

Page 1065

Processes, Coroutines, and Concurrency Chapter 19

When most people speak of multitasking, they usually mean the ability to run several different appli-
cation programs concurrently on one machine. Given the structure of the original 80x86 chips and
MS-DOS’ software design, this is very difficult to achieve when running DOS. Look at how long it’s taken
Microsoft to get Windows to multitask as well as it does.

Given the problems large companies like Microsoft have had trying to get multitasking to work, you
might thing that it is a very difficult thing to manage. However, this isn’t true. Microsoft has problems try-
ing to make different applications

that are unaware of one another

 work harmoniously together. Quite
frankly, they have not succeeded in getting existing DOS applications to multitask well. Instead, they’ve
been working on developers to write new programs that work well under Windows.

Multitasking is not trivial, but it is not that difficult when you write an application with multitasking
specifically in mind. You can even write programs that multitask under DOS if you only take a few precau-
tions. In this chapter, we will discuss the concept of a DOS

process

, a

coroutine

, and a general

process

.

19.1 DOS Processes

Although MS-DOS is a single tasking operating system, this does not mean there can only be one pro-
gram at a time in memory. Indeed, the whole purpose of the previous chapter was to describe how to get
two or more programs operating in memory at one time. However, even if we ignore TSRs for the time
being, you can still load several programs into memory at one time under DOS. The only catch is, DOS
only provides the ability for them to run one at a time in a very specific fashion. Unless the processes are

cooperating

, their execution profile follows a very strict pattern.

19.1.1 Child Processes in DOS

When a DOS application is running, it can load and executing some other program using the DOS
EXEC function (see “MS-DOS, PC-BIOS, and File I/O” on page 699). Under normal circumstances, when
an application (the parent) runs a second program (the child), the child process executes to completion
and then returns to the parent. This is very much like a procedure call, except it is a little more difficult to
pass parameters between the two.

MS-DOS provides several functions you can use to load and execute program code, terminate pro-
cesses, and obtain the exit status for a process. The following table lists many of these operations.

Table 67: DOS Character Oriented Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

4Bh

al

- 0

ds:dx

- pointer to program name.

es:bx

- pointer to LOADEXEC structure.

ax

- error code if
carry set.

Load and execute program

4Bh

al

- 1

ds:dx

- pointer to program name.

es:bx

- pointer to LOAD structure.

ax

- error code if
carry set.

Load program

4Bh

al

- 3

ds:dx

- pointer to program name.

es:bx

- pointer to OVERLAY structure.

ax

- error code if
carry set.

Load overlay

Thi d t t d ith F M k 4 0 2

Chapter 19

Page 1066

19.1.1.1 Load and Execute

The “load and execute” call requires two parameters. The first, in ds:dx, is a pointer to a zero termi-
nated string containing the pathname of the program to execute. This must be a “.COM” or “.EXE” file and
the string must contain the program name’s extension. The second parameter, in

es:bx

, is a pointer to a
LOADEXEC data structure. This data structure takes the following form:

LOADEXEC struct
EnvPtr word ? ;Pointer to environment area
CmdLinePtr dword ? ;Pointer to command line
FCB1 dword ? ;Pointer to default FCB1
FCB2 dword ? ;Pointer to default FCB2
LOADEXEC ends

Envptr

 is the segment address of the DOS

environment

 block created for the new application. If
this field contains a zero, DOS creates a copy of the current process’ environment block for the child pro-
cess. If the program you are running does not access the environment block, you can save several hun-
dred bytes to a few kilobytes by pointing the environment pointer field to a string of four zeros.

The

CmdLinePtr

 field contains the address of the command line to supply to the program. DOS
will copy this command line to offset 80h in the new PSP it creates for the child process. A valid command
line consists of a byte containing a character count, a least one space, any character belonging to the com-
mand line, and a terminating carriage return character (0Dh). The first byte should contain the length of
the ASCII characters in the command line, not including the carriage return. If this byte contains zero, then
the second byte of the command line should be the carriage return, not a space. Example:

MyCmdLine byte 12, “ file1 file2”,cr

The

FCB1

 and

FCB2

 fields need to point at the two default

file control blocks

 for this program.
FCBs became obsolete with DOS 2.0, but Microsoft has kept FCBs around for compatibility anyway. For
most programs you can point both of these fields at the following string of bytes:

DfltFCB byte 3,” “,0,0,0,0,0

The load and execute call will fail if there is insufficient memory to load the child process. When you
create an “.EXE” file using MASM, it creates an executable file that grabs all available memory, by default.
Therefore, there will be

no

 memory available for the child process and DOS will always return an error.
Therefore, you must readjust the memory allocation for the parent process before attempting to run the
child process. The section “Semiresident Programs” on page 1055 describes how to do this.

There are other possible errors as well. For example, DOS might not be able to locate the program
name you specify with the zero terminated string. Or, perhaps, there are too many open files and DOS
doesn’t have a free buffer available for the file I/O. If an error occurs, DOS returns with the carry flag set
and an appropriate error code in the

ax

 register. The following example program executes the
“COMMAND.COM” program, allowing a user to execute DOS commands from inside your application.
When the user types “exit” at the DOS command line, DOS returns control to your program.

; RUNDOS.ASM -Demonstrates how to invoke a copy of the COMMAND.COM
; DOS command line interpreter from your programs.

include stdlib.a

4Ch

al

- process return code Terminate execution

4Dh

al

- return value

ah

- termination
method.

Get child process return value

Table 67: DOS Character Oriented Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

Processes, Coroutines, and Concurrency

Page 1067

includelib stdlib.lib

dseg segment para public ‘data’

; MS-DOS EXEC structure.

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 0, 0dh ;Cmd line for program.
PgmName dword filename ;Points at pgm name.

filename byte “c:\command.com”,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;Get ptr to vars segment
mov ds, ax

MemInit ;Start the memory mgr.

; Okay, we’ve built the MS-DOS execute structure and the necessary
; command line, now let’s see about running the program.
; The first step is to free up all the memory that this program
; isn’t using. That would be everything from zzzzzzseg on.
;
; Note: unlike some previous examples in other chapters, it is okay
; to call Standard Library routines in this program after freeing
; up memory. The difference here is that the Standard Library
; routines are loaded early in memory and we haven’t free up the
; storage they are sitting in.

mov ah, 62h ;Get our PSP value
int 21h
mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Tell the user what is going on:

print
byte cr,lf
byte “RUNDOS- Executing a copy of command.com”,cr,lf
byte “Type ‘EXIT’ to return control to RUN.ASM”,cr,lf
byte 0

; Warning! No Standard Library calls after this point. We’ve just
; released the memory that they’re sitting in. So the program load
; we’re about to do will wipe out the Standard Library code.

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

; In MS-DOS 6.0 the following code isn’t required. But in various older
; versions of MS-DOS, the stack is messed up at this point. Just to be
; safe, let’s reset the stack pointer to a decent place in memory.
;
; Note that this code preserves the carry flag and the value in the
; AX register so we can test for a DOS error condition when we are done

Chapter 19

Page 1068

; fixing the stack.

mov bx, sseg
mov ss, ax
mov sp, offset EndStk
mov bx, seg dseg
mov ds, bx

; Test for a DOS error:

jnc GoodCommand
print
byte “DOS error #”,0
puti
print
byte “ while attempting to run COMMAND.COM”,cr,lf
byte 0
jmp Quit

; Print a welcome back message.

GoodCommand: print
byte “Welcome back to RUNDOS. Hope you had fun.”,cr,lf
byte “Now returning to MS-DOS’ version of COMMAND.COM.”
byte cr,lf,lf,0

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)
zzzzzzseg ends

end Main

19.1.1.2 Load Program

The load and execute function gives the parent process very little control over the child process.
Unless the child communicates with the parent process via a trap or interrupt, DOS suspends the parent
process until the child terminates. In many cases the parent program may want to load the application
code and then execute some additional operations before the child process takes over. Semiresident pro-
grams, appearing in the previous chapter, provide a good example. The DOS “load program” function
provides this capability; it will load a program from the disk and return control back to the parent process.
The parent process can do whatever it feels is appropriate before passing control to the child process.

The load program call requires parameters that are very similar to the load and execute call. Indeed,
the only difference is the use of the LOAD structure rather than the LOADEXEC structure, and even these
structures are very similar to one another. The LOAD data structure includes two extra fields not present in
the LOADEXE structure:

LOAD struct
EnvPtr word ? ;Pointer to environment area.
CmdLinePtr dword ? ;Pointer to command line.
FCB1 dword ? ;Pointer to default FCB1.
FCB2 dword ? ;Pointer to default FCB2.
SSSP dword ? ;SS:SP value for child process.
CSIP dword ? ;Initial program starting point.
LOAD ends

The LOAD command is useful for many purposes. Of course, this function provides the primary vehi-
cle for creating semiresident programs; however, it is also quite useful for providing extra error recovery,

Processes, Coroutines, and Concurrency

Page 1069

redirecting application I/O, and loading several executable processes into memory for concurrent execu-
tion.

After you load a program using the DOS load command, you can obtain the PSP address for that pro-
gram by issuing the DOS get PSP address call (see “MS-DOS, PC-BIOS, and File I/O” on page 699). This
would allow the parent process to modify any values appearing in the child process’ PSP prior to its execu-
tion. DOS stores the termination address for a procedure in the PSP. This termination address normally
appears in the double word at offset 10h in the PSP.

If you do not change this location, the program will
return to the first instruction beyond the int 21h instruction for the load function.

 Therefore, before actu-
ally transferring control to the user application, you should change this termination address.

19.1.1.3 Loading Overlays

Many programs contain blocks of code that are independent of one other; that is, while routines in
one block of code execute, the program will not call routines in the other independent blocks of code. For
example, a modern game may contain some initialization code, a “staging area” where the user chooses
certain options, an “action area” where the user plays the game, and a “debriefing area” that goes over the
player’s actions. When running in a 640K MS-DOS machine, all this code may not fit into available memory
at the same time. To overcome this memory limitation, most large programs use

overlays

. An overlay is a
portion of the program code that shares memory for its code with other code modules. The DOS load
overlay function provides support for large programs that need to use overlays.

Like the load and load/execute functions, the load overlay expects a pointer to the code file’s path-
name in the

ds:dx

 register pair and the address of a data structure in the

es:bx

 register pair. This overlay
data structure has the following format:

overlay struct
StartSeg word ?
RelocFactor word 0
overlay ends

The

StartSeg

 field contains the segment address where you want DOS to load the program. The

RelocFactor

 field contains a relocation factor. This value should be zero unless you want the starting
offset of the segment to be something other than zero.

19.1.1.4 Terminating a Process

The process termination function is nothing new to you by now, you’ve used this function over and
over again already if you written any assembly language programs and run them under DOS (the Standard
Library

ExitPgm

 macro executes this command). In this section we’ll look at exactly what the terminate
process function call does.

First of all, the terminate process function gives you the ability to pass a single byte

termination code

back to the parent process. Whatever value you pass in al to the terminate call becomes the return, or ter-
mination code. The parent process can test this value using the Get Child Process Return Value call (see
the next section). You can also test this return value in a DOS batch file using the “if errorlevel” statement.

The terminate process command does the following:

• Flushes file buffers and closes files.
• Restores the termination address (int 22h) from offset 0Ah in the PSP (this is the return

address of the process).
• Restores the address of the Break handler (int 23h) from offset 0Eh in the PSP (see

“Exception Handling in DOS: The Break Handler” on page 1070)
• Restores the address of the critical error handler (int 24h) from offset 12h in the PSP

(see “Exception Handling in DOS: The Critical Error Handler” on page 1071).

Chapter 19

Page 1070

• Deallocates any memory held by the process.

Unless you

really

 know what you’re doing, you should not change the values at offsets 0Ah, 0Eh, or
12h in the PSP. By doing so you could produce an inconsistent system when your program terminates.

19.1.1.5 Obtaining the Child Process Return Code

A parent process can obtain the return code from a child process by making the DOS Get Child Pro-
cess Return Code function call. This call returns the value in the

al

 register at the point of termination plus
information that tells you how the child process terminated.

This call (

ah

=4Dh) returns the termination code in the al register. It also returns the cause of termina-
tion in the ah register. The

ah

 register will contain one of the following values:

The termination code appearing in

al

 is valid only for normal and TSR terminations.

Note that you can only call this routine

once

after a child process terminates. MS-DOS returns mean-
ingless values in AX after the first such call. Likewise, if you use this function without running a child pro-
cess, the results you obtain will be meaningless. DOS does not return if you do this.

19.1.2 Exception Handling in DOS: The Break Handler

Whenever the users presses a ctrl-C or ctrl-Break key MS-DOS may trap such a key sequence and exe-
cute an

int 23h

 instruction

1

. MS-DOS provides a default break handler routine that terminates the pro-
gram. However, a well-written program generally replaces the default break handler with one of its own
so it can capture ctrl-C or ctrl-break key sequences and shut the program down in an orderly fashion.

When DOS terminates a program due to a break interrupt, it flushes file buffers, closes all open files,
releases memory belonging to the application, all the normal stuff it does on program termination. How-
ever, it does

not

 restore any interrupt vectors (other than interrupt 23h and interrupt 24h). If your code
has replaced any interrupt vectors, especially hardware interrupt vectors, then those vectors will still be
pointing at your program’s interrupt service routines after DOS terminates your program. This will proba-
bly crash the system when DOS loads a new program over the top of your code. Therefore, you should
write a break handler so your application can shut itself down in an orderly fashion if the user presses
ctrl-C or ctrl-break.

The easiest, and perhaps most universal, break handler consists of a single instruction –

iret

. If you
point the interrupt 23h vector at an

iret

 instruction, MS-DOS will simply ignore any ctrl-C or ctrl-break
keys you press. This is very useful for turning off the break handling during critical sections of code that
you do not want the user to interrupt.

1. MS-DOS always executes an int 23h instruction if it is processing a function code in the range 1-0Ch. For other DOS functions, MS-DOS only exe-
cutes int 23h if the Break flag is set

Table 68: Termination Cause

Value in AH Reason for Termination

0 Normal termination (int 21h, ah=4Ch)

1 Terminated by ctrl-C

2 Terminated by critical error

3 TSR termination (int 21h, ah=31h)

Processes, Coroutines, and Concurrency

Page 1071

On the other hand, simply turning off ctrl-C and ctrl-break handling throughout your entire program
is not satisfactory either. If for some reason the user wants to abort your program, pressing ctrl-break or
ctrl-C is what they will probably try to do this. If your program disallows this, the user may resort to some-
thing more drastic like ctrl-alt-delete to reset the machine. This will certainly mess up any open files and
may cause other problems as well (of course, you don’t have to worry about restoring any interrupt vec-
tors!).

To patch in your own break handler is easy – just store the address of your break handler routine into
the interrupt vector 23h. You don’t even have to save the old value, DOS does this for you automatically (it
stores the original vector at offset 0Eh in the PSP). Then, when the users presses a ctrl-C or ctrl-break key,
MS-DOS transfers control to your break handler.

Perhaps the best response for a break handler is to set some flag to tell the application and break
occurred, and then leave it up to the application to test this flag a reasonable points to determine if it
should shut down. Of course, this does require that you test this flag at various points throughout your
application, increasing the complexity of your code. Another alternative is to save the original int 23h vec-
tor and transfer control to DOS’ break handler after you handle important operations yourself. You can
also write a specialized break handler to return a DOS termination code that the parent process can read.

Of course, there is no reason you cannot change the interrupt 23h vector at various points throughout
your program to handle changing requirements. At various points you can disable the break interrupt
entirely, restore interrupt vectors at others, or prompt the user at still other points.

19.1.3 Exception Handling in DOS: The Critical Error Handler

DOS invokes the critical error handler by executing an int 24h instruction whenever some sort of I/O
error occurs. The default handler prints the familiar message:

I/O Device Specific Error Message

Abort, Retry, Ignore, Fail?

If the user presses an “A”, this code immediately returns to DOS’ COMMAND.COM program;

it doesn’t
even close any open files

. If the user presses an “R” to retry, MS-DOS will retry the I/O operation, though
this usually results in another call to the critical error handler. The “I” option tells MS-DOS to ignore the
error and return to the calling program as though nothing had happened. An “F” response instructs
MS-DOS to return an error code to the calling program and let it handle the problem.

Of the above options, having the user press “A” is the most dangerous. This causes an immediate
return to DOS and your code does not get the chance to clean up anything. For example, if you’ve patched
some interrupt vectors, your program will not get the opportunity to restore them if the user selects the
abort option. This may crash the system when MS-DOS loads the next program over the top of your inter-
rupt service routine(s) in memory.

To intercept DOS critical errors, you will need to patch the interrupt 24h vector to point at your own
interrupt service routine. Upon entry into your interrupt 24h service routine, the stack will contain the fol-
lowing data:

Chapter 19

Page 1072

MS-DOS passes important information in several of the registers to your critical error handler. By
inspecting these values you can determine the cause of the critical error and the device on which it
occurred. The high order bit of the

ah

 register determines if the error occurred on a block structured
device (typically a disk or tape) or a character device. The other bits in ah have the following meaning:

Table 69: Device Error Bits in AH

Bit(s) Description

0 0=Read operation.
1=Write operation.

1-2 Indicates affected disk area.
00- MS-DOS area.
01- File allocation table (FAT).
10- Root directory.
11- Files area.

3 0- Fail response not allowed.
1- Fail response is okay.

4 0- Retry response not allowed.
1- Retry response is okay.

5 0- Ignore response is not allowed.
1- Ignore response is okay.

6 Undefined

7 0- Character device error.
1- Block structured device error.

Flags
CS
IP
ES
DS
BP
DI
SI
DX
CX
BX
AX
Flags
CS
IP

Original INT 24h return address

Registers DOS pushes for your INT 24h handler

INT 24h return address (back to DOS) for your handler

Stack Contents Upon Entry to a Critical Error Handler

Processes, Coroutines, and Concurrency

Page 1073

In addition to the bits in ah, for block structured devices the

al

 register contains the drive number where
the error occurred (0=A, 1=B, 2=C, etc.). The value in the

al

 register is undefined for character devices.

The lower half of the

di

 register contains additional information about the block device error (the
upper byte of

di

 is undefined, you will need to mask out those bits before attempting to test this data).

Upon entry to your critical error handler, interrupts are turned off. Because this error occurs as a
result of some MS-DOS call, MS-DOS is already entered and you will not be able to make any calls other
than functions 1-0Ch and 59h (get extended error information).

Your critical error handler must preserve all registers except

al

. The handler must return to DOS with
an

iret

 instruction and

al

 must contain one of the following codes:

The following code provides a trivial example of a critical error handler. The main program attempts
to send a character to the printer. If you do not connect a printer, or turn off the printer before running this
program, it will generate the critical error.

; Sample INT 24h critical error handler.
;
; This code demonstrates a sample critical error handler.
; It patches into INT 24h and displays an appropriate error
; message and asks the user if they want to retry, abort, ignore,
; or fail (just like DOS).

Table 70: Block Structured Device Error Codes (in L.O. byte of DI)

Error Code Description

0 Write protection error.

1 Unknown drive.

2 Drive not ready.

3 Invalid command.

4 Data error (CRC error).

5 Length of request structure is incorrect.

6 Seek error on device.

7 Disk is not formatted for MS-DOS.

8 Sector not found.

9 Printer out of paper.

0Ah Write error.

0Bh Read error.

0Ch General failure.

0Fh Disk was changed at inappropriate time.

Table 71: Critical Error Handler Return Codes

Code Meaning

0 Ignore device error.

1 Retry I/O operation again.

2 Terminate process (abort).

3 Fail current system call.

Chapter 19

Page 1074

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

Value word 0
ErrCode word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. Note that this routine
; is even worse than DOS’, but it demonstrates how to write
; such a routine. Note that we cannot call any Standard Library
; I/O routines in the critical error handler because they do not
; use DOS calls 1-0Ch, which are the only allowable DOS calls at
; this point.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

Processes, Coroutines, and Concurrency

Page 1075

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs

mov ah, 5
mov dl, ‘a’
int 21h
rcl Value, 1
and Value, 1
mov ErrCode, ax
printf
byte cr,lf,lf
byte “Print char returned with error status %d and “
byte “error code %d\n”,0
dword Value, ErrCode

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

; Allocate a reasonable amount of space for the stack (8k).
; Note: if you use the pattern matching package you should set up a
; somewhat larger stack.

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!
; This is where the heap begins.

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.1.4 Exception Handling in DOS: Traps

In addition to the break and critical error exceptions, there are the 80x86 exceptions that can happen
during the execution of your programs. Examples include the divide error exception, bounds exception,
and illegal opcode exception. A well-written application will always handle all possible exceptions.

DOS does not provide direct support for these exceptions, other than a possible default handler. In
particular, DOS does not restore such vectors when the program terminates; this is something the applica-
tion, break handler, and critical error handler must take care of. For more information on these exceptions,
see “Exceptions” on page 1000.

19.1.5 Redirection of I/O for Child Processes

When a child process begins execution, it inherits all open files from the parent process (with the
exception of certain files opened with networking file functions). In particular, this includes the default

Chapter 19

Page 1076

files opened for the DOS

standard input, standard output, standard error, auxiliary,

and

 printer

devices. DOS assigns the file handle values zero through four, respectively, to these devices. If a parent
process closes one of these file handles and then reassigns the handle with a Force Duplicate File Handle
call.

Note that the DOS EXEC call does not process the I/O redirection operators (“<“, and “>”, and “|”). If
you want to redirect the standard I/O of a child process, you must do this before loading and executing
the child process. To redirect one of the five standard I/O devices, you should do the following steps:

1) Duplicate the file handle you want to redirect (e.g., to redirect the standard output, duplicate file
handle one).

2) Close the affected file (e.g., file handle one for standard output).

3) Open a file using the standard DOS Create or CreateNew calls.

4) Use the Force Duplicate File Handle call to copy the new file handle to file handle one.

5) Run the child process.

6) On return from the child, close the file.

7) Copy the file handle you duplicated in step one back to the standard output file handle using the
Force Duplicate Handle function.

This technique looks like it would be perfect for redirecting printer or serial port I/O. Unfortunately,
many programs bypass DOS when sending data to the printer and use the BIOS call or, worse yet, go
directly to the hardware. Almost no software bothers with DOS’ serial port support – it truly is that bad.
However, most programs

do

 call DOS to input or output characters on the standard input, output, and
error devices. The following code demonstrates how to redirect the output of a child process to a file.

; REDIRECT.ASM -Demonstrates how to redirect I/O for a child process.
; This particular program invokes COMMAND.COM to execute
; a DIR command, when is sent to the specified output file.

include stdlib.a
includelib stdlib.lib

dseg segment para public ‘data’

OrigOutHandle word ? ;Holds copy of STDOUT handle.
FileHandle word ? ;File I/O handle.
FileName byte “dirctry.txt”,0 ;Filename for output data.

; MS-DOS EXEC structure.

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 7, “ /c DIR”, 0dh ;Do a directory command.
PgmName dword PgmNameStr ;Points at pgm name.
PgmNameStr byte “c:\command.com”,0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;Get ptr to vars segment
mov ds, ax
MemInit ;Start the memory mgr.

; Free up some memory for COMMAND.COM:

mov ah, 62h ;Get our PSP value
int 21h

Processes, Coroutines, and Concurrency

Page 1077

mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Save original output file handle.

mov bx, 1 ;Std out is file handle 1.
mov ah, 45h ;Duplicate the file handle.
int 21h
mov OrigOutHandle, ax;Save duplicate handle.

; Open the output file:

mov ah, 3ch ;Create file.
mov cx, 0 ;Normal attributes.
lea dx, FileName
int 21h
mov FileHandle, ax ;Save opened file handle.

; Force the standard output to send its output to this file.
; Do this by forcing the file’s handle onto file handle #1 (stdout).

mov ah, 46h ;Force dup file handle
mov cx, 1 ;Existing handle to change.
mov bx, FileHandle ;New file handle to use.
int 21h

; Print the first line to the file:

print
byte “Redirected directory listing:”,cr,lf,0

; Okay, execute the DOS DIR command (that is, execute COMMAND.COM with
; the command line parameter “/c DIR”).

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

mov bx, sseg ;Reset the stack on return.
mov ss, ax
mov sp, offset EndStk
mov bx, seg dseg
mov ds, bx

; Okay, close the output file and switch standard output back to the
; console.

mov ah, 3eh ;Close output file.
mov bx, FileHandle
int 21h

mov ah, 46h ;Force duplicate handle
mov cx, 1 ;StdOut
mov bx, OrigOutHandle ;Restore previous handle.
int 21h

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

endstk dw ?
sseg ends

Chapter 19

Page 1078

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)
zzzzzzseg ends

end Main

19.2 Shared Memory

The only problem with running different DOS programs as part of a single application is

interprocess
communication.

 That is, how do all these programs talk to one other? When a typical DOS application
runs, DOS loads in all code and data segments; there is no provision, other than reading data from a file or
the process termination code, for one process to pass information to another. Although file I/O will work,
it is cumbersome and slow. The ideal solution would be for one process to leave a copy of various vari-
ables that other processes can share. Your programs can easily do this using

shared memory

.

Most modern multitasking operating systems provide for shared memory – memory that appears in
the address space of two or more processes. Furthermore, such shared memory is often

persistent

, mean-
ing it continues to hold values after its creator process terminates. This allows other processes to start later
and use the values left behind by the shared variables’ creator.

Unfortunately, MS-DOS is not a modern multitasking operating system and it does not support shared
memory. However, we can easily write a resident program that provides this capability missing from DOS.
The following sections describe how to create two types of shared memory regions – static and dynamic.

19.2.1 Static Shared Memory

A TSR to implement static shared memory is trivial. It is a passive TSR that provides three functions –
verify presence, remove, and return segment pointer. The transient portion simply allocates a 64K data
segment and then terminates. Other processes can obtain the address of the 64K shared memory block by
making the “return segment pointer” call. These processes can place all their shared data into the segment
belonging to the TSR. When one process quits, the shared segment remains in memory as part of the TSR.
When a second process runs and links with the shared segment, the variables from the shared segment are
still intact, so the new process can access those values. When all processes are done sharing data, the user
can remove the shared memory TSR with the remove function.

As mentioned above, there is almost nothing to the shared memory TSR. The following code imple-
ments it:

; SHARDMEM.ASM
;
; This TSR sets aside a 64K shared memory region for other processes to use.
;
; Usage:
;
; SHARDMEM - Loads resident portion and activates
; shared memory capabilities.
;
; SHARDMEM REMOVE - Removes shared memory TSR from memory.
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When removing itself from memory, it makes sure there are
; no other interrupts chained into INT 2Fh before doing the remove.
;
;
;
; The following segments must appear in this order and before the
; Standard Library includes.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

SharedMemory segment para public ‘Shared’

Processes, Coroutines, and Concurrency

Page 1079

SharedMemory ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; Int 2Fh ID number for this TSR:

MyTSRID byte 0
byte 0 ;Padding so we can print it.

; PSP is the psp address for this program.

PSP word 0

OldInt2F dword ?

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):
;
; 00h- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01h- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.
;
; 10h- Return Seg Adrs. Returns the segment address of the
; shared segment in ES.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID ;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify, remove, or
; return segment call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv
mov al, 0ffh ;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Static Shared Memory TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne TryRetSeg

; See if we can remove this TSR:

push es
mov ax, 0
mov es, ax
cmp word ptr es:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr es:[2Fh*4 + 2], seg MyInt2F

Chapter 19

Page 1080

je CanRemove;Branch if we can.
TRDone: mov ax, 1 ;Return failure for now.

pop es
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

CanRemove: push ds
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h

mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop ds
pop es
mov ax, 0 ;Return Success.
iret

; See if they want us to return the segment address of our shared segment
; here.

TryRetSeg: cmp al, 10h ;Return Segment Opcode
jne IllegalOp
mov ax, SharedMemory
mov es, ax
mov ax, 0 ;Return success
clc
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

ResidentSeg ends

; Here’s the segment that will actually hold the shared data.

SharedMemory segment para public ‘Shared’
db 0FFFFh dup (?)

SharedMemory ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

Processes, Coroutines, and Concurrency

Page 1081

; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es
push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line

Chapter 19

Page 1082

; parameters. If there is one, and it is the word “REMOVE”, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.

argc
cmp cx, 1 ;Must have 0 or 1 parms.
jb TstPresent
je DoRemove

Usage: print
byte “Usage:”,cr,lf
byte “ shardmem”,cr,lf
byte “or shardmem REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

DoRemove: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne Usage

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print
byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm

; Things look cool so far, so install the interrupts

Processes, Coroutines, and Concurrency

Page 1083

GetFileName: mov MyTSRID, cl
print
byte “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to zero out the shared
; memory segment and then terminate and stay resident.

printf
byte “Installed, TSR ID #%d.”,cr,lf,0
dword MyTSRID

mov ax, SharedMemory ;Zero out the shared
mov es, ax ; memory segment.
mov cx, 32768 ;32K words = 64K bytes.
xor ax, ax ;Store all zeros,
mov di, ax ; starting at offset zero.

rep stosw

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

This program simply carves out a chunk of memory (the 64K in the SharedMemory segment) and
returns a pointer to it in es whenever a program executes the appropriate int 2Fh call (ah= TSR ID and
al=10h). The only catch is how do we declared shared variables in the applications that use shared mem-
ory? Well, that’s fairly easy if we play a sneaky trick on MASM, the Linker, DOS, and the 80x86.

When DOS loads your program into memory, it generally loads the segments in the same order they
first appear in your source files. The UCR Standard Library, for example, takes advantage of this by insist-
ing that you include a segment named zzzzzzseg at the end of all your assembly language source files.
The UCR Standard Library memory management routines build the heap starting at zzzzzzseg, it must be
the last segment (containing valid data) because the memory management routines may overwrite any-
thing following zzzzzzseg.

For our shared memory segment, we would like to create a segment something like the following:

SharedMemory segment para public ‘Shared’

« define all shared variables here»

SharedMemory ends

Chapter 19

Page 1084

Applications that share data would define all shared variables in this shared segment. There are, however,
five problems. First, how do we tell the assembler/linker/DOS/80x86 that this is a shared segment, rather
than having a separate segment for each program? Well, this problem is easy to solve; we don’t bother tell-
ing MASM, the linker, or DOS anything. The way we make the different applications all share the same
segment in memory is to invoke the shared memory TSR in the code above with function code 10h. This
returns the address of the TSR’s SharedMemory segment in the es register. In our assembly language pro-
grams we fool MASM into thinking es points at its local shared memory segment when, in fact, es points
at the global segment.

The second problem is minor, but annoying nonetheless. When you create a segment, MASM, the
linker, and DOS set aside storage for that segment. If you declare a large number of variables in a shared
segment, this can waste memory since the program will actually use the memory space in the global
shared segment. One easy way to reclaim the storage that MASM reserves for this segment is to define the
shared segment after zzzzzzseg in your shared memory applications. By doing so, the Standard Library
will absorb any memory reserved for the (dummy) shared memory segment into the heap, since all mem-
ory after zzzzzzseg belongs to the heap (when you use the standard meminit call).

The third problem is slightly more difficult to deal with. Since you will not be use the local segment,
you cannot initialize any variables in the shared memory segment by placing values in the operand field of
byte, word, dword, etc., directives. Doing so will only initialize the local memory in the heap, the system
will not copy this data to the global shared segment. Generally, this isn’t a problem because processes
won’t normally initialize shared memory as they load. Instead, there will probably be a single application
you run first that initializes the shared memory area for the rest of the processes that using the global
shared segment.

The fourth problem is that you cannot initialize any variables with the address of an object in shared
memory. For example, if the variable shared_K is in the shared memory segment, you could not use a
statement like the following:

printf
byte “Value of shared_K is %d\n”,0
dword shared_K

The problem with this code is that MASM initializes the double word after the string above with the
address of the shared_K variable in the local copy of the shared data segment. This will not print out the
copy in the global shared data segment.

The last problem is anything but minor. All programs that use the global shared memory segment
must define their variables at identical offsets within the shared segment. Given the way MASM assigns
offsets to variables within a segment, if you are one byte off in the declaration of any of your variables,
your program will be accessing its variables at different addresses than other processes sharing the global
shared segment. This will scramble memory and produce a disaster. The only reasonable way to declare
variables for shared memory programs is to create an include file with all the shared variable declarations
for all concerned programs. Then include this single file into all the programs that share the variables. Now
you can add, remove, or modify variables without having to worry about maintaining the shared variable
declarations in the other files.

The following two sample programs demonstrate the use of shared memory. The first application
reads a string from the user and stuffs it into shared memory. The second application reads that string from
shared memory and displays it on the screen.

First, here is the include file containing the single shared variable declaration used by both applica-
tions:

; shmvars.asm
;
; This file contains the shared memory variable declarations used by
; all applications that refer to shared memory.

InputLine byte 128 dup (?)

Processes, Coroutines, and Concurrency

Page 1085

Here is the first application that reads an input string from the user and shoves it into shared memory:

; SHMAPP1.ASM
;
; This is a shared memory application that uses the static shared memory
; TSR (SHARDMEM.ASM). This program inputs a string from the user and
; passes that string to SHMAPP2.ASM through the shared memory area.
;
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #1”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHARDMEM) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0

Chapter 19

Page 1086

ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 10h ;Get shared segment address.
int 2Fh

; Get the input line from the user:

print
byte “Enter a string: “,0

lea di, InputLine ;ES already points at proper seg.
gets

print
byte “Entered ‘”,0
puts
print
byte “‘ into shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

; The shared memory segment must appear after “zzzzzzseg”.
; Note that this isn’t the physical storage for the data in the
; shared segment. It’s really just a place holder so we can declare
; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the memory associated with this segment for the
; heap. To access data in the shared segment, this application calls
; the shared memory TSR to obtain the true segment address of the
; shared memory segment. It can then access variables in the shared
; memory segment (where ever it happens to be) off the ES register.
;
; Note that all the variable declarations go into an include file.
; All applications that refer to the shared memory segment include
; this file in the SharedMemory segment. This ensures that all
; shared segments have the exact same variable layout.

SharedMemory segment para public ‘Shared’

include shmvars.asm

SharedMemory ends
end Main

The second application is very similar, here it is

; SHMAPP2.ASM
;
; This is a shared memory application that uses the static shared memory
; TSR (SHARDMEM.ASM). This program assumes the user has already run the
; SHMAPP1 program to insert a string into shared memory. This program
; simply prints that string from shared memory.
;

Processes, Coroutines, and Concurrency

Page 1087

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #2”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHARDMEM) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 10h ;Get shared segment address.
int 2Fh

; Print the string input in SHMAPP1:

Chapter 19

Page 1088

print
byte “String from SHMAPP1 is ‘”,0

lea di, InputLine ;ES already points at proper seg.
puts

print
byte “‘ from shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

; The shared memory segment must appear after “zzzzzzseg”.
; Note that this isn’t the physical storage for the data in the
; shared segment. It’s really just a place holder so we can declare
; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the memory associated with this segment for the
; heap. To access data in the shared segment, this application calls
; the shared memory TSR to obtain the true segment address of the
; shared memory segment. It can then access variables in the shared
; memory segment (where ever it happens to be) off the ES register.
;
; Note that all the variable declarations go into an include file.
; All applications that refer to the shared memory segment include
; this file in the SharedMemory segment. This ensures that all
; shared segments have the exact same variable layout.

SharedMemory segment para public ‘Shared’

include shmvars.asm

SharedMemory ends
end Main

19.2.2 Dynamic Shared Memory

Although the static shared memory the previous section describes is very useful, it does suffer from a
few limitations. First of all, any program that uses the global shared segment must be aware of the location
of every other program that uses the shared segment. This effectively means that the use of the shared seg-
ment is limited to a single set of cooperating processes at any one given time. You cannot have two inde-
pendent sets of programs using the shared memory at the same time. Another limitation with the static
system is that you must know the size of all variables when you write your program, you cannot create
dynamic data structures whose size varies at run time. It would be nice, for example, to have calls like
shmalloc and shmfree that let you dynamically allocate and free memory in a shared region. Fortunately, it
is very easy to overcome these limitations by creating a dynamic shared memory manager.

A reasonable shared memory manager will have four functions: initialize, shmalloc, shmattach, and
shmfree. The initialization call reclaims all shared memory in use. The shmalloc call lets a process allocate
a new block of shared memory. Only one process in a group of cooperating processes makes this call.
Once shmalloc allocates a block of memory, the other processes use the shmattach call to obtain the
address of the shared memory block. The following code implements a dynamic shared memory manager.
The code is similar to that appearing in the Standard Library except this code allows a maximum of 64K
storage on the heap.

Processes, Coroutines, and Concurrency

Page 1089

; SHMALLOC.ASM
;
; This TSR sets up a dynamic shared memory system.
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When removing itself from memory, it makes sure there are
; no other interrupts chained into INT 2Fh before doing the remove.
;
;
;
; The following segments must appear in this order and before the
; Standard Library includes.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

SharedMemory segment para public ‘Shared’
SharedMemory ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

NULL equ 0

; Data structure for an allocated data region.
;
; Key- user supplied ID to associate this region with a particular set
; of processes.
;
; Next- Points at the next allocated block.
; Prev- Points at the previous allocated block.
; Size- Size (in bytes) of allocated block, not including header structure.

Region struct
key word ?
next word ?
prev word ?
blksize word ?
Region ends

Startmem equ Region ptr [0]

AllocatedList word 0 ;Points at chain of alloc’d blocks.
FreeList word 0 ;Points at chain of free blocks.

; Int 2Fh ID number for this TSR:

MyTSRID byte 0
byte 0 ;Padding so we can print it.

; PSP is the psp address for this program.

PSP word 0

OldInt2F dword ?

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):

Chapter 19

Page 1090

;
; 00h- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01h- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.
;
; 11h- shmalloc CX contains the size of the block
; to allocate.
; DX contains the key for this block.
; Returns a pointer to block in ES:DI
; and size of allocated block in CX.
; Returns an error code in AX. Zero
; is no error, one is “key already
; exists,” two is “insufficient
; memory for request.”
;
; 12h- shmfree DX contains the key for this block.
; This call frees the specified block
; from memory.
;
; 13h- shminit Initializes the shared memory system
; freeing all blocks currently in
; use.
;
; 14h- shmattach DX contains the key for a block.
; Search for that block and return
; its address in ES:DI. AX contains
; zero if successful, three if it
; cannot locate a block with the
; specified key.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify, remove, or
; return segment call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv
mov al, 0ffh;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Dynamic Shared Memory TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne Tryshmalloc

; See if we can remove this TSR:

push es
mov ax, 0
mov es, ax
cmp word ptr es:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr es:[2Fh*4 + 2], seg MyInt2F
je CanRemove ;Branch if we can.

TRDone: mov ax, 1 ;Return failure for now.
pop es
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

Processes, Coroutines, and Concurrency

Page 1091

CanRemove: push ds
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h

mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop ds
pop es
mov ax, 0 ;Return Success.
iret

; Stick BadKey here so that it is close to its associated branch (from below).
;
; If come here, we’ve discovered an allocated block with the
; specified key. Return an error code (AX=1) and the size of that
; allocated block (in CX).

BadKey: mov cx, [bx].Region.BlkSize
mov ax, 1 ;Already allocated error.
pop bx
pop ds
iret

; See if this is a shmalloc call.
; If so, on entry -
; DX contains the key.
; CX contains the number of bytes to allocate.
;
; On exit:
;
; ES:DI points at the allocated block (if successful).
; CX contains the actual size of the allocated block (>=CX on entry).
; AX contains error code, 0 if no error.

Tryshmalloc: cmp al, 11h ;shmalloc function code.
jne Tryshmfree

; First, search through the allocated list to see if a block with the
; current key number already exists. DX contains the requested key.

assume ds:SharedMemory
assume bx:ptr Region
assume di:ptr Region

push ds
push bx
mov bx, SharedMemory
mov ds, bx

Chapter 19

Page 1092

mov bx, ResidentSeg:AllocatedList
test bx, bx ;Anything on this list?
je SrchFreeList

SearchLoop: cmp dx, [bx].Key ;Key exist already?
je BadKey
mov bx, [bx].Next ;Get next region.
test bx, bx ;NULL?, if not, try another
jne SearchLoop ; entry in the list.

; If an allocated block with the specified key does not already exist,
; then try to allocate one from the free memory list.

SrchFreeList: mov bx, ResidentSeg:FreeList
test bx, bx ;Empty free list?
je OutaMemory

FirstFitLp: cmp cx, [bx].BlkSize ;Is this block big enough?
jbe GotBlock
mov bx, [bx].Next ;If not, on to the next one.
test bx, bx ;Anything on this list?
jne FirstFitLp

; If we drop down here, we were unable to find a block that was large
; enough to satisfy the request. Return an appropriate error

OutaMemory: mov cx, 0 ;Nothing available.
mov ax, 2 ;Insufficient memory error.
pop bx
pop ds
iret

; If we find a large enough block, we’ve got to carve the new block
; out of it and return the rest of the storage to the free list. If the
; free block is at least 32 bytes larger than the requested size, we will
; do this. If the free block is less than 32 bytes larger, we will simply
; give this free block to the requesting process. The reason for the
; 32 bytes is simple: We need eight bytes for the new block’s header
; (the free block already has one) and it doesn’t make sense to fragment
; blocks to sizes below 24 bytes. That would only increase processing time
; when processes free up blocks by requiring more work coalescing blocks.

GotBlock: mov ax, [bx].BlkSize ;Compute difference in size.
sub ax, cx
cmp ax, 32 ;At least 32 bytes left?
jbe GrabWholeBlk ;If not, take this block.

; Okay, the free block is larger than the requested size by more than 32
; bytes. Carve the new block from the end of the free block (that way
; we do not have to change the free block’s pointers, only the size.

mov di, bx
add di, [bx].BlkSize ;Scoot to end, minus 8
sub di, cx ;Point at new block.

sub [bx].BlkSize, cx ;Remove alloc’d block and
sub [bx].BlkSize, 8 ; room for header.

mov [di].BlkSize, cx ;Save size of block.
mov [di].Key, dx ;Save key.

; Link the new block into the list of allocated blocks.

mov bx, ResidentSeg:AllocatedList
mov [di].Next, bx
mov [di].Prev, NULL ;NULL previous pointer.
test bx, bx ;See if it was an empty list.
je NoPrev
mov [bx].Prev, di ;Set prev ptr for old guy.

NoPrev: mov ResidentSeg:AllocatedList, di
RmvDone: add di, 8 ;Point at actual data area.

mov ax, ds ;Return ptr in es:di.
mov es, ax

Processes, Coroutines, and Concurrency

Page 1093

mov ax, 0 ;Return success.
pop bx
pop ds
iret

; If the current free block is larger than the request, but not by more
; that 32 bytes, just give the whole block to the user.

GrabWholeBlk: mov di, bx
mov cx, [bx].BlkSize ;Return actual size.
cmp [bx].Prev, NULL ;First guy in list?
je Rmv1st
cmp [bx].Next, NULL ;Last guy in list?
je RmvLast

; Okay, this record is sandwiched between two other in the free list.
; Cut it out from among the two.

mov ax, [bx].Next ;Save the ptr to the next
mov bx, [bx].Prev ; item in the prev item’s
mov [bx].Next, ax ; next field.

mov ax, bx ;Save the ptr to the prev
mov bx, [di].Next ; item in the next item’s
mov [bx].Prev, bx ; prev field.
jmp RmvDone

; The block we want to remove is at the beginning of the free list.
; It could also be the only item on the free list!

Rmv1st: mov ax, [bx].Next
mov FreeList, ax ;Remove from free list.
jmp RmvDone

; If the block we want to remove is at the end of the list, handle that
; down here.

RmvLast: mov bx, [bx].Prev
mov [bx].Next, NULL
jmp RmvDone

assume ds:nothing, bx:nothing, di:nothing

; This code handles the SHMFREE function.
; On entry, DX contains the key for the block to free. We need to
; search through the allocated block list and find the block with that
; key. If we do not find such a block, this code returns without doing
; anything. If we find the block, we need to add its memory to the
; free pool. However, we cannot simply insert this block on the front
; of the free list (as we did for the allocated blocks). It might
; turn out that this block we’re freeing is adjacent to one or two
; other free blocks. This code has to coalesce such blocks into
; a single free block.

Tryshmfree: cmp al, 12h
jne Tryshminit

; First, search the allocated block list to see if we can find the
; block to remove. If we don’t find it in the list anywhere, just return.

assume ds:SharedMemory
assume bx:ptr Region
assume di:ptr Region

push ds
push di
push bx

Chapter 19

Page 1094

mov bx, SharedMemory
mov ds, bx
mov bx, ResidentSeg:AllocatedList

test bx, bx ;Empty allocated list?
je FreeDone

SrchList: cmp dx, [bx].Key ;Search for key in DX.
je FoundIt
mov bx, [bx].Next
test bx, bx ;At end of list?
jne SrchList

FreeDone: pop bx
pop di ;Nothing allocated, just
pop ds ; return to caller.
iret

; Okay, we found the block the user wants to delete. Remove it from
; the allocated list. There are three cases to consider:
; (1) it is at the front of the allocated list, (2) it is at the end of
; the allocated list, and (3) it is in the middle of the allocated list.

FoundIt: cmp [bx].Prev, NULL ;1st item in list?
je Free1st
cmp [bx].Next, NULL ;Last item in list?
je FreeLast

; Okay, we’re removing an allocated item from the middle of the allocated
; list.

mov di, [bx].Next ;[next].prev := [cur].prev
mov ax, [bx].Prev
mov [di].Prev, ax
xchg ax, di
mov [di].Next, ax ;[prev].next := [cur].next
jmp AddFree

; Handle the case where we are removing the first item from the allocation
; list. It is possible that this is the only item on the list (i.e., it
; is the first and last item), but this code handles that case without any
; problems.

Free1st: mov ax, [bx].Next
mov ResidentSeg:AllocatedList, ax
jmp AddFree

; If we’re removing the last guy in the chain, simply set the next field
; of the previous node in the list to NULL.

FreeLast: mov di, [bx].Prev
mov [di].Next, NULL

; Okay, now we’ve got to put the freed block onto the free block list.
; The free block list is sorted according to address. We have to search
; for the first free block whose address is greater than the block we’ve
; just freed and insert the new free block before that one. If the two
; blocks are adjacent, then we’ve got to merge them into a single free
; block. Also, if the block before is adjacent, we must merge it as
; well. This will coalesce all free blocks on the free list so there
; are as few free blocks as possible and those blocks are as large as
; possible.

AddFree: mov ax, ResidentSeg:FreeList
test ax, ax ;Empty list?
jne SrchPosn

; If the list is empty, stick this guy on as the only entry.

mov ResidentSeg:FreeList, bx
mov [bx].Next, NULL
mov [bx].Prev, NULL
jmp FreeDone

Processes, Coroutines, and Concurrency

Page 1095

; If the free list is not empty, search for the position of this block
; in the free list:

SrchPosn: mov di, ax
cmp bx, di
jb FoundPosn
mov ax, [di].Next
test ax, ax ;At end of list?
jne SrchPosn

; If we fall down here, the free block belongs at the end of the list.
; See if we need to merge the new block with the old one.

mov ax, di
add ax, [di].BlkSize ;Compute address of 1st byte
add ax, 8 ; after this block.
cmp ax, bx
je MergeLast

; Okay, just add the free block to the end of the list.

mov [di].Next, bx
mov [bx].Prev, di
mov [bx].Next, NULL
jmp FreeDone

; Merge the freed block with the block DI points at.

MergeLast: mov ax, [di].BlkSize
add ax, [bx].BlkSize
add ax, 8
mov [di].BlkSize, ax
jmp FreeDone

; If we found a free block before which we are supposed to insert
; the current free block, drop down here and handle it.

FoundPosn: mov ax, bx ;Compute the address of the
add ax, [bx].BlkSize ; next block in memory.
add ax, 8
cmp ax, di ;Equal to this block?
jne DontMerge

; The next free block is adjacent to the one we’re freeing, so just
; merge the two.

mov ax, [di].BlkSize ;Merge the sizes together.
add ax, 8
add [bx].BlkSize, ax
mov ax, [di].Next ;Tweak the links.
mov [bx].Next, ax
mov ax, [di].Prev
mov [bx].Prev, ax
jmp TryMergeB4

; If the blocks are not adjacent, just link them together here.

DontMerge: mov ax, [di].Prev
mov [di].Prev, bx
mov [bx].Prev, ax
mov [bx].Next, di

; Now, see if we can merge the current free block with the previous free blk.

TryMergeB4: mov di, [bx].Prev
mov ax, di
add ax, [di].BlkSize
add ax, 8
cmp ax, bx
je CanMerge
pop bx
pop di ;Nothing allocated, just
pop ds ; return to caller.
iret

Chapter 19

Page 1096

; If we can merge the previous and current free blocks, do that here:

CanMerge: mov ax, [bx].Next
mov [di].Next, ax
mov ax, [bx].BlkSize
add ax, 8
add [di].BlkSize, ax
pop bx
pop di
pop ds
iret

assume ds:nothing
assume bx:nothing
assume di:nothing

; Here’s where we handle the shared memory initializatin (SHMINIT) function.
; All we got to do is create a single block on the free list (which is all
; available memory), empty out the allocated list, and then zero out all
; shared memory.

Tryshminit: cmp al, 13h
jne TryShmAttach

; Reset the memory allocation area to contain a single, free, block of
; memory whose size is 0FFF8h (need to reserve eight bytes for the block’s
; data structure).

push es
push di
push cx

mov ax, SharedMemory ;Zero out the shared
mov es, ax ; memory segment.
mov cx, 32768
xor ax, ax
mov di, ax

rep stosw

; Note: the commented out lines below are unnecessary since the code above
; has already zeroed out the entire shared memory segment.
; Note: we cannot put the first record at offset zero because offset zero
; is the special value for the NULL pointer. We’ll use 4 instead.

mov di, 4
; mov es:[di].Region.Key, 0 ;Key is arbitrary.
; mov es:[di].Region.Next, 0 ;No other entries.
; mov es:[di].Region.Prev, 0 ; Ditto.

mov es:[di].Region.BlkSize, 0FFF8h ;Rest of segment.
mov ResidentSeg:FreeList, di

pop cx
pop di
pop es
mov ax, 0 ;Return no error.
iret

; Handle the SHMATTACH function here. On entry, DX contains a key number.
; Search for an allocated block with that key number and return a pointer
; to that block (if found) in ES:DI. Return an error code (AX=3) if we
; cannot find the block.

TryShmAttach: cmp al, 14h ;Attach opcode.
jne IllegalOp
mov ax, SharedMemory
mov es, ax

mov di, ResidentSeg:AllocatedList
FindOurs: cmp dx, es:[di].Region.Key

je FoundOurs
mov di, es:[di].Region.Next

Processes, Coroutines, and Concurrency

Page 1097

test di, di
jne FoundOurs
mov ax, 3 ;Can’t find the key.
iret

FoundOurs: add di, 8 ;Point at actual data.
mov ax, 0 ;No error.
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

ResidentSeg ends

; Here’s the segment that will actually hold the shared data.

SharedMemory segment para public ‘Shared’
db 0FFFFh dup (?)

SharedMemory ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es

Chapter 19

Page 1098

push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line
; parameters. If there is one, and it is the word “REMOVE”, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.

argc
cmp cx, 1 ;Must have 0 or 1 parms.
jb TstPresent
je DoRemove

Usage: print
byte “Usage:”,cr,lf
byte “ shmalloc”,cr,lf
byte “or shmalloc REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

DoRemove: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne Usage

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print

Processes, Coroutines, and Concurrency

Page 1099

byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm

; Things look cool so far, so install the interrupts

GetFileName: mov MyTSRID, cl
print
byte “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to initialize the shared
; memory segment and then terminate and stay resident.

printf
byte “Installed, TSR ID #%d.”,cr,lf,0
dword MyTSRID

mov ah, MyTSRID ;Initialization call.
mov al, 13h
int 2Fh

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends

Chapter 19

Page 1100

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

We can modify the two applications from the previous section to try out this code:

; SHMAPP3.ASM
;
; This is a shared memory application that uses the dynamic shared memory
; TSR (SHMALLOC.ASM). This program inputs a string from the user and
; passes that string to SHMAPP4.ASM through the shared memory area.
;
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

Processes, Coroutines, and Concurrency

Page 1101

print
byte “Shared memory application #3”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHMALLOC) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; Get the input line from the user:

ItsThere: mov ShmID, cl
print
byte “Enter a string: “,0

lea di, InputLine ;ES already points at proper seg.
getsm

; The string is in our heap space. Let’s move it over to the shared
; memory segment.

strlen
inc cx ;Add one for zero byte.
push es
push di

mov dx, 1234h ;Our “key” value.
mov ah, ShmID
mov al, 11h ;Shmalloc call.
int 2Fh

mov si, di ;Save as dest ptr.
mov dx, es

pop di ;Retrive source address.
pop es
strcpy ;Copy from local to shared.

print
byte “Entered ‘”,0
puts
print
byte “‘ into shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; SHMAPP4.ASM
;
; This is a shared memory application that uses the dynamic shared memory
; TSR (SHMALLOC.ASM). This program assumes the user has already run the
; SHMAPP3 program to insert a string into shared memory. This program

Chapter 19

Page 1102

; simply prints that string from shared memory.
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #4”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHMALLOC) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 14h ;Attach call
mov dx, 1234h;Our “key” value
int 2Fh

Processes, Coroutines, and Concurrency

Page 1103

; Print the string input in SHMAPP3:

print
byte “String from SHMAPP3 is ‘”,0

puts

print
byte “‘ from shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.3 Coroutines

DOS processes, even when using shared memory, suffer from one primary drawback – each program
executes to completion before returning control back to the parent process. While this paradigm is suit-
able for many applications, it certainly does not suffice for all. A common paradigm is for two programs to
swap control of the CPU back and forth while executing. This mechanism, slightly different from the sub-
routine call and return mechanism, is a coroutine.

Before discussing coroutines, it is probably a good idea to provide a solid definition for the term pro-
cess. In a nutshell, a process is a program that is executing. A program can exist on the disk; processes
exist in memory and have a program stack (with return addresses, etc.) associated with them. If there are
multiple processes in memory at one time, each process must have its own program stack.

A cocall operation transfers control between two processes. A cocall is effectively a call and a return
instruction all rolled into one operation. From the point of view of the process executing the cocall, the
cocall operation is equivalent to a procedure call; from the point of view of the processing being called,
the cocall operation is equivalent to a return operation. When the second process cocalls the first, control
resumes not at the beginning of the first process, but immediately after the cocall operation. If two pro-
cesses execute a sequence of mutual cocalls, control will transfer between the two processes in the follow-
ing fashion:

Chapter 19

Page 1104

Cocalls are quite useful for games where the “players” take turns, following different strategies. The
first player executes some code to make its first move, then cocalls the second player and allows it to make
a move. After the second player makes its move, it cocalls the first process and gives the first player its sec-
ond move, picking up immediately after its cocall. This transfer of control bounces back and forth until
one player wins.

The 80x86 CPUs do not provide a cocall instruction. However, it is easy to implement cocalls with
existing instructions. Even so, there is little need for you to supply your own cocall mechanism, the UCR
Standard Library provides a cocall package for 8086, 80186, and 80286 processors2. This package includes
the pcb (process control block) data structure and three functions you can call: coinit, cocall, and
cocalll.

The pcb structure maintains the current state of a process. The pcb maintains all the register values
and other accounting information for a process. When a process makes a cocall, it stores the return
address for the cocall in the pcb. Later, when some other process cocalls this process, the cocall operation
simply reloads the registers, include cs:ip, from the pcb and that returns control to the next instruction
after the first process’ cocall. The pcb structure takes the following form:

pcb struct

2. The cocall package works fine with the other processors as long as you don’t use the 32-bit register set. Later, we will discuss how to extend the
Standard Library routines to handle the 32-bit capabilities of the 80386 and late processors.

Process #1 Process #2

cocall prcs2

cocall prcs1

cocall prcs2

cocall prcs1

cocall prcs2

cocall prcs1

Cocall Sequence Between Two Processes

Processes, Coroutines, and Concurrency

Page 1105

NextProc dword ? ;Link to next PCB (for multitasking).
regsp word ?
regss word ?
regip word ?
regcs word ?
regax word ?
regbx word ?
regcx word ?
regdx word ?
regsi word ?
regdi word ?
regbp word ?
regds word ?
reges word ?
regflags word ?
PrcsID word ?
StartingTime dword ? ;Used for multitasking accounting.
StartingDate dword ? ;Used for multitasking accounting.
CPUTime dword ? ;Used for multitasking accounting.

Four of these fields (as labelled) exist for preemptive multitasking and have no meaning for coroutines.
We will discuss preemptive multitasking in the next section.

There are two important things that should be evident from this structure. First, the main reason the
existing Standard Library coroutine support is limited to 16 bit register is because there is only room for the
16 bit versions of each of the registers in the pcb. If you want to support the 80386 and later 32 bit register
sets, you would need to modify the pcb structure and the code that saves and restores registers in the
pcb.

The second thing that should be evident is that the coroutine code preserves all registers across a
cocall. This means you cannot pass information from one process to another in the registers when using a
cocall. You will need to pass data between processes in global memory locations. Since coroutines gener-
ally exist in the same program, you will not even need to resort to the shared memory techniques. Any
variables you declare in your data segment will be visible to all coroutines.

Note, by the way, that a program may contain more than two coroutines. If coroutine one cocalls
coroutine two, and coroutine two cocalls coroutine three, and then coroutine three cocalls coroutine one,
coroutine one picks up immediately after the cocall it made to coroutine two.

Since a cocall effectively returns to the target coroutine, you might wonder what happens on the
first cocall to any process. After all, if that process has not executed any code, there is no “return address”
where you can resume execution. This is an easy problem to solve, we need only initialize the return
address of such a process to the address of the first instruction to execute in that process.

Process #1 Process #2 Process #3

cocall prcs2 cocall prcs3

cocall prcs1

Cocalls Between Three Processes

Chapter 19

Page 1106

A similar problem exists for the stack. When a program begins execution, the main program (corou-
tine one) takes control and uses the stack associated with the entire program. Since each process must
have its own stack, where do the other coroutines get their stacks?

The easiest way to initialize the stack and initial address for a coroutine is to do this when declaring a
pcb for a process. Consider the following pcb variable declaration:

ProcessTwo pcb {0, offset EndStack2, seg EndStack2,
offset StartLoc2, seg StartLoc2}

This definition initializes the NextProc field with NULL (the Standard Library coroutine functions do not
use this field) and initialize the ss:sp and cs:ip fields with the last address of a stack area (EndStack2)
and the first instruction of the process (StartLoc2). Now all you need to do is reserve a reasonable
amount of stack storage for the process. You can create multiple stacks in the SHELL.ASM sseg as follows:

sseg segment para stack ‘stack’

; Stack for process #2:

stk2 byte 1024 dup (?)
EndStack2 word ?

; Stack for process #3:

stk3 byte 1024 dup (?)
EndStack3 word ?

; The primary stack for the main program (process #1) must appear at
; the end of sseg.

stk byte 1024 dup (?)
sseg ends

There is the question of “how much space should one reserve for each stack?” This, of course, varies
with the application. If you have a simple application that doesn’t use recursion or allocate any local vari-
ables on the stack, you could get by with as little as 256 bytes of stack space for a process. On the other
hand, if you have recursive routines or allocate storage on the stack, you will need considerably more
space. For simple programs, 1-8K stack storage should be sufficient. Keep in mind that you can allocate a
maximum of 64K in the SHELL.ASM sseg. If you need additional stack space, you will need to up the other
stacks in a different segment (they do not need to be in sseg, it’s just a convenient place for them) or you
will need to allocate the stack space differently.

Note that you do not have to allocate the stack space as an array within your program. You can also
allocate stack space dynamically using the Standard Library malloc call. The following code demon-
strates how to set up an 8K dynamically allocated stack for the pcb variable Process2:

mov cx, 8192
malloc
jc InsufficientRoom
mov Process2.ss, es
mov Process2.sp, di

Setting up the coroutines the main program will call is pretty easy. However, there is the issue of set-
ting up the pcb for the main program. You cannot initialize the pcb for the main program the same way
you initialize the pcb for the other processes; it is already running and has valid cs:ip and ss:sp values.
Were you to initialize the main program’s pcb the same way we did for the other processes, the system
would simply restart the main program when you make a cocall back to it. To initialize the pcb for the
main program, you must use the coinit function. The coinit function expects you to pass it the address
of the main program’s pcb in the es:di register pair. It initializes some variables internal to the Standard
Library so the first cocall operation will save the 80x86 machine state in the pcb you specify by es:di.
After the coinit call, you can begin making cocalls to other processes in your program.

Processes, Coroutines, and Concurrency

Page 1107

To cocall a coroutine, you use the Standard Library cocall function. The cocall function call takes
two forms. Without any parameters this function transfers control to the coroutine whose pcb address
appears in the es:di register pair. If the address of a pcb appears in the operand field of this instruction,
cocall transfers control to the specified coroutine (don’t forget, the name of the pcb, not the process,
must appear in the operand field).

The best way to learn how to use coroutines is via example. The following program is an interesting
piece of code that generates mazes on the PC’s display. The maze generation algorithm has one major
constraint – there must be no more than one correct solution to the maze (it is possible for there to be no
solution). The main program creates a set of background processes called “demons” (actually, daemon is
the correct term, but demon sounds more appropriate here). Each demon begins carving out a portion of
the maze subject to the main constraint. Each demon gets to dig one cell from the maze and then it passes
control to another demon. As it turns out, demons can “dig themselves into a corner” and die (demons live
only to dig). When this happens, the demon removes itself from the list of active demons. When all
demons die off, the maze is (in theory) complete. Since the demons die off fairly regularly, there must be
some mechanism to create new demons. Therefore, this program randomly spawns new demons who
start digging their own tunnels perpendicular to their parents. This helps ensure that there is a sufficient
supply of demons to dig out the entire maze; the demons all die off only when there are no, or few, cells
remaining to dig in the maze.

; AMAZE.ASM
;
; A maze generation/solution program.
;
; This program generates an 80x25 maze and directly draws the maze on the
; video display. It demonstrates the use of coroutines within a program.

.xlist
include stdlib.a
includelib stdlib.lib
.list

byp textequ <byte ptr>

dseg segment para public ‘data’

; Constants:
;
; Define the “ToScreen” symbol (to any value) if the maze is 80x25 and you
; want to display it on the video screen.

ToScreen equ 0

; Maximum X and Y coordinates for the maze (matching the display).

MaxXCoord equ 80
MaxYCoord equ 25

; Useful X,Y constants:

WordsPerRow = MaxXCoord+2
BytesPerRow = WordsPerRow*2

StartX equ 1 ;Starting X coordinate for maze
StartY equ 3 ;Starting Y coordinate for maze
EndX equ MaxXCoord ;Ending X coordinate for maze
EndY equ MaxYCoord-1 ;Ending Y coordinate for maze

EndLoc = ((EndY-1)*MaxXCoord + EndX-1)*2
StartLoc = ((StartY-1)*MaxXCoord + StartX-1)*2

; Special 16-bit PC character codes for the screen for symbols drawn during
; maze generation. See the chapter on the video display for details.

ifdef mono ;Mono display adapter.

WallChar equ 7dbh ;Solid block character

Chapter 19

Page 1108

NoWallChar equ 720h ;space
VisitChar equ 72eh ;Period
PathChar equ 72ah ;Asterisk

else ;Color display adapter.

WallChar equ 1dbh ;Solid block character
NoWallChar equ 0edbh ;space
VisitChar equ 0bdbh ;Period
PathChar equ 4e2ah ;Asterisk

endif

; The following are the constants that may appear in the Maze array:

Wall = 0
NoWall = 1
Visited = 2

; The following are the directions the demons can go in the maze

North = 0
South = 1
East = 2
West = 3

; Some important variables:

; The Maze array must contain an extra row and column around the
; outside edges for our algorithm to work properly.

Maze word (MaxYCoord+2) dup ((MaxXCoord+2) dup (Wall))

; The follow macro computes an index into the above array assuming
; a demon’s X and Y coordinates are in the dl and dh registers, respectively.
; Returns index in the AX register

MazeAdrs macro
mov al, dh
mov ah, WordsPerRow ;Index into array is computed
mul ah ; by (Y*words/row + X)*2.
add al, dl
adc ah, 0
shl ax, 1 ;Convert to byte index
endm

; The following macro computes an index into the screen array, using the
; same assumptions as above. Note that the screen matrix is 80x25 whereas
; the maze matrix is 82x27; The X/Y coordinates in DL/DH are 1..80 and
; 1..25 rather than 0..79 and 0..24 (like we need). This macro adjusts
; for that.

ScrnAdrs macro
mov al, dh
dec al
mov ah, MaxXCoord
mul ah
add al, dl
adc ah, 0
dec ax
shl ax, 1
endm

; PCB for the main program. The last live demon will call this guy when
; it dies.

MainPCB pcb {}

Processes, Coroutines, and Concurrency

Page 1109

; List of up to 32 demons.

MaxDemons = 32 ;Must be a power of two.
ModDemons = MaxDemons-1 ;Mask for MOD computation.

DemonList pcb MaxDemons dup ({})

DemonIndex byte 0 ;Index into demon list.
DemonCnt byte 0 ;Number of demons in list.

; Random number generator seed (we’ll use our random number generator
; rather than the standard library’s because we want to be able to specify
; an initial seed value).

Seed word 0

dseg ends

; The following is the segment address of the video display, change this
; from 0B800h to 0B000h if you have a monochrome display rather than a
; color display.

ScreenSeg segment at 0b800h
Screen equ this word ;Don’t generate in date here!
ScreenSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Totally bogus random number generator, but we don’t need a really
; great one for this program. This code uses its own random number
; generator rather than the one in the Standard Library so we can
; allow the user to use a fixed seed to produce the same maze (with
; the same seed) or different mazes (by choosing different seeds).

RandNum proc near
push cx
mov cl, byte ptr Seed
and cl, 7
add cl, 4
mov ax, Seed
xor ax, 55aah
rol ax, cl
xor ax, Seed
inc ax
mov Seed, ax
pop cx
ret

RandNum endp

; Init- Handles all the initialization chores for the main program.
; In particular, it initializes the coroutine package, gets a
; random number seed from the user, and initializes the video display.

Init proc near
print
byte “Enter a small integer for a random number seed:”,0
getsm
atoi
free
mov Seed, ax

; Fill the interior of the maze with wall characters, fill the outside
; two rows and columns with nowall values. This will prevent the demons
; from wandering outside the maze.

; Fill the first row with Visited values.

Chapter 19

Page 1110

cld
mov cx, WordsPerRow
lesi Maze
mov ax, Visited

rep stosw

; Fill the last row with NoWall values.

mov cx, WordsPerRow
lea di, Maze+(MaxYCoord+1)*BytesPerRow

rep stosw

; Write a NoWall value to the starting position:

mov Maze+(StartY*WordsPerRow+StartX)*2, NoWall

; Write NoWall values along the two vertical edges of the maze.

lesi Maze
mov cx, MaxYCoord+1

EdgesLoop: mov es:[di], ax ;Plug the left edge.
mov es:[di+BytesPerRow-2], ax ;Plug the right edge.
add di, BytesPerRow
loop EdgesLoop

ifdef ToScreen

; Okay, fill the screen with WallChar values:

lesi Screen
mov ax, WallChar
mov cx, 2000

rep stosw

; Write appropriate characters to the starting and ending locations:

mov word ptr es:Screen+EndLoc, PathChar
mov word ptr es:Screen+StartLoc, NoWallChar

endif ;ToScreen

; Zero out the DemonList:

mov cx, (size pcb)*MaxDemons
lea di, DemonList
mov ax, dseg
mov es, ax
xor ax, ax

rep stosb

ret
Init endp

; CanStart- This function checks around the current position
; to see if the maze generator can start digging a new tunnel
; in a direction perpendicular to the current tunnel. You can
; only start a new tunnel if there are wall characters for at
; least two positions in the desired direction:
;
; ##
; *##
; ##
;
; If “*” is current position and “#” represent wall characters
; and the current direction is north or south, then it is okay
; for the maze generator to start a new path in the east dir-
; ection. Assuming “.” represents a tunnel, you cannot start
; a new tunnel in the east direction if any of the following
; patterns occur:

Processes, Coroutines, and Concurrency

Page 1111

;
; .# #. ## ## ## ##
; *## *## *.# *#. *## *##
; ## ## ## ## .# #.
;
; CanStart returns true (carry set) if we can start a new tunnel off the
; path being dug by the current demon.
;
; On entry, dl is demon’s X-Coordinate
; dh is demon’s Y-Coordinate
; cl is demon’s direction

CanStart proc near
push ax
push bx

MazeAdrs ;Compute index to demon(x,y) in maze.
mov bx, ax

; CL contains the current direction, 0=north, 1=south, 2=east, 3=west.
; Note that we can test bit #1 for north/south (0) or east/west (1).

test cl, 10b ;See if north/south or east/west
jz NorthSouth

; If the demon is going in an east or west direction, we can start a new
; tunnel if there are six wall blocks just above or below the current demon.
; Note: We are checking if all values in these six blocks are Wall values.
; This code depends on the fact that Wall characters are zero and the sum
; of these six blocks will be zero if a move is possible.

mov al, byp Maze[bx+BytesPerRow*2] ;Maze[x, y+2]
add al, byp Maze[bx+BytesPerRow*2+2] ;Maze[x+1,y+2]
add al, byp Maze[bx+BytesPerRow*2-2] ;Maze[x-1,y+2]
je ReturnTrue

mov al, byp Maze[bx-BytesPerRow*2] ;Maze[x, y-2]
add al, byp Maze[bx-BytesPerRow*2+2] ;Maze[x+1,y-2]
add al, byp Maze[bx-BytesPerRow*2-2] ;Maze[x-1,y-2]
je ReturnTrue

ReturnFalse: clc ;Clear carry = false.
pop bx
pop ax
ret

; If the demon is going in a north or south direction, we can start a
; new tunnel if there are six wall blocks just to the left or right
; of the current demon.

NorthSouth: mov al, byp Maze[bx+4];Maze[x+2,y]
add al, byp Maze[bx+BytesPerRow+4];Maze[x+2,y+1]
add al, byp Maze[bx-BytesPerRow+4];Maze[x+2,y-1]
je ReturnTrue

mov al, byp Maze[bx-4];Maze[x-2,y]
add al, byp Maze[bx+BytesPerRow-4];Maze[x-2,y+1]
add al, byp Maze[bx-BytesPerRow-4];Maze[x-2,y-1]
jne ReturnFalse

ReturnTrue: stc ;Set carry = true.
pop bx
pop ax
ret

CanStart endp

; CanMove- Tests to see if the current demon (dir=cl, x=dl, y=dh) can
; move in the specified direction. Movement is possible if
; the demon will not come within one square of another tunnel.
; This function returns true (carry set) if a move is possible.
; On entry, CH contains the direction this code should test.

Chapter 19

Page 1112

CanMove proc
push ax
push bx

MazeAdrs ;Put @Maze[x,y] into ax.
mov bx, ax

cmp ch, South
jb IsNorth
je IsSouth
cmp ch, East
je IsEast

; If the demon is moving west, check the blocks in the rectangle formed
; by Maze[x-2,y-1] to Maze[x-1,y+1] to make sure they are all wall values.

mov al, byp Maze[bx-BytesPerRow-4];Maze[x-2, y-1]
add al, byp Maze[bx-BytesPerRow-2];Maze[x-1, y-1]
add al, byp Maze[bx-4];Maze[x-2, y]
add al, byp Maze[bx-2];Maze[x-1, y]
add al, byp Maze[bx+BytesPerRow-4];Maze[x-2, y+1]
add al, byp Maze[bx+BytesPerRow-2];Maze[x-1, y+1]
je ReturnTrue

ReturnFalse: clc
pop bx
pop ax
ret

; If the demon is going east, check the blocks in the rectangle formed
; by Maze[x+1,y-1] to Maze[x+2,y+1] to make sure they are all wall values.

IsEast: mov al, byp Maze[bx-BytesPerRow+4];Maze[x+2, y-1]
add al, byp Maze[bx-BytesPerRow+2];Maze[x+1, y-1]
add al, byp Maze[bx+4];Maze[x+2, y]
add al, byp Maze[bx+2];Maze[x+1, y]
add al, byp Maze[bx+BytesPerRow+4];Maze[x+2, y+1]
add al, byp Maze[bx+BytesPerRow+2];Maze[x+1, y+1]
jne ReturnFalse

ReturnTrue: stc
pop bx
pop ax
ret

; If the demon is going north, check the blocks in the rectangle formed
; by Maze[x-1,y-2] to Maze[x+1,y-1] to make sure they are all wall values.

IsNorth: mov al, byp Maze[bx-BytesPerRow-2];Maze[x-1, y-1]
add al, byp Maze[bx-BytesPerRow*2-2];Maze[x-1, y-2]
add al, byp Maze[bx-BytesPerRow];Maze[x, y-1]
add al, byp Maze[bx-BytesPerRow*2];Maze[x, y-2]
add al, byp Maze[bx-BytesPerRow+2];Maze[x+1, y-1]
add al, byp Maze[bx-BytesPerRow*2+2];Maze[x+1, y-2]
jne ReturnFalse
stc
pop bx
pop ax
ret

; If the demon is going south, check the blocks in the rectangle formed
; by Maze[x-1,y+2] to Maze[x+1,y+1] to make sure they are all wall values.

IsSouth: mov al, byp Maze[bx+BytesPerRow-2];Maze[x-1, y+1]
add al, byp Maze[bx+BytesPerRow*2-2];Maze[x-1, y+2]
add al, byp Maze[bx+BytesPerRow];Maze[x, y+1]
add al, byp Maze[bx+BytesPerRow*2];Maze[x, y+2]
add al, byp Maze[bx+BytesPerRow+2];Maze[x+1, y+1]
add al, byp Maze[bx+BytesPerRow*2+2];Maze[x+1, y+2]
jne ReturnFalse
stc

Processes, Coroutines, and Concurrency

Page 1113

pop bx
pop ax
ret

CanMove endp

; SetDir- Changes the current direction. The maze digging algorithm has
; decided to change the direction of the tunnel begin dug by one
; of the demons. This code checks to see if we CAN change the direction,
; and picks a new direction if possible.
;
; If the demon is going north or south, a direction change causes the demon
; to go east or west. Likewise, if the demon is going east or west, a
; direction change forces it to go north or south. If the demon cannot
; change directions (because it cannot move in the new direction for one
; reason or another), SetDir returns without doing anything. If a direction
; change is possible, then SetDir selects a new direction. If there is only
; one possible new direction, the demon is sent off in that direction.
; If the demon could move off in one of two different directions, SetDir
; “flips a coin” to choose one of the two new directions.
;
; This function returns the new direction in al.

SetDir proc near

test cl, 10b ;See if north/south
je IsNS ; or east/west direction.

; We’re going east or west. If we can move EITHER north or south from
; this point, randomly choose one of the directions. If we can only
; move one way or the other, choose that direction. If we can’t go either
; way, return without changing the direction.

mov ch, North ;See if we can move north
call CanMove
jnc NotNorth
mov ch, South ;See if we can move south
call CanMove
jnc DoNorth
call RandNum ;Get a random direction
and ax, 1 ;Make it north or south.
ret

DoNorth: mov ax, North
ret

NotNorth: mov ch, South
call CanMove
jnc TryReverse

DoSouth: mov ax, South
ret

; If the demon is moving north or south, choose a new direction of east
; or west, if possible.

IsNS: mov ch, East ;See if we can move East
call CanMove
jnc NotEast
mov ch, West ;See if we can move West
call CanMove
jnc DoEast
call RandNum ;Get a random direction
and ax, 1b ;Make it East or West
or al, 10b
ret

DoEast: mov ax, East
ret

Chapter 19

Page 1114

DoWest: mov ax, West
ret

NotEast: mov ch, West
call CanMove
jc DoWest

; Gee, we can’t switch to a perpendicular direction, see if we can
; turn around.

TryReverse: mov ch, cl
xor ch, 1
call CanMove
jc ReverseDir

; If we can’t turn around (likely), then keep going in the same direction.

mov ah, 0
mov al, cl ;Stay in same direction.
ret

; Otherwise reverse direction down here.

ReverseDir: mov ah, 0
mov al, cl
xor al, 1
ret

SetDir endp

; Stuck- This function checks to see if a demon is stuck and cannot
; move in any direction. It returns true if the demon is
; stuck and needs to be killed.

Stuck proc near
mov ch, North
call CanMove
jc NotStuck
mov ch, South
call CanMove
jc NotStuck
mov ch, East
call CanMove
jc NotStuck
mov ch, West
call CanMove

NotStuck: ret
Stuck endp

; NextDemon- Searches through the demon list to find the next available
; active demon. Return a pointer to this guy in es:di.

NextDemon proc near
push ax

NDLoop: inc DemonIndex ;Move on to next demon,
and DemonIndex, ModDemons ; MOD MaxDemons.
mov al, size pcb ;Compute index into
mul DemonIndex ; DemonList.
mov di, ax ;See if the demon at this
add di, offset DemonList ; offset is active.
cmp byp [di].pcb.NextProc, 0
je NDLoop

mov ax, ds
mov es, ax
pop ax
ret

NextDemon endp

Processes, Coroutines, and Concurrency

Page 1115

; Dig- This is the demon process.
; It moves the demon one position (if possible) in its current
; direction. After moving one position forward, there is
; a 25% chance that this guy will change its direction; there
; is a 25% chance this demon will spawn a child process to
; dig off in a perpendicular direction.

Dig proc near

; See if the current demon is stuck. If the demon is stuck, then we’ve
; go to remove it from the demon list. If it is not stuck, then have it
; continue digging. If it is stuck and this is the last active demon,
; then return control to the main program.

call Stuck
jc NotStuck

; Okay, kill the current demon.
; Note: this will never kill the last demon because we have the timer
; process running. The timer process is the one that always stops
; the program.

dec DemonCnt

; Since the count is not zero, there must be more demons in the demon
; list. Free the stack space associated with the current demon and
; then search out the next active demon and have at it.

MoreDemons: mov al, size pcb
mul DemonIndex
mov bx, ax

; Free the stack space associated with this process. Note this code is
; naughty. It assumes the stack is allocated with the Standard Library
; malloc routine that always produces a base address of 8.

mov es, DemonList[bx].regss
mov di, 8 ;Cheating!
free

; Mark the demon entry for this guy as unused.

mov byp DemonList[bx].NextProc, 0 ;Mark as unused.

; Okay, locate the next active demon in the list.

FndNxtDmn: call NextDemon
cocall ;Never returns

; If the demon is not stuck, then continue digging away.

NotStuck: mov ch, cl
call CanMove
jnc DontMove

; If we can move, then adjust the demon’s coordinates appropriately:

cmp cl, South
jb MoveNorth
je MoveSouth
cmp cl, East
jne MoveWest

; Moving East:

inc dl
jmp MoveDone

MoveWest: dec dl

Chapter 19

Page 1116

jmp MoveDone

MoveNorth: dec dh
jmp MoveDone

MoveSouth:inc dh

; Okay, store a NoWall value at this entry in the maze and output a NoWall
; character to the screen (if writing data to the screen).

MoveDone: MazeAdrs
mov bx, ax
mov Maze[bx], NoWall

ifdef ToScreen
ScrnAdrs
mov bx, ax
push es
mov ax, ScreenSeg
mov es, ax
mov word ptr es:[bx], NoWallChar
pop es
endif

; Before leaving, see if this demon shouldn’t change direction.

DontMove: call RandNum
and al, 11b ;25% chance result is zero.
jne NoChangeDir
call SetDir
mov cl, al

NoChangeDir:

; Also, see if this demon should spawn a child process

call RandNum
and al, 11b ;Give it a 25% chance.
jne NoSpawn

; Okay, see if it’s possible to spawn a new process at this point:

call CanStart
jnc NoSpawn

; See if we’ve already got MaxDemons active:

cmp DemonCnt, MaxDemons
jae NoSpawn

inc DemonCnt ;Add another demon.

; Okay, create a new demon and add him to the list.

push dx ;Save cur demon info.
push cx

; Locate a free slot for this demon

lea si, DemonList- size pcb
FindSlot: add si, size pcb

cmp byp [si].pcb.NextProc, 0
jne FindSlot

; Allocate some stack space for the new demon.

mov cx, 256 ;256 byte stack.
malloc

; Set up the stack pointer for this guy:

Processes, Coroutines, and Concurrency

Page 1117

add di, 248 ;Point stack at end.
mov [si].pcb.regss, es
mov [si].pcb.regsp, di

; Set up the execution address for this guy:

mov [si].pcb.regcs, cs
mov [si].pcb.regip, offset Dig

; Initial coordinates and direction for this guy:

mov [si].pcb.regdx, dx

; Select a direction for this guy.

pop cx ;Retrieve direction.
push cx

call SetDir
mov ah, 0
mov [si].pcb.regcx, ax

; Set up other misc junk:

mov [si].pcb.regds, seg dseg
sti
pushf
pop [si].pcb.regflags
mov byp [si].pcb.NextProc, 1 ;Mark active.

; Restore current process’ parameters

pop cx ;Restore current demon.
pop dx

NoSpawn:

; Okay, with all of the above done, it’s time to pass control on to a new
; digger. The following cocall passes control to the next digger in the
; DemonList.

GetNextDmn: call NextDemon

; Okay, we’ve got a pointer to the next demon in the list (might be the
; same demon if there’s only one), pass control to that demon.

cocall
jmp Dig

Dig endp

; TimerDemon- This demon introduces a delay between
; each cycle in the demon list. This slows down the
; maze generation so you can see the maze being built
; (which makes the program more interesting to watch).

TimerDemon proc near
push es
push ax

mov ax, 40h ;BIOS variable area
mov es, ax
mov ax, es:[6Ch] ;BIOS timer location

Wait4Change: cmp ax, es:[6Ch] ;BIOS changes this every
je Wait4Change ; 1/18th second.

cmp DemonCnt, 1
je QuitProgram
pop es
pop ax
call NextDemon
cocall
jmp TimerDemon

Chapter 19

Page 1118

QuitProgram: cocall MainPCB ;Quit the program
TimerDemon endp

; What good is a maze generator program if it cannot solve the mazes it
; creates? SolveMaze finds the solution (if any) for this maze. It marks
; the solution path and the paths it tried, but failed on.
;
; function solvemaze(x,y:integer):boolean

sm_X textequ <[bp+6]>
sm_Y textequ <[bp+4]>

SolveMaze proc near
push bp
mov bp, sp

; See if we’ve just solved the maze:

cmp byte ptr sm_X, EndX
jne NotSolved
cmp byte ptr sm_Y, EndY
jne NotSolved
mov ax, 1 ;Return true.
pop bp
ret 4

; See if moving to this spot was an illegal move. There will be
; a NoWall value at this cell in the maze if the move is legal.

NotSolved: mov dl, sm_X
mov dh, sm_Y
MazeAdrs
mov bx, ax
cmp Maze[bx], NoWall
je MoveOK
mov ax, 0 ;Return failure
pop bp
ret 4

; Well, it is possible to move to this point, so place an appropriate
; value on the screen and keep searching for the solution.

MoveOK: mov Maze[bx], Visited

ifdef ToScreen
push es ;Write a “VisitChar”
ScrnAdrs ; character to the
mov bx, ax ; screen at this X,Y
mov ax, ScreenSeg ; position.
mov es, ax
mov word ptr es:[bx], VisitChar
pop es
endif

; Recusively call SolveMaze until we get a solution. Just call SolveMaze
; for the four possible directions (up, down, left, right) we could go.
; Since we’ve left “Visited” values in the Maze, we will not accidentally
; search back through the path we’ve already travelled. Furthermore, if
; we cannot go in one of the four directions, SolveMaze will catch this
; immediately upon entry (see the code at the start of this routine).

mov ax, sm_X ;Try the path at location
dec ax ; (X-1, Y)
push ax
push sm_Y
call SolveMaze
test ax, ax ;Solution?
jne Solved

push sm_X ;Try the path at location

Processes, Coroutines, and Concurrency

Page 1119

mov ax, sm_Y ; (X, Y-1)
dec ax
push ax
call SolveMaze
test ax, ax ;Solution?
jne Solved

mov ax, sm_X ;Try the path at location
inc ax ; (X+1, Y)
push ax
push sm_Y
call SolveMaze
test ax, ax ;Solution?
jne Solved

push sm_X ;Try the path at location
mov ax, sm_Y ; (X, Y+1)
inc ax
push ax
call SolveMaze
test ax, ax ;Solution?
jne Solved
pop bp
ret 4

Solved:
ifdef ToScreen ;Draw return path.
push es
mov dl, sm_X
mov dh, sm_Y
ScrnAdrs
mov bx, ax
mov ax, ScreenSeg
mov es, ax
mov word ptr es:[bx], PathChar
pop es
mov ax, 1 ;Return true
endif

pop bp
ret 4

SolveMaze endp

; Here’s the main program that drives the whole thing:

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

call Init ;Initialize maze stuff.
lesi MainPCB ;Initialize coroutine
coinit ; package.

; Create the first demon.
; Set up the stack pointer for this guy:

mov cx, 256
malloc
add di, 248
mov DemonList.regsp, di
mov DemonList.regss, es

; Set up the execution address for this guy:

mov DemonList.regcs, cs
mov DemonList.regip, offset Dig

; Initial coordinates and direction for this guy:

Chapter 19

Page 1120

mov cx, East ;Start off going east.
mov dh, StartY
mov dl, StartX
mov DemonList.regcx, cx
mov DemonList.regdx, dx

; Set up other misc junk:

mov DemonList.regds, seg dseg
sti
pushf
pop DemonList.regflags
mov byp DemonList.NextProc, 1 ;Demon is “active”.
inc DemonCnt
mov DemonIndex, 0

; Set up the Timer demon:

mov DemonList.regsp+(size pcb), offset EndTimerStk
mov DemonList.regss+(size pcb), ss

; Set up the execution address for this guy:

mov DemonList.regcs+(size pcb), cs
mov DemonList.regip+(size pcb), offset TimerDemon

; Set up other misc junk:

mov DemonList.regds+(size pcb), seg dseg
sti
pushf
pop DemonList.regflags+(size pcb)
mov byp DemonList.NextProc+(size pcb), 1
inc DemonCnt

; Start the ball rolling.

mov ax, ds
mov es, ax
lea di, DemonList
cocall

; Wait for the user to press a key before solving the maze:

getc

mov ax, StartX
push ax
mov ax, StartY
push ax
call SolveMaze

; Wait for another keystroke before quitting:

getc

mov ax, 3 ;Clear screen and reset video mode.
int 10h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Stack for the timer demon we create (we’ll allocate the other
; stacks dynamically).

TimerStk byte 256 dup (?)
EndTimerStk word ?

Processes, Coroutines, and Concurrency

Page 1121

; Main program’s stack:

stk byte 512 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The existing Standard Library coroutine package is not suitable for programs that use the 80386 and
later 32 bit register sets. As mentioned earlier, the problem lies in the fact that the Standard Library only
preserves the 16-bit registers when switching between processes. However, it is a relatively trivial exten-
sion to modify the Standard Library so that it saves 32 bit registers. To do so, just change the definition of
the pcb (to make room for the 32 bit registers) and the sl_cocall routine:

.386
option segment:use16

dseg segment para public ‘data’

wp equ <word ptr>

; 32-bit PCB. Note we only keep the L.O. 16 bits of SP since we are
; operating in real mode.

pcb32 struc
regsp word ?
regss word ?
regip word ?
regcs word ?

regeax dword ?
regebx dword ?
regecx dword ?
regedx dword ?
regesi dword ?
regedi dword ?
regebp dword ?

regds word ?
reges word ?
regflags dword ?
pcb32 ends

DefaultPCB pcb32 <>
DefaultCortn pcb32 <>

CurCoroutine dword DefaultCortn ;Points at the currently executing
; coroutine.

dseg ends

cseg segment para public ‘slcode’

;==
;
; 32-Bit Coroutine support.
;
; COINIT32- ES:DI contains the address of the current (default) process’ PCB.

CoInit32 proc far
assume ds:dseg
push ax

Chapter 19

Page 1122

push ds
mov ax, dseg
mov ds, ax
mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es
pop ds
pop ax
ret

CoInit32 endp

; COCALL32- transfers control to a coroutine. ES:DI contains the address
; of the PCB. This routine transfers control to that coroutine and then
; returns a pointer to the caller’s PCB in ES:DI.

cocall32 proc far
assume ds:dseg
pushfd
push ds
push es ;Save these for later
push edi
push eax
mov ax, dseg
mov ds, ax
cli ;Critical region ahead.

; Save the current process’ state:

les di, dseg:CurCoroutine
pop es:[di].pcb32.regeax
mov es:[di].pcb32.regebx, ebx
mov es:[di].pcb32.regecx, ecx
mov es:[di].pcb32.regedx, edx
mov es:[di].pcb32.regesi, esi
pop es:[di].pcb32.regedi
mov es:[di].pcb32.regebp, ebp

pop es:[di].pcb32.reges
pop es:[di].pcb32.regds
pop es:[di].pcb32.regflags
pop es:[di].pcb32.regip
pop es:[di].pcb32.regcs
mov es:[di].pcb32.regsp, sp
mov es:[di].pcb32.regss, ss

mov bx, es ;Save so we can return in
mov ecx, edi ; ES:DI later.
mov edx, es:[di].pcb32.regedi
mov es, es:[di].pcb32.reges
mov di, dx ;Point es:di at new PCB

mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es

mov es:[di].pcb32.regedi, ecx ;The ES:DI return values.
mov es:[di].pcb32.reges, bx

; Okay, switch to the new process:

mov ss, es:[di].pcb32.regss
mov sp, es:[di].pcb32.regsp
mov eax, es:[di].pcb32.regeax
mov ebx, es:[di].pcb32.regebx
mov ecx, es:[di].pcb32.regecx
mov edx, es:[di].pcb32.regedx
mov esi, es:[di].pcb32.regesi
mov ebp, es:[di].pcb32.regebp
mov ds, es:[di].pcb32.regds

push es:[di].pcb32.regflags
push es:[di].pcb32.regcs
push es:[di].pcb32.regip
push es:[di].pcb32.regedi

Processes, Coroutines, and Concurrency

Page 1123

mov es, es:[di].pcb32.reges
pop edi
iret

cocall32 endp

; CoCall32l works just like cocall above, except the address of the pcb
; follows the call in the code stream rather than being passed in ES:DI.
; Note: this code does *not* return the caller’s PCB address in ES:DI.
;

cocall32l proc far
assume ds:dseg
push ebp
mov bp, sp
pushfd
push ds
push es
push edi
push eax
mov ax, dseg
mov ds, ax
cli ;Critical region ahead.

; Save the current process’ state:

les di, dseg:CurCoroutine
pop es:[di].pcb32.regeax
mov es:[di].pcb32.regebx, ebx
mov es:[di].pcb32.regecx, ecx
mov es:[di].pcb32.regedx, edx
mov es:[di].pcb32.regesi, esi
pop es:[di].pcb32.regedi
pop es:[di].pcb32.reges
pop es:[di].pcb32.regds
pop es:[di].pcb32.regflags
pop es:[di].pcb32.regebp
pop es:[di].pcb32.regip
pop es:[di].pcb32.regcs
mov es:[di].pcb32.regsp, sp
mov es:[di].pcb32.regss, ss

mov dx, es:[di].pcb32.regip ;Get return address (ptr to
mov cx, es:[di].pcb32.regcs ; PCB address.
add es:[di].pcb32.regip, 4 ;Skip ptr on return.
mov es, cx ;Get the ptr to the new pcb
mov di, dx ; address, then fetch the
les di, es:[di] ; pcb val.
mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es

; Okay, switch to the new process:

mov ss, es:[di].pcb32.regss
mov sp, es:[di].pcb32.regsp
mov eax, es:[di].pcb32.regeax
mov ebx, es:[di].pcb32.regebx
mov ecx, es:[di].pcb32.regecx
mov edx, es:[di].pcb32.regedx
mov esi, es:[di].pcb32.regesi
mov ebp, es:[di].pcb32.regebp
mov ds, es:[di].pcb32.regds

push es:[di].pcb32.regflags
push es:[di].pcb32.regcs
push es:[di].pcb32.regip
push es:[di].pcb32.regedi
mov es, es:[di].pcb32.reges
pop edi
iret

cocall32l endp
cseg ends

Chapter 19

Page 1124

19.4 Multitasking

Coroutines provide a reasonable mechanism for switching between processes that must take turns.
For example, the maze generation program in the previous section would generate poor mazes if the dae-
mon processes didn’t take turns removing one cell at a time from the maze. However, the coroutine para-
digm isn’t always suitable; not all processes need to take turns. For example, suppose you are writing an
action game where the user plays against the computer. In addition, the computer player operates inde-
pendently of the user in real time. This could be, for example, a space war game or a flight simulator game
(where you are dog fighting other pilots). Ideally, we would like to have two computers. One to handle
the user interaction and one for the computer player. Both systems would communicate their moves to
one another during the game. If the (human) player simply sits and watches the screen, the computer
player would win since it is active and the human player is not. Of course, it would considerably limit the
marketability of your game were it to require two computers to play. However, you can use multitasking
to simulate two separate computer systems on a single CPU.

The basic idea behind multitasking is that one process runs for a period of time (the time quantum
or time slice) and then a timer interrupts the process. The timer ISR saves the state of the process and then
switches control to another process. That process runs for its time slice and then the timer interrupt
switches to another process. In this manner, each process gets some amount of computer time. Note that
multitasking is very easy to implement if you have a coroutine package. All you need to do is write a timer
ISR that cocalls the various processes, one per timer interrupt A timer interrupt that switches between pro-
cesses is a dispatcher.

One decision you will need to make when designing a dispatcher is a policy for the process selection
algorithm. A simple policy is to place all processes in a queue and then rotate among them. This is known
as the round-robin policy. Since this is the policy the UCR Standard Library process package uses, we will
adopt it as well. However, there are other process selection criteria, generally involving the priority of a
process, available as well. See a good text on operating systems for details.

The choice of the time quantum can have a big impact on performance. Generally, you would like
the time quantum to be small. The time sharing (switching between processes based on the clock) will be
much smoother if you use small time quanta. For example, suppose you choose five second time quanta
and you were running four processes concurrently. Each process would get five seconds; it would run
very fast during those five seconds. However, at the end of its time slice it would have to wait for the other
three process’ turns, 15 seconds, before it ran again. The users of such programs would get very frustrated
with them, users like programs whose performance is relatively consistent from one moment to the next.

If we make the time slice one millisecond, instead of five seconds, each process would run for one
millisecond and then switch to the next processes. This means that each processes gets one millisecond
out of five. This is too small a time quantum for the user to notice the pause between processes.

Since smaller time quanta seem to be better, you might wonder “why not make them as small as pos-
sible?” For example, the PC supports a one millisecond timer interrupt. Why not use that to switch
between processes? The problem is that there is a fair amount of overhead required to switch from one
processes to another. The smaller you make the time quantum, the larger will be the overhead of using
time slicing. Therefore, you want to pick a time quantum that is a good balance between smooth process
switching and too much overhead. As it turns out, the 1/18th second clock is probably fine for most multi-
tasking requirements.

19.4.1 Lightweight and HeavyWeight Processes

There are two major types of processes in the world of multitasking: lightweight processes, also
known as threads, and heavyweight processes. These two types of processes differ mainly in the details of
memory management. A heavyweight process swaps memory management tables and moves lots of data

Processes, Coroutines, and Concurrency

Page 1125

around. Threads only swap the stack and CPU registers. Threads have much less overhead cost than
heavyweight processes.

We will not consider heavyweight processes in this text. Heavyweight processes appear in protected
mode operating systems like UNIX, Linux, OS/2, or Windows NT. Since there is rarely any memory man-
agement (at the hardware level) going on under DOS, the issue of changing memory management tables
around is moot. Switching from one heavyweight application to another generally corresponds to switch-
ing from one application to another.

Using lightweight processes (threads) is perfectly reasonable under DOS. Threads (short for “execu-
tion thread” or “thread of execution”) correspond to two or more concurrent execution paths within the
same program. For example, we could think of each of the demons in the maze generation program as
being a separate thread of execution.

Although threads have different stacks and machine states, they share code and data memory. There
is no need to use a “shared memory TSR” to provide global shared memory (see “Shared Memory” on
page 1078). Instead, maintaining local variables is the difficult task. You must either allocate local vari-
ables on the process’ stack (which is separate for each process) or you’ve got to make sure that no other
process uses the variables you declare in the data segment specifically for one thread.

We could easily write our own threads package, but we don’t have to; the UCR Standard Library pro-
vides this capability in the processes package. To see how to incorporate threads into your programs, keep
reading…

19.4.2 The UCR Standard Library Processes Package

The UCR Standard Library provides six routines to let you manage threads. These routines include
prcsinit, prcsquit, fork, die, kill , and yield. These functions let you initialize and shut down the
threads system, start new processes, terminate processes, and voluntarily pass the CPU off to another pro-
cess.

The prcsinit and prcsquit functions let you initialize and shutdown the system. The prcsinit
call prepares the threads package. You must call this routine before executing any of the other five process
routines. The prcsquit function shuts down the threads system in preparation for program termination.
Prcsinit patches into the timer interrupt (interrupt 8). Prcsquit restores the interrupt 8 vector. It is
very important that you call prcsquit before your program returns to DOS. Failure to do so will leave the
int 8 vector pointing off into memory which may cause the system to crash when DOS loads the next pro-
gram. Your program must patch the break and critical error exception vectors to ensure that you call
prcsquit in the event of abnormal program termination. Failure to do so may crash the system if the user
terminates the program with ctrl-break or an abort on an I/O error. Prcsinit and prcsquit do not
require any parameters, nor do they return any values.

The fork call spawns a new process. On entry, es:di must point at a pcb for the new process. The
regss and regsp fields of the pcb must contain the address of the top of the stack area for this new pro-
cess. The fork call fills in the other fields of the pcb (including cs:ip)/

For each call you make to fork, the fork routine returns twice, once for each thread of execution.
The parent process typically returns first, but this is not certain; the child process is usually the second
return from the fork call. To differentiate the two calls, fork returns two process identifiers (PIDs) in the
ax and bx registers. For the parent process, fork returns with ax containing zero and bx containing the
PID of the child process. For the child process, fork returns with ax containing the child’s PID and bx
containing zero. Note that both threads return and continuing executing the same code after the call to
fork. If you want the child and parent processes to take separate paths, you would execute code like the
following:

Chapter 19

Page 1126

lesi NewPCB ;Assume regss/regsp are initialized.
fork
test ax, ax ;Parent PID is zero at this point.
je ParentProcess ;Go elsewhere if parent process.

; Child process continues execution here

The parent process should save the child’s PID. You can use the PID to terminate a process at some later
time.

It is important to repeat that you must initialize the regss and regsp fields in the pcb before calling
fork. You must allocate storage for a stack (dynamically or statically) and point ss:sp at the last word of
this stack area. Once you call fork, the process package uses whatever value that happens to be in the
regss and regsp fields. If you have not initialized these values, they will probably contain zero and
when the process starts it will wipe out the data at address 0:FFFE. This may crash the system at one point
or another.

The die call kills the current process. If there are multiple processes running, this call transfers con-
trol to some other processes waiting to run. If the current process is the only process on the system’s run
queue, then this call will crash the system.

The kill call lets one process terminate another. Typically, a parent process will use this call to termi-
nate a child process. To kill a process, simply load the ax register with the PID of the process you want to
terminate and then call kill . If a process supplies its own PID to the kill function, the process terminates
itself (that is, this is equivalent to a die call). If there is only one process in the run queue and that process
kills itself, the system will crash.

The last multitasking management routine in the process package is the yield call. Yield voluntar-
ily gives up the CPU. This is a direct call to the dispatcher, that will switch to another task in the run queue.
Control returns after the yield call when the next time slice is given to this process. If the current process
is the only one in the queue, yield immediately returns. You would normally use the yield call to free
up the CPU between long I/O operations (like waiting for a keypress). This would allow other tasks to get
maximum use of the CPU while your process is just spinning in a loop waiting for some I/O operation to
complete.

The Standard Library multitasking routines only work with the 16 bit register set of the 80x86 family.
Like the coroutine package, you will need to modify the pcb and the dispatcher code if you want to sup-
port the 32 bit register set of the 80386 and later processors. This task is relatively simple and the code is
quite similar to that appearing in the section on coroutines; so there is no need to present the solution
here.

19.4.3 Problems with Multitasking

When threads share code and data certain problems can develop. First of all, reentrancy becomes a
problem. You cannot call a non-reentrant routine (like DOS) from two separate threads if there is ever the
possibility that the non-reentrant code could be interrupted and control transferred to a second thread that
reenters the same routine. Reentrancy is not the only problem, however. It is quite possible to design two
routines that access shared variables and those routines misbehave depending on where the interrupts
occur in the code sequence. We will explore these problems in the section on synchronization (see “Syn-
chronization” on page 1129), just be aware, for now, that these problems exist.

Note that simply turning off the interrupts (with cli) may not solve the reentrancy problem. Consider
the following code:

cli ;Prevent reentrancy.
mov ah, 3Eh ;DOS close call.
mov bx, Handle
int 21h
sti ;Turn interrupts back on.

Processes, Coroutines, and Concurrency

Page 1127

This code will not prevent DOS from being reentered because DOS (and BIOS) turn the interrupts back
on! There is a solution to this problem, but it’s not by using cli and sti.

19.4.4 A Sample Program with Threads

The following program provides a simple demonstration of the Standard Library processes package.
This short program creates two threads – the main program and a timer process. On each timer tick the
background (timer) process kicks in and increments a memory variable. It then yields the CPU back to the
main program. On the next timer tick control returns to the background process and this cycle repeats.
The main program reads a string from the user while the background process is counting off timer ticks.
When the user finishes the line by pressing the enter key, the main program kills the background process
and then prints the amount of time necessary to enter the line of text.

Of course, this isn’t the most efficient way to time how long it takes someone to enter a line of text,
but it does provide an example of the multitasking features of the Standard Library. This short program
segment demonstrates all the process routines except die. Note that it also demonstrates the fact that you
must supply int 23h and int 24h handlers when using the process package.

; MULTI.ASM
; Simple program to demonstrate the use of multitasking.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

ChildPID word 0 ;Child’s PID so we can kill it.
BackGndCnt word 0 ;Counts off clock ticks in backgnd.

; PCB for our background process. Note we initialize ss:sp here.

BkgndPCB pcb {0,offset EndStk2, seg EndStk2}

; Data buffer to hold an input string.

InputLine byte 128 dup (0)

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h

Chapter 19

Page 1128

and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

; Okay, this is a pretty weak background process, but it does demonstrate
; how to use the Standard Library calls.

BackGround proc
sti
mov ax, dseg
mov ds, ax
inc BackGndCnt ;Bump call Counter by one.
yield ;Give CPU back to foregnd.
jmp BackGround

BackGround endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

Processes, Coroutines, and Concurrency

Page 1129

lesi BkgndPCB ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround ;Go do backgroun stuff.

ParentPrcs: mov ChildPID, bx ;Save child process ID.

print
byte “I am timing you while you enter a string. So type”
byte cr,lf
byte “quickly: “,0

lesi InputLine
gets

mov ax, ChildPID ;Stop the child from running.
kill

printf
byte “While entering ‘%s’ you took %d clock ticks”
byte cr,lf,0
dword InputLine, BackGndCnt

prcsquit

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byte 256 dup (?)
EndStk2 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.5 Synchronization

Many problems occur in cooperative concurrently executing processes due to synchronization (or
the lack thereof). For example, one process can produce data that other processes consume. However, it
might take much longer for the producer to create than data than it takes for the consumer to use it. Some
mechanism must be in place to ensure that the consumer does not attempt to use the data before the pro-
ducer creates it. Likewise, we need to ensure that the consumer uses the data created by the producer
before the producer creates more data.

The producer-consumer problem is one of several very famous synchronization problems from
operating systems theory. In the producer-consumer problem there are one or more processes that pro-
duce data and write this data to a shared buffer. Likewise, there are one or more consumers that read data
from this buffer. There are two synchronization issues we must deal with – the first is to ensure that the
producers do not produce more data than the buffer can hold (conversely, we must prevent the consum-
ers from removing data from an empty buffer); the second is to ensure the integrity of the buffer data struc-
ture by allowing access to only one process at a time.

Chapter 19

Page 1130

Consider what can happen in a simple producer-consumer problem. Suppose the producer and con-
sumer processes share a single data buffer structure organized as follows:

buffer struct
Count word 0
InPtr word 0
OutPtr word 0
Data byte MaxBufSize dup (?)
buffer ends

The Count field specifies the number of data bytes currently in the buffer. InPtr points at the next avail-
able location to place data in the buffer. OutPtr is the address of the next byte to remove from the buffer.
Data is the actual buffer array. Adding and removing data is very easy. The following code segments
almost handle this job:

; Producer- This procedure adds the value in al to the buffer.
; Assume that the buffer variable MyBuffer is in the data segment.

Producer proc near
pushf
sti ;Must have interrupts on!
push bx

; The following loop waits until there is room in the buffer to insert
; another byte.

WaitForRoom: cmp MyBuffer.Count, MaxBufSize
jae WaitForRoom

; Okay, insert the byte into the buffer.

mov bx, MyBuffer.InPtr
mov MyBuffer.Data[bx], al
inc MyBuffer.Count ;We just added a byte to the buffer.
inc MyBuffer.InPtr ;Move on to next item in buffer.

; If we are at the physical end of the buffer, wrap around to the beginning.

cmp MyBuffer.InPtr, MaxBufSize
jb NoWrap
mov MyBuffer.InPtr, 0

NoWrap:
pop bx
popf
ret

Producer endp

; Consumer- This procedure waits for data (if necessary) and returns the
; next available byte from the buffer.

Consumer proc near
pushf ;Must have interrupts on!
sti
push bx

WaitForData: cmp Count, 0 ;Is the buffer empty?
je WaitForData ;If so, wait for data to arrive.

; Okay, fetch an input character

mov bx, MyBuffer.OutPtr
mov al, MyBuffer.Data[bx]
dec MyBuffer.Count
inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:
pop bx
popf
ret

Consumer endp

Processes, Coroutines, and Concurrency

Page 1131

The only problem with this code is that it won’t always work if there are multiple producer or consumer
processes. In fact, it is easy to come up with a version of this code that won’t work for a single set of pro-
ducer and consumer processes (although the code above will work fine, in that special case). The problem
is that these procedures access global variables and, therefore, are not reentrant. In particular, the problem
lies with the way these two procedures manipulate the buffer control variables. Consider, for a moment,
the following statements from the Consumer procedure:

dec MyBuffer.Count

« Suppose an interrupt occurs here »

inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:

If an interrupt occurs at the specified point above and control transfers to another consumer process that
reenters this code, the second consumer would malfunction. The problem is that the first consumer has
fetched data from the buffer but has yet to update the output pointer. The second consumer comes along
and removes the same byte as the first consumer. The second consumer then properly updates the output
pointer to point at the next available location in the circular buffer. When control eventually returns to the
first consumer process, it finishes the operation by incrementing the output pointer. This causes the system
to skip over the next byte which no process has read. The end result is that two consumer processes fetch
the same byte and then skip a byte in the buffer.

This problem is easily solved by recognizing the fact that the code that manipulates the buffer data is
a critical region. By restricting execution in the critical region to one process at a time, we can solve this
problem. In the simple example above, we can easily prevent reentrancy by turning the interrupts off
while in the critical region. For the consumer procedure, the code would look like this:

; Consumer- This procedure waits for data (if necessary) and returns the
; next available byte from the buffer.

Consumer proc near
pushf ;Must have interrupts on!
sti
push bx

WaitForData: cmp Count, 0 ;Is the buffer empty?
je WaitForData ;If so, wait for data to arrive.

; The following is a critical region, so turn the interrupts off.

cli

; Okay, fetch an input character

mov bx, MyBuffer.OutPtr
mov al, MyBuffer.Data[bx]
dec MyBuffer.Count
inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:
pop bx
popf ;Restore interrupt flag.
ret

Consumer endp

Note that we cannot turn the interrupts off during the execution of the whole procedure. Interrupts must
be on while this procedure is waiting for data, otherwise the producer process will never be able to put
data in the buffer for the consumer.

Simply turning the interrupts off does not always work. Some critical regions may take a considerable
amount of time (seconds, minutes, or even hours) and you cannot leave the interrupts off for that amount

Chapter 19

Page 1132

of time3. Another problem is that the critical region may call a procedure that turns the interrupts back on
and you have no control over this. A good example is a procedure that calls MS-DOS. Since MS-DOS is not
reentrant, MS-DOS is, by definition, a critical section; we can only allow one process at a time inside
MS-DOS. However, MS-DOS reenables the interrupts, so we cannot simply turn off the interrupts before
calling an MS-DOS function an expect this to prevent reentrancy.

Turning off the interrupts doesn’t even work for the consumer/producer procedures given earlier.
Note that interrupts must be on while the consumer is waiting for data to arrive in the buffer (conversely,
the producers must have interrupts on while waiting for room in the buffer). It is quite possible for the
code to detect the presence of data and just before the execution of the cli instruction, an interrupt trans-
fers control to a second consumer process. While it is not possible for both processes to update the buffer
variables concurrently, it is possible for the second consumer process to remove the only data value from
the input buffer and then switch back to the first consumer that removes a phantom value from the buffer
(and causes the Count variable to go negative).

One poorly thought out solution is to use a flag to control access to a critical region. A process, before
entering the critical region, tests the flag to see if any other process is currently in the critical region; if not,
the process sets the flag to “in use” and then enters the critical region. Upon leaving the critical region, the
process sets the flag to “not in use.” If a process wants to enter a critical region and the flag’s value is “in
use”, the process must wait until the process currently in the critical section finishes and writes the “not in
use” value to the flag.

The only problem with this solution is that it is nothing more than a special case of the producer/con-
sumer problem. The instructions that update the in-use flag form their own critical section that you must
protect. As a general solution, the in-use flag idea fails.

19.5.1 Atomic Operations, Test & Set, and Busy-Waiting

The problem with the in-use flag idea is that it takes several instructions to test and set the flag. A typ-
ical piece of code that tests such a flag would read its value and determine if the critical section is in use. If
not, it would then write the “in-use” value to the flag to let other processes know that it is in the critical sec-
tion. The problem is that an interrupt could occur after the code tests the flag but before it sets the flag to
“in use.” Then some other process can come along, test the flag and find that it is not in use, and enter the
critical region. The system could interrupt that second process while it is still in the critical region and
transfer control back to the first. Since the first process has already determined that the critical region is not
in use, it sets the flag to “in use” and enters the critical region. Now we have two processes in the critical
region and the system is in violation of the mutual exclusion requirement (only one process in a critical
region at a time).

The problem with this approach is that testing and setting the in-use flag is not an uninterruptable
(atomic) operation. If it were, then there would be no problem. Of course, it is easy to make a sequence
of instructions non-interruptible by putting a cli instruction before them. Therefore, we can test and set a
flag in an atomic operation as follows (assume in-use is zero, not in-use is one):

pushf
TestLoop: cli ;Turn ints off while testing and

cmp Flag, 0 ; setting flag.
je IsInUse ;Already in use?
mov Flag, 0 ;If not, make it so.

IsInUse: sti ;Allow ints (if in-use already).
je TestLoop ;Wait until not in use.
popf

; When we get down here, the flag was “not in-use” and we’ve just set it
; to “in-us.” We now have exclusive access to the critical section.

3. In general, you should not leave the interrupts off for more than about 30 milliseconds when using the 1/18th second clock for multitasking. A
general rule of thumb is that interrupts should not be off for much more than abou;50% of the time quantum.

Processes, Coroutines, and Concurrency

Page 1133

Another solution is to use a so-called “test and set” instruction – one that both tests a specific condi-
tion and sets the flag to a desired value. In our case, we need an instruction that both tests a flag to see if it
is not in-use and sets it to in-use at the same time (if the flag was already in-use, it will remain in use after-
ward). Although the 80x86 does not support a specific test and set instruction, it does provide several oth-
ers that can achieve the same effect. These instructions include xchg, shl, shr, sar, rcl, rcr, rol, ror,
btc/btr/bts (available only on the 80386 and later processors), and cmpxchg (available only on the
80486 and later processors). In a limited sense, you can also use the addition and subtraction instructions
(add, sub, adc, sbb, inc, and dec) as well.

The exchange instruction provides the most generic form for the test and set operation. If you have a
flag (0=in use, 1=not in use) you can test and set this flag without messing with the interrupts using the fol-
lowing code:

InUseLoop: mov al, 0 ;0=In Use
xchg al, Flag
cmp al, 0
je InUseLoop

The xchg instruction atomically swaps the value in al with the value in the flag variable. Although the
xchg instruction doesn’t actually test the value, it does place the original flag value in a location (al) that
is safe from modification by another process. If the flag originally contained zero (in-use), this exchange
sequence swaps a zero for the existing zero and the loop repeats. If the flag originally contained a one (not
in-use) then this code swaps a zero (in-use) for the one and falls out of the in use loop.

The shift and rotate instructions also act as test and set instructions, assuming you use the proper val-
ues for the in-use flag. With in-use equal to zero and not in-use equal to one, the following code demon-
strates how to use the shr instruction for the test and set operation:

InUseLoop: shr Flag, 1 ;In-use bit to carry, 0->Flag.
jnc InUseLoop ;Repeat if already in use.

This code shifts the in-use bit (bit number zero) into the carry flag and clears the in-use flag. At the same
time, it zeros the Flag variable, assuming Flag always contains zero or one. The code for the atomic test
and set sequences using the other shift and rotates is very similar and appears in the exercises.

Starting with the 80386, Intel provided a set of instructions explicitly intended for test and set opera-
tions: btc (bit test and complement), bts (bit test and set), and btr (bit test and reset). These instructions
copy a specific bit from the destination operand into the carry flag and then complement, set, or reset
(clear) that bit. The following code demonstrates how to use the btr instruction to manipulate our in-use
flag:

InUseLoop: btr Flag, 0 ;In-use flag is in bit zero.
jnc InUseLoop

The btr instruction is a little more flexible than the shr instruction because you don’t have to guarantee
that all the other bits in the Flag variable are zero; it tests and clears bit zero without affect any other bits
in the Flag variable.

The 80486 (and later) cmpxchg instruction provides a very generic synchronization primitive. A
“compare and swap” instruction turns out to be the only atomic instruction you need to implement almost
any synchronization primitive. However, its generic structure means that it is a little too complex for sim-
ple test and set operations. You will get an opportunity to design a test and set sequence using cmpxchg in
the exercises. For more details on cmpxchg, see “The CMPXCHG, and CMPXCHG8B Instructions” on
page 263.

Returning to the producer/consumer problem, we can easily solve the critical region problem that
exists in these routines using the test and set instruction sequence presented above. The following code
does this for the Producer procedure, you would modify the Consumer procedure in a similar fashion.

; Producer- This procedure adds the value in al to the buffer.
; Assume that the buffer variable MyBuffer is in the data segment.

Producer proc near

Chapter 19

Page 1134

pushf
sti ;Must have interrupts on!

; Okay, we are about to enter a critical region (this whole procedure),
; so test the in-use flag to see if this critical region is already in use.

InUseLoop: shr Flag, 1
jnc InUseLoop

push bx

; The following loop waits until there is room in the buffer to insert
; another byte.

WaitForRoom: cmp MyBuffer.Count, MaxBufSize
jae WaitForRoom

; Okay, insert the byte into the buffer.

mov bx, MyBuffer.InPtr
mov MyBuffer.Data[bx], al
inc MyBuffer.Count ;We just added a byte to the buffer.
inc MyBuffer.InPtr ;Move on to next item in buffer.

; If we are at the physical end of the buffer, wrap around to the beginning.

cmp MyBuffer.InPtr, MaxBufSize
jb NoWrap
mov MyBuffer.InPtr, 0

NoWrap:
mov Flag, 1 ;Set flag to not in use.
pop bx
popf
ret

Producer endp

One minor problem with the test and set approach to protecting a critical region is that it uses a
busy-waiting loop. While the critical region is not available, the process spins in a loop waiting for its turn
at the critical region. If the process that is currently in the critical region remains there for a considerable
length of time (say, seconds, minutes, or hours), the process(es) waiting to enter the critical region con-
tinue to waste CPU time waiting for the flag. This, in turn, wastes CPU time that could be put to better use
getting the process in the critical region through it so another process can enter.

Another problem that might exist is that it is possible for one process to enter the critical region, lock-
ing other processes out, leave the critical region, do some processing, and then reenter the critical region
all during the same time slice. If it turns out that the process is always in the critical region when the timer
interrupt occurs, none of the other processes waiting to enter the critical region will ever do so. This is a
problem known as starvation – processes waiting to enter the critical region never do so because some
other process always beats them into it.

One solution to these two problems is to use a synchronization object known as a semaphore. Sema-
phores provide an efficient and general purpose mechanism for protecting critical regions. To find out
about semaphores, keep reading...

19.5.2 Semaphores

A semaphore is an object with two basic methods: wait and signal (or release). To use a semaphore,
you create a semaphore variable (an instance) for a particular critical region or other resource you want to
protect. When a process wants to use a given resource, it waits on the semaphore. If no other process is
currently using the resource, then the wait call sets the semaphore to in-use and immediately returns to the
process. At that time, the process has exclusive access to the resource. If some other process is already
using the resource (e.g., is in the critical region), then the semaphore blocks the current process by mov-
ing it off the run queue and onto the semaphore queue. When the process that currently holds the

Processes, Coroutines, and Concurrency

Page 1135

resource releases it, the release operation removes the first waiting process from the semaphore queue
and places it back in the run queue. At the next available time slice, that new process returns from its wait
call and can enter its critical region.

Semaphores solve the two important problems with the busy-waiting loop described in the previous
section. First, when a process waits and the semaphore blocks the process, that process is no longer on the
run queue, so it consumes no more CPU time until the point that a release operation places it back onto
the run queue. So unlike busy-waiting, the semaphore mechanism does not waste (as much) CPU time on
processes that are waiting for some resource.

Semaphores can also solve the starvation problem. The wait operation, when blocking a process, can
place it at the end of a FIFO semaphore queue. The release operation can fetch a new process from the
front of the FIFO queue to place back on to the run queue. This policy ensures that each process entering
the semaphore queue gets equal priority access to the resource4.

Implementing semaphores is an easy task. A semaphore generally consists of an integer variable and
a queue. The system initializes the integer variable with the number of processes than may share the
resource at one time (this value is usually one for critical regions and other resources requiring exclusive
access). The wait operation decrements this variable. If the result is greater than or equal to zero, the wait
function simply returns to the caller; if the result is less than zero, the wait function saves the machine
state, moves the process’ pcb from the run queue to the semaphore’s queue, and then switches the CPU
to a different process (i.e., a yield call).

The release function is almost the converse. It increments the integer value. If the result is not one,
the release function moves a pcb from the front of the semaphore queue to the run queue. If the integer
value becomes one, there are no more processes on the semaphore queue, so the release function simply
returns to the caller. Note that the release function does not activate the process it removes from the sema-
phore process queue. It simply places that process in the run queue. Control always returns to the process
that made the release call (unless, of course, a timer interrupt occurs while executing the release function).

Of course, any time you manipulate the system’s run queue you are in a critical region. Therefore, we
seem to have a minor problem here – the whole purpose of a semaphore is to protect a critical region, yet
the semaphore itself has a critical region we need to protect. This seems to involve circular reasoning.
However, this problem is easily solved. Remember, the main reasons we do not turn off interrupts to pro-
tect a critical region is because that critical region may take a long time to execute or it may call other rou-
tines that turn the interrupts back on. The critical section in a semaphore is very short and does not call
any other routines. Therefore, briefly turning off the interrupts while in the semaphore’s critical region is
perfectly reasonable.

If you are not allowed to turn off interrupts, you can always use a test and set instruction in a loop to
protect a critical region. Although this introduces a busy-waiting loop, it turns out that you will never wait
more than two time slices before exiting the busy-waiting loop, so you do not waste much CPU time wait-
ing to enter the semaphore’s critical region.

Although semaphores solve the two major problems with the busy waiting loop, it is very easy to get
into trouble when using semaphores. For example, if a process waits on a semaphore and the semaphore
grants exclusive access to the associate resource, then that process never releases the semaphore, any pro-
cesses waiting on that semaphore will be suspended indefinitely. Likewise, any process that waits on the
same semaphore twice without a release in-between will suspend itself, and any other processes that wait
on that semaphore, indefinitely. Any process that does not release a resource it no longer needs violates
the concept of a semaphore and is a logic error in the program. There are also some problems that may
develop if a process waits on multiple semaphores before releasing any. We will return to that problem in
the section on deadlocks (see “Deadlock” on page 1146).

4. This FIFO policy is but one example of a release policy. You could have some other policy based on a priority scheme. However, the FIFO policy
does not promote starvation.

Chapter 19

Page 1136

Although we could write our own semaphore package (and there is good reason to), the Standard
Library process package provides its own wait and release calls along with a definition for a semaphore
variable. The next section describes those calls.

19.5.3 The UCR Standard Library Semaphore Support

The UCR Standard Library process package provides two functions to manipulate semaphore vari-
ables: WaitSemaph and RlsSemaph. These functions wait and signal a semaphore, respectively. These
routines mesh with the process management facilities, making it easy to implement synchronization using
semaphores in your programs.

The process package provides the following definition for a semaphore data type:

semaphore struct
SemaCnt word 1
smaphrLst dword ?
endsmaphrLst dword ?
semaphore ends

The SemaCnt field determines how many more processes can share a resource (if positive), or how many
processes are currently waiting for the resource (if negative). By default, this field is initialized to the value
one. This allows one process at a time to use the resource protected by the semaphore. Each time a pro-
cess waits on a semaphore, it decrements this field. If the decremented result is positive or zero, the wait
operation immediately returns. If the decremented result is negative, then the wait operation moves the
current process’ pcb from the run queue to the semaphore queue defined by the smaphrLst and
endsmaphrLst fields in the structure above.

Most of the time you will use the default value of one for the SemaCnt field. There are some occa-
sions, though, when you might want to allow more than one process access to some resource. For exam-
ple, suppose you’ve developed a multiplayer game that communicates between different machines using
the serial communications port or a network adapter card. You might have an area in the game which has
room for only two players at a time. For example, players could be racing to a particular “transporter”
room in an alien space ship, but there is room for only two players in the transporter room at a time. By
initializing the semaphore variable to two, rather than one, the wait operation would allow two players to
continue at one time rather than just one. When the third player attempts to enter the transporter room, the
WaitSemaph function would block the player from entering the room until one of the other players left
(perhaps by “transporting out” of the room).

To use the WaitSemaph or RlsSemaph function is very easy; just load the es:di register pair with
the address of desired semaphore variable and issue the appropriate function call. RlsSemaph always
returns immediately (assuming a timer interrupt doesn’t occur while in RlsSemaph), the WaitSemaph
call returns when the semaphore will allow access to the resource it protects. Examples of these two calls
appear in the next section.

Like the Standard Library coroutine and process packages, the semaphore package only preserves the
16 bit register set of the 80x86 CPU. If you want to use the 32 bit register set of the 80386 and later proces-
sors, you will need to modify the source code for the WaitSemaph and RlsSemaph functions. The
code you need to change is almost identical to the code in the coroutine and process packages, so this is
nearly a trivial change. Do keep in mind, though, that you will need to change this code if you use any 32
bit facilities of the 80386 and later processors.

19.5.4 Using Semaphores to Protect Critical Regions

You can use semaphores to provide mutually exclusive access to any resource. For example, if sev-
eral processes want to use the printer, you can create a semaphore that allows access to the printer by only
one process at a time (a good example of a process that will be in the “critical region” for several minutes

Processes, Coroutines, and Concurrency

Page 1137

at a time). However the most common task for a semaphore is to protect a critical region from reentry.
Three common examples of code you need to protect from reentry include DOS calls, BIOS calls, and var-
ious Standard Library calls. Semaphores are ideal for controlling access to these functions.

To protect DOS from reentry by several different processes, you need only create a DOSsmaph vari-
able and issue appropriate WaitSemaph and RlsSemaph calls around the call to DOS. The following
sample code demonstrates how to do this.

; MULTIDOS.ASM
;
; This program demonstrates how to use semaphores to protect DOS calls.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

DOSsmaph semaphore {}

; Macros to wait and release the DOS semaphore:

DOSWait macro
push es
push di
lesi DOSsmaph
WaitSemaph
pop di
pop es
endm

DOSRls macro
push es
push di
lesi DOSsmaph
RlsSemaph
pop di
pop es
endm

; PCB for our background process:

BkgndPCB pcb {0,offset EndStk2, seg EndStk2}

; Data the foreground and background processes print:

StrPtrs1 dword str1_a, str1_b, str1_c, str1_d, str1_e, str1_f
dword str1_g, str1_h, str1_i, str1_j, str1_k, str1_l
dword 0

str1_a byte “Foreground: string ‘a’”,cr,lf,0
str1_b byte “Foreground: string ‘b’”,cr,lf,0
str1_c byte “Foreground: string ‘c’”,cr,lf,0
str1_d byte “Foreground: string ‘d’”,cr,lf,0
str1_e byte “Foreground: string ‘e’”,cr,lf,0
str1_f byte “Foreground: string ‘f’”,cr,lf,0
str1_g byte “Foreground: string ‘g’”,cr,lf,0
str1_h byte “Foreground: string ‘h’”,cr,lf,0
str1_i byte “Foreground: string ‘i’”,cr,lf,0
str1_j byte “Foreground: string ‘j’”,cr,lf,0
str1_k byte “Foreground: string ‘k’”,cr,lf,0
str1_l byte “Foreground: string ‘l’”,cr,lf,0

StrPtrs2 dword str2_a, str2_b, str2_c, str2_d, str2_e, str2_f
dword str2_g, str2_h, str2_i
dword 0

str2_a byte “Background: string ‘a’”,cr,lf,0
str2_b byte “Background: string ‘b’”,cr,lf,0

Chapter 19

Page 1138

str2_c byte “Background: string ‘c’”,cr,lf,0
str2_d byte “Background: string ‘d’”,cr,lf,0
str2_e byte “Background: string ‘e’”,cr,lf,0
str2_f byte “Background: string ‘f’”,cr,lf,0
str2_g byte “Background: string ‘g’”,cr,lf,0
str2_h byte “Background: string ‘h’”,cr,lf,0
str2_i byte “Background: string ‘i’”,cr,lf,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

Processes, Coroutines, and Concurrency

Page 1139

; This background process calls DOS to print several strings to the
; screen. In the meantime, the foreground process is also printing
; strings to the screen. To prevent reentry, or at least a jumble of
; characters on the screen, this code uses semaphores to protect the
; DOS calls. Therefore, each process will print one complete line
; then release the semaphore. If the other process is waiting it will
; print its line.

BackGround proc
mov ax, dseg
mov ds, ax
lea bx, StrPtrs2 ;Array of str ptrs.

PrintLoop: cmp word ptr [bx+2], 0 ;At end of pointers?
je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die ;Terminate this process
BackGround endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

lesi BkgndPCB ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround ;Go do background stuff.

; The parent process will print a bunch of strings at the same time
; the background process is doing this. We’ll use the DOS semaphore
; to protect the call to DOS that PUTS makes.

ParentPrcs: DOSWait ;Force the other process
mov cx, 0 ; to wind up waiting in

DlyLp0: loop DlyLp0 ; the semaphore queue by
DlyLp1: loop DlyLp1 ; delay for at least one
DlyLp2: loop DlyLp2 ; clock tick.

DOSRls

lea bx, StrPtrs1 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je ForeGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

ForeGndDone: prcsquit

Chapter 19

Page 1140

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byte 1024 dup (?)
EndStk2 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

This program doesn’t directly call DOS, but it calls the Standard Library puts routine that does. In general,
you could use a single semaphore to protect all BIOS, DOS, and Standard Library calls. However, this is
not particularly efficient. For example, the Standard Library pattern matching routines make no DOS calls;
therefore, waiting on the DOS semaphore to do a pattern match while some other process is making a
DOS call unnecessarily delays the pattern match. There is nothing wrong with having one process do a
pattern match while another is making a DOS call. Unfortunately, some Standard Library routines do
make DOS calls (puts is a good example), so you must use the DOS semaphore around such calls.

In theory, we could use separate semaphores to protect DOS, different BIOS calls, and different Stan-
dard Library calls. However, keeping track of all those semaphores within a program is a big task. Further-
more, ensuring that a call to DOS does not also invoke an unprotected BIOS routine is a difficult task. So
most programmers use a single semaphore to protect all Standard Library, DOS, and BIOS calls.

19.5.5 Using Semaphores for Barrier Synchronization

Although the primary use of a semaphores is to provide exclusive access to some resource, there are
other synchronization uses for semaphores as well. In this section we’ll look at the use of the Standard
Library’s semaphores objects to create a barrier.

A barrier is a point in a program where a process stops and waits for other processes to synchronize
(reach their respective barriers). In many respects, a barrier is the dual to a semaphore. A semaphore pre-
vents more than n processes from gaining access to some resource. A barrier does not grant access until at
least n processes are requesting access.

Given the different nature of these two synchronization methods, you might think that it would be
difficult to use the WaitSemaph and RlsSemaph routines to implement barriers. However, it turns out
to be quite simple. Suppose we were to initialize the semaphore's SemaCnt field to zero rather than one.
When the first process waits on this semaphore, the system will immediately block that process. Likewise,
each additional process that waits on this semaphore will block and wait on the semaphore queue. This
would normally be a disaster since there is no active process that will signal the semaphore so it will acti-
vate the blocked processes. However, if we modify the wait call so that it checks the SemaCnt field
before actually doing the wait, the nth process can skip the wait call and reactivate the other processes.
Consider the following macro:

Processes, Coroutines, and Concurrency

Page 1141

barrier macro Wait4Cnt
local AllHere, AllDone
cmp es:[di].semaphore.SemaCnt, -(Wait4Cnt-1)
jle AllHere
WaitSemaph
cmp es:[di].semaphore.SemaCnt, 0
je AllDone

AllHere: RlsSemaph
AllDone:

endm

This macro expects a single parameter that should be the number of processes (including the current
process) that need to be at a barrier before any of the processes can proceed. The SemaCnt field is a neg-
ative number whose absolute value determines how many processes are currently waiting on the sema-
phore. If a barrier requires four processes, no process can proceed until the fourth process hits the barrier;
at that time the SemaCnt field will contain minus three. The macro above computes what the value of
SemaCnt should be if all processes are at the barrier. If SemaCnt matches this value, it signals the sema-
phore that begins a chain of operations with each blocked process releasing the next. When SemaCnt
hits zero, the last blocked process does not release the semaphore since there are no other processes wait-
ing on the queue.

It is very important to remember to initialize the SemaCnt field to zero before using semaphores for
barrier synchronization in this manner. If you do not initialize SemaCnt to zero, the WaitSemaph call
will probably not block any of the processes.

The following sample program provides a simple example of barrier synchronization using the Stan-
dard Library’s semaphore package:

; BARRIER.ASM
;
; This sample program demonstrates how to use the Standard Library’s
; semaphore objects to synchronize several processes at a barrier.
; This program is similar to the MULTIDOS.ASM program insofar as the
; background processes all print a set of strings. However, rather than
; using an inelegant delay loop to synchronize the foreground and background
; processes, this code uses barrier synchronization to achieve this.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

BarrierSemaph semaphore {0} ;Must init SemaCnt to zero.
DOSsmaph semaphore {}

; Macros to wait and release the DOS semaphore:

DOSWait macro
push es
push di
lesi DOSsmaph
WaitSemaph
pop di
pop es
endm

DOSRls macro
push es
push di
lesi DOSsmaph
RlsSemaph
pop di
pop es
endm

; Macro to synchronize on a barrier:

Chapter 19

Page 1142

Barrier macro Wait4Cnt
local AllHere, AllDone
cmp es:[di].semaphore.SemaCnt, -(Wait4Cnt-1)
jle AllHere
WaitSemaph
cmp es:[di].semaphore.SemaCnt, 0
jge AllDone

AllHere: RlsSemaph
AllDone:

endm

; PCBs for our background processes:

BkgndPCB2 pcb {0,offset EndStk2, seg EndStk2}
BkgndPCB3 pcb {0,offset EndStk3, seg EndStk3}

; Data the foreground and background processes print:

StrPtrs1 dword str1_a, str1_b, str1_c, str1_d, str1_e, str1_f
dword str1_g, str1_h, str1_i, str1_j, str1_k, str1_l
dword 0

str1_a byte “Foreground: string ‘a’”,cr,lf,0
str1_b byte “Foreground: string ‘b’”,cr,lf,0
str1_c byte “Foreground: string ‘c’”,cr,lf,0
str1_d byte “Foreground: string ‘d’”,cr,lf,0
str1_e byte “Foreground: string ‘e’”,cr,lf,0
str1_f byte “Foreground: string ‘f’”,cr,lf,0
str1_g byte “Foreground: string ‘g’”,cr,lf,0
str1_h byte “Foreground: string ‘h’”,cr,lf,0
str1_i byte “Foreground: string ‘i’”,cr,lf,0
str1_j byte “Foreground: string ‘j’”,cr,lf,0
str1_k byte “Foreground: string ‘k’”,cr,lf,0
str1_l byte “Foreground: string ‘l’”,cr,lf,0

StrPtrs2 dword str2_a, str2_b, str2_c, str2_d, str2_e, str2_f
dword str2_g, str2_h, str2_i
dword 0

str2_a byte “Background 1: string ‘a’”,cr,lf,0
str2_b byte “Background 1: string ‘b’”,cr,lf,0
str2_c byte “Background 1: string ‘c’”,cr,lf,0
str2_d byte “Background 1: string ‘d’”,cr,lf,0
str2_e byte “Background 1: string ‘e’”,cr,lf,0
str2_f byte “Background 1: string ‘f’”,cr,lf,0
str2_g byte “Background 1: string ‘g’”,cr,lf,0
str2_h byte “Background 1: string ‘h’”,cr,lf,0
str2_i byte “Background 1: string ‘i’”,cr,lf,0

StrPtrs3 dword str3_a, str3_b, str3_c, str3_d, str3_e, str3_f
dword str3_g, str3_h, str3_i
dword 0

str3_a byte “Background 2: string ‘j’”,cr,lf,0
str3_b byte “Background 2: string ‘k’”,cr,lf,0
str3_c byte “Background 2: string ‘l’”,cr,lf,0
str3_d byte “Background 2: string ‘m’”,cr,lf,0
str3_e byte “Background 2: string ‘n’”,cr,lf,0
str3_f byte “Background 2: string ‘o’”,cr,lf,0
str3_g byte “Background 2: string ‘p’”,cr,lf,0
str3_h byte “Background 2: string ‘q’”,cr,lf,0
str3_i byte “Background 2: string ‘r’”,cr,lf,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

Processes, Coroutines, and Concurrency

Page 1143

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

; This background processes call DOS to print several strings to the
; screen. In the meantime, the foreground process is also printing
; strings to the screen. To prevent reentry, or at least a jumble of
; characters on the screen, this code uses semaphores to protect the
; DOS calls. Therefore, each process will print one complete line
; then release the semaphore. If the other process is waiting it will
; print its line.

BackGround1 proc
mov ax, dseg
mov ds, ax

Chapter 19

Page 1144

; Wait for everyone else to get ready:

lesi BarrierSemaph
barrier 3

; Okay, start printing the strings:

lea bx, StrPtrs2 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die
BackGround1 endp

BackGround2 proc
mov ax, dseg
mov ds, ax

lesi BarrierSemaph
barrier 3

lea bx, StrPtrs3 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die
BackGround2 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

; Start the first background process:

lesi BkgndPCB2 ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je StartBG2
jmp BackGround1 ;Go do backgroun stuff.

; Start the second background process:

StartBG2: lesi BkgndPCB3 ;Fire up a new process
fork

Processes, Coroutines, and Concurrency

Page 1145

test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround2 ;Go do backgroun stuff.

; The parent process will print a bunch of strings at the same time
; the background process is doing this. We’ll use the DOS semaphore
; to protect the call to DOS that PUTS makes.

ParentPrcs: lesi BarrierSemaph
barrier 3

lea bx, StrPtrs1 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je ForeGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

ForeGndDone: prcsquit

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here are the stacks for the background processes we start

stk2 byte 1024 dup (?)
EndStk2 word ?

stk3 byte 1024 dup (?)
EndStk3 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample Output:

Background 1: string ‘a’
Background 1: string ‘b’
Background 1: string ‘c’
Background 1: string ‘d’
Background 1: string ‘e’
Background 1: string ‘f’
Foreground: string ‘a’
Background 1: string ‘g’
Background 2: string ‘j’
Foreground: string ‘b’
Background 1: string ‘h’
Background 2: string ‘k’
Foreground: string ‘c’
Background 1: string ‘i’
Background 2: string ‘l’
Foreground: string ‘d’
Background 2: string ‘m’
Foreground: string ‘e’
Background 2: string ‘n’
Foreground: string ‘f’
Background 2: string ‘o’
Foreground: string ‘g’

Chapter 19

Page 1146

Background 2: string ‘p’
Foreground: string ‘h’
Background 2: string ‘q’
Foreground: string ‘i’
Background 2: string ‘r’
Foreground: string ‘j’
Foreground: string ‘k’
Foreground: string ‘l’

Note how background process number one ran for one clock period before the other processes waited on
the DOS semaphore. After this initial burst, the processes all took turns calling DOS.

19.6 Deadlock

Although semaphores can solve any synchronization problems, don’t get the impression that sema-
phores don’t introduce problems of their own. As you’ve already seen, the improper use of semaphores
can result in the indefinite suspension of processes waiting on the semaphore queue. However, even if
you correctly wait and signal individual semaphores, it is quite possible for correct operations on
combinations of semaphores to produce this same effect. Indefinite suspension of a process because of
semaphore problems is a serious issue. This degenerate situation is known as deadlock or deadly
embrace.

Deadlock occurs when one process holds one resource and is waiting for another while a second
process is holding that other resource and waiting for the first. To see how deadlock can occur, consider
the following code:

; Process one:

lesi Semaph1
WaitSemaph

« Assume interrupt occurs here »

lesi Semaph2
WaitSemaph
 .
 .
 .

; Process two:

lesi Semaph2
WaitSemaph
lesi Semaph1
WaitSemaph
 .
 .
 .

Process one grabs the semaphore associated with Semaph1. Then a timer interrupt comes along which
causes a context switch to process two. Process two grabs the semaphore associated with Semaph2 and
then tries to get Semaph1. However, process one is already holding Semaph1, so process two blocks
and waits for process one to release this semaphore. This returns control (eventually) to process one. Pro-
cess one then tries to graph Semaph2. Unfortunately, process two is already holding Semaph2, so pro-
cess one blocks waiting for Semaph2. Now both processes are blocked waiting for the other. Since
neither process can run, neither process can release the semaphore the other needs. Both processes are
deadlocked.

One easy way to prevent deadlock from occurring is to never allow a process to hold more than one
semaphore at a time. Unfortunately, this is not a practical solution; many processes may need to have
exclusive access to several resources at one time. However, we can devise another solution by observing
the pattern that resulted in deadlock in the previous example. Deadlock came about because the two pro-
cesses grabbed different semaphores and then tried to grab the semaphore that the other was holding. In

Processes, Coroutines, and Concurrency

Page 1147

other words, they grabbed the two semaphores in a different order (process one grabbed Semaph1 first
and Semaph2 second, process two grabbed Semaph2 first and Semaph1 second). It turns out that two
process will never deadlock if they wait on common semaphores in the same order. We could modify the
previous example to eliminate the possibility of deadlock thusly:

; Process one:

lesi Semaph1
WaitSemaph
lesi Semaph2
WaitSemaph
 .
 .
 .

; Process two:

lesi Semaph1
WaitSemaph
lesi Semaph2
WaitSemaph
 .
 .
 .

Now it doesn’t matter where the interrupt occurs above, deadlock cannot occur. If the interrupt occurs
between the two WaitSemaph calls in process one (as before), when process two attempts to wait on
Semaph1, it will block and process one will continue with Semaph2 available.

An easy way to keep out of trouble with deadlock is to number all your semaphore variables and
make sure that all processes acquire (wait on) semaphores from the smallest numbered semaphore to the
highest. This ensures that all processes acquire the semaphores in the same order, and that ensures that
deadlock cannot occurs.

Note that this policy of acquiring semaphores only applies to semaphores that a process holds con-
currently. If a process needs semaphore six for a while, and then it needs semaphore two after it has
released semaphore six, there is no problem acquiring semaphore two after releasing semaphore six.
However, if at any point the process needs to hold both semaphores, it must acquire semaphore two first.

Processes may release the semaphores in any order. The order that a process releases semaphores
does not affect whether deadlock can occur. Of course, processes should always release a semaphore as
soon as the process is done with the resource guarded by that semaphore; there may be other processes
waiting on that semaphore.

While the above scheme works and is easy to implement, it is by no means the only way to handle
deadlock, nor is it always the most efficient. However, it is simple to implement and it always works. For
more information on deadlocks, see a good operating systems text.

19.7 Summary

Despite the fact that DOS is not reentrant and doesn’t directly support multitasking, that doesn’t mean
your applications can’t multitask; it’s just difficult to get different applications to run independently of one
another under DOS.

Although DOS doesn’t switch among different programs in memory, DOS certainly allows you to load
multiple programs into memory at one time. The only catch is that only one such program actually exe-
cutes. DOS provides several calls to load and execute “.EXE” and “.COM” files from the disk. These pro-
cesses effectively behave like subroutine calls, with control returning to the program invoking such a
program only after that “child” program terminates. For more details, see

• “DOS Processes” on page 1065
• “Child Processes in DOS” on page 1065

Chapter 19

Page 1148

• “Load and Execute” on page 1066
• “Load Program” on page 1068
• “Loading Overlays” on page 1069
• “Terminating a Process” on page 1069
• “Obtaining the Child Process Return Code” on page 1070

Certain errors can occur during the execution of a DOS process that transfer control to exception han-
dlers. Besides the 80x86 exceptions, DOS’ break handler and critical error handler are the primary
examples. Any program that patches the interrupt vectors should provide its own exception handlers for
these conditions so it can restore interrupts on a ctrl-C or I/O error exception. Furthermore, well-written
program always provide replacement exception handlers for these two conditions that provide better sup-
port that the default DOS handlers. For more information on DOS exceptions, see

• “Exception Handling in DOS: The Break Handler” on page 1070
• “Exception Handling in DOS: The Critical Error Handler” on page 1071
• “Exception Handling in DOS: Traps” on page 1075

When a parent process invokes a child process with the LOAD or LOADEXEC calls, the child process
inherits all open files from the parent process. In particular, the child process inherits the standard input,
standard output, standard error, auxiliary I/O, and printer devices. The parent process can easily redi-
rect I/O to/from these devices before passing control to a child process. This, in effect, redirects the I/O
during the execution of the child process. For more details, see

• “Redirection of I/O for Child Processes” on page 1075

When two DOS programs want to communicate with each other, they typically read and write data to
a file. However, creating, opening, reading, and writing files is a lot of work, especially just to share a few
variable values. A better alternative is to use shared memory. Unfortunately, DOS does not provide sup-
port to allow two programs to share a common block of memory. However, it is very easy to write a TSR
that manages shared memory for various programs. For details and the complete code to two shared mem-
ory managers, see:

• “Shared Memory” on page 1078
• “Static Shared Memory” on page 1078
• “Dynamic Shared Memory” on page 1088

A coroutine call is the basic mechanism for switching control between two processes. A “cocall” oper-
ation is the equivalent of a subroutine call and return all rolled into one operation. A cocall transfers con-
trol to some other process. When some other process returns control to a coroutine (via cocall), control
resumes with the first instruction after the cocall code. The UCR Standard Library provides complete
coroutine support so you can easily put coroutines into your assembly language programs. For all the
details on coroutines, plus a neat maze generator program that uses coroutines, see

• “Coroutines” on page 1103

Although you can use coroutines to simulate multitasking (“cooperative multitasking”), the major
problem with coroutines is that each application must decide when to switch to another process via a
cocall. Although this eliminates certain reentrancy and synchronization problems, deciding when and
where to make such calls increases the work necessary to write multitasking applications. A better
approach is to use preemptive multitasking where the timer interrupt performs the context switches.
Reentrancy and synchronization problems develop in such a system, but with care those problems are eas-
ily overcome. For the details on true preemptive multitasking, and to see how the UCR Standard Library
supports multitasking, see

• “Multitasking” on page 1124
• “Lightweight and HeavyWeight Processes” on page 1124
• “The UCR Standard Library Processes Package” on page 1125
• “Problems with Multitasking” on page 1126
• “A Sample Program with Threads” on page 1127

Processes, Coroutines, and Concurrency

Page 1149

Preemptive multitasking opens up a Pandora’s box. Although multitasking makes certain programs
easier to implement, the problems of process synchronization and reentrancy rears its ugly head in a mul-
titasking system. Many processes require some sort of synchronized access to global variables. Further,
most processes will need to call DOS, BIOS, or some other routine (e.g., the Standard Library) that is not
reentrant. Somehow we need to control access to such code so that multiple processes do not adversely
affect one another. Synchronization is achievable using several different techniques. In some simple cases
we can simply turn off the interrupts, eliminating the reentrancy problems. In other cases we can use test
and set or semaphores to protect a critical region. For more details on these synchronization operations,
see

• “Synchronization” on page 1129
• “Atomic Operations, Test & Set, and Busy-Waiting” on page 1132
• “Semaphores” on page 1134
• “The UCR Standard Library Semaphore Support” on page 1136
• “Using Semaphores to Protect Critical Regions” on page 1136
• “Using Semaphores for Barrier Synchronization” on page 1140

The use of synchronization objects, like semaphores, can introduce new problems into a system.
Deadlock is a perfect example. Deadlock occurs when one process is holding some resource and wants
another and a second process is hold the desired resource and wants the resource held by the first pro-
cess5. You can easily avoid deadlock by controlling the order that the various processes acquire groups of
semaphores. For all the details, see

• “Deadlock” on page 1146

5. Or any chain of processes where everyone in the chain is holding something that another process in the chain wants.

Chapter 19

Page 1150

