
9/3/19	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 2:The Kernel Abstraction

Zhong Shao
Dept. of Computer Science

 Yale University

Today’s lecture

◆  An overview of HW functionality
–  read the cs323 textbook

◆  How to bootstrap ?

◆  An overview of OS structures
–  OS components and services
–  how OS interacts with IO devices ? interrupts
–  how OS interacts with application program ? system calls

9/3/19	

2	

What makes a “computer system” ?

◆  Hardware
–  motherboard (cpu, buses, I/O controllers, memory controller, timer);

memory; hard disk & flash drives, CD&DVDROM; keyboard,
mouse; monitor & graphics card; printer, scanner, sound board
& speakers; modem, networking card; case, power supply.

–  all connected through buses, cables, and wires

◆  Software
–  a bunch of 0/1s; stored on a hard disk or a usb drive or a DVD

*  operating system (e.g., Linux, Windows, Mac OS)
*  application programs (e.g., gcc, vi)

◆  User (it is “you”)

How a “computer” becomes alive?

Step 0: connect all HWs together, build the computer

Step 1: power-on and bootstrap

assuming that OS is stored on the boot drive
 (e.g., USB drive, hard disk, or CDROM)

Step 2: OS takes over and set up all of its services

Step 3: start the window manager and the login prompt

Step 4: user logs in; start the shell; run applications

9/3/19	

3	

Computer-system architecture (1980)

Computer-system architecture (Intel Skylake 2015)

http://images.anandtech.com/doci/9483/Z170%20Platform.jpg?_ga=1.245977734.363736712.1473128269

9/3/19	

4	

Computer-system architecture (Intel Skylake 2015)

Intel Z170 Motherboard
 (Asrock Z170 Extreme6)

http://www.techspot.com/photos/article/1073-intel-z170-motherboard-roundup/#Asrock_02

Computer-system architecture (Raspberry Pi3)

http://www.rlocman.ru/i/Image/2016/02/29/RaspberryPi_3_1.jpg

9/3/19	

5	

An overview of HW functionality

◆  Executing the machine code (cpu, cache, memory)
–  instructions for ALU-, branch-, and memory-operations
–  instructions for communicating with I/O devices

◆  Performing I/Os
–  I/O devices and the CPU can execute concurrently
–  Each device controller in charge of one device type
–  Each device controller has a local buffer
–  CPU moves data btw. main memory and local buffers
–  I/O is from the device to local buffer of controller
–  Device controller uses interrupt to inform CPU that it is done

◆  Protection hardware
–  timer, paging HW (e.g. TLB), mode bit (e.g., kernel/user)

Today’s lecture

◆  An overview of HW functionality
–  read the cs323 textbook

◆  How to bootstrap ?

◆  An overview of OS structures
–  OS components and services
–  how OS interacts with IO devices ? interrupts
–  how OS interacts with application program ? system calls

9/3/19	

6	

How to bootstrap?
Physical
Memory

BIOS

Disk

(1)
BIOS copies
bootloader

Bootloader
instructions

and data

OS kernel
instructions

and data

Login app
instructions

and data

Bootloader

OS kernel

Login app

(2)
Bootloader

copies OS kernel

(3)
OS kernel copies
login application

◆  Power up a computer
◆  Processor reset

–  Set to known state
–  Jump to ROM code (for

x86 PC, this is BIOS)

◆  Load in the boot loader
from stable storage

◆  Jump to the boot loader
◆  Load the rest of the

operating system

◆  Initialize and run

System boot

◆  Power on (processor waits until Power Good Signal)

◆  On an Intel PC, processor jumps to address FFFF0h
(maps to FFFFFFF0h= 232-16)

–  1M = 1,048,576= 220 =FFFFFh+1
–  FFFFFh=FFFF0h+15 is the end of the (first 1MB of) system

memory
–  The original PC using Intel 8088 (in 1970’s) had 20-bit address

lines :-)

◆  (FFFFFFF0h) is a JMP instruction to the BIOS startup
program

9/3/19	

7	

BIOS startup (1)

◆  POST (Power-On Self-Test)
–  If pass then AX:=0; DH:=5 (Pentium);
–  Stop booting if fatal errors, and report

◆  Look for video card and execute built-in BIOS code (normally at
C000h)

◆  Look for other devices ROM BIOS code
–  IDE/ATA disk ROM BIOS at C8000h (=819,200d)
–  SCSI disks may provide their own BIOS

◆  Display startup screen
–  BIOS information

◆  Execute more tests
–  memory
–  system inventory

BIOS startup (2)

◆  Look for logical devices
–  Label them

*  Serial ports: COM 1, 2, 3, 4
*  Parallel ports: LPT 1, 2, 3

–  Assign each an I/O address and IRQ

◆  Detect and configure PnP devices
◆  Display configuration information on screen

9/3/19	

8	

BIOS startup (3)

◆  Search for a drive to BOOT from
–  Hard disk or USB drive or CD/DVD
–  Boot at cylinder 0, head 0, sector 1

◆  Load code in boot sector
◆  Execute boot loader
◆  Boot loader loads program to be booted

–  If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

◆  Transfer control to loaded program
–  Which maybe another feature-rich bootloader (e.g., GRUB),

which then loads the actual OS

Today’s lecture

◆  An overview of HW functionality
–  read the cs323 textbook

◆  How to bootstrap ?

◆  An overview of OS structures
–  OS components and services
–  how OS interacts with IO devices ? interrupts
–  how OS interacts with application program ? system calls

9/3/19	

9	

Typical Unix OS structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

Typical Unix OS structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

9/3/19	

10	

Typical Unix OS structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved”
when program is loaded

Pipeline of creating an executable file

◆  gcc can compile, assemble, and link together
◆  Compiler part of gcc compiles a program into assembly
◆  Assembler compiles assembly code into relocatable object file
◆  Linker links object files into an executable
◆  For more information:

–  Read man page of a.out, elf, ld, and nm
–  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

9/3/19	

11	

Execution (run an application)

◆  On Unix, “loader” does the job
–  Read an executable file
–  Layout the code, data, heap and stack
–  Dynamically link to shared libraries
–  Prepare for the OS kernel to run the application

a.out loader *.o, *.a ld Application

Shared
library

What’s an application?

◆  Four segments
–  Code/Text – instructions
–  Data – initialized global

variables
–  Stack
–  Heap

◆  Why?
–  Separate code and data
–  Stack and heap go towards

each other

Stack

Heap

Initialized data

Code

2n -1

0

9/3/19	

12	

Responsibilities

◆  Stack
–  Layout by compiler
–  Allocate/deallocate by process creation (fork) and termination
–  Local variables are relative to stack pointer

◆  Heap
–  Linker and loader say the starting address
–  Allocate/deallocate by library calls such as malloc() and free()
–  Application program use the library calls to manage

◆  Global data/code
–  Compiler allocates statically
–  Compiler emits names and symbolic references
–  Linker translates references and relocates addresses
–  Loader finally lays them out in memory

Typical Unix OS structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

9/3/19	

13	

OS service examples

◆  Examples that are not provided at user level
–  System calls: file open, close, read and write
–  Control the CPU so that users won’t stuck by running

*  while (1) ;
–  Protection:

*  Keep user programs from crashing OS
*  Keep user programs from crashing each other

◆  Examples that can be provided at user level
–  Read time of the day
–  Protected user level stuff

Typical Unix OS structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

9/3/19	

14	

OS components

◆  Resource manager for each HW resource
–  processor management (CPU)
–  memory management
–  file system and secondary-storage management
–  I/O device management (keyboards, mouse, …)

◆  Additional services:
–  networking
–  window manager (GUI)
–  command-line interpreters (e.g., shell)
–  resource allocation and accounting
–  protection

*  Keep user programs from crashing OS
*  Keep user programs from crashing each other

Processor management

◆  Goals
–  Overlap between I/O and

computation
–  Time sharing
–  Multiple CPU allocations

◆  Issues
–  Do not waste CPU resources
–  Synchronization and mutual

exclusion
–  Fairness and deadlock free

CPU I/O CPU

CPU

I/O

CPU

CPU
I/O

CPU

CPU

CPU

9/3/19	

15	

Memory management

◆  Goals
–  Support programs to run
–  Allocation and management
–  Transfers from and to secondary

storage
◆  Issues

–  Efficiency & convenience
–  Fairness
–  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Disks: >1000M x

I/O device management

◆  Goals
–  Interactions between devices

and applications
–  Ability to plug in new devices

◆  Issues
–  Efficiency
–  Fairness
–  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

9/3/19	

16	

File system

◆  A typical file system
–  open a file with

authentication
–  read/write data in files
–  close a file

◆  Efficiency and security

◆  Can the services be
moved to user level?

User 1 User n . . .

File system services

File File . . .

Today’s lecture

◆  An overview of HW functionality
–  read the cs323 textbook

◆  How to bootstrap ?

◆  An overview of OS structures
–  OS components and services
–  how OS interacts with IO devices ? interrupts
–  how OS interacts with application program ? system calls

9/3/19	

17	

Device interrupts

How does an OS kernel communicate with physical devices?

◆  Devices operate asynchronously from the CPU
–  Polling: Kernel waits until I/O is done
–  Interrupts: Kernel can do other work in the meantime

◆  Device access to memory
–  Programmed I/O: CPU reads and writes to device
–  Direct memory access (DMA) by device

◆  How do device interrupts work?
–  Where does the CPU run after an interrupt?
–  What is the interrupt handler written in?
–  What stack does it use?
–  Is the work the CPU had been doing before the interrupt lost?
–  If not, how does the CPU know how to resume that work

Challenge: protection

◆  How do we execute code with restricted privileges?
–  Either because the code is buggy or if it might be malicious

◆  Some examples:
–  A user program running on top of an OS
–  A third party device driver running within an OS
–  A script running in a web browser
–  A program you just downloaded off the Internet
–  A program you just wrote that you haven’t tested yet

9/3/19	

18	

A problem

Edits Compiler
Source
Code

Executable
Image:

Instructions
and Data

Machine
Instructions

Machine
Instructions

Operating
System Copy

Process

Operating
System
Kernel

Physical
Memory

Heap

Stack

Data

Heap

Stack

Data

Main points

◆  Process concept
–  A process is the OS abstraction for executing a program with

limited privileges

◆  Dual-mode operation: user vs. kernel
–  Kernel-mode: execute with complete privileges
–  User-mode: execute with fewer privileges

◆  Safe control transfer
–  How do we switch from one mode to the other?

9/3/19	

19	

Process abstraction

◆  Process: an instance of a program, running with limited
rights

–  Thread: a sequence of instructions within a process
*  Potentially many threads per process

–  Address space: set of rights of a process
*  Memory that the process can access
*  Other permissions the process has (e.g., which system calls it can

make, what files it can access)

Thought experiment

◆  How can we implement execution with limited
privilege?
–  Execute each program instruction in a simulator
–  If the instruction is permitted, do the instruction
–  Otherwise, stop the process
–  Basic model in Javascript and other interpreted languages

◆  How do we go faster?
–  Run the unprivileged code directly on the CPU!

9/3/19	

20	

Hardware support: dual-mode operation

◆  Kernel mode
–  Execution with the full privileges of the hardware
–  Read/write to any memory, access any I/O device, read/write

any disk sector, send/read any packet

◆  User mode
–  Limited privileges
–  Only those granted by the operating system kernel

◆  On the x86, mode stored in EFLAGS register
◆  On the MIPS, mode in the status register

A model of a CPU

New PC Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

Branch Address

9/3/19	

21	

A CPU with dual-mode operation

New PC
Handler PC

Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

New Mode
Mode

Select
Mode

Branch Address

Hardware support: dual-mode operation

◆  Privileged instructions
–  Available to kernel
–  Not available to user code

◆  Limits on memory accesses
–  To prevent user code from overwriting the kernel

◆  Timer
–  To regain control from a user program in a loop

◆  Safe way to switch from user mode to kernel mode,
and vice versa

9/3/19	

22	

Privileged instruction examples

◆  Memory address mapping
◆  Cache flush or invalidation
◆  Invalidating TLB entries
◆  Loading and reading system registers
◆  Changing processor modes from kernel to user
◆  Changing the voltage and frequency of processor
◆  Halting a processor
◆  I/O operations

What should happen if a user program
attempts to execute a privileged instruction?

Virtual addresses

◆  Translation done
in hardware, using
a table

◆  Table set up by
operating system
kernel

Physical
Memory

Virtual Addresses
(Process Layout)

Stack

Heap

Data

Code

Heap

Data

Code

Stack

9/3/19	

23	

Hardware timer

◆  Hardware device that periodically interrupts the
processor
–  Returns control to the kernel handler
–  Interrupt frequency set by the kernel

*  Not by user code!

–  Interrupts can be temporarily deferred
*  Not by user code!
*  Interrupt deferral crucial for implementing mutual exclusion

“User ⇔ Kernel” model switch

User mode
Ø Regular instructions
Ø Access user-mode memory

Kernel (privileged) mode
Ø All instructions
Ø Access all memory

An interrupt or exception or system call (INT)

A special instruction (IRET)

9/3/19	

24	

Mode switch

◆  From user mode to kernel mode
–  System calls (aka protected procedure call)

*  Request by program for kernel to do some operation on its behalf

*  Only limited # of very carefully coded entry points

–  Interrupts
*  Triggered by timer and I/O devices

–  Exceptions
*  Triggered by unexpected program behavior

*  Or malicious behavior!

System calls

Kernel in

protected memory

entry

◆  User code can be arbitrary

◆  User code cannot modify
kernel memory

◆  Makes a system call with
parameters

◆  The call mechanism
switches code to kernel
mode

◆  Execute system call

◆  Return with results

User
program

User
program

return

They are like “local” remote procedure calls (RPCs)

9/3/19	

25	

Interrupts and exceptions

◆  Interrupt sources
–  Hardware (by external devices)
–  Software: INT n

◆  Exceptions
–  Program error: faults, traps, and aborts
–  Software generated: INT 3
–  Machine-check exceptions

◆  See Intel document volume 3 for details

Interrupt and exceptions (1)

Vector # Mnemonic Description Type

0 #DE Divide error (by zero) Fault

1 #DB Debug Fault/trap

2 NMI interrupt Interrupt

3 #BP Breakpoint Trap

4 #OF Overflow Trap

5 #BR BOUND range exceeded Trap

6 #UD Invalid opcode Fault

7 #NM Device not available Fault

8 #DF Double fault Abort

9 Coprocessor segment overrun Fault

10 #TS Invalid TSS

9/3/19	

26	

Interrupt and exceptions (2)

Vector # Mnemonic Description Type

11 #NP Segment not present Fault

12 #SS Stack-segment fault Fault

13 #GP General protection Fault

14 #PF Page fault Fault

15 Reserved Fault

16 #MF Floating-point error (math fault) Fault

17 #AC Alignment check Fault

18 #MC Machine check Abort

19-31 Reserved

32-255 User defined Interrupt

How to take interrupt & syscall safely?

◆  Interrupt & trap & syscall vector
–  Limited number of entry points into kernel

◆  Atomic transfer of control
–  Single instruction to change:

*  Program counter
*  Stack pointer
*  Memory protection
*  Kernel/user mode

◆  Transparent restartable execution
–  For HW interrupts: user program does not know interrupt

occurred
–  For system calls: it is just like return from a function call

9/3/19	

27	

Interrupt & trap & syscall vector

◆  Table set up by OS kernel; pointers to code to run on
different events

Interrupt
Vector Table

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

Interrupt & trap & syscall vector (cont’d)

HW Device
Interrupt

HW exceptions

SW exceptions

System Call

Virtual address
exceptions

HW implementation of the boundary

System
service
dispatcher

System
services

Interrupt
service
routines

Exception
dispatcher Exception

handlers

VM manager’s
pager

Syscall table

System
Service
dispatcher

9/3/19	

28	

Interrupt stack
Per-processor, located in kernel memory. Why can’t the interrupt
handler run on the stack of the interrupted user process?

User Stack

Kernel Stack

Proc2

Running

Proc1

Main

Proc2

Ready to Run

Proc1

Main

User CPU
State

User CPU
State

Syscall
Handler

I/O Driver
Top Half

Proc2

Syscall

Waiting for I/O

Proc1

Main

Interrupt handler & interrupt masking

◆  Interrupt handler often non-blocking (with interrupts off),
run to completion (then re-enable interrupts)
–  Minimum necessary to allow device to take next interrupt
–  Any waiting must be limited duration
–  Wake up other threads to do any real work

*  Linux: semaphore

◆  Rest of device driver runs as a kernel thread

◆  Interrupt masking: OS kernel can also turn interrupts off
–  Eg., when determining the next process/thread to run
–  On x86

*  CLI: disable interrrupts
*  STI: enable interrupts
*  Only applies to the current CPU (on a multicore)

9/3/19	

29	

Case study: x86 interrupt & syscall

◆  Save current stack pointer
◆  Save current program counter
◆  Save current processor status word (condition codes)
◆  Switch to kernel stack; put SP, PC, PSW on stack
◆  Switch to kernel mode
◆  Vector through interrupt table
◆  Interrupt handler saves registers it might clobber

Before interrupt

EFLAGS

CS: EIP

SS: ESPf o o () {
 w h i l e (. . .) {
 x = x + 1 ;
 y = y - 2 ;
 }
}

User-level Process

Other Registers:
EAX, EBX,

Registers Kernel

h a n d l e r () {
 p u s h a d
 . . .
}

User Stack
Interrupt

Stack

9/3/19	

30	

During interrupt

EFLAGS

CS: EIP

SS: ESPf o o () {
 w h i l e (. . .) {
 x = x + 1 ;
 y = y - 2 ;
 }
}

User-level Process

other registers:
EAX, EBX,

Registers Kernel

h a n d l e r () {
 p u s h a d
 . . .
}

User Stack
Interrupt

Stack

Error

EIP

CS

EFLAGS

ESP

SS

After interrupt

EFLAGS

CS: EIP

SS: ESPf o o () {
 w h i l e (. . .) {
 x = x + 1 ;
 y = y - 2 ;
 }
}

User-level Process

other registers:
EAX, EBX,

Registers Kernel

h a n d l e r () {
 p u s h a d
 . . .
}

Stack

All
Registers

Interrupt
Stack

Error

EBX
EAX
ESP
SS

EIP

CS

EFLAGS

ESP

SS

9/3/19	

31	

At end of handler

◆  Handler restores saved registers

◆  Atomically return to interrupted process/thread
–  Restore program counter
–  Restore program stack
–  Restore processor status word/condition codes
–  Switch to user mode

Kernel system call handler

◆  Locate arguments
–  In registers or on user stack
–  Translate user addresses into kernel addresses

◆  Copy arguments
–  From user memory into kernel memory
–  Protect kernel from malicious code evading checks

◆  Validate arguments
–  Protect kernel from errors in user code

◆  Copy results back into user memory
–  Translate kernel addresses into user addresses

9/3/19	

32	

System call stubs

User Program Kernel

m a i n () {
 f i l e _ o p e n (a r g 1 , a r g 2) ;
}

f i l e _ o p e n (a r g 1 , a r g 2) {
 // do operation
}

User Stub

f i l e _ o p e n (a r g 1 , a r g 2) {
 p u s h # S Y S C A L L _ O P E N
 t r a p
 r e t u r n
}

f i l e _ o p e n _ h a n d l e r () {
 // copy arguments
 // from user memory
 // check arguments
 f i l e _ o p e n (a r g 1 , a r g 2) ;
 // copy return value
 // into user memory
 r e t u r n ;
}

Kernel Stub
Hardware Trap

Trap Return

(2)

(5)

(1) (6) (3) (4)

User-level system call stub

// We assume that the caller put the filename onto the stack,

// using the standard calling convention for the x86.

open:

// Put the code for the system call we want into %eax.

 movl #SysCallOpen, %eax

// Trap into the kernel.

 int #TrapCode

// Return to the caller; the kernel puts the return value in %eax.

 ret

9/3/19	

33	

Kernel-level system call stub
int KernelStub_Open() {

 char *localCopy[MaxFileNameSize + 1];

// Check that the stack pointer is valid and that the arguments are stored at

// valid addresses.

 if (!validUserAddressRange(userStackPointer, userStackPointer + size of arguments))

 return error_code;

// Fetch pointer to file name from user stack and convert it to a kernel pointer.

 filename = VirtualToKernel(userStackPointer);

// Make a local copy of the filename. This prevents the application

// from changing the name surreptitiously.

// The string copy needs to check each address in the string before use to make sure

// it is valid.

// The string copy terminates after it copies MaxFileNameSize to ensure we

// do not overwrite our internal buffer.

 if (!VirtualToKernelStringCopy(filename, localCopy, MaxFileNameSize))

 return error_code;

// Make sure the local copy of the file name is null terminated.

 localCopy[MaxFileNameSize] = 0;

// Check if the user is permitted to access this file.

 if (!UserFileAccessPermitted(localCopy, current_process)

 return error_code;

// Finally, call the actual routine to open the file. This returns a file

// handle on success, or an error code on failure.

 return Kernel_Open(localCopy);

}

