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CS 422/522  Design & Implementation  
of Operating Systems 

 
Lecture 2:The Kernel Abstraction 

  

Zhong Shao 
Dept. of Computer Science 

 Yale University 

Today’s lecture 

◆  An overview of HW functionality 
–  read the cs323 textbook 

◆  How to bootstrap ?  

◆  An overview of OS structures 
–  OS components and services 
–  how OS interacts with IO devices ?     interrupts 
–  how OS interacts with application program ?    system calls 
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What makes a “computer system” ? 

◆  Hardware  
–  motherboard (cpu, buses, I/O controllers, memory controller, timer); 

memory; hard disk & flash drives, CD&DVDROM; keyboard, 
mouse; monitor & graphics card;  printer, scanner, sound board 
& speakers; modem, networking card; case, power supply.  

–  all connected through buses, cables, and wires 

◆  Software 
–  a bunch of 0/1s; stored on a hard disk or a usb drive or a DVD 

*  operating system (e.g., Linux, Windows, Mac OS) 
*  application programs (e.g., gcc, vi) 

◆  User (it is “you”) 

How a “computer” becomes alive?  

Step 0: connect all HWs together, build the computer 
 
Step 1:  power-on and bootstrap  

assuming that OS is stored on the boot drive  
                              (e.g., USB drive, hard disk, or CDROM) 
 

Step 2:  OS takes over and set up all of its services 
 
Step 3:  start the window manager and the login prompt 
 
Step 4:  user logs in; start the shell; run applications 
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Computer-system architecture (1980) 

Computer-system architecture (Intel Skylake 2015) 

http://images.anandtech.com/doci/9483/Z170%20Platform.jpg?_ga=1.245977734.363736712.1473128269 
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Computer-system architecture (Intel Skylake 2015) 

Intel Z170 Motherboard 
 (Asrock Z170 Extreme6) 
 
http://www.techspot.com/photos/article/1073-intel-z170-motherboard-roundup/#Asrock_02 

Computer-system architecture (Raspberry Pi3) 

http://www.rlocman.ru/i/Image/2016/02/29/RaspberryPi_3_1.jpg 
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An overview of HW functionality 

◆  Executing the machine code (cpu, cache, memory) 
–  instructions for ALU-, branch-,  and memory-operations 
–  instructions  for communicating with I/O devices 

◆  Performing I/Os 
–  I/O devices and the CPU can execute concurrently 
–  Each device controller in charge of one device type 
–  Each device controller has a local buffer 
–  CPU moves data btw. main memory and local buffers 
–  I/O is from the device to local buffer of controller 
–  Device controller uses interrupt to inform CPU that it is done 

◆  Protection hardware 
–  timer, paging HW (e.g. TLB),  mode bit (e.g., kernel/user)  

Today’s lecture 

◆  An overview of HW functionality 
–  read the cs323 textbook 

◆  How to bootstrap ?  

◆  An overview of OS structures 
–  OS components and services 
–  how OS interacts with IO devices ?     interrupts 
–  how OS interacts with application program ?    system calls 
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How to bootstrap? 
Physical
Memory

BIOS

Disk

(1)
BIOS copies
bootloader

Bootloader
instructions

and data

OS kernel
instructions

and data

Login app
instructions

and data

Bootloader

OS kernel

Login app

(2)
Bootloader

copies OS kernel

(3)
OS kernel copies 
login application

◆  Power up a computer 
◆  Processor reset 

–  Set to known state 
–  Jump to ROM code (for 

x86 PC, this is BIOS) 

◆  Load in the boot loader 
from stable storage 

◆  Jump to the boot loader 
◆  Load the rest of the 

operating system 

◆  Initialize and run 

System boot 

◆  Power on (processor waits until Power Good Signal) 

◆  On an Intel PC, processor jumps to address FFFF0h 
(maps to FFFFFFF0h= 232-16) 

–  1M = 1,048,576= 220 =FFFFFh+1  
–  FFFFFh=FFFF0h+15 is the end of the (first 1MB of) system 

memory 
–  The original PC using Intel 8088 (in 1970’s) had 20-bit address 

lines :-) 

◆  (FFFFFFF0h) is a JMP instruction to the BIOS startup 
program 
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BIOS startup (1) 

◆  POST (Power-On Self-Test) 
–  If pass then AX:=0; DH:=5 (Pentium); 
–  Stop booting if fatal errors, and report 

◆  Look for video card and execute built-in BIOS code (normally at 
C000h) 

◆  Look for other devices ROM BIOS code 
–  IDE/ATA disk ROM BIOS at C8000h (=819,200d) 
–  SCSI disks may provide their own BIOS 

◆  Display startup screen 
–  BIOS information 

◆  Execute more tests 
–  memory 
–  system inventory 

BIOS startup (2) 

◆  Look for logical devices 
–  Label them 

*  Serial ports: COM 1, 2, 3, 4 
*  Parallel ports: LPT 1, 2, 3 

–  Assign each an I/O address and IRQ 

◆  Detect and configure PnP devices 
◆  Display configuration information on screen 
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BIOS startup (3) 

◆  Search for a drive to BOOT from 
–  Hard disk or USB drive or CD/DVD 
–  Boot at cylinder 0, head 0, sector 1 

◆  Load code in boot sector 
◆  Execute boot loader 
◆  Boot loader loads program to be booted 

–  If  no OS: "Non-system disk or disk error - Replace and press 
any key when ready" 

◆  Transfer control to loaded program 
–  Which maybe another feature-rich bootloader (e.g., GRUB), 

which then loads the actual OS 
 

Today’s lecture 

◆  An overview of HW functionality 
–  read the cs323 textbook 

◆  How to bootstrap ?  

◆  An overview of OS structures 
–  OS components and services 
–  how OS interacts with IO devices ?     interrupts 
–  how OS interacts with application program ?    system calls 
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Typical Unix OS structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

User level 

Kernel level 
Portable OS Layer 

Typical Unix OS structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

User function calls 
written by programmers and 
compiled by programmers. 
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Typical Unix OS structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  Objects pre-compiled 
•  Defined in headers 
•  Input to linker 
•  Invoked like functions 
•  May be “resolved” 
when program is loaded 
 

Pipeline of creating an executable file 

◆  gcc can compile, assemble, and link together 
◆  Compiler part of gcc compiles a program into assembly 
◆  Assembler compiles assembly code into relocatable object file 
◆  Linker links object files into an executable 
◆  For more information: 

–  Read man page of a.out, elf, ld, and nm 
–  Read the document of ELF 

foo.c gcc as foo.s foo.o 

ld bar.c gcc as bar.s bar.o 

libc.a … 

a.out 
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Execution (run an application) 

◆  On Unix, “loader” does the job 
–  Read an executable file 
–  Layout the code, data, heap and stack 
–  Dynamically link to shared libraries 
–  Prepare for the OS kernel to run the application 

a.out loader *.o, *.a ld Application 

Shared 
library 

What’s an application? 

◆  Four segments 
–  Code/Text – instructions 
–  Data – initialized global 

variables 
–  Stack 
–  Heap 

◆  Why? 
–  Separate code and data 
–  Stack and heap go towards 

each other 
 

Stack 

Heap 

Initialized data 

Code 

2n -1 

0 
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Responsibilities 

◆  Stack 
–  Layout by compiler 
–  Allocate/deallocate by process creation (fork) and termination 
–  Local variables are relative to stack pointer 

◆  Heap 
–  Linker and loader say the starting address 
–  Allocate/deallocate by library calls such as malloc() and free()  
–  Application program use the library calls to manage 

◆  Global data/code 
–  Compiler allocates statically 
–  Compiler emits names and symbolic references 
–  Linker translates references and relocates addresses 
–  Loader finally lays them out in memory 

Typical Unix OS structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer “Guts” of system calls 
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OS service examples 

◆  Examples that are not provided at user level 
–  System calls: file open, close, read and write 
–  Control the CPU so that users won’t stuck by running 

*  while ( 1 ) ; 
–  Protection:  

*  Keep user programs from crashing OS 
*  Keep user programs from crashing each other 

◆  Examples that can be provided at user level 
–  Read time of the day 
–  Protected user level stuff 

Typical Unix OS structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  System initialization 
•  Interrupt and exception  
•  I/O device driver 
•  Memory management 
•  Mode switching 
•  Processor management 
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OS components  

◆  Resource manager for each HW resource 
–  processor management (CPU) 
–  memory management 
–  file system and secondary-storage management 
–  I/O device management (keyboards, mouse, …) 

◆  Additional services: 
–  networking 
–  window manager (GUI) 
–  command-line interpreters (e.g., shell) 
–  resource allocation and accounting 
–  protection 

*  Keep user programs from crashing OS 
*  Keep user programs from crashing each other 

Processor management 

◆  Goals 
–  Overlap between I/O and 

computation 
–  Time sharing 
–  Multiple CPU allocations 

◆  Issues 
–  Do not waste CPU resources 
–  Synchronization and mutual 

exclusion 
–  Fairness and deadlock free 

CPU I/O CPU 

CPU 

I/O 

CPU 

CPU 
I/O 

CPU 

CPU 

CPU 
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Memory management 

◆  Goals 
–  Support programs to run 
–  Allocation and management 
–  Transfers from and to secondary 

storage 
◆  Issues 

–  Efficiency & convenience 
–  Fairness 
–  Protection 

Register: 1x 

L1 cache: 2-4x 

L2 cache: ~10x 

L3 cache: ~50x 

DRAM: ~200-500x 

Disks: ~30M x 

Disks: >1000M x 

I/O device management 

◆  Goals 
–  Interactions between devices 

and applications 
–  Ability to plug in new devices 

◆  Issues 
–  Efficiency 
–  Fairness 
–  Protection and sharing 

User 1 User n . . . 

Library support 

I/O 
device 

I/O 
device . . . 

Driver Driver 
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File system 

◆  A typical file system   
–  open a file with 

authentication 
–  read/write data in files 
–  close a file 

◆  Efficiency and security 

◆  Can the services be 
moved to user level? 

User 1 User n . . . 

File system services 

File File . . . 

Today’s lecture 

◆  An overview of HW functionality 
–  read the cs323 textbook 

◆  How to bootstrap ?  

◆  An overview of OS structures 
–  OS components and services 
–  how OS interacts with IO devices ?     interrupts 
–  how OS interacts with application program ?    system calls 

 



9/3/19	

17	

Device interrupts 

How does an OS kernel communicate with physical devices? 
 

◆  Devices operate asynchronously from the CPU 
–  Polling: Kernel waits until I/O is done 
–  Interrupts: Kernel can do other work in the meantime 

◆  Device access to memory 
–  Programmed I/O: CPU reads and writes to device 
–  Direct memory access (DMA) by device 

◆  How do device interrupts work? 
–  Where does the CPU run after an interrupt? 
–  What is the interrupt handler written in? 
–  What stack does it use? 
–  Is the work the CPU had been doing before the interrupt lost?   
–  If not, how does the CPU know how to resume that work 

Challenge: protection 

◆  How do we execute code with restricted privileges? 
–  Either because the code is buggy or if it might be malicious 

◆  Some examples: 
–  A user program running on top of an OS 
–  A third party device driver running within an OS 
–  A script running in a web browser 
–  A program you just downloaded off the Internet 
–  A program you just wrote that you haven’t tested yet 
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A problem 

Edits Compiler
Source
Code

Executable
Image:

Instructions
and Data

Machine
Instructions

Machine
Instructions

Operating
System Copy

Process

Operating 
System 
Kernel

Physical
Memory

Heap

Stack

Data

Heap

Stack

Data

Main points 

◆  Process concept 
–  A process is the OS abstraction for executing a program with 

limited privileges 

◆  Dual-mode operation: user vs. kernel 
–  Kernel-mode: execute with complete privileges 
–  User-mode: execute with fewer privileges 

◆  Safe control transfer 
–  How do we switch from one mode to the other? 
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Process abstraction 

◆  Process: an instance of a program, running with limited 
rights 

–  Thread: a sequence of instructions within a process 
*  Potentially many threads per process 

–  Address space: set of rights of a process 
*  Memory that the process can access 
*  Other permissions the process has (e.g., which system calls it can 

make, what files it can access) 

Thought experiment 

◆  How can we implement execution with limited 
privilege? 
–  Execute each program instruction in a simulator 
–  If the instruction is permitted, do the instruction 
–  Otherwise, stop the process 
–  Basic model in Javascript and other interpreted languages 

◆  How do we go faster? 
–  Run the unprivileged code directly on the CPU! 
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Hardware support: dual-mode operation 

◆  Kernel mode 
–  Execution with the full privileges of the hardware 
–  Read/write to any memory, access any I/O device, read/write 

any disk sector, send/read any packet 

◆  User mode 
–  Limited privileges 
–  Only those granted by the operating system kernel 

◆  On the x86, mode stored in EFLAGS register 
◆  On the MIPS, mode in the status register 

A model of a CPU 

New PC Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

Branch Address
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A CPU with dual-mode operation 

New PC
Handler PC

Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

New Mode
Mode

Select
Mode

Branch Address

Hardware support: dual-mode operation 

◆  Privileged instructions 
–  Available to kernel 
–  Not available to user code 

◆  Limits on memory accesses 
–  To prevent user code from overwriting the kernel 

◆  Timer 
–  To regain control from a user program in a loop 

◆  Safe way to switch from user mode to kernel mode, 
and vice versa 
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Privileged instruction examples 

◆  Memory address mapping 
◆  Cache flush or invalidation 
◆  Invalidating TLB entries 
◆  Loading and reading system registers 
◆  Changing processor modes from kernel to user 
◆  Changing the voltage and frequency of processor 
◆  Halting a processor 
◆  I/O operations 

What should happen if a user program 
attempts to execute a privileged instruction? 

 

Virtual addresses 

◆  Translation done 
in hardware, using 
a table 

◆  Table set up by 
operating system 
kernel 

Physical
Memory

Virtual Addresses
(Process Layout)

Stack

Heap

Data

Code

Heap

Data

Code

Stack
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Hardware timer 

◆  Hardware device that periodically interrupts the 
processor 
–  Returns control to the kernel handler 
–  Interrupt frequency set by the kernel 

*  Not by user code! 

–  Interrupts can be temporarily deferred  
*  Not by user code! 
*  Interrupt deferral crucial for implementing mutual exclusion 

 
“User ⇔ Kernel” model switch   

User mode 
Ø Regular instructions 
Ø Access user-mode memory 

Kernel (privileged) mode 
Ø All instructions 
Ø Access all memory 

An interrupt or exception or system call (INT) 

A special instruction (IRET) 
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Mode switch 

◆  From user mode to kernel mode 
–  System calls (aka protected procedure call) 

*  Request by program for kernel to do some operation on its behalf 

*  Only limited # of very carefully coded entry points 

–  Interrupts 
*  Triggered by timer and I/O devices 

–  Exceptions 
*  Triggered by unexpected program behavior 

*  Or malicious behavior! 

System calls 

 
Kernel in 

protected memory 

entry 

◆  User code can be arbitrary 

◆  User code cannot modify 
kernel memory 

◆  Makes a system call with 
parameters 

◆  The call mechanism 
switches code to kernel 
mode 

◆  Execute system call 

◆  Return with results 

User 
program 

User 
program 

return 

They are like “local” remote procedure calls (RPCs) 
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Interrupts and exceptions 

◆  Interrupt sources 
–  Hardware (by external devices) 
–  Software: INT n 

◆  Exceptions 
–  Program error: faults, traps, and aborts 
–  Software generated: INT 3 
–  Machine-check exceptions 

◆  See Intel document volume 3 for details 

Interrupt and exceptions (1) 

Vector # Mnemonic Description Type 

0 #DE Divide error (by zero) Fault 

1 #DB Debug Fault/trap 

2 NMI interrupt Interrupt 

3 #BP Breakpoint Trap 

4 #OF Overflow Trap 

5 #BR BOUND range exceeded Trap 

6 #UD Invalid opcode Fault 

7 #NM Device not available Fault 

8 #DF Double fault Abort 

9 Coprocessor segment overrun Fault 

10 #TS Invalid TSS 
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Interrupt and exceptions (2) 

Vector # Mnemonic Description Type 

11 #NP Segment not present Fault 

12 #SS Stack-segment fault Fault 

13 #GP General protection Fault 

14 #PF Page fault Fault 

15 Reserved Fault 

16 #MF Floating-point error (math fault) Fault 

17 #AC Alignment check Fault 

18 #MC Machine check Abort 

19-31 Reserved 

32-255 User defined Interrupt 

How to take interrupt & syscall safely? 

◆  Interrupt & trap & syscall vector 
–  Limited number of entry points into kernel 

◆  Atomic transfer of control 
–  Single instruction to change:  

*  Program counter 
*  Stack pointer 
*  Memory protection 
*  Kernel/user mode 

◆  Transparent restartable execution 
–  For HW interrupts: user program does not know interrupt 

occurred 
–  For system calls: it is just like return from a function call 
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Interrupt & trap & syscall vector 

◆  Table set up by OS kernel; pointers to code to run on 
different events 

Interrupt
Vector Table

Processor
Register

h a n d l e T i m e r I n t e r r u p t ( )  {
 . . .
}

h a n d l e D i v i d e B y Z e r o ( )  {
 . . .
}

h a n d l e S y s t e m C a l l ( )  {
 . . .
}

Interrupt & trap & syscall vector (cont’d)  

HW Device 
Interrupt 

HW exceptions 

SW exceptions 

System Call 

Virtual address 
exceptions 

HW implementation of  the boundary 

System 
service 
dispatcher 

System 
services 

Interrupt 
service 
routines 

Exception 
dispatcher Exception 

handlers 

VM manager’s 
pager 

Syscall table 

System 
Service 
dispatcher 
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Interrupt stack 
Per-processor, located in kernel memory. Why can’t the interrupt 
handler run on the stack of the interrupted user process? 

User Stack

Kernel Stack

Proc2

Running

Proc1

Main

Proc2

Ready to Run

Proc1

Main

User CPU 
State

User CPU 
State

Syscall
Handler

I/O Driver
Top Half

Proc2

Syscall

Waiting for I/O

Proc1

Main

Interrupt handler & interrupt masking 
 

◆  Interrupt handler often non-blocking (with interrupts off), 
run to completion (then re-enable interrupts) 
–  Minimum necessary to allow device to take next interrupt 
–  Any waiting must be limited duration 
–  Wake up other threads to do any real work 

*  Linux: semaphore 

◆  Rest of device driver runs as a kernel thread 

◆  Interrupt masking: OS kernel can also turn interrupts off 
–  Eg., when determining the next process/thread to run 
–  On x86 

*  CLI: disable interrrupts 
*  STI: enable interrupts 
*  Only applies to the current CPU (on a multicore) 



9/3/19	

29	

Case study: x86 interrupt & syscall 

◆  Save current stack pointer 
◆  Save current program counter 
◆  Save current processor status word (condition codes) 
◆  Switch to kernel stack; put SP, PC, PSW on stack 
◆  Switch to kernel mode 
◆  Vector through interrupt table 
◆  Interrupt handler saves registers it might clobber 

Before interrupt 

EFLAGS

CS: EIP

SS: ESPf o o  ( )  {
   w h i l e ( . . . )  {
     x  =  x + 1 ;
     y  =  y - 2 ;
   }
}  

User-level Process

Other Registers:
EAX, EBX,

Registers Kernel

h a n d l e r ( )  {
    p u s h a d
    . . .
}  

User Stack
Interrupt

Stack
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During interrupt 

EFLAGS

CS: EIP

SS: ESPf o o  ( )  {
   w h i l e ( . . . )  {
     x  =  x + 1 ;
     y  =  y - 2 ;
   }
}  

User-level Process

other registers:
EAX, EBX,

Registers Kernel

h a n d l e r ( )  {
    p u s h a d
    . . .
}  

User Stack
Interrupt

Stack

Error

EIP

CS

EFLAGS

ESP

SS

After interrupt 

EFLAGS

CS: EIP

SS: ESPf o o  ( )  {
   w h i l e ( . . . )  {
     x  =  x + 1 ;
     y  =  y - 2 ;
   }
}  

User-level Process

other registers:
EAX, EBX,

Registers Kernel

h a n d l e r ( )  {
    p u s h a d
    . . .
}  

Stack

All
Registers

Interrupt
Stack

Error

EBX
EAX
ESP
SS

EIP

CS

EFLAGS

ESP

SS
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At end of handler 

◆  Handler restores saved registers 

◆  Atomically return to interrupted process/thread 
–  Restore program counter 
–  Restore program stack 
–  Restore processor status word/condition codes 
–  Switch to user mode 

Kernel system call handler 

◆  Locate arguments 
–  In registers or on user stack 
–  Translate user addresses into kernel addresses 

◆  Copy arguments 
–  From user memory into kernel memory 
–  Protect kernel from malicious code evading checks 

◆  Validate arguments 
–  Protect kernel from errors in user code 

◆  Copy results back into user memory  
–  Translate kernel addresses into user addresses 
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System call stubs 

User Program Kernel

m a i n  ( )  {
   f i l e _ o p e n ( a r g 1 ,  a r g 2 ) ;
}  

f i l e _ o p e n ( a r g 1 ,  a r g 2 )  {
     // do operation
}  

User Stub

f i l e _ o p e n ( a r g 1 ,  a r g 2 )  {
   p u s h  # S Y S C A L L _ O P E N
   t r a p
   r e t u r n
}  

f i l e _ o p e n _ h a n d l e r ( )  {
   // copy arguments
   //   from user memory
   //   check arguments
   f i l e _ o p e n ( a r g 1 ,  a r g 2 ) ;
   // copy return value
   //   into user memory
   r e t u r n ;
}

Kernel Stub
Hardware Trap

Trap Return

(2)

(5)

(1) (6) (3) (4)

User-level system call stub 

// We assume that the caller put the filename onto the stack,

// using the standard calling convention for the x86.

open: 

// Put the code for the system call we want into %eax.  

    movl #SysCallOpen, %eax 

// Trap into the kernel. 

    int #TrapCode 

// Return to the caller; the kernel puts the return value in %eax.

    ret        
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Kernel-level system call stub 
int KernelStub_Open() {

    char *localCopy[MaxFileNameSize + 1];

// Check that the stack pointer is valid and that the arguments are stored at

// valid addresses.

    if (!validUserAddressRange(userStackPointer, userStackPointer + size of arguments))

        return error_code;

// Fetch pointer to file name from user stack and convert it to a kernel pointer.

    filename = VirtualToKernel(userStackPointer); 

 

// Make a local copy of the filename.  This prevents the application 

// from changing the name surreptitiously.

// The string copy needs to check each address in the string before use to make sure 

// it is valid.

// The string copy terminates after it copies MaxFileNameSize to ensure we 

// do not overwrite our internal buffer.

    if (!VirtualToKernelStringCopy(filename, localCopy, MaxFileNameSize))

        return error_code;  

// Make sure the local copy of the file name is null terminated.

    localCopy[MaxFileNameSize] = 0;

// Check if the user is permitted to access this file.

    if (!UserFileAccessPermitted(localCopy, current_process) 

        return error_code;

// Finally, call the actual routine to open the file.  This returns a file 

// handle on success, or an error code on failure.

    return Kernel_Open(localCopy);

}


