⟩j ∈I .

Note that for x : X →
⊗

i ∈I Ei , i ∈ I andm ∈ Ei , we have:

(πi ◦ x)
m = πmi [x] = (i,m)[x] = x (i ,m)

Hence, ⟨fi ⟩i ∈I is uniquely defined as:

⟨fi ⟩
(j ,m)
i ∈I := f mj .

□

3.7 Certified abstraction layers
Certified abstraction layers can be embedded into the cate-
gory Gib⊑ as follows.
The signature of a layer interface or implementation can

be encoded as an effect signature. For example:

Ebq := {enq[v] : 1, deq : V | v ∈ V }
Erb := {set[i,v] :1, get[i] :V , inc1 :N, inc2 :N | i ∈ N,v ∈ V }

A layer implementation M with an underlay signature E
and an overlay signature F can then be interpreted as a
morphism JMK : E → F in a straightforward manner, by
replacing underlay operations used in the definition of M
with the corresponding interaction primitives:

JMKm := (M .m)[e := IeE]e ∈E

Interfaces. In order to handle the layer’s abstract data,
we can extend signatures with state in the following way:

E@S := {m@k : ar(m) × S | m ∈ E,k ∈ S}

A layer interface L with a signature E and states in S can be
interpreted as a morphism JLK : 1→ E@S almost directly,
mapping � to ⊥ in outcomes of primitive specifications:

JLKm@k :=
⊔

L.m@k

Keeping state. For a morphism f : E → F , we construct
f @S : E@S → F@S which keeps updating a state k ∈ S
as it performs effects in E@S , then adjoins the final state
to any answer returned by f . For a set A, we first define
−#− : P̄E (A) × S → IE@S (A × S):

v#k := v@k

m#k :=m@k

mns#k :=
⊔
k ′∈S

m@k n@k ′ s#k ′ ,

and extend it to morphisms as (f @S)m@k := f m#k . Then in
particular, running a layer implementation JMK : E → F on
top of a layer interface JLK : 1→ E@S yields the morphism
JMK@S ◦ JLK : 1→ F@S .

Simulation relations. Themost interesting aspect of our
embedding is the representation of simulation relations. We
will see that dual nondeterminism allows us to represent
them as regular morphisms.

Recall the definition of the judgment L1 ⊢R M : L2, which
means that a layer implementationM correctly implements
L2 on top of L1 through a simulation relation R ⊆ S2 × S1. If

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

wewrite L′1 := JMK@S1◦JL1K for the layer interface obtained
by interpretingM on top of L1, then:

L1 ⊢R M : L2 ⇔ ∀m ∈ E2 · Lm2 [R → P≤(= × R)] L′1
m

We will use the families of morphisms R∗E : E@S2 → E@S1
and RE∗ : E@S1 → E@S2 to encode this judgment:

(R∗E)
m@k1 :=

⊔
k2∈R−1(k1)

n@k ′2 ← Im@k2
E@S2

;
l

k ′1∈R(k
′
2)

n@k ′1

(RE∗)
m@k2 :=

l

k1∈R(k2)

n@k ′1 ← Im@k1
E@S1

;
⊔

k ′2∈R
−1(k ′1)

n@k ′2

They yield two equivalent ways to encode layer correctness
as refinement properties.
In the first case, R∗E is intended to translate a high-level

specification σ which uses overlay states k2,k
′
2 ∈ S2 into a

low-level specification R∗E ◦ σ which uses underlay states
k1,k

′
1 ∈ S1. The client calls R∗E with an underlay state k1, with

the expectation that if there is any corresponding overlay
state, then R∗E ◦ σ will behave accordingly (it is angelic with
respect to its choice of k2). On the other hand, R∗E ◦ σ is free
to choose any underlay representation k ′1 for the outcome
k ′2 produced by σ , and the client must be ready to accept it
(it is demonic with respect to its choice of k ′1).

In the second case, RE∗ ◦ τ is the strongest high-level spec-
ification which a low-level component τ implements with
respect to R. For an overlay state k2 ∈ S2, τ may behave
in various ways depending on the corresponding underlay
state k1 ∈ S1 it is invoked with, and so the specification must
allow them using demonic choice. On the other hand, when
τ returns with a new underlay state k ′1, the environment is
free to choose how to interpret it as an overlay state k ′2.

Theorem 3.10. For σ := JL2K and τ := JMK@S1 ◦ JL1K:

R∗E2
◦ σ ⊑ τ ⇔ L1 ⊢R M : L2 ⇔ σ ⊑ RE2

∗ ◦ τ .

Proof. The proof is straightforward but requires Thm. 5.3
from Morris and Tyrrell [36]. □

4 Stateful and reentrant strategies
We now sketch a more general model allowing strategies
to retain state across different activations. We explain how
the new model Gb⊑ can embed the morphisms of Gib⊑ , and
how it can be used to characterize certified abstraction layers
independently of the states used in their description.

4.1 Overview
As discussed in §3.5, the morphisms of Gib⊑ (E, F) correspond
to the well-bracketed strategies for the game !E ⊸ F . As
such, they can be promoted to well-bracketed strategies for
the more general game !E ⊸ !F , which allows the environ-
ment to ask multiple question of F in a row, and to ask nested
questions whenever it is in control.
More precisely, strategies promoted in this way corre-

spond to the innocent well-bracketed strategies for !E ⊸ !F ,

meaning that they will behave in the same way in response
to the same question, regardless of the history of the compu-
tation. The model we introduce in this section relaxes this
constraint, allowing strategies to maintain internal state.

After outlining the construction of a new category Gb⊑ of
games and strategies (§4.2–§4.5), we define an embedding
of Gib⊑ into Gb⊑ (§4.6), and show how the states used by a
strategy σ : E@S → F@S can be internalized and hidden
from its interactions (§4.7).

4.2 Games
To facilitate reasoning, and make it easier to describe opera-
tors on strategies in a systematic way, we describe games as
a specific kind of graph where vertices represent players and
edges determine which questions can be asked by one player
to another. Generalizing from effect signatures, questions
are assigned an arity which gives the type of the answer.

Definition 4.1. A game signature Γ is a set of players with
a distinguished element O, together with an effect signature
Γ(u,v) for all u,v ∈ Γ. The operationsm ∈ Γ(u,v) are called
the questions of u to v , and the elements n ∈ ar(m) are called
answers to the questionm.

We depict game signatures as directed graphs whose ver-
tices are the players and whose edges are labeled by the
corresponding effect signature. Missing edges correspond to
the empty signature �. For example, the game !E ⊸ !F is
generated by the game signature:

[E, F] = OP

E

F

When we consider the ways in which questions propagate
through a game signature, the distinguished player O serves
the role of both a source and sink. As such, it is visually
useful to depict O as two nodes, one capturing the incoming
edges of O, and one capturing its outgoing edges. For exam-
ple, the following game signature generates the interaction
sequences used in the definition of strategy composition:

[E, F ,G] = OP2P1O
GFE

As another example of a game signature, a situation where
σ1 : E1 → F1 andσ2 : E2 → F2 interact with the environment
independently of one another can be described as:

[E1, F1] ∨ [E2, F2] = OO

P1

P2

F1E1

F2E2

The signature above will be used to compute tensor products
of strategies. These constructions generalize as follows.

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Definition 4.2 (Constructions on game signatures). For a
collection of effect signature (Ei)1≤i≤n and an effect signa-
ture F , the game signature [E1, . . . , En, F] has the players
O, P1, . . . , Pn and the following edges:

[E1, . . . , En, F] := O P1 . . . Pn O
E1 E2 En F

For a collection of game signatures (Γi)i ∈I , the wedge sum∨
i ∈I Γi has the players:

{O} ∪ {(i,p) | i ∈ I ∧ p ∈ Γi \ {O}}

For i ∈ I and p ∈ Γi , the corresponding player in
∨

j ∈I Γj is:

ιi (p) :=

{
O if p = O
(i,p) otherwise.

Then for each questionm : u → v in Γi , the wedge sum has
a corresponding question ιi (m) : ιi (u) → ιi (v).

4.3 Plays and strategies
The well-bracketing requirement enforces a kind of stack
discipline on the succession of questions and answers. A well-
bracketed play can be interpreted as an activation tree, where
questions are understood as function calls and answers are
understood as the corresponding calls returning. At any
point in a play over a signature Γ, its possible evolutions are
characterized by the stack of pending questions.

Definition 4.3. For a game signature Γ and a player p ∈ Γ,
a p-stack over Γ is a path:

O = p0
m1
−−→ p1

m2
−−→ · · ·

mn
−−→ pn = p

where pi ∈ Γ andmi ∈ Γ(pi−1,pi). We will write this path as
κ =m′1 · · ·m

′
n : O↠ p ∈ Γ.

Such stacks can in turn be arranged in a graph Γ̂ over
which the game associated with Γ will be played.

Definition 4.4 (Strategy specifications). For a signature Γ,
the graph Γ̂ is defined as follows. The vertices of Γ̂ are pairs
(u,κ) in which u ∈ Γ and κ is a u-stack. For each question
m ∈ Γ(u,v) and stack κ : O↠ u, there is an edge:

m : (u,κ) → (v,κm) ∈ Γ̂ .

In addition, for each answer n ∈ ar(m), there is an edge:

n : (v,κm) → (u,κ) ∈ Γ̂ .

The plays over Γ are paths of type (O, ϵ) ↠ (O,κ) ∈ Γ̂,
where κ : O ↠ O ∈ Γ is a stack. We will write P Γ for the
poset of plays over Γ under the prefix ordering. The strategy
specifications for Γ are given by the completion:

S Γ := FCD(P Γ) .

4.4 Operations on strategies
Definition 4.5. A transformation from the game signature
Γ1 to the game signature Γ2 associates to each player p ∈ Γ1
a player f (p) ∈ Γ2 with f (O) = O, and to each question
m ∈ Γ1(u,v) a path of questions in Γ2:

f (u) = p0
m′1
−−→ p1

m′2
−−→ · · ·

m′n
−−→ pn = f (v) ,

written as f (m) =m′1m
′
2 · · ·m

′
n : f (u)↠ f (v), and such that

ar(m′1) = · · · = ar(m′n) = ar(m). We extend f itself to the
paths in Γ1 by taking the image ofm1 · · ·mn : u ↠ v to be:

f (m1 · · ·mn) := f (m1) · · · f (mn) : f (u)↠ f (v) .

Game signatures and transformations form a category.

In other words, a transformation is a structure-preserving
map on paths. Transformations can be extended to plays.

Definition 4.6 (Action on plays). A transformation f :
Γ1 → Γ2 induces a monotonic function P f : P Γ1 → P Γ2
as follows. Form ∈ Γ(u,v) and κ : O↠ u, the image of the
movem : (u,κ) → (v,κm) is the path:

f (m) : (f (u), f (κ))↠ (f (v), f (κ)f (m)) .

For n ∈ ar(m), the image of n : (v,κm) → (u,κ) is the path:

n |f (m) | : (f (v), f (κ)f (m))↠ (f (u), f (κ)) ,

where n |f (m) | denotes a sequence nn · · ·n of copies of the
answer n ∈ ar(m) of same length as the path f (m).

Operators on strategies will generally be defined by a
game signature of global interaction sequences, and will use
transformations to project out the corresponding plays of
the arguments and the result.

Composition. When composing the strategy specifica-
tions σ ∈ S [E, F] and τ ∈ S [F ,G] to obtain τ ◦ σ ∈ S [E,G],
we will use the transformation ψ c

X : [E, F ,G] → [E,G] to
describe the externally observable behavior of interaction
sequences in [E, F ,G]:

ψ c
X (P1) = ψ

c
X (P2) = P ψ c

X (O) = O

ψ c
X (m) =

{
ϵ ifm ∈ F
m otherwise

This can be described concisely asψ c
X = [1, 0, 1], with:

ψ c
1 := [1, 1, 0] : [E, F ,G] → [E, F]

ψ c
2 := [0, 1, 1] : [E, F ,G] → [F ,G]

defined similarly.
We can now formulate the composition of strategy speci-

fications as follows. The “footprint” of the plays s1 ∈ P [E, F]
and s2 ∈ P [F ,G] can be defined as:

ψ c (s1, s2) :=
⊔

s ∈P [E ,F ,G]

{ψ c
1 (s) ⊑ s1 ∧ψ

c
2 (s) ⊑ s2};ψ c

X (s) .

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

In other words, the angel chooses a global play s matching
s1 and s2 and produces its external view. By extendingψ c to
strategy specifications in the expected way, we obtain:

τ ◦ σ = s ← σ ; t ← τ ;ψ c (s, t) .

Identity. The strategy idE ∈ S [E, E] uses the signature:

[E] = OE

and the transformation:

ψ id
X := [2] : [E] → [E, E]

ψ id
X (O) := O ψ id

X (m) :=mm

Then idE is defined as:

idE :=
⊔

s ∈P [E]

ψ id
X (s) .

Tensor. The tensor product of the strategiesσ1 ∈ S [E1, F1]

and σ2 ∈ S [E2, F2] is a strategy σ1 ⊗ σ2 ∈ S [E1 ⊗ E2, F1 ⊗ F2]

defined using interaction sequences in Γ = [E1, F1] ∨ [E2, F2].
The external projectionψ ⊗X : Γ → [E1 ⊗ E2, F1 ⊗ F2] is:

ψ ⊗X (O) = O ψ ⊗X (P1) = ψ
⊗
X (P2) = P

ψ ⊗X (ιi (m)) = ιi (m)

The internal projectionsψ ⊗i : Γ → [Ei , Fi] are given by:

ψ ⊗i (p) =

{
P if p = Pi
O otherwise

ψ ⊗i (ι j (m)) =

{
m if i = j

ϵ otherwise

The footprint of the plays s1 ∈ P[E1, F1] and s2 ∈ P[E2, F2] is:

ψ ⊗(s1, s2) :=
⊔
s ∈PΓ

{ψ ⊗1 (s) ⊑ s1 ∧ψ
⊗
2 (s) ⊑ s2};ψ ⊗X (s)

The tensor product can then be defined as:

σ1 ⊗ σ2 := s1 ← σ1; s2 ← σ2;ψ ⊗(s1, s2)

4.5 Category
The category Gb⊑ has effect signatures as objects, and has the
elements of S [E, F] as morphisms σ : E → F . The categorical
structure is defined in the previous section.

The associator, unitor and braiding associated with ⊗ can
be obtained by embedding the corresponding morphisms of
Gib⊑ using the process outlined in §4.6 below. Note however
that unlike that of Gib⊑ , the symmetric monoidal structure of
Gib⊑ is not cartesian, because the interactions of a strategy
σ : E → F1 ⊗ F2 which involve only one of the games F1
and F2 are not sufficient to characterize the behavior of σ in
interactions that involve both of them.

4.6 Embedding Gib⊑
Since a morphism f ∈ Gib⊑ (E, F) defined using the interac-
tion specification monad only describes the behavior of a
component for a single opponent question, to construct a
corresponding strategyW f ∈ Gb⊑(E, F) we must duplicate
the component’s behavior, compounding the angelic and
demonic choices of each copy.

We proceed as follows. For a stack κ : O↠ O, the set PκΓ
contains partial plays of type (O,κ) ↠ (O,κ ′) ∈ Γ̂, and for
a question q ∈ F , the set P̄κqΓ contains partial plays of type
(P,κq)↠ (O,κ ′) ∈ Γ̂. We will define an operator:

ωκ : PκΓ → FCD(PκΓ)

which prepends an arbitrary number of copies of f to a play
of PκΓ . Starting with ωκ

0 (t) := t , we construct a series of
approximations:

ωκ
i+1(t) := t ⊔

⊔
q∈F

q ω̄
κq
i (f

q,ωκ
i (t))

The auxiliary construction:

ω̄κq : P̄E (ar(q)) × PκΓ → FCD(P̄κqΓ)

embeds an interaction s ∈ P̄E (ar(q)), inserting reentrant calls
as appropriate, and continues with the play t if s terminates:

ω̄
κq
i (v, t) = vt

ω̄
κq
i (m, t) =mω

κqm
i (ϵ)

ω̄
κq
i (mns, t) =mω

κqm
i (n ω̄

κq
i (s, t))

The index i limits both the number of sequential and reen-
trant copies of f which are instantiated. The strategy speci-
fication associated to f in Gb⊑ is:

W f :=
⊔
i ∈N

ωi (ϵ) .

4.7 Hiding state
The functorW : Gib⊑ → Gb⊑ can be used to embed the layer
theory defined in §3.7 as-is. In addition, the state of layer
interfaces can be propagated across consecutive calls and
eliminated from the representation.

Definition 4.7. The state-free observation at k0 ∈ S of a par-
tial play s : (O,κ)↠ (O,κ ′) over the signature [E@S, F@S]
is written s/k0 and defined recursively as:

ϵ/k0 := ϵ
(m@k1 n@k2 s)/k0 := {k0 = k1};mn(s/k2)

For σ : E@S → F@S , the strategy σ/k0 : E → F is obtained
using the FCD extension of the operator above.

When the strategy σ/k0 is first activated, σ is passed the
initial state k0. Then, whenever σ makes a movem@k , σ/k0
removes k from the visible interaction, but remember it in
order to adjoin it to the next incoming move.

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

5 Related work
Game semantics. Research on game semantics for pro-

gramming languages can be traced back to the model of lin-
ear logic proposed by Blass [13]. The fully abstract models of
PCF [2, 27] were an important milestone. Subsequent work
extended the approach to account for a variety of language
features including state [3], control [29] and concurrency
[5, 21, 33]. Low-level applications of games have also been
proposed, for instance interface theories and interface au-
tomata [16–19], and games have been used in the context of
modal logic to model properties of open systems [6, 7].
A model of finite nondeterminism was first proposed in

Harmer and McCusker [25], with a different approximation
ordering developed in Murawski [37]. For infinite nondeter-
minism however, this model exhibits typical problems. Con-
sider a process which nondeterministically chooses n ∈ N,
then performs a given action n times in a row. Although this
computation has no possible infinite execution (a∗), it cannot
be distinguished through its set of finite prefixes from a com-
putation which allows the action to be performed an infinite
number of time (a∗ ∪ aω). This issue is addressed in Tsukada
and Ong [44] and Castellan et al. [14] by selectively retaining
branching information, but sensitivity to branching makes
the resulting refinement algebra less agreeable.

Dual nondeterminism. On the other hand, the problem
finds a natural solution in the context of dual nondetermin-
ism, where the choice of n is demonic but divergence is
angelic in nature. The algebraic properties of distributive
lattices and complete homomorphisms induce our model’s
insensitivity to branching, which does not usually impact
the observable behavior of components [38, 39].

Beyond thework discussed in §1 [10, 11, 20, 35, 36], models
featuring dual nondeterminism include binary multirelations
[32, 42] and the trace semantics used in Alur et al. [7]. The
distinguishing feature of the free completely distributive
lattice is that it starts from a poset rather than a set, allowing
us to use it in the context of game semantics. The model of
the process calculus CSP proposed in Tyrrell et al. [45] comes
closest to themodels presented here, but to our knowledge its
relevance to game semantics has not been fully appreciated.

Algebraic effects and free monads. Algebraic effects
were introduced in Plotkin and Power [40]. An important de-
velopment was the introduction of effect handlers [41]. Uses
and variants of the free monad on a signature are numerous,
but in particular interaction trees [46] share structures and
goals with our interaction specification monad (§3).

The implementation of interaction trees in the Coq proof
assistant is carefully designed to make them executable and
allow their extraction as ML code. However, to make this
possible, the definition and theory of interaction trees must
handle silent moves, with various notions of simulation and
bisimulation taking them into account in different ways.

The implementation also has to rely on Coq’s support for
coinductive types, one of the less commonly well-understood
features of Coq which requires special proof techniques.

By contrast, our models are not designed with extraction
in mind, but equivalent strategies become equal under pred-
icate extensionality axioms. This enables the use of simple
and efficient rewriting techniques in proof assistants, which
is important to maintain usability and performance in the
practical applications we are envisioning.

Finally, some form of dual nondeterminism and refinement
could be modeled in interaction trees by adding choice oper-
ators in the effect signature. Refinement would be defined
as a new kind of simulation taking these choice operations
into account. However, devising a notion of refinement in-
sensitive to branching would be more challenging.

6 Conclusion
Game semantics has tremendous potential for the formal
verification of large and complex systems. To deploy game
semantics in this context, we have attempted to shift em-
phasis away from the precise characterization of specific
language features, seeking instead to maximize uniformity
and expressivity, and to integrate general verification tech-
niques such as stepwise refinement and data abstraction into
the game semantics landscape.
This requires a new treatment of nondeterminism in the

context of games, and in particular an account of dual non-
determinism is crucial to this task. Compared with trace se-
mantics of process calculi, the major distinguishing feature
of game semantics is the polarization of moves. This estab-
lishes a boundary between the system and the environment,
and is a key ingredient in the construction of compositional
models [1]. Likewise, recognizing the distinction and the
duality between angelic and demonic nondeterminism is
crucial to a satisfactory treatment of refinement, especially
in the context of games.

It is interesting to note, however, that refinement orderings
which bind too closely the polarity of moves with that of non-
deterministic choices often end up requiring a fair amount
of sophistication, especially when they are constructed after-
the-fact, on top of (or by adapting) an existing model. By
contrast, our approach embraces dual nondeterminism to
a maximal extent and from the ground up, in a way that
is only loosely coupled with the structural details of plays.
While this carries an initial cost in the complexity of the
strategy model, this is more than offset by the simplicity and
uniformity of the resulting refinement algebra.

Acknowledgments
We would like to thank anonymous referees for helpful feed-
back that improved this paper significantly. This research
is based on work supported in part by NSF grants 1521523,
1715154, and 1763399.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Jérémie Koenig and Zhong Shao

References
[1] Samson Abramsky. 2010. From CSP to Game Semantics. In Reflections

on the Work of C.A.R. Hoare. Springer, London, 33–45. https://doi.org/
10.1007/978-1-84882-912-1_2

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000.
Full Abstraction for PCF. Inf. Comput. 163, 2 (2000), 409–470. https:
//doi.org/10.1006/inco.2000.2930

[3] Samson Abramsky and Guy McCusker. 1997. Linearity, Sharing and
State: A Fully Abstract Game Semantics for Idealized Algol with Active
Expressions. InAlgol-like Languages. Birkhäuser, Boston, MA, 297–329.
https://doi.org/10.1007/978-1-4757-3851-3_10

[4] Samson Abramsky and Guy McCusker. 1999. Game semantics. In
Computational logic: Proceedings of the 1997 Marktoberdorf Summer
School. Springer, Berlin, Heidelberg, 1–55. https://doi.org/10.1007/978-
3-642-58622-4_1

[5] Samson Abramsky and Paul-André Melliès. 1999. Concurrent Games
and Full Completeness. In Proceedings of the 14th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS ’99). IEEE Computer Society,
USA, 431–442. https://doi.org/10.1109/LICS.1999.782638

[6] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. 2002.
Alternating-Time Temporal Logic. J. ACM 49, 5 (Sept. 2002), 672–
713. https://doi.org/10.1145/585265.585270

[7] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. 1998. Alternating refinement relations. In Proceedings of
the 9th International Conference on Concurrency Theory (CONCUR
’98). Springer, Berlin, Heidelberg, 163–178. https://doi.org/10.1007/
BFb0055622

[8] AndrewW. Appel. 2011. Verified Software Toolchain. In Proceedings of
the 20th European Symposium on Programming (ESOP 2011). Springer,
Berlin, Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-19718-5_1

[9] Andrew W Appel, Lennart Beringer, Adam Chlipala, Benjamin C
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: the science of deep specification. Phil. Trans. R. Soc. A
375, 2104 (2017), 20160331. https://doi.org/10.1098/rsta.2016.0331

[10] Ralph-Johan Back. 1978. On the correctness of refinement steps in
program development. Technical Report A-1978-4. Department of
Computer Science, University of Helsinky, Helsinki, Finland.

[11] Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus:
A Systematic Introduction. Springer, New York. https://doi.org/10.
1007/978-1-4612-1674-2

[12] John Baez and Mike Stay. 2010. Physics, topology, logic and computa-
tion: a Rosetta Stone. In New structures for physics. Springer, Berlin,
Heidelberg, 95–172. https://doi.org/10.1007/978-3-642-12821-9_2

[13] Andreas Blass. 1992. A game semantics for linear logic. Ann. Pure Appl.
Log. 56, 1–3 (1992), 183–220. https://doi.org/10.1016/0168-0072(92)
90073-9

[14] Simon Castellan, Pierre Clairambault, Jonathan Hayman, and Glynn
Winskel. 2018. Non-angelic concurrent game semantics. In Proceed-
ings of the 21st International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS 2018). Springer, Cham,
Switzerland, 3–19. https://doi.org/10.1007/978-3-319-89366-2_1

[15] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for
certifying the FSCQ file system. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
18–37. https://doi.org/10.1145/2815400.2815402

[16] Luca de Alfaro. 2003. Game Models for Open Systems. In Verification:
Theory and Practice: Essays Dedicated to Zohar Manna on the Occasion
of His 64th Birthday. Springer, Berlin, Heidelberg, 269–289. https:
//doi.org/10.1007/978-3-540-39910-0_12

[17] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface automata.
SIGSOFT Softw. Eng. Notes 26, 5 (Sept. 2001), 109–120. https://doi.org/
10.1145/503271.503226

[18] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface theories
for component-based design. In Embedded Software: First International
Workshop (EMSOFT 2001). Springer, Berlin, Heidelberg, 148–165. https:
//doi.org/10.1007/3-540-45449-7_11

[19] Luca de Alfaro and Mariëlle Stoelinga. 2004. Interfaces: A game-
theoretic framework for reasoning about component-based systems.
Electron. Notes Theor. Comput. Sci. 97 (2004), 3–23. https://doi.org/10.
1016/j.entcs.2004.04.030

[20] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy, and
formal derivation of programs. Commun. ACM 18, 8 (Aug. 1975),
453–457. https://doi.org/10.1145/360933.360975

[21] Dan R. Ghica and Andrzej S. Murawski. 2004. Angelic Seman-
tics of Fine-Grained Concurrency. In Proceedings of the 7th Interna-
tional Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2004). Springer, Berlin, Heidelberg, 211–225.
https://doi.org/10.1007/978-3-540-24727-2_16

[22] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY,
USA, 595–608. https://doi.org/10.1145/2676726.2676975

[23] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS Kernels. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
653–669. https://dl.acm.org/doi/10.5555/3026877.3026928

[24] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan NewmanWu, Jérémie
Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ra-
mananandro. 2018. Certified concurrent abstraction layers. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). ACM, New York, NY, USA,
646–661. https://doi.org/10.1145/3192366.3192381

[25] Russell Harmer and GuyMcCusker. 1999. A fully abstract game seman-
tics for finite nondeterminism. In Proceedings of the 14th Annual IEEE
Symposium on Logic in Computer Science (LICS ’99). IEEE Computer
Society, USA, 422–430. https://doi.org/10.1109/LICS.1999.782637

[26] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580. https://doi.org/10.1145/
363235.363259

[27] J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I,
II, and III. Inf. Comput. 163, 2 (2000), 285–408. https://doi.org/10.1006/
inco.2000.2917

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
207–220. https://doi.org/10.1145/1629575.1629596

[29] James Laird. 1997. Full abstraction for functional languages with
control. In Proceedings of the 12th Annual IEEE Symposium on Logic
in Computer Science (LICS ’97). IEEE Computer Society, USA, 58–67.
https://doi.org/10.1109/LICS.1997.614931

[30] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[31] Xavier Leroy. 2012. Mechanized semantics for compiler verification. In
Proceedings of the 10th Asian Symposium on Programming Languages
and Systems (APLAS 2012). Springer, Berlin, Heidelberg, 386–388. https:
//doi.org/10.1007/978-3-642-35182-2_27

[32] C.E. Martin, S.A. Curtis, and I. Rewitzky. 2007. Modelling angelic and
demonic nondeterminism with multirelations. Science of Computer
Programming 65, 2 (2007), 140–158. https://doi.org/10.1016/j.scico.

https://doi.org/10.1007/978-1-84882-912-1_2
https://doi.org/10.1007/978-1-84882-912-1_2
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/978-1-4757-3851-3_10
https://doi.org/10.1007/978-3-642-58622-4_1
https://doi.org/10.1007/978-3-642-58622-4_1
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1007/978-3-319-89366-2_1
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1007/978-3-540-39910-0_12
https://doi.org/10.1007/978-3-540-39910-0_12
https://doi.org/10.1145/503271.503226
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1016/j.entcs.2004.04.030
https://doi.org/10.1016/j.entcs.2004.04.030
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-540-24727-2_16
https://doi.org/10.1145/2676726.2676975
https://dl.acm.org/doi/10.5555/3026877.3026928
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1109/LICS.1999.782637
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/LICS.1997.614931
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-642-35182-2_27
https://doi.org/10.1007/978-3-642-35182-2_27
https://doi.org/10.1016/j.scico.2006.01.007
https://doi.org/10.1016/j.scico.2006.01.007

Refinement-Based Game Semantics for Certified Abstraction Layers LICS ’20, July 8–11, 2020, Saarbrücken, Germany

2006.01.007
[33] Paul-André Melliès and Samuel Mimram. 2007. Asynchronous Games:

InnocenceWithout Alternation. In Proceedings of the 18th International
Conference on Concurrency Theory (CONCUR 2007). Springer, Berlin,
Heidelberg, 395–411. https://doi.org/10.1007/978-3-540-74407-8_27

[34] Carroll Morgan. 1988. The specification statement. ACM Trans. Pro-
gram. Lang. Syst. 10, 3 (July 1988), 403–419. https://doi.org/10.1145/
44501.44503

[35] Joseph M. Morris. 2004. Augmenting Types with Unbounded De-
monic and Angelic Nondeterminacy. In Proceedings of the 7th Interna-
tional Conference on Mathematics of Program Construction (MPC 2004).
Springer, Berlin, Heidelberg, 274–288. https://doi.org/10.1007/978-3-
540-27764-4_15

[36] Joseph M Morris and Malcolm Tyrrell. 2008. Dually nondeterministic
functions. ACM Trans. Program. Lang. Syst. 30, 6 (Oct. 2008), 34. https:
//doi.org/10.1145/1391956.1391961

[37] Andrzej S. Murawski. 2008. Reachability Games and Game Semantics:
Comparing Nondeterministic Programs. In Proceedings of the 23rd
Annual IEEE Symposium on Logic in Computer Science (LICS 2008). IEEE
Computer Society, USA, 353–363. https://doi.org/10.1109/LICS.2008.24

[38] Sumit Nain and Moshe Y. Vardi. 2007. Branching vs. Linear Time: Se-
mantical Perspective. In Proceedings of the 5th International Symposium
on Automated Technology for Verification and Analysis (ATVA 2007).
Springer, Berlin, Heidelberg, 19–34. https://doi.org/10.1007/978-3-
540-75596-8_4

[39] Sumit Nain and Moshe Y Vardi. 2009. Trace semantics is fully abstract.
In Proceedings of the 24th Annual IEEE Symposium on Logic In Computer
Science (LICS 2009). IEEE Computer Society, USA, 59–68. https://doi.

org/10.1109/LICS.2009.12
[40] Gordon Plotkin and John Power. 2001. Adequacy for Algebraic Effects.

In Proceedings of the 4th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS 2001). Springer,
Berlin, Heidelberg, 1–24. https://doi.org/10.1007/3-540-45315-6_1

[41] Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects.
In Proceedings of the 18th European Symposium on Programming (ESOP
2009). Springer, Berlin, Heidelberg, 80–94. https://doi.org/10.1007/978-
3-642-00590-9_7

[42] Ingrid Rewitzky. 2003. Binary multirelations. In Theory and Applica-
tions of Relational Structures as Knowledge Instruments. Springer, Berlin,
Heidelberg, 256–271. https://doi.org/10.1007/978-3-540-24615-2_12

[43] Zhong Shao. 2010. Certified Software. Commun. ACM 53, 12 (Dec.
2010), 56–66. https://doi.org/10.1145/1859204.1859226

[44] Takeshi Tsukada and C.-H. Luke Ong. 2015. Nondeterminism in game
semantics via sheaves. In Proceedings of the 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2015). IEEE Computer
Society, USA, 220–231. https://doi.org/10.1109/LICS.2015.30

[45] Malcolm Tyrrell, Joseph M. Morris, Andrew Butterfield, and Arthur
Hughes. 2006. A Lattice-Theoretic Model for an Algebra of Communi-
cating Sequential Processes. In Proceedings of the Third International
Colloquium on Theoretical Aspects of Computing (ICTAC 2006). Springer,
Berlin, Heidelberg, 123–137. https://doi.org/10.1007/11921240_9

[46] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C Pierce, and Steve Zdancewic. 2019. Inter-
action trees: representing recursive and impure programs in Coq.
Proc. ACM Program. Lang. 4, POPL, Article 51 (Dec. 2019), 32 pages.
https://doi.org/10.1145/3371119

https://doi.org/10.1016/j.scico.2006.01.007
https://doi.org/10.1007/978-3-540-74407-8_27
https://doi.org/10.1145/44501.44503
https://doi.org/10.1145/44501.44503
https://doi.org/10.1007/978-3-540-27764-4_15
https://doi.org/10.1007/978-3-540-27764-4_15
https://doi.org/10.1145/1391956.1391961
https://doi.org/10.1145/1391956.1391961
https://doi.org/10.1109/LICS.2008.24
https://doi.org/10.1007/978-3-540-75596-8_4
https://doi.org/10.1007/978-3-540-75596-8_4
https://doi.org/10.1109/LICS.2009.12
https://doi.org/10.1109/LICS.2009.12
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-540-24615-2_12
https://doi.org/10.1145/1859204.1859226
https://doi.org/10.1109/LICS.2015.30
https://doi.org/10.1007/11921240_9
https://doi.org/10.1145/3371119

	Abstract
	1 Introduction
	1.1 Certified systems at scale
	1.2 Semantic models for verification
	1.3 General models for system behaviors
	1.4 Contributions

	2 Background and approach
	2.1 Dual nondeterminism and refinement
	2.2 Game semantics
	2.3 Algebraic effects
	2.4 Certified abstraction layers

	3 The interaction specification monad
	3.1 Overview
	3.2 Plays
	3.3 Interaction specifications
	3.4 Interaction primitives
	3.5 Categorical structure
	3.6 Products
	3.7 Certified abstraction layers

	4 Stateful and reentrant strategies
	4.1 Overview
	4.2 Games
	4.3 Plays and strategies
	4.4 Operations on strategies
	4.5 Category
	4.6 Embedding Gib
	4.7 Hiding state

	5 Related work
	6 Conclusion
	References

