
Static and User-Extensible Proof Checking

Antonis Stampoulis Zhong Shao
Department of Computer Science

Yale University
New Haven, CT 06520, USA

{antonis.stampoulis,zhong.shao}@yale.edu

Abstract
Despite recent successes, large-scale proof development within
proof assistants remains an arcane art that is extremely time-
consuming. We argue that this can be attributed to two profound
shortcomings in the architecture of modern proof assistants. The
first is that proofs need to include a large amount of minute detail;
this is due to the rigidity of the proof checking process, which can-
not be extended with domain-specific knowledge. In order to avoid
these details, we rely on developing and using tactics, specialized
procedures that produce proofs. Unfortunately, tactics are both hard
to write and hard to use, revealing the second shortcoming of mod-
ern proof assistants. This is because there is no static knowledge
about their expected use and behavior.

As has recently been demonstrated, languages that allow type-
safe manipulation of proofs, like Beluga, Delphin and VeriML,
can be used to partly mitigate this second issue, by assigning rich
types to tactics. Still, the architectural issues remain. In this paper,
we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts.
Together, these ideas enable us to support both user-extensible
proof checking, and sophisticated static checking of tactics, leading
to a new point in the design space of future proof assistants. Both
ideas are based on the interplay between a light-weight staging
construct and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction
There have been various recent successes in using proof assistants
to construct foundational proofs of large software, like a C com-
piler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as
well as complicated mathematical proofs [Gonthier 2008]. Despite
this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that re-
quires significant manual effort and is plagued by various architec-
tural issues.

The big benefit of using a foundational proof assistant is that
the proofs involved can be checked for validity using a very small
proof checking procedure. The downside is that these proofs are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

very large, since proof checking is fixed. There is no way to add
domain-specific knowledge to the proof checker, which would en-
able proofs that spell out less details. There is good reason for this,
too: if we allowed arbitrary extensions of the proof checker, we
could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users
rely on tactics: procedures that produce proofs. Users are free to
write their own tactics, that can create domain-specific proofs. In
fact, developing domain-specific tactics is considered to be good
engineering when doing large developments, leading to signifi-
cantly decreased overall effort – as shown, e.g. in Chlipala [2011].
Still, using and developing tactics is error-prone. Tactics are essen-
tially untyped functions that manipulate logical terms, and thus tac-
tic programming is untyped. This means that common errors, like
passing the wrong argument, or expecting the wrong result, are not
caught statically. Exacerbating this, proofs contained within tactics
are not checked statically, when the tactic is defined. Therefore,
even if the tactic is used correctly, it could contain serious bugs that
manifest only under some conditions.

With the recent advent of programming languages that sup-
port strongly typed manipulation of logical terms, such as Beluga
[Pientka and Dunfield 2008], Delphin [Poswolsky and Schürmann
2008] and VeriML [Stampoulis and Shao 2010], this situation can
be somewhat mitigated. It has been shown in Stampoulis and Shao
[2010] that we can specify what kinds of arguments a tactic expects
and what kind of proof it produces, leading to a type-safe program-
ming style. Still, this does not address the fundamental problem of
proof checking being fixed – users still have to rely on using tac-
tics. Furthermore, the proofs contained within the type-safe tactics
are in fact proof-producing programs, which need to be evaluated
upon invocation of the tactic. Therefore proofs within tactics are
not checked statically, and they can still cause the tactics to fail
upon invocation.

In this paper, we build on the past work on these languages,
aiming to solve both of these issues regarding the architecture of
modern proof assistants. We introduce two novel ideas: support
for an extensible conversion rule and static proof scripts inside
tactics. The former technique enables proof checking to become
user-extensible, while maintaining the guarantee that only logically
sound proofs are admitted. The latter technique allows for statically
checking the proofs contained within tactics, leading to increased
guarantees about their runtime behavior. Both techniques are based
on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us
to use the one to the benefit of the other.

Our main contributions are the following:
• First, we present what we believe is the first technique for hav-

ing an extensible conversion rule, which combines the follow-
ing characteristics: it is safe, meaning that it preserves logical
soundness; it is user-extensible, using a familiar, generic pro-

proof script

call eval. conv. tactic

call arith. conv. tactic

call user conv. tactic

proof script

eval. steps (implicit)

call arith. conv. tactic

call user conv. tactic

typed proof script

eval. steps (implicit)
arith. steps (implicit)
user steps (implicit)

proof checker
eval. conv. tactic

execute

(invalid)

√

(invalid)
×

×

√

execute

(invalid)

×

√

(a) HOL approach
static dynamic

type checker

tactic
eval.
conv.

tactic
arith.conv.

tactic

user
conv.

checkedusing

(invalid)
×

execute

(invalid)

×

√

×
√

√

smaller proof chk.

(invalid)

has been

(b) Coq approach

(c) our approach

Figure 1. Checking proof scripts in various proof assistants

gramming model; and, it does not require metatheoretic addi-
tions to the logic, but can be used to simplify the logic instead.
• Second, building on existing work for typed tactic development,

we introduce static checking of the proof scripts contained
within tactics. This significantly reduces the development effort
required, allowing us to write tactics that benefit from existing
tactics and from the rich type information available.
• Third, we show how typed proof scripts can be seen as an

alternative form of proof witness, which falls between a proof
object and a proof script. Receivers of the certificate are able to
decide on the tradeoff between the level of trust they show and
the amount of resources needed to check its validity.
In terms of technical contributions, we present a number of tech-

nical advances in the metatheory of the aforementioned program-
ming languages. These include a simple staging construct that is
crucial to our development and a new technique for variable rep-
resentation. We also show a condition under which static checking
of proof scripts inside tactics is possible. Last, we have extended
an existing prototype implementation with a significant number of
features, enabling it to support our claims, while also rendering its
use as a proof assistant more practical.

2. Informal presentation
Glossary of terms. We will start off by introducing some con-
cepts that will be used throughout the paper. The first fundamental
concept we will consider is the notion of a proof object: given a
derivation of a proposition inside a formal logic, a proof object is a
term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation

of a specific proposition or not. Proof objects are extremely ver-
bose and are thus hard to write by hand. For this reason, we use
tactics: functions that produce proof objects. By combining tactics
together, we create proof-producing programs, which we call proof
scripts. If a proof script is evaluated, and the evaluation completes
successfully, the resulting proof object can be checked using the
original proof checker. In this way, the trusted base of the system
is kept at the absolute minimum. The language environment where
proof scripts and tactics are written and evaluated is called a proof
assistant; evidently, it needs to include a proof checker.
Checking proof objects. In order to keep the size of proof objects
manageable, many of the logics used for mechanized proof check-
ing include a conversion rule. This rule is used implicitly by the
proof checker to decide whether any two propositions are equiv-
alent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tac-
tic that is embedded within the proof checker, and used implicitly.

The more sophisticated the relation supported by the conversion
rule is, the simpler are proof objects to write, since more details can
be omitted. On the other hand, the proof checker becomes more
complicated, as does the metatheory proof showing the soundness
of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this
trade-off, is to have a conversion rule that identifies propositions
up to evaluation. Nevertheless, extended notions of conversion are
desirable, leading to proposals like CoqMT [Strub 2010], where
equivalence up to first-order theories is supported. In both cases,
the conversion rule is fixed, and extending it requires significant
amounts of work. It is thus not possible for users to extend it using
their own, domain-specific tactics, and proof objects are thus bound
to get large. This is why we have to resort to writing proof scripts.
Checking proof scripts. As mentioned earlier, in order to validate
a proof script we need to evaluate it (see Fig. 1a); this is the
modus operandi in proof assistants of the HOL family [Harrison
1996; Slind and Norrish 2008]. Therefore, it is easy to extend the
checking procedure for proof scripts by writing a new tactic, and
calling it as part of a script. The price that this comes to is that there
is no way to have any sort of static guarantee about the validity
of the script, as proof scripts are completely untyped. This can be
somewhat mitigated in Coq by utilizing the static checking that it
already supports: the proof checker, and especially, the conversion
rule it contains (see Fig. 1b). We can employ proof objects in
our scripts; this is especially useful when the proof objects are
trivial to write but trigger complex conversion checks. This is the
essential idea behind techniques like proof-by-reflection [Boutin
1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced
VeriML, a language that enables programming tactics and proof
scripts in a typeful manner using a general-purpose, side-effectful
programming model. Combining typed tactics leads to typed proof
scripts. These are still programs producing proof objects, but the
proposition they prove is carried within their type. Information
about the current proof state (the set of hypotheses and goals) is also
available statically at every intermediate point of the proof script. In
this way, the static assurances about proof scripts are significantly
increased and many potential sources of type errors are removed.
On the other hand, the proof objects contained within the scripts
are still checked using a fixed proof checker; this ultimately means
that the set of possible static guarantees is still fixed.
Extensible conversion rule. In this paper, we build on our earlier
work on VeriML. In order to further increase the amount of static
checking of proof scripts that is possible within this language, we
propose the notion of an extensible conversion rule (see Fig. 1c). It
enables users to write their own domain-specific conversion checks

program

static tactic
type stage-1

program
(proof object

normal

× ×

√ √ √

static dynamic

values)
checker eval. eval.

calls

residual

Figure 2. Staging in VeriML

that get included in the conversion rule. This leads to simpler proof
scripts, as more parts of the proof can be inferred by the conversion
rule and can therefore be omitted. Also, it leads to increased static
guarantees for proof scripts, since the conversion checks happen
before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion
checks as type-safe tactics within VeriML, and then evaluating
them statically using a simple staging mechanism (see Fig. 2). The
type of the conversion tactics requires that they produce a proof ob-
ject which proves the claimed equivalence of the propositions. In
this way, type safety of VeriML guarantees that soundness is main-
tained. At the same time, users are free to extend the conversion
rule with their own conversion tactics written in a familiar program-
ming model, without requiring any metatheoretic additions or ter-
mination proofs. Such proofs are only necessary if decidability of
the extra conversion checks is desired. Furthermore, this approach
allows for metatheoretic reductions as the original conversion rule
can be programmed within the language. Thus it can be removed
from the logic, and replaced by the simpler notion of explicit equal-
ities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of
being able to extend the amount of static checking possible for
proof scripts. But what about tactics? Our existing work on VeriML
shows how the increased type information addresses some of the
issues of tactic development using current proof assistants, where
tactics are programmed in a completely untyped manner.

Still, if we consider the case of tactics more closely, we will
see that there is a limitation to the amount of checking that is
done statically, even using this language. When programming a
new tactic, we would like to reuse existing tactics to produce the
required proofs. Therefore, rather than writing proof objects by
hand inside the code of a tactic, we would rather use proof scripts.
The issue is that in order to check whether the contained proof
scripts are valid, they need to be evaluated – but this only happens
when an invocation of the tactic reaches the point where the proof
script is used. Therefore, the static guarantees that this approach
provides are severely limited by the fact that the proof scripts inside
the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts. This is the second fundamental issue we ad-
dress in this paper. We show that the same staging construct uti-
lized for introducing the extensible conversion rule, can be lever-
aged to perform static proof checking for tactics. The crucial point
of our approach is the proof of existence of a transformation be-
tween proof objects, which suggests that under reasonable condi-
tions, a proof script contained within a tactic can be transformed
into a static proof script. This static script can then be evaluated at
tactic definition time, to be checked for validity.

Last, we will show that this approach lends itself well to writing
extensions of the conversion rule. We show that we can create a lay-
ering of conversion rules: using a basic conversion rule as a starting
point, we can utilize it inside static proof scripts to implicitly prove
the required obligations of a more advanced version, and so on.
This minimizes the required user effort for writing new conversion
rules, and enables truly modular proof checking.

t ::= proof object constructors | propositions
| natural numbers, lists, etc. | sorts and types | X/σ

Φ ::= • | Φ, x : t T ::= [Φ] t
Ψ ::= • | Ψ, X : T σ ::= • | σ, x 7→ t
main judgement: Ψ; Φ ` t : t ′ (type of a logical term)

Figure 3. Assumptions about the logic language

3. Our toolbox
In this section, we will present the essential ingredients that are
needed for the rest of our development. The main requirement is
a language that supports type-safe manipulation of terms of a par-
ticular logic, as well as a general-purpose programming model that
includes general recursion and other side-effectful operations. Two
recently proposed languages for manipulating LF terms, Beluga
[Pientka and Dunfield 2008] and Delphin [Poswolsky and Schür-
mann 2008], fit this requirement, as does VeriML [Stampoulis and
Shao 2010], which is a language used to write type-safe tactics. Our
discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes.
Still, our results apply to all three.

We will now briefly describe the constructs that these languages
support, as well as some new extensions that we propose. The
interested reader can read more about these constructs in Sec. 6
and in our technical report [Stampoulis and Shao 2012].
A formal logic. The computational language we are presenting is
centered around manipulation of terms of a specific formal logic.
We will see more details about this logic in Sec. 4. For the time
being, it will suffice to present a set of assumptions about the syn-
tactic classes and typing judgements of this logic, shown in Fig. 3.
Logical terms are represented by the syntactic class t, and include
proof objects, propositions, terms corresponding to the domain of
discourse (e.g. natural numbers), and the needed sorts and type con-
structors to classify such terms. Their variables are assigned types
through an ordered context Φ. A package of a logical term t to-
gether with the variables context it inhabits Φ is called a contex-
tual term and denoted as T = [Φ] t. Our computational language
works over contextual terms for reasons that will be evident later.
The logic incorporates such terms by allowing them to get substi-
tuted for meta-variables X , using the constructor X/σ. When a term
T = [Φ′] t gets substituted for X , we go from the Φ′ context to the
current context Φ using the substitution σ.

Logical terms are classified using other logical terms, based on
the normal variables environment Φ, and also an environment Ψ

that types meta-variables, thus leading to the Ψ; Φ ` t : t ′ judge-
ment. For example, a term t representing a closed proposition will
be typed as •; • ` t : Prop, while a proof object tpf proving that
proposition will satisfy the judgement •; • ` tpf : t.
ML-style functional programming. We move on to the compu-
tational language. As its main core, we assume an ML-style func-
tional language, supporting general recursion, algebraic data types
and mutable references (see Fig. 4). Terms of this fragment are
typed under a computational variables environment Γ and a store
typing environment Σ, mapping mutable locations to types. Typing
judgements are entirely standard, leading to a Σ; Γ ` e : τ judge-
ment for typing expressions.
Dependently-typed programming over logical terms. As shown
in Fig. 5, the first important additions to the ML computational core
are constructs for dependent functions and products over contextual
terms T . Abstraction over contextual terms is denoted as λX : T.e. It
has the dependent function type (X : T)→ τ. The type is dependent
since the introduced logical term might be used as the type of

k ::= ∗ | k1→ k2
τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : k.τ
| ∀α : k.τ | α | array τ | λα : k.τ | τ1 τ2 | · · ·

e ::= () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2
| λx : τ.e | e1 e2 | (e1, e2) | proji e | inji e
| case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : k.e | e τ

| fix x : τ.e | mkarray(e,e′) | e[e′] | e[e′] := e′′ | l | error | · · ·
Γ ::= • | Γ, x : τ | Γ, α : k Σ ::= • | Σ, l : array τ

Figure 4. Syntax for the computational language (ML fragment)

τ ::= · · · | (X : T)→ τ | (X : T)× τ | (φ : ctx)→ τ

e ::= · · · | λX : T.e | e T | λφ : ctx.e | e Φ | 〈T, e〉
| let 〈X , x〉= e in e′

| holcase T return τ of (T1 7→ e1) · · ·(Tn 7→ en)

| ctxcase Φ return τ of (Φ1 7→ e1) · · ·(Φn 7→ en)

Figure 5. Syntax for the computational language (logical term
constructs)

another term. An example would be a function that receives a
proposition plus a proof object for that proposition, with type:
(P : Prop) → (X : P) → τ. Dependent products that package a
contextual logical term with an expression are introduced through
the 〈T, e〉 construct and eliminated using let 〈X , x〉 = e in e′; their
type is denoted as (X : T)× τ. Especially for packages of proof
objects with the unit type, we introduce the syntax LT(T).

Last, in order to be able to support functions that work over
terms in any context, we introduce context polymorphism, through
a similarly dependent function type over contexts. With these in
mind, we can define a simple tactic that gets a packaged proof
of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (φ : ctx, T : [φ]Type, P : [φ, x : T]Prop, a : [φ]T)→
LT([φ]∀x : T,P)→ LT([φ]P/[idφ, a])

instantiate φ T P a pf = let 〈H〉 = pf in 〈H a〉
From here on, we will omit details about contexts and substitutions
in the interest of presentation.

Pattern matching over terms. The most important new construct
that VeriML supports is a pattern matching construct over logical
terms denoted as holcase. This construct is used for dependent
matching of a logical term against a set of patterns. The return
clause specifies its return type; we omit it when it is easy to infer.
Patterns are normal terms that include unification variables, which
can be present under binders. This is the essential reason why
contextual terms are needed.

Pattern matching over environments. For the purposes of our de-
velopment, it is very useful to support one more pattern matching
construct: matching over logical variable contexts. When trying to
construct a certain proof, the logical environment represents what
the current proof context is: what the current logical hypotheses at
hand are, what types of terms have been quantified over, etc. By be-
ing able to pattern match over the environment, we can “look up”
things in our current set of hypotheses, in order to prove further
propositions. We can thus view the current environment as repre-
senting a simple form of the current proof state; the pattern match-
ing construct enables us to manipulate it in a type-safe manner.

One example is an “assumption” tactic, that tries to prove a
proposition by searching for a matching hypotheses in the context:

assumption : (φ : ctx,P : Prop)→ option LT(P)
assumption φ P =

ctxcase φ of
φ′, H : P 7→ return 〈H〉
| φ′, _ 7→ assumption φ′ P

Proof object erasure semantics (new feature). The only con-
struct that can influence the evaluation of a program based on the
structure of a logical term is the pattern matching construct. For
our purposes, pattern matching on proof objects is not necessary –
we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically
disallow matching on proof objects.

In that case, we can define an alternate operational semantics for
our language where all proof objects are erased before using the
original small-step reduction rules. Because of type safety, these
proof-erasure semantics are guaranteed to yield equivalent results:
even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate func-
tion defined earlier. This function expects five arguments. From its
type alone, it is evident that only the last two arguments are strictly
necessary. The last argument, corresponding to a proof expression
for the proposition ∀x : T,P, can be used to reconstruct exactly the
arguments φ, T and P. Furthermore, if we know what the result-
ing type of a call to the function needs to be, we can choose even
the instantiation argument a appropriately. We employ a simple in-
ferrence mechanism so that such arguments are omitted from our
programs. This feature is also crucial in our development in order
to implicitly maintain and utilize the current proof state within our
proof scripts.

Minimal staging support (new feature). Using the language we
have seen so far we are able to write powerful tactics using a
general-purpose programming model. But what if, inside our pro-
grams, we have calls to tactics where all of their arguments are
constant? Presumably, those tactic calls could be evaluated to proof
objects prior to tactic invocation. We could think of this as a form
of generalized constant folding, which has one intriguing benefit:
we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards
this effect, we introduce a rudimentary staging construct in our
computational language. This takes the form of a letstatic construct,
which binds a static expression to a variable. The static expression
is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in
Fig. 11d and also in Sec. 6. After this addition, expressions in our
language have a three-phase lifetime, that are also shown in Fig. 2.

− type-checking, where the well-formedness of expressions ac-
cording to the rules of the language is checked, and inference
of implicit arguments is performed

− static evaluation, where expressions inside letstatic are reduced
to values, yielding a residual expression

− run-time, where the residual expression is evaluated

4. Extensible conversion rule
With these tools at hand, let us now return to the first issue that
motivates us: the fact that proof checking is rigid and cannot be
extended with user-defined procedures. As we have said in our in-
troduction, many modern proof assistants are based on logics that
include a conversion rule. This rule essentially identifies proposi-

(sorts) s ::= Type | Type′

(kinds) K ::= Prop | Nat | K1→K2
(props.) P ::= P1→ P2 | ∀x : K.P | x | True

| False | P1∧P2 | · · ·
(dom.obj.) d ::= Zero | Succ d | P | · · ·

(proof objects) π ::= x | λx : P.π | π1 π2 | λx : K.π

| π d | · · ·
(HOL terms) t ::= s | K | P | d | π

Selected rules:

→ INTRO
Ψ; Φ,x : P ` π : P′

Ψ; Φ ` λx : P.π : P→ P′

→ ELIM
Ψ; Φ ` π : P→ P′

Ψ; Φ ` π
′ : P

Ψ; Φ ` π π
′ : P′

Figure 6. Syntax and selected rules of the logic language λHOL

CONVERSION
Ψ; Φ `c π : P P =βN P′

Ψ; Φ `c π : P′

d→βN d′
(λx : K.d) d′→βN d[d′/x]
natElimK dz ds zero→βN dz
natElimK dz ds (succ d)→βN ds d (natElimK dz ds d)

d =βN d′
is the compatible, reflexive, symmetric and transitive
closure of d→βN d′

Figure 7. Extending λHOL with the conversion rule (λHOLc)

tions up to some equivalence relation: usually this is equivalence up
to partial evaluation of the functions contained within propositions.

The supported relation is decided when the logic is designed.
Any extension to this relation requires a significant amount of work,
both in terms of implementation, and in terms of metatheoretic
proof required. This is evidenced by projects that extend the con-
version rule in Coq, such as Blanqui et al. [1999] and Strub [2010].
Even if user extensions are supported, those only take the form of
first-order theories. Can we do better than this, enabling arbitrarily
complex user extensions, written with the full power of ML, yet
maintaining soundness?

It turns out that we can: this is the subject of this section. The
key idea is to recognize that the conversion rule is essentially a
tactic, embedded within the type checker of the logic. Calls to
this tactic are made implicitly as part of checking a given proof
object for validity. So how can we support a flexible, extensible
alternative? Instead of hardcoding a conversion tactic within the
logic type checker, we can program a type-safe version of the same
tactic within VeriML, with the requirement that it provides proof of
the claimed equivalence. Instead of calling the conversion tactic as
part of proof checking, we use staging to call the tactic statically
– after (VeriML) type checking, but before runtime execution.
This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion
tactics, extending the static checking available for proof objects and
proof scripts. Still, soundness is maintained, since full proof objects
in the original logic can always be constructed. As an example,
we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and
by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule
First, let us present what the conversion rule really is in more detail.
We will base our discussion on a simple type-theoretic higher-order

Ψ; Φ `e d1 : K Ψ; Φ `c d2 : K
Ψ; Φ `e d1 = d2 : Prop

Ψ; Φ `e d : K
Ψ; Φ `e refl d : d = d

Ψ; Φ, x : K `e P : Prop Ψ; Φ `e d1 : K
Ψ; Φ `e π : P[d1/x] Ψ; Φ `e π

′ : d1 = d2

Ψ; Φ `e leibniz (λx : K.P) π π
′ : P[d2/x]

Ψ; Φ, x : K `e π : d1 = d2

Ψ; Φ `e lamEq (λx : K.π) : (λx : K.d1) = (λx : K.d2)

Ψ; Φ, x : K `e π : d1 = d2 Ψ; Φ `e d1 : Prop

Ψ; Φ `e forallEq (λx : K.π) : (∀x : K.d1) = (∀x : K.d2)

Ψ; Φ, x : K `e d : K′ Ψ; Φ `e d′ : K
Ψ; Φ `e betaEq (λx : K.d) d′ : (λx : K.d) d′ = d[d′/x]

Axioms assumed:
natElimBaseK : ∀ fz.∀ fs.natElimK fz fs zero = fz
natElimStepK : ∀ fz.∀ fs.∀n. natElimK fz fs (succ n) =

fs n (natElimK fz fs n)

Figure 8. Extending λHOL with explicit equality (λHOLe)

logic, based on the λHOL logic as described in Barendregt and
Geuvers [1999], and used in our original work on VeriML [Stam-
poulis and Shao 2010]. We can think of such a logic composed by
the following broad classes: the objects of the domain of discourse
d, which are the objects that the logic reasons about, such as natural
numbers and lists; their classifiers, the kinds K (classified in turn
by sorts s); the propositions P; and the derivations, which prove
that a certain proposition is true. We can represent derivations in
a linear form as terms π in a typed lambda-calculus; we call such
terms proof objects, and their types represent propositions in the
logic. Checking whether a derivation is a valid proof of a certain
proposition amounts to type-checking its corresponding proof ob-
ject. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references
and in our technical report [Stampoulis and Shao 2012].

In Fig. 6, we show what the conversion rule looks like for this
logic: it is a typing judgement that effectively identifies proposi-
tions up to an equivalence relation, with respect to checking proof
objects. We call this version of the logic λHOLc and use `c to
denote its entailment relation. The equivalence relation we con-
sider in the conversion rule is evaluation up to β-reductions and
uses of primitive recursion of natural numbers, denoted as natElim.
In this way, trivial arguments based on this notion of computa-
tion alone need not be witnessed, as for example is the fact that
(Succ x)+y = Succ (x+y) – when the addition function is defined
by primitive recursion on the first argument. Of course, this is only
a very basic use of the conversion rule. It is possible to omit larger
proofs through much more sophisticated uses. This leads to simpler
proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is
supported by the conversion rule needs to be made during the defi-
nition of the logic. This choice permeates all aspects of the metathe-
ory of the logic. It is easy to see why, even with the tiny fragment
of logic we have introduced. Most typing rules for proof objects in
the logic are similar to the rules →INTRO and →ELIM: they are
syntax-directed. This means that upon seeing the associated proof
object constructor, like λx : P.π in the case of→INTRO, we can di-
rectly tell that it applies. If all rules were syntax directed, it would

βNequal : (φ : ctx,T : Type, t1 : T, t2 : T)→ option LT(t1 = t2)
βNequal φ T t1 t2 =

holcase whnf φ T t1, whnf φ T t2 of
((ta : T ′→ T) tb),(tc td) 7→

do 〈pf1〉 ← βNequal φ (T ′→ T) ta tc
〈pf1〉 ← βNequal φ T ′ tb td
return 〈· · · proof of ta tb = tc td · · · 〉

| (ta→ tb),(tc→ td) 7→
do 〈pf1〉 ← βNequal φ Prop ta tc
〈pf1〉 ← βNequal φ Prop tb td
return 〈· · · proof of ta→ tb = tc→ td · · · 〉

| (λx : T.t1),(λx : T.t2) 7→
do 〈pf〉 ← βNequal [φ, x : T] Prop t1 t2

return 〈· · · proof of λx : T.t1 = λx : T.t2 · · · 〉
| t1, t1 7→ do return 〈· · · proof of t1 = t1 · · · 〉
| t1, t2 7→ None

requireEqual : (φ : ctx,T : Type, t1 : T, t2 : T).LT(t1 = t2)
requireEqual φ T t1 t2 =

match βNequal φ T t1 t2 with Some x 7→ x | None 7→ error

Figure 9. VeriML tactic for checking equality up to β-conversion

be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists,
there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly
the conversion rule. Therefore, in order to prove the soundness of
the logic, we have to show that the conversion rule does not some-
how introduce a proof of False. This means that proving the sound-
ness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is
foundationally limited from supporting user extensions, since any
new extension would require a new metatheoretic result in order to
make sure that it does not violate logical soundness.

4.2 Throwing conversion away
Since having a fixed conversion rule is bound to fail if we want
it to be extensible, what choice are we left with, but to throw it
away? This radical sounding approach is what we will do here. We
can replace the conversion rule by an explicit notion of equality,
and provide explicit proof witnesses for rewriting based on that
equality. Essentially, all the points where the conversion rule was
alluded to and proofs were omitted, need now be replaced by proof
objects witnessing the equivalence. Some details for the additions
required to the base λHOL logic are shown in Fig. 8, yielding the
λHOLe logic. There are good reasons for choosing this version:
first, the proof checker is as simple as possible, and does not need
to include the conversion checking routine. We could view this
routine as performing proof search over the replacement rules,
so it necessarily is more complicated, especially since it needs
to be relatively efficient. Also, the metatheory of the logic itself
can be simplified. Even when the conversion rule is supported, the
metatheory for the associated logic is proved through the explicit
equality approach; this is because model construction for a logic
benefits from using explicit equality [Siles and Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects
soon become extremely large, since they include painstakingly de-
tailed proofs for even the simplest of equivalences. This precludes
their use as independently checkable proof certificates that can be
sent to a third party. It is possible that this is one of the reasons
why systems based on logics with explicit equalities, such as HOL4

whnf : (φ : ctx,T : Type, t : T)→ (t ′ : T)×LT(t = t ′)
whnf φ T t = holcase t of

(t1 : T ′→ T)(t2 : T ′) 7→
let
〈
t ′1, p f1

〉
= whnf φ (T ′→ T) t1 in

holcase t ′1 of
λx : T ′.t f 7→ 〈[φ] t f /[idΦ, t2], · · · 〉
| t ′1 7→ 〈[φ] t ′1 t2, · · · 〉

| natElimK fz fs n 7→
let 〈n′, p f1〉= whnf φ Nat n in holcase n′ of

zero 7→ 〈[φ] fz, · · · 〉
| succ n′ 7→ 〈[φ] fs n′ (natElimK fz fs n′), · · · 〉
| n′ 7→ 〈[φ]natElimK fz fs n′, · · · 〉

| t 7→ 〈t, · · ·〉

Figure 10. VeriML tactic for rewriting to weak head-normal form

[Slind and Norrish 2008] and Isabelle/HOL [Nipkow et al. 2002],
do not generate proof objects by default.

4.3 Getting conversion back
We will now see how it is possible to reconcile the explicit equality
based approach with the conversion rule: we will gain the conver-
sion rule back, albeit it will remain completely outside the logic.
Therefore we will be free to extend it, all the while without risking
introducing unsoundness in the logic, since the logic remains fixed
(λHOLe as presented above).

We do this by revisiting the view of the conversion rule as a
special “trusted” tactic, through the tools presented in the previous
section. First, instead of hardcoding a conversion tactic in the type
checker, we program a type-safe conversion tactic, utilizing the
features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

βNequal : (φ : ctx, T : Type, t : T, t ′ : T)→ option LT(t = t ′)

Second, we evaluate this tactic under proof erasure semantics. This
means that no proof objects are produced, leading to the same space
gains as the original conversion rule. Third, we use the staging
construct in order to check conversion statically.

Details. We now present our approach in more detail. First, in
Fig. 9, we show a sketch of the code behind the type-safe conver-
sion check tactic. It works by first rewriting its input terms into
weak head-normal form, via the whnf function in Fig. 10, and then
recursively checking their subterms for equality. In the equivalence
checking function, more cases are needed to deal with quantifi-
cation; while in the rewriting procedure, a recursive call is miss-
ing, which would complicate our presentation here. We also de-
fine a version of the tactic that raises an error instead of returning
an option type if we fail to prove the terms equal, which we call
requireEqual. The full details can be found in our implementation.

The code of the βNequal tactic is in fact entirely similar to
the code one would write for the conversion check routine inside
a logic type checker, save for the extra types and proof objects. It
therefore follows trivially that everything that holds for the standard
implementation of the conversion check also holds for this code:
e.g. it corresponds exactly to the =βN relation as defined in the
logic; it is bound to terminate because of the strong normalization
theorem for this relation; and its proof-erased version is at least as
trustworthy as the standard implementation.

Furthermore, given this code, we can produce a form of typed
proof scripts inside VeriML that correspond exactly to proof objects
in the logic with the conversion rule, both in terms of their actual
code, and in terms of the steps required to validate them. This is

done by constructing a proof script in VeriML by induction on
the derivation of the proof object in λHOLc, replacing each proof
object constructor by an equivalent VeriML tactic as follows:

constructor to tactic of type
λx : P.π Assume e LT([φ, H : P]P′)→ LT(P→ P′)
π1 π2 Apply e1 e2 LT(P→ P′)→ LT(P)→ LT(P′)
λx : K.π Intro e LT([φ, x : T]P′)→ LT(∀x : T,P′)
π d Inst e a LT(∀x : T,P)→ (a : T)→

LT(P/[id, a])
c Lift c (H : P)→ LT(P)
(conversion) Conversion LT(P)→ LT(P = P′)→ LT(P′)

Here we have omitted the current logical environment φ; it is
maintained through syntactic means as discussed in Sec. 7 and
through type inference. The only subtle case is conversion. Given
the transformed proof e for the proof object π contained within a
use of the conversion rule, we call the conversion tactic as follows:

letstatic pf = requireEqual P P′ in Conversion e pf

The arguments to requireEqual can be easily inferred, making cru-
cial use of the rich type information available. Conversion could
also be used implicitly in the other tactics. Thus the resulting ex-
pression looks entirely identical to the original proof object.

Correspondence with original proof object. In order to elucidate
the correspondence between the resulting proof script expression
and the original proof object, it is fruitful to view the proof script
as a proof certificate, sent to a third party. The steps required to
check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the com-
putational language. Then, the calls to the requireEqual function are
evaluated during stage one, using proof erasure semantics. We ex-
pect them to be successful, just as we would expect the conversion
rule to be applicable when it is used. Last, the rest of the tactics
are evaluated; by a simple argument, based on the fact that they do
not use pattern matching or side-effects, they are guaranteed to ter-
minate and produce a proof object in λHOLe. This validity check
is entirely equivalent to the behavior of type-checking the λHOLc
proof object, save for pushing all conversion checks towards the
end.

4.4 Extending conversion at will
In our treatment of the conversion rule we have so far focused
on regaining the βN conversion in our framework. Still, there is
nothing confining us to supporting this conversion check only. As
long as we can program a conversion tactic in VeriML that has the
right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which
checks terms for equivalence based on the equality with uninter-
preted functions decision procedure. It is adapted from our previous
work on VeriML [Stampoulis and Shao 2010]. This equivalence
checking tactic isolates hypotheses of the form d1 = d2 from the
current context, using the newly-introduced context matching sup-
port. Then, it constructs a union-find data structure in order to form
equivalence classes of terms. Based on this structure, and using
code similar to βNequal (recursive calls on subterms), we can de-
cide whether two terms are equal up to simple uses of the equality
hypotheses at hand. We have combined this tactic with the original
βNequal tactic, making the implicit equivalence supported similar
to the one in the Calculus of Congruent Constructions [Blanqui
et al. 2005]. This demonstrates the flexibility of this approach:
equivalence checking is extended with a sophisticated decision
procedure, which is programmed using its original, imperative for-
mulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that
we can globally register further extensions.

4.5 Typed proof scripts as certificates
Earlier we discussed how we can validate the proof scripts resulting
from turning the conversion rule into explicit tactic calls. This
discussion shows an interesting aspect of typed proof scripts: they
can be viewed as a proof witness that is a flexible compromise
between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and
uses of total tactics, it can be thought of as a proof object in a
logic with the corresponding conversion rule. When it also contains
other tactics, that perform potentially expensive proof search, it
corresponds more closely to an untyped proof script, since it needs
to be fully evaluated. Still, we are allowed to validate parts of
it statically. This is especially useful when developing the proof
script, because we can avoid the evaluation of expensive tactic calls
while we focus on getting the skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one
of the choices the receiver of such a proof certificate can make.
Another choice would be to have the function return an actual proof
object, which we can check using the λHOLe type checker. In that
case, the VeriML interpreter does not need to become part of the
trusted base of the system. Last, the ‘safest possible’ choice would
be to avoid doing any evaluation of the function, and ask the proof
certificate provider to do the evaluation of requireEqual themselves.
In that case, no evaluation of computational code would need to
happen at the proof certificate receiver’s side. This mitigates any
concerns one might have for code execution as part of proof validity
checking, and guarantees that the small λHOLe type checker is the
trusted base in its entirety. Also, the receiver can decide on the
above choices selectively for different conversion tactics – e.g. use
proof erasure for βNequal but not for eufEqual, leading to a trusted
base identical to the λHOLc case. This means that the choice of
the conversion rule rests with the proof certificate receiver and not
with the designer of the logic. Thus the proof certificate receiver
can choose the level of trust they require at will.

5. Static proof scripts
In the previous section, we have demonstrated how proof checking
for typed proof scripts can be made user-extensible, through a
new treatment of the conversion rule. It makes use of user-defined,
type-safe tactics, which are evaluated statically. The question that
remains is what happens with respect to proofs within tactics. If
a proof script is found within a tactic, must we wait until that
evaluation point is reached to know whether the proof script is
correct or not? Or is there a way to check this statically, as soon
as the tactic is defined?

In this section we show how this is possible to do in VeriML
using the staging construct we have introduced. Still, in this case
matters are not as simple as evaluating certain expressions statically
rather than dynamically. The reason is that proof scripts contained
within tactics mention uninstantiated meta-variables, and thus can-
not be evaluated through staging. We resolve this by showing the
existence of a transformation, which “collapses” logical terms from
an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines,
similar to the ones we saw earlier. The ideas we present are gen-
erally applicable when writing other types of tactics as well; we
focus on conversion routines in order to demonstrate that the two
main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a
rewriter –similar to whnf– for simplifying expressions of the form
x+ y, depending on the second argument. The addition function is
defined by induction on the first argument, as follows:

(+) = λx.λy.natElimNat y (λp.λr.Succ r) x

In order for rewriters to be able to use existing as well as future
rewriters to perform their recursive calls, we write them in the
open recursion style – they receive a function of the same type that
corresponds to the “current” rewriter. The code looks as follows:

rewriterType = (φ : ctx,T : Type, t : T)→ (t ′ : T)×LT(t = t ′)
plusRewriter1 : rewriterType→ rewriterType
plusRewriter1 recursive φ T t = holcase t with

x+ y 7→
let 〈y′, 〈pfy′〉〉= recursive φ y in
let 〈t ′, 〈pft′〉〉 =

holcase y′ return Σt ′ : [φ]Nat.LT([φ]x+ y′ = t ′) of
0 7→ 〈x, · · · proof of x+0 = x · · · 〉
| Succ y′ 7→

〈
Succ(x+ y′),

· · · proof of x+Succ y′ = Succ (x+ y′) · · ·
〉

| y′ 7→ 〈x+ y′, · · · proof of x+ y′ = x+ y′ · · · 〉
in〈t ′, 〈· · · proof of x+ y = t ′ · · · 〉〉

| t 7→ 〈t, · · · proof of t = t · · · 〉

While developing such a tactic, we can leverage the VeriML
type checker to know the types of missing proofs. But how do we
fill them in? For the interesting cases of x+0 = x and x+Succ y′ =
Succ (x+ y′), we would certainly need to prove the corresponding
lemmas. But for the rest of the cases, the corresponding lemmas
would be uninteresting and tedious to state, such as the following
for the x+ y = t ′ case:

lemma1 : ∀x,y,y′, t ′,y = y′→ (x+ y′ = t ′)→ x+ y = t

Stating and proving such lemmas soon becomes a hindrance when
writing tactics. An alternative is to use the congruence closure
conversion rule to solve this trivial obligation for us directly at the
point where it is required. Our first attempt would be:

proof of x+ y = t ′ ≡
let 〈pf〉= requireEqual [φ,H1 : y = y′,H2 : x+ y′ = t ′] (x+ y) t ′

in
〈
[φ]pf/[idφ, pfy′, pft’]

〉
The benefit of this approach is evident when utilizing implicit argu-
ments, since most of the details can be inferred and therefore omit-
ted. Here we had to alter the environment passed to requireEqual,
which includes several extra hypotheses. Once the resulting proof
has been computed, the hypotheses are substituted by the actual
proofs that we have.

The problem with this approach is two-fold: first, the call to the
requireEqual tactic is recomputed every time we reach that point of
our function. For such a simple tactic call, this does not impact the
runtime significantly; still, if we could avoid it, we would be able
use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what
it is supposed to, we will not know until we actually reach that point
in the function.

Moving to static proofs. This is where using the letstatic construct
becomes essential. We can evaluate the call to requireEqual stat-
ically, during stage one interpretation. Thus we will know at the
time that plusRewriter1 is defined whether the call succeeded; also,
it will be replaced by a concrete value, so it will not affect the run-
time behavior of each invocation of plusRewriter1 anymore. To do
that, we need to avoid mentioning any of the metavariables that are
bound during runtime, like x, y, and t ′. This is done by specifying
an appropriate environment in the call to requireEqual, similarly to
the way we incorporated the extra knowledge above and substituted

it later. Using this approach, we have:

proof of x+ y = t ′ ≡
letstatic 〈pf〉 =

let φ′ = [x,y,y′, t ′ : Nat,H1 : y = y′,H2 : x+ y′ = t ′] in
requireEqual φ′ (x+ y) t ′

in
〈
[φ]pf/[x/idφ,y/idφ,y′/idφ, t ′/idφ,pfy′/idφ,pft′/idφ]

〉
What we are essentially doing here is replacing the meta-

variables by normal logical variables, which our tactics can deal
with. The meta-variable context is “collapsed” into a normal con-
text; proofs are constructed using tactics in this environment; last,
the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated
the substitutions in order to distinguish between normal logical
variables and meta-variables.

The reason why this transformation needs to be done is that
functions in our computational language can only manipulate logi-
cal terms that are open with respect to a normal variables context;
not logical terms that are open with respect to the meta-variables
context too. A much more complicated, but also more flexible al-
ternative to using this “collapsing” trick would be to support meta-
n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary
lemma mentioned above, prior to the tactic definition. The benefit
is that by leveraging the type information together with type in-
ference, we can avoid stating such lemmas explicitly, while retain-
ing the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syn-
tactic sugar for binding a static proof script to a variable, and then
performing a substitution to bring it into the current context, since
this is a common operation.

〈e〉static ≡ letstatic 〈pf〉 = e in 〈[φ]pf/ · · ·〉
Based on these, the trivial proofs in the above tactic can be filled
in using a simple 〈requireEqual〉static call; for the other two we use
〈Instantiate (NatInduction requireEqual requireEqual) x〉static.

After we define plusRewriter1, we can register it with the
global equivalence checking procedure. Thus, all later calls to
requireEqual will benefit from this simplification. It is then sim-
ple to prove commutativity for addition:

plusComm : LT(∀x,y.x+ y = y+ x)
plusComm = NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commu-
tativity into account and uses the hash values of logical terms to
avoid infinite loops. We have worked on an arithmetic simplifica-
tion rewriter that is built by layering such rewriters together, using
previous ones to aid us in constructing the proofs required in later
ones. It works by converting expressions into a list of monomi-
als, sorting the list based on the hash values of the variables, and
then factoring monomials on the same variable. Also, the eufEqual
procedure mentioned earlier has all of its associated proofs auto-
mated through static proof scripts, using a naive, potentially non-
terminating, equality rewriter.

Is collapsing always possible? A natural question to ask is
whether collapsing the metavariables context into a normal context
is always possible. In order to cast this as a more formal ques-
tion, we notice that the essential step is replacing a proof object π

of type [Φ] t, typed under the meta-variables environment Ψ, by a
proof object π′ of type [Φ′] t ′ typed under the empty meta-variables
environment. There needs to be a substitution so that π′ gets trans-
ported back to the Φ, Ψ environment, and has the appropriate type.

Syntax of the logic (terms) t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | refl t | leibniz t1 t2 | lamEq t | forallEq t1 t2 | betaEq t1 t2
(sorts) s ::= Prop | Type | Type′ (var. context) Φ ::= • | Φ, t (substitutions) σ ::= • | σ, t

Example of representation: a : Nat ` λx : Nat.(λy : Nat.refl (plus a y))(plus a x) 7→ Nat ` λ(Nat).(λ(Nat).refl (plus f0 b0)) (plus f0 b0)

Freshen: dtenm

d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e

Bind: btcnm

b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi+1

b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1c bt2c
(a) Hybrid deBruijn levels-deBruijn indices representation technique

Syntax t ::= · · · | fI | Xi/σ Φ ::= • | Φ, t | Φ, φi σ ::= • | σ, t | σ, id(φi) (indices) I ::= n | I+ |φi| (ctx.terms) T ::= [Φ] t | [Φ]Φ′

(ctx.kinds) K ::= [Φ] t | [Φ]ctx (extension context) Ψ ::= • | Ψ, K (ext. subst.) σΨ ::= • | σΨ, T

Ψ; Φ ` t : t ′ (sample)
Φ.I = t

Ψ; Φ ` fI : t
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
· (idΦ, t2)

Ψ.i = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ ` T : K
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf
Ψ ` [Φ]Φ′ : [Φ]ctx

Ψ `Φ wf (sample)
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, φi) wf

(b) Extension variables: meta-variables and context variables

Subst. application: t ·σ c ·σ = c fI ·σ = σ.I bi ·σ = bi (λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ) (t1 t2) ·σ = (t1 ·σ) (t2 ·σ)

Ext. subst. application (sample) (I, |φi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [_]Φ′ (Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [_] t
(σ, id(φi)) ·σΨ = σ ·σΨ, idσΨ .i (Φ, φi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [_]Φ′

Ψ; Φ ` σ : Φ′
Ψ; Φ ` • : •

Ψ; Φ ` σ : Φ
′

Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx
Φ
′, φi ⊆Φ

Ψ; Φ ` (σ, id(φi)) : (Φ′, φi)

Ψ ` σΨ : Ψ′

(selected)

Ψ ` σΨ : Ψ
′

Ψ ` T : K ·σΨ

Ψ ` (σΨ, T) : (Ψ′, K)

Subst. lemmas:
Ψ; Φ ` t : t ′ Ψ; Φ

′ ` σ : Φ

Ψ; Φ
′ ` t ·σ : t ′ ·σ

Ψ; Φ
′ ` σ : Φ Ψ; Φ

′′ ` σ
′ : Φ

′

Ψ; Φ
′′ ` σ ·σ′ : Φ

Ψ ` T : K Ψ
′ ` σΨ : Ψ

Ψ
′ ` T ·σΨ : K ·σΨ

(c) Substitutions over logical variables and extension variables

Syntax: Γ ::= • | Γ, x : τ | Γ, x :s τ | Γ, α : k e ::= · · · | letstatic x = e in e′ Limit ctx:

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Ψ; Σ; Γ ` e : τ (part)
•; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Evaluation:

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S) | case(ed , x.S, x.e2)

| case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S) | Es[S]
Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es | inji Es

| case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

ed ::= all of e except letstatic x = e in e′ E ::= exactly as Es with Es→ E and e→ ed

Stage 1 op.sem.:
(µ , ed)−→ (µ′ , e′d)

(µ , S[ed])−→s (µ′ , S[e′d])
(µ , S[letstatic x = v in e])−→s (µ , S[e[v/x]])

(µ , letstatic x = v in e)−→s (µ , e[v/x])

(d) Computational language: staging support

Figure 11. Main definitions in metatheory

We have proved that this is possible under certain restrictions:
the types of the metavariables in the current context need to depend
on the same free variables context Φmax, or prefixes of that context.
Also the substitutions they are used with need to be prefixes of
the identity substitution for Φmax. Such terms are characterized as
collapsible. We have proved that collapsible terms can be replaced
using terms that do not make use of metavariables; more details
can be found in Sec. 6 and in the accompanying technical report
[Stampoulis and Shao 2012].

This restriction corresponds very well to the treatment of vari-
able contexts in the Delphin language. This language assumes an
ambient context of logical variables, instead of full, contextual
modal terms. Constructs to extend this context and substitute a spe-
cific variable exist. If this last feature is not used, the ambient con-
text grows monotonically and the mentioned restriction holds triv-
ially. In our tests, this restriction has not turned out to be limiting.

6. Metatheory
We have completed an extensive reworking of the metatheory of
VeriML, in order to incorporate the features that we have presented
in this paper. Our new metatheory includes a number of techni-
cal advances compared to our earlier work [Stampoulis and Shao
2010]. We will present a technical overview of our metatheory in
this section; full details can be found in our technical report [Stam-
poulis and Shao 2012].

Variable representation technique. Though our metatheory is
done on paper, we have found that using a concrete variable repre-
sentation technique elucidates some aspects of how different kinds
of substitutions work in our language, compared to having nor-
mal named variables. For example, instantiating a context variable
with a concrete context triggers a set of potentially complicated
α-renamings, which a concrete representation makes explicit. We
use a hybrid technique representing bound variables as deBruijn in-
dices, and free variables as deBruijn levels. Our technique is a small
departure from the named approach, requiring fewer extra annota-
tions and lemmas than normal deBruijn indices. Also it identifies
terms not only up to α-equivalence, but also up to extension of the
context with new variables; this is why it is also used within the Ver-
iML implementation.The two fundamental operations of this tech-
nique are freshening and binding, which are shown in Fig. 11a.

Extension variables. We extend the logic with support for meta-
variables and context variables – we refer to both these sorts of
variables as extension variables. A meta-variable Xi stands for a
contextual term T = [Φ] t, which packages a term together with
the context it inhabits. Context variables φi stand for a context Φ,
and are used to “weaken” parametric contexts in specific positions.
Both kinds of variables are needed to support manipulation of open
logical terms. Details of their definition and typing are shown in
Fig. 11b. We use the same hybrid approach as above for represent-
ing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables,
in order to deal effectively with parametric contexts.

Substitutions. The hybrid representation technique we use for
variables renders simultaneous substitutions for all variables in
scope as the most natural choice. In Fig. 11c, we show some ex-
ample rules of how to apply a full simultaneous substitution σ to a
term t, denoted as t ·σ. Similarly, we define full simultaneous sub-
stitutions σΨ for extension contexts; defining their application has
a very natural description, because of our variable representation
technique. We prove a number of substitution lemmas which have
simple statements, as shown in Fig. 11c. The proofs of these lem-
mas comprise the main effort required in proving the type-safety
of a computational language such as the one we support, as they

represent the point where computation specific to logical term ma-
nipulation takes place.
Computational language. We define an ML-style computational
language that supports dependent functions and dependent pairs
over contextual terms T , as well as pattern matching over them.
Lack of space precludes us from including details here; full details
can be found in the accompanying technical report [Stampoulis and
Shao 2012]. A fairly complete ML calculus is supported, with mu-
table references and recursive types. Type safety is proved using
standard techniques; its central point is extending the logic sub-
stitution lemmas to expressions and using them to prove progress
and preservation of dependent functions and dependent pairs. This
proof is modular with respect to the logic and other logics can eas-
ily be supported.
Pattern matching. Our metatheory includes many extensions in
the pattern matching that is supported, as well as a new approach for
dealing with typing patterns. We include support for pattern match-
ing over contexts (e.g. to pick out hypotheses from the context) and
for non-linear patterns. The allowed patterns are checked through a
restriction of the usual typing rules Ψ `p T : K.

The essential idea behind our approach to pattern matching
is to identify what the relevant variables in a typing derivation
are. Since contexts are ordered, “removing” non-relevant variables
amounts to replacing their definitions in the context with holes,
which leads us to partial contexts Ψ̂. The corresponding notion
of partial substitutions is denoted as σ̂Ψ. Our main theorem about
pattern matching can then be stated as:
Theorem 6.1 (Decidability of pattern matching) If Ψ `p T : K,
• `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ̂, then either there
exists a unique partial substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and
T · σ̂Ψ = T ′, or no such substitution exists.

Staging. Our development in this paper critically depends on the
letstatic construct we presented earlier. It can be seen as a dual of
the traditional box construct of Davies and Pfenning [1996]. De-
tails of its typing and semantics are shown in Fig. 11d. We define a
notion of “static evaluation contexts” S, which enclose a hole of the
form letstatic x = • in e. They include normal evaluation contexts,
as well as evaluation contexts under binding structures. We evaluate
expressions e that include staging constructs using the −→s rela-
tion; internally, this uses the normal evaluation rules, that are used
in the second stage as well, for evaluating expressions which do
not include other staging constructs. If stage-one evaluation is suc-
cessful, we are left with a residual dynamic configuration (µ′, ed)
which is then evaluated normally. We prove type-safety for stage-
one evaluation; its statement follows.
Theorem 6.2 (Stage-one Type Safety) If •; Σ; • ` e : τ then: ei-
ther e is a dynamic expression ed; or, for every store µ such that
` µ : Σ, we have: either µ,e−→s error, or, there exists an e′, a new
store typing Σ′ ⊇ Σ and a new store µ′ such that: (µ,e)−→ (µ′,e′);
` µ′ : Σ′; and •; Σ′; • ` e′ : τ.

Collapsing extension variables. Last, we have proved the fact
that under the conditions described in Sec. 5, it is possible to col-
lapse a term t into a term t ′ which is typed under the empty exten-
sion variables context; a substitution σ with which we can regain
the original term t exists. This suggests that whenever a proof ob-
ject t for a specific proposition is required, an equivalent proof ob-
ject that does not mention uninstantiated extension variables exists.
Therefore, we can write an equivalent proof script producing the
collapsed proof object instead, and evaluate that script statically.
The statement of this theorem is the following:
Theorem 6.3 If Ψ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT),
then there exist Φ′, t ′, t ′T and σ such that • ` Φ′ wf, • ` [Φ′] t ′ :
[Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

The main idea behind the proof is to maintain a number of sub-
stitutions and their inverses: one to go from a general Ψ extension
context into an “equivalent” Ψ′ context, which includes only defini-
tions of the form [Φ] t, for a constant Φ context that uses no exten-
sion variables. Then, another substitution and its inverse are main-
tained to go from that extension variables context into the empty
one; this is simpler, since terms typed under Ψ′ are already essen-
tially free of metavariables. The computational content within the
proof amounts to a procedure for transforming proof scripts inside
tactics into static proof scripts.

7. Implementation
We have completed a prototype implementation of the VeriML
language, as described in this paper, that supports all of our
claims. We have built on our existing prototype [Stampoulis
and Shao 2010] and have added an extensive set of new fea-
tures and improvements. The prototype is written in OCaml and
is about 6k lines of code. Using the prototype we have imple-
mented a number of examples, that are about 1.5k lines of code.
Readers are encouraged to download and try the prototype from
http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have
described so far: context matching, non-linear patterns, proof-
erasure semantics, staging, and inferencing for logical and com-
putational terms. Proof-erasure semantics are utilized only if re-
quested by a per-function flag, enabling us to selectively “trust”
tactics. The staging construct we support is more akin to the 〈·〉static
form described as syntactic sugar in Sec. 5, and it is able to infer
the collapsing substitutions that are needed, following the approach
used in our metatheory.

Changes. We have also changed quite a number of things in the
prototype and improved many of its aspects. A central change, me-
diated by our new treatment of the conversion rule, was to modify
the used logic in order to use the explicit equality approach; the ex-
isting prototype used the λHOLc logic. We also switched the vari-
able representation to the hybrid deBruijn levels-deBruijn indices
technique we described, which enabled us to implement subtyping
based on context subsumption. Also, we have adapted the typing
rules of the pattern matching construct in order to support refining
the environment based on the current branch.

Examples implemented. We have implemented a number of ex-
amples to support our claims. First, we have written the type-safe
conversion check routine for βN, and extended it to support congru-
ence closure based on equalities in the context. Proofs of this lat-
ter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case.
We have also completed proofs for theorems of arithmetic for the
properties of addition and multiplication, and used them to write an
arithmetic simplification tactic. All of the theorems are proved by
making essential use of existing conversion rules, and are imme-
diately added into new conversion rules, leading to a compact and
clean development style. The resulting code does not need to make
use of translation validation or proof by reflection, which are typi-
cally used to implement similar tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practi-
cal proof and program construction in VeriML, we introduced some
features to support surface syntax, enabling users to omit most de-
tails about the environments of contextual terms and the substi-
tutions used with meta-variables. This syntax follows the style of
Delphin, assuming an ambient logical variable environment which
is extended through a construct denoted as νx : t.e. Still, the full
power of contextual modal type theory is available, which is cru-
cial in order to change what the current ambient environment is,

used, as we saw earlier, for static calls to tactics. In general the
surface syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling
users to write proof expressions that look very similar to proof
scripts in current proof assistants. We developed a rudimentary
ProofGeneral mode for VeriML, that enables us to call the VeriML
type-checker and interpreter for parts of source files. By adding
holes to our sources, we can be informed by the type inference
mechanism about their expected types. Those types correspond to
what the current “proof state” is at that point. Therefore, a possi-
ble workflow for developing tactics or proofs, is writing the known
parts, inserting holes in missing points to know what remains to
be proved, and calling the typechecker to get the proof state infor-
mation. This workflow corresponds closely to the interactive proof
development support in proof assistants like Coq and Isabelle, but
generalizes it to the case of tactics as well.

8. Related work
There is a large body of work that is related to the ideas we have
presented here.
Techniques for robust proof development. There have been
multiple proposals for making proof development inside existing
proof assistants more robust. A well-known technique is proof-by-
reflection [Boutin 1997]: writing total and certified decision proce-
dures within the functional language contained in a logic like CIC.
A recently introduced technique is automation through canonical
structures [Gonthier et al. 2011]: the resolution mechanism for
finding instances of canonical structures (a generalization of type
classes) is cleverly utilized in order to program automation proce-
dures for specific classes of propositions. We view both approaches
as somewhat similar, as both are based in cleverly exploiting static
“interpreters” that are available in a modern proof assistant: the
partial evaluator within the conversion rule in the former case; the
unification algorithm within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a gen-
eralization of these approaches, since a general-purpose program-
ming model is supported. Therefore, users do not have to adapt to
a specific programming style for writing automation code, but can
rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the con-
version rule; still, this would require reflecting a large part of the
logic in itself, through a prohibitively complicated encoding. Both
techniques are applicable to our setting as well and could be used
to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests
that proper proof engineering entails developing sophisticated au-
tomation tactics in a modular style, and extending their power by
adding proved lemmas as hints. We are largely inspired by this ap-
proach, and believe that our introduction of the extensible conver-
sion rule and static checking of tactics can significantly benefit it.
We demonstrate similar ideas in layering conversion tactics.
Traditional proof assistants. There are many parallels of our
work with the LCF family of proof assistants, like HOL4 [Slind and
Norrish 2008] and HOL-Light [Harrison 1996], which have served
as inspiration. First, the foundational logic that we use is similar.
Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken
by HOL4 and HOL-Light. Last, the fact that no proof objects need
to be generated is shared. Still, checking a proof script in HOL
requires evaluating it fully. Using our approach, we can selectively
evaluate parts of proof scripts; we focus on conversion-like tactics,
but we are not limited inherrently to those. This is only possible
because our proof scripts carry proof state information within their
types. Similarly, proof scripts contained within LCF tactics cannot

be evaluated statically, so it is impossible to establish their validity
upon tactic definition. It is possible to do a transformation similar to
ours manually (lifting proof scripts into auxiliary lemmas that are
proved prior to the tactic), but the lack of type information means
that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious
point of reference for our work. We will focus on the conversion
rule that CIC, its accompanying logic, supports – the same prob-
lems with respect to proof scripts and tactics that we described in
the LCF case also apply for Coq. The conversion rule, which identi-
fies computationally equivalent propositions, coupled with the rich
type universe available, opens up many possibilities for construct-
ing small and efficiently checkable proof objects. The implementa-
tion of the conversion rule needs to be part of the trusted base of
the proof assistant. Also, the fact that the conversion check is built-
in to the proof assistant makes the supported equivalence rigid and
non-extensible by frequently used decision procedures.

There is a large body of work that aims to extend the conver-
sion rule to arbitrary confluent rewrite systems (e.g. Blanqui et al.
[1999]) and to include decision procedures [Strub 2010]. These
approaches assume some small or larger addition to the trusted
base, and extend the already complex metatheory of Coq. Further-
more, the NuPRL proof assistant [Constable et al. 1986] is based
on extensional type theory which includes an extensional conver-
sion rule. This enables complex decision procedures to be part of
conversion; but it results in a very large trusted base. We show how,
for a subset of these type theories, the conversion check can be re-
covered outside the trusted base. It can be extended with arbitrarily
complex new tactics, written in a familiar programming style, with-
out any metatheoretic additions and without hurting the soundness
of the logic. The question of whether these type theories can be
supported in full remains as future work, but as far as we know,
there is no inherrent limitation to our approach.

Dependently-typed programming. The large body of work on
dependently-typed languages has close parallels to our work. Out
of the multitude of proposals, we consider the Russell framework
[Sozeau 2006] as the current state-of-the-art, because of its high
expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a spe-
cific case of tactics producing complex data types that include
proof objects. Static proof scripts can be leveraged to support ex-
pressivity similar to the Russell framework. Furthermore, our ap-
proach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automat-
ically, through code written within the same language.

Last, we have been largely inspired by the work on languages
like Beluga [Pientka and Dunfield 2008] and Delphin [Poswolsky
and Schürmann 2008], and build on our previous work on VeriML
[Stampoulis and Shao 2010]. We investigate how to leverage type-
safe tactics, as well as a number of new constructs we introduce, so
as to offer an extensible notion of proof checking. Also, we address
the issue of statically checking the proof scripts contained within
tactics written in VeriML. As far as we know, our development is
the first time languages such as these have been demonstrated to
provide a workflow similar to interactive proof assistants.

Acknowledgments
We thank anonymous referees for their suggestions and comments
on an earlier version of this paper. This research is based on work
supported in part by DARPA CRASH grant FA8750-10-2-0254 and
NSF grants CCF-0811665, CNS-0910670, and CNS 1065451. Any
opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

References
H.P. Barendregt and H. Geuvers. Proof-assistants using dependent type sys-

tems. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning. Elsevier Sci. Pub. B.V., 1999.

B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J.C. Filliâtre, E. Giménez, H. Herbelin, et al. The
Coq proof assistant reference manual (version 8.3), 2010.

F. Blanqui, J.P. Jouannaud, and M. Okada. The calculus of algebraic
constructions. In Rewriting Techniques and Applications, pages 671–
671. Springer, 1999.

F. Blanqui, J.P. Jouannaud, and P.Y. Strub. A calculus of congruent con-
structions. Unpublished draft, 2005.

S. Boutin. Using reflection to build efficient and certified decision proce-
dures. Lecture Notes in Computer Science, 1281:515–529, 1997.

A. Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Proceedings of the 2011 ACM SIG-
PLAN conference on Programming Language Design and Implementa-
tion. ACM, 2011.

R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,
R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, NJ, 1986.

R. Davies and F. Pfenning. A modal analysis of staged computation.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 258–270. ACM, 1996.

G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55
(11):1382–1393, 2008.

G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc
proof automation less ad hoc. In Proceeding of the 16th ACM SIGPLAN
International Conference on Functional Programming, pages 163–175.
ACM, 2011.

J. Harrison. HOL Light: A tutorial introduction. Lecture Notes in Computer
Science, pages 265–269, 1996.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pages 207–
220. ACM, 2009.

X. Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL : A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS, 2002.

B. Pientka and J. Dunfield. Programming with proofs and explicit contexts.
In Proceedings of the 10th international ACM SIGPLAN conference on
Principles and Practice of Declarative Programming, pages 163–173.
ACM New York, NY, USA, 2008.

A. Poswolsky and C. Schürmann. Practical programming with higher-order
encodings and dependent types. Lecture Notes in Computer Science,
4960:93, 2008.

V. Siles and H. Herbelin. Equality is typable in semi-full pure type systems.
In 2010 25th Annual IEEE Symposium on Logic in Computer Science,
pages 21–30. IEEE, 2010.

K. Slind and M. Norrish. A brief overview of HOL4. Theorem Proving in
Higher Order Logics, pages 28–32, 2008.

M. Sozeau. Subset coercions in coq. In Proceedings of the 2006 Interna-
tional Conference on Types for Proofs and Programs, pages 237–252.
Springer-Verlag, 2006.

A. Stampoulis and Z. Shao. VeriML: Typed computation of logical terms in-
side a language with effects. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 333–344.
ACM, 2010.

A. Stampoulis and Z. Shao. Static and user-extensible proof checking
(extended version). Available in the ACM Digital Library, 2012.

P.Y. Strub. Coq modulo theory. In Proceedings of the 24th International
Conference on Computer Science Logic, pages 529–543. Springer-
Verlag, 2010.

