
Verifying the EROS Confinement Mechanism�

Jonathan S. Shapiro Sam Weber

IBM T.J. Watson Research Center
shapj,samweber@us.ibm.com

Abstract

Capability systems can be used to imple-
ment higher-level security policies including the
*-property if a mechanism exists to ensure confine-
ment. The implementation can be efficient if the “weak”
access restriction described in this paper is introduced.
In the course of developing EROS, a pure capability
system, it became clear that verifying the correctness of the
confinement mechanism was necessary in establishing the
security of the operating system.

This paper presents a verification of the EROS confine-
ment mechanism with respect to a broad class of capability
architectures (including EROS). We give a formal statement
of the requirements, construct a model of the architecture’s
security policy and operational semantics, and show that
architectures covered by this model enforce the confinement
requirements if a small number of initial static checks on
the confined subsystem are satisfied. The method used gen-
eralizes to any capability system.

Keywords: operating systems, capability systems, proof of
correctness, confinement, verification, formal specification.

1. Introduction

EROS [20] is a pure capability system that provides a
mechanism for creating and instantiating confined subsys-
tems: the constructor. This mechanism is part of the sys-
tem’s trusted computing base. EROS is a clean-room reim-
plementation of the KeyKOS architecture [2, 6] (originally
called GNOSIS [3]). It builds on the KeySafe [14] design
as the basis for mandatory security policy enforcement. The
security enforcement provided by KeySafe is predicated on
the correctness of the constructor.

� This work is a continuation of work started at the University of Penn-
sylvania. Portions of this were supported by DARPA under Contracts
#N66001-96-C-852, #MDA972-95-1-0013, and #DABT63-95-C-0073.
Additional support was provided by the AT&T Foundation, and the
Hewlett-Packard and Intel Corporations.

Boebert [1] and Karger [9] have argued that unmodi-
fied capability systems cannot enforce even basic manda-
tory access controls such as the *-property. Both have pro-
posed solutions in the form of hybrid protection architec-
tures. Karger has also argued that unmodified capability
systems cannot enforce confinement [8]. Given that EROS
is a pure capability system, and that its security design rests
on its ability to enforce confinement, a rigorous verification
of the EROS confinement mechanism is necessary.

As described by Lampson [10], the confinement prob-
lem is to establish a runtime compartment satisfying two
requirements. First, entities inside the compartment may
transmit information to entities outside the compartment
only via authorized channels of communication. Mutations
inside the compartment therefore may not be observed out-
side the compartment unless explicitly authorized by the
client. Second, entities outside the compartment may not in-
spect entities inside the compartment without their consent.
We define a confinement policy that ensures these require-
ments by testing whether a set of initial static preconditions
is satisfied:

1. All capabilities initially held by the confined subsys-
tem either (a) convey no mutate authority, (b) are au-
thorized channels, or (c) are capabilities to construc-
tor that (recursively) instantiate confined subsystems.
Since no unauthorized mutations are possible, no ex-
ternal observations of unauthorized mutations are pos-
sible.

2. No entity outside the confinement boundary holds read
authority to any entity within the newly instantiated
confined subsystem.

We will show that this policy can be enforced in capability
systems, and can be enforced efficiently if a new primitive
access right is introduced.

This paper does not address the issue of covert channel
suppression. While important, reducing such channels is
largely orthogonal to restricting explicit information flow,
and is of interest only when it has first been shown that
overt channels have been closed. Similarly, this paper does

0-7695-0665-8/00 $10.00 � 2000 IEEE

not consider issues such as off line data forensics or mod-
ification of the store by a party with physical access to the
machine.

KeySafe enforces mandatory security policies across
confined compartments. Communication between compart-
ments is mediated by a user-level reference monitor, which
relies on knowledge of the semantics of the “primitive” ob-
jects to decide what operations and authority transfers are
authorized. To allow later revocation, the reference monitor
inserts transparent forwarding objects in front of all capa-
bilities that are allowed to pass from one compartment to
another. Implementing the reference monitor outside the
kernel allows policies to be updated as new primitive object
types are introduced, and facilitates adaptation of manda-
tory policies to the needs of particular applications.

In this paper we show that the confinement test used by
the EROS constructor mechanism is correct. That is, we
model a broad class of capability systems, and show that
given a correct implementation of any capability system sat-
isfying our model, the checks performed by the constructor
certify that the newly instantiated service is properly sand-
boxed, and that (unless permitted by the service) the client
cannot inspect the service. To verify that EROS can enforce
confinement, we have developed a formal statement of re-
quirements and a simplified model, SW, that is both strictly
more powerful and more general than the EROS architec-
ture. SW treats the OS-provided primitive operations as a
serializably concurrent language whose operations are the
kernel calls. We have modeled EROS’s security policy, ac-
cess control mechanisms, and operational semantics, and
have shown that the EROS semantics satisfies the require-
ments of confinement.

The balance of this paper proceeds as follows. Sec-
tion 2 presents a brief summary of EROS and the construc-
tor mechanism, and provides an informal intuition for why
the constructor mechanism results in confinement. Having
described the architecture and mechanism, we describe and
justify key parts of our modeling and proof methodology
(Section 3). Section 4 presents the model itself, the formal
statement of requirements, and the key pieces of the correct-
ness proof (an unabridged proof may be found in [18, 21]).
Some related work is discussed in Section 5. Finally, we
discuss the implications of this work and its effect on the
original system architecture and design.

2. EROS and the Constructor

EROS [20] is a pure capability system. The architec-
ture incorporates what has come to be the conventional non-
buffering interprocess communication primitives [12, 19],
with a novel twist providing for “at most one” reply. Meta-
data such as mapping structures that are typically consid-
ered part of the operating system are exported by EROS

via capability-controlled structures. Both address transla-
tion and process state structures are stored in nodes (the
EROS term for c-lists). Data and capabilities are partitioned
to prevent forgery.

For purposes of verification, the essential EROS re-
source types are processes, data pages, capability pages, and
nodes.1 A process names an address space and executes the
program in that address space in the usual way. Load and
store operations require that data go to data pages and capa-
bilities to capability pages and nodes. Address spaces are
constructed as a tree of nodes whose leaves are data pages.
A complete process showing all resource types is shown in
Figure 1.

Node

Node

Capability
Page

Null
Capability

Node
Capability

0 15

Process

0 15

0 15

nodenode

PagePages

node

Figure 1. An EROS process

The EROS object and protection model are extended to
secondary storage by transparent persistence [11]. This en-
sures that the security model does not change at the sec-
ondary storage boundary. Periodically, the system performs
an efficient checkpoint operation, recording the state of
all objects changed since the last snapshot, including pro-
cesses. There is no kernel-implemented file system; if file-
like behavior is required by an application, a process is con-
structed that implements file behavior.

2.1. The Weak Attribute

While a read-only capability prevents modifications to
the resource it designates, it permits the holder to fetch any
read-write capabilities that may reside in that resource. The

1 In the interest of brevity, we have omitted from this paper several capa-
bilities and attributes whose semantics are a subset of some other object
we have included. We have also omitted explicit consideration of device
drivers (which are presumed to be holes) and certain capabilities such as
“number capabilities” that convey no authority. Details of these can be
found in [17, 18, 21].

0-7695-0665-8/00 $10.00 � 2000 IEEE

weak attribute enforces transitively read-only access. If an
invocation on a capability, such as the “fetch” operation on
a node capability, would return some other capability, and
the invoked capability is weak, then returned capabilities
are first reduced in authority by marking them read-only
and weak. The read-only restriction ensures that the imme-
diate object cannot be modified. The weak restriction en-
sures that read-only semantics will be enforced transitively
through subsequent capability fetches. The weak attribute
is a generalization of the KeyKOS [6] sense capability.

2.2. Constructors

The constructor is a trusted EROS application that
builds new program (or subsystem) instances and certifies
whether these instances are confined. The developer (or
installer) of an application obtains a constructor that ini-
tially holds no capabilities, and installs those capabilities
that an instance of the application should hold when it is
first started. As each capability is added to the constructor,
the constructor examines it to see if it conveys any authority
to mutate objects. A capability is “safe” if:

� It trivially conveys no mutate authority, or

� It is a read-only, weak capability, or

� It is a capability to a constructor that (recursively) gen-
erates confined products.

If the capability is not safe, the constructor records it in a
set of known holes. When all desired capabilities have been
installed, the builder then “freezes” the constructor, after
which it will accept no further capabilities. Once frozen,
all holes are known to the constructor, and the constructor
can therefore determine whether the program instances it
creates are confined.

When a client wishes to create a new instance of a sub-
system, such as a file or a sort utility, it presents a set of au-
thorized capabilities to the constructor and asks if the con-
structor output (the “yield”) is confined modulo those capa-
bilities. If holes � authorized, the product is confined.
The intuition is this: there is no way to cause damage via
safe capabilities, and the user has authorized all of the oth-
ers. Because capabilities to safe constructors are safe, the
constructor mechanism permits relatively complex subsys-
tems to be built behind a confinement boundary.

Weak capabilities allow a capability pointing to a com-
plex structure to be added safely without requiring that the
structure be traversed. Safety might also be accomplished
using a “deep copy” of the structure, but the weak access re-
striction makes the copy unnecessary, and thereby allows a
dominating compartment to be granted weak access to con-
tent in a lesser compartment without the need for further
mediation. It also allows multiple readers to have consistent
read-only access to a data structure that is being updated.

3. Verification Requirements and Modeling
Method

To verify the constructor mechanism, we must construct
SW, a model of the EROS system, specify the requirements
of confinement in terms independent of both the access con-
trol model and the operational semantics, and describe the
access control model. Finally, we must show that the sys-
tem’s security policies implement its requirements.

System Model Because EROS is persistent, a natural
level of analysis is to examine operations on nodes and
pages. The only additional state saved by the EROS check-
point mechanism is the list of currently running processes
at the time of the checkpoint. All operations performed by
the kernel consist of modifications to nodes and pages.

SW may safely deviate from the actual system provided
that SW is at least as powerful as EROS. Any behavior that
could occur in EROS must be possible in SW. If this is so,
and if no information can flow out of a confined subsystem
in SW, then the same will hold true in EROS. For modeling
purposes, we have made several departures from the actual
system:

1. The model uses permissions rather than restrictions.
This is merely a switch from subtractive to additive
logic. While the model is richer than the system, every
capability permission existing in the real system can
be captured using the permissions of the model.

2. In the model, no distinction is made between nodes,
pages, and processes. Note that processes are strictly
more powerful than either nodes or pages, and that SW
is therefore more powerful than EROS as a result of
this simplification.

3. The real system uses objects of bounded size. The
model uses sets, both to avoid dependency on any par-
ticular object size and to generalize the model to cover
similar systems.

4. EROS keeps capabilities and data in objects of distinct
type. SW allows objects to contain both, but the op-
erational semantics has no operations that allow them
to be interconverted. One may imagine the model ob-
jects to consist of a data part and a capability part. The
EROS system represents the subcase in which either
the data or the capability part of each object is required
to be empty.

5. EROS has process states, three invocation operations,
and a special capability type supporting return-once
semantics. In this paper, we have simplified this to
a single, more general invocation type and omitted the

0-7695-0665-8/00 $10.00 � 2000 IEEE

special capability type. Earlier versions of the opera-
tional semantics and proof have included both [18, 21].
Their omission here is for brevity and clarity.

6. Reading a page in EROS produces the value that was
last written. SW does not keep track of the contents of
pages. Ignoring page state results in a more powerful
model: processes are maximally hostile. Finally, we
demonstrate that the security of EROS does not rely
upon values computed by applications.

7. The EROS storage allocator is implemented by trusted
user-level software. In SW, its behavior is represented
by the create() and destroy() operations. A compli-
cation potentially arises from the fact that the real sys-
tem reallocates objects. When an object is destroyed,
the allocator reinitializes the object and invalidates all
capabilities to that object by incrementing its version
number. Since there is a finite bound on version num-
bers, and each version is allocated at most once, we
consider each version of an EROS object to be a dis-
tinct SW object for modeling purposes.

8. Real applications obey sequential programs, and their
behavior is highly predictable. SW instead assumes
that the behavior of a program is completely nondeter-
ministic. If it is possible for a program to perform a
particular operation, SW assumes that it does so. This
means that the verification’s correctness does not rely
on peculiarities of instruction sequencing.

Each of these changes makes SW more powerful than
EROS.

Requirements Statement A confined process should
not be able to affect any non-authorized entities outside
the confinement boundary. Given an execution ~e and a
set of confined entities E we want to define a function
mutatedE(~e) whose value is the set of entities in the sys-
tem (confined or otherwise) that were affected by E in the
execution. By doing so, we state what the communication
channels of the system are. Themutated relation is transi-
tive. Suppose a process pmodifies a resource x, and another
process q subsequently reads x. In this sequence of events, p
has mutated q, even though the two processes never directly
communicated. Our definition of mutated takes this form
of indirect communication into account.

Similarly, we define the function readE(~e) to be the set
of entities in the system (confined or otherwise) that E read
(directly or indirectly) in the course of the execution. This
definition includes both entities read directly via an oper-
ation such as a load, and also entities whose value is “ob-
served” during the course of the computation.

Access Control While the confinement problem require-
ments are stated in terms of the execution of the system,
it is desirable for the corresponding security policy to be

verifiable based on a modest set of initial conditions. This
eliminates the need to dynamically interpret the actions of
the confined subsystem. By looking only at a small portion
of the current system state, the constructor must be able to
judge the confinement of its products.

The function mutableS(E) takes a single state S and
from that computes the set of all the entities that might in the
future be mutated by the entities E. Although this function
is not actually computed by the operating system (for obvi-
ous efficiency reasons), it is the basis for the access checks
performed by the operational semantics. The check per-
formed by the constructor therefore provides a conservative
verification of the requirements.

Proof of Correctness To show that the system’s security
policies implement its requirements, we must show that if ~e
is an execution of the system whose initial state is S0, and
if E is any set of resources, then

mutatedE(~e) �mutableS0(E)

In other words, if some entity was mutated in an execution,
then the security policy must have said that it was originally
mutable. This statement relies upon properties of both the
operational semantics, and the security policy. One of the
aims of this work is to state these properties in such a way
as to be applicable to other situations.

4. EROS Verification

SW is a structured operational semantics whose judg-
ments are of the form

S0
�
�!S1

with the intended meaning “When the system was in state
S0, action/kernel call � occurred, which resulted in state
S1.” There is no strong distinction in SW between processes
and objects; a process is simply an object that initiates an
action. The term “process” is used solely as a descriptive
convenience to distinguish actor from actee.

4.1. Semantic Entities of SW

Figure 2 gives the basic semantic entities of SW. The
system resources consist of objects. If c is a capability,
target(c) is the resource that capability refers to, and
rights(c) is that capability’s access rights. Access rights
are represented as a subset of R = fwk; rd;wr; execg.
The rd, wr and exec rights correspond to the conven-
tional read, write, and execute permissions. The effect of
wk permission is to ensure transitive read-only access as
described in Section 2.2. Use of permissions rather than
restrictions departs from EROS, but we have found that it
makes the model easier to understand and work with. The

0-7695-0665-8/00 $10.00 � 2000 IEEE

Universal Sets

Object the set of objects
Caps set of capabilities
R set of access rights
S set of system states
A set of Object� operations

Capability Types

ObCap the set of object capabilities

Utility Functions

target(�) Caps! Object

rights(�) Caps! 2R

actor(�) A ! Object

Figure 2. Semantic entities

System state: S = (Sexist; Scaps; Sdead) 2 S

Sexist � Object the set of live objects

Scaps : Object! 2Caps the map between objects
and sets of capabilities

Sdead � Object the set of all objects which
have been destroyed

Sanity conditions:

1. Sexist and Sdead are disjoint
2. c 2

S
o2Object S

caps(o) =) target(c) 2 Sexist

Figure 3. System state

function actor(�) associates a unique process with each ac-
tion. We use ObCap as a constructor: if o 2 Object,
then ObCap(o; fwkg) is the unique weak capability that
refers to o.

The definition of SW state is shown in Figure 3. The
sanity conditions ensure that we do not have to deal with
nonsensical capabilities. The set of dead objects exists so
that we can ensure that newly created objects are distinct
from any that have been destroyed. We treat processes as
completely non-deterministic, able to invoke any capabili-
ties that they have in their possession.

The set of possible actions in the model are enumerated
in Figure 4. We assume that each action is an operation
performed by some process. The restrictions on the actions
indicate the required access rights to perform the operation.

4.2. Operational Semantics

We define the transition relation
�
�!: S � A ! S as

follows:

S
�
�!S0

where the state transformation performed by each action �

is given in Figure 4. The data read and write operations
do not affect the state at all. Since these operations only
affect pages, and the system state is only kernel data, this
is correct. Note that the fact of a read or write operation is
observable – the requirements statement will insist upon the
proper security behavior.

The function restrict(c; r) returns a copy of the capa-
bility c in which all access rights in r have been removed
from rights(c).

restrict(c; r) = ObCap(target(c); rights(c) \ r)

The function erase(m; e) removes all elements of e

from the mapping m. It is used in the definition when all
outstanding capabilities to an entity must be destroyed.

Lemma 1:
The transition relation

�
�!is well-defined. That is, if S

�
�!

S0, then S 0 is a state.

This lemma is proven by straightforward case analysis.

4.3. Security Requirements

To state the EROS security requirements we must be
able to determine the set of entities that a given subsys-
tem has mutated during the course of an execution. Sim-
ilarly, we have to define the entities a subsystem has read
from. As discussed in the requirements statement, we de-
fine a function mutated(�) with the intended meaning
that if ~e = S0

�1�!S1
�2�! : : : Sn is an execution, and

E � Object, then mutatedE(~e) is the set of entities
that have been affected by the entities E in the execution
(Figure 6). We use the expected auxiliary definitions for
wroteto(�) and readfrom(�) which for each action indi-
cate which resources the executing process could have af-
fected or been affected by, respectively. The notion of a
subsystem having read the values of other resources can be
considered the inverse of mutation: instead of information
flowing out from the subsystem in question, it is flowing in-
ward. Therefore, we define the read function in terms of
mutated: if x mutated y, then y must have read from x.

4.4. Correctness of Access Control

The EROS system uses capabilities as its primitive pro-
tection mechanism. The access restrictions of these capabil-

0-7695-0665-8/00 $10.00 � 2000 IEEE

Action Type Restrictions Description
read(p; c0) fwk; rdg \ rights(c0) 6= ; read data from an object
write(p; c0) wr 2 rights(c0) write data to an object
fetc h(p; c0; c1) fwk; rdg \ rights(c0) 6= ;;

c1 2 Scaps(target(c0))
fetch capability from an object

store(p; c0; c1) wr 2 rights(c0); c1 2 Scaps(p) store capability to object
remove(p; c0; c1) wr 2 rights(c0);

c1 2 Scaps(target(c0))
remove capability from object

invoke(p; c0; a) exec 2 rights(c0) invoke a process
create(p; a) a � Scaps(p) create new object with capabilities a
destroy(p; c0) wr 2 rights(c0) object destruction

In all cases, p 2 Sexist, c0 2 Scaps(p), a � Scaps(p).

� semantics

read(p; c0) ��
write(p; c0) ��
fetc h(p; c0; c1) if rd 2 rights(c0) then

S0
caps(p) = Scaps(p) [fc1g

else if wk 2 rights(c0) then
S0

caps
(p) = Scaps(p) [frestrict(c1; fwkg)g

end
store(p; c0; c1) S0

caps
= Scaps[target(c0) ! Scaps(target(c0)) [fc1g]

remove(p; c0; c1) S0
caps

= Scaps[target(c0) ! Scaps(target(c0))� fc1g]
invoke(p; c0; a) let p0 = target(c0) in

S0
caps

= Scaps[p0 ! Scaps(p0) [a [ObCap(target(c0); fexecg)]
create(p; a) let o0 2 Object� Sexist � Sdead in

S0
exist

= Sexist [fo0g
S0

caps
= Scaps[o0 ! a][p! Scaps(p) [fObCap(o0;R)g]

destroy(p; c0) let C =
[
r22R

ObCap(target(c0); r) in

S0
exist

= Sexist � ftarget(c0)g

S0
dead

= Sdead [ftarget(c0)g
S0

caps
= erase(Scaps; C)

All components of S 0 are assumed to be the same as in S unless stated otherwise.

Figure 4. Operational Semantics of SW

� readfrom(�) wroteto(�) � readfrom(�) wroteto(�)

read(p; c0) fp; target(c0)g fpg remove(p; c0; c1) fpg ftarget(c0)g
write(p; c0) fpg ftarget(c0)g in v ok e(p; c0; a) fpg ftarget(c0)g
fetc h(p; c0; c1) fp; target(c0)g fpg create(p; a) fpg fpg
store(p; c0; c1) fpg ftarget(c0)g destroy(p; c0) fpg fpg

Figure 5. Definitions of readfrom(�) and wroteto(�)

0-7695-0665-8/00 $10.00 � 2000 IEEE

If ~e= S0
�1�!: : : Sn is an execution, E � S0

existed, and
~ei = S0

�1�!: : : Si are subexecutions, then

mutatedE(S0) = E

mutatedE(~e1) = E

[

(
actor(�1) if E \ readfrom(�1) 6= ;

; otherwise

[

(
wroteto(�1) if actor(�1) 2 E

; otherwise
mutatedE(~ei) =

mutatedm utatedE(~ei�1)(Si�1
�i�!Si) i > 1

readE(~e) =
fxjmutatedfxg(~e) \ E 6= ;g

Where readfrom(�) is defined as in Figure 5.

Figure 6. Themutated(�) and read(�) relations

ities determine what actions are directly possible between
system resources at run time. To avoid the need for addi-
tional run-time interpretation, it is desirable to state secu-
rity policies in terms of information flow expectations that
can be statically expressed. The assumed correspondence
between the expected information flow and the run time ex-
ecution of the model must be verified. In this section we
formalize some notions about access rights, so that later we
can verify:

� that these mechanisms correspond to the actual behav-
ior of the system, and

� that the algorithms used by the system services are
correct with respect to the access control mechanism,
in that they enforce our confinement policy.

We are particularly interested in deriving meaningful, con-
servative approximations of the set of entities that a given
subsystem might be able to mutate, and the set of entities
that the subsystem might gain information about. Formally,
if S 2 S, and E � Object, the intended meaning of
mutableS(E) (resp. readableS(E)) is the set of enti-
ties that E directly or indirectly mutates (resp. reads) from
some execution beginning with state S. Note that the mu-
table and readable functions are parameterized by a single
state – the operating system has to be able to make these
judgments based only on the current system state, unlike
the requirements which can state what happens during an
entire execution.

The weak access right, while essential to the architec-
ture, introduces significant complication. Intuitively, one
can draw a directed, labeled graph showing the relationship
between all the resources in the system. Since all interac-
tions between resources occur via capabilities, and capa-

Let R? be the cpo where ? = ;;> = R;R? = 2R and �
is defined by

x � y =) x � y 8x; y 2 R

Figure 7. The complete partial order of at-
tributes

bilities cannot be forged, a graph traversal can be done to
compute whether any given resources can affect each other.
This is similar to a transitive closure, with the following
added complexities:

� The resource relationships are restricted by capability
access rights.

� Weak capabilities modify the rights of the capabilities
that are fetched through them.

� Some capabilities result in two-way interactions be-
tween resources, while others are one-way.

We represent the relationship between two resources as
an element in a complete partial order (Figure 7). If A �
R?, let the least upper bound of A, lub(A), be defined in
the usual manner.

The access relationship from x1 to x2 is the least up-
per bound of the attributes of the capabilities that x1 might
be able to obtain to x2. This relationship is not symmet-
ric. This representation relies on the fact that if c0 and c1
are capabilities that are identical except for possibly having
different attributes, then rights(c0) � rights(c1) means
that any operation that can be performed using c0 can also
be done using c1.

We first define the direct access relation between re-
sources, which describes the relationship between resources
in a particular state. Using this, we define the potential ac-
cess relation which defines the relationships that might exist
in the future.

If S 2 S, then we define DirAccS : Object �
Object! R? by

DirAccS(x; y) = lub(faj(x; y; a) 2 DASetg)

where
DASet = f (o; target(c); rights(c))

j o 2 Object; c 2 Scaps(o)g
[f (target(c); o;>)

j o 2 Object; c 2 Scaps(o);
exec 2 rights(c)g

One detail of the definition of DirAccS deserves em-
phasis. If o 2 Object has a capability c, then o is clearly
related to target(c). However, if c conveys exec rights,
this relationship is symmetric: target(c) is also related to
o. The intuition behind this is that interprocess communi-
cation may authorize a reply. In our operational semantics,

0-7695-0665-8/00 $10.00 � 2000 IEEE

a reply capability is explicitly synthesized by the in voke()
operation.

We construct P otAccS by using every capability indi-
cated in DirAccS to fetch every possible capability from
DirAccS , obtaining a new, stronger relationship, and then
repeating:

If S 2 S, then the potential access relation,P otAccS is
the limit of the series T0; T1; T2; : : : where

T0 = DirAccS

8x; y Ti+1(x; y) = lub(fTi(x; y); combine(Ti)(x; y)g)

If A is a SW resource relationship, then combine(A) :
Object�Object! R? is defined to be:

combine(A)(x; z) =
lub(fa j 9y 2 Objectj

such that a = transAccess(x; y; z)g)
where

transAccess(x; y; z) =8>>>>>><
>>>>>>:

? if A(x; y) = ?

A(y; z) if frd; execg \A(x; y) 6= ;

fwkg if fwk; rd; execg \ A(x; y) = fwkg

and fwk; rdg \ A(y; z) 6= ;

? otherwise

Lemma 2:
The definition of P otAccS is well-defined. That is, the se-
quence T0; T1; : : : converges.

Finally, with P otAccS we can define mutable and
readable (Definition 1).

Definition 1 (The mutable(�) and readable(�) relations):
If S 2 S, then

mutableS(E)
= fyj9x 2 E; fwr; execg \P otAccS(x; y) 6= ;g

readableS(E)
= fxjE \mutableS(fxg) 6= ;g

Lemma 3:
For all x � y � Object, states S,

mutableS(x) �mutableS(y)

4.5. Verification Proof

We can now state the major theorem (Figure 8). In any
execution of the system, anything that was actually mutated
or read by a subsystem was considered mutable or read-
able by the operating system. The statement of the theo-
rem is more subtle than one might have at first expected.

Theorem 1 (Main Theorem):
If S0

�1�!S1 : : :
�n��!Sn is an execution, then for any E �

S0
existed,

mutatedE(S0
�1�!: : : Sn) \ S0

existed �mutableS0(E)

readE(S0
�1�!: : : Sn) \ S0

existed � readableS0(E)

Figure 8. Main verification theorem

If new objects could not be created, then one could merely
require that for any execution ~e proceeding from state S0,
mutatedE(~e) �mutableS0(E) [and similarly for read].

What we wish to require of new objects is that no process
can use such an object to amplify its authority. However, it
would not be reasonable for the system to make any other a
priori assumptions about the behavior of objects that do not
exist. This is captured in our main theorem (Figure 8) by the
fact that the mutated function tracks mutations that occur by
means of new objects. The intersection with S0

existed re-
moves only the new objects from the set of changed objects,
but not their effects on the remainder of the system.

We first define the set of resources that exist at a given
state of the system, and then use this to state our main theo-
rem.

Definition 2:
If S is a state, then Sexisted is defined to be the following
subset of Object:

Sexisted = Sexist [Sdead

The lemmas that allow us to prove this theorem are
shown in Figure 10. These lemmas state the essential prop-
erties of SW which account for its security. The Execution
Reduces Authority lemma states that the power that a sub-
system can obtain only decreases during an execution: the
subsystem can lose capabilities, but cannot create new ca-
pabilities that increase its authority. The number of capa-
bilities can grow, but the implied authority can only shrink.
The Mutation Implies Mutable lemma states that if a re-
source becomes mutated by an operation, then it must have
previously been mutable.

With these properties, the main theorem follows (Fig-
ure 9).

Finally, we must show that the EROS constructor mech-
anism satisfies the confinement requirements. The re-
quester specifies at construction time a set of capabilities
authorized that are permitted exceptions to the confine-
ment boundary. The constructor builds a new process p

from the set of capabilities that it is given by the builder.
If S is the current state, then for all executions ~e from S,

0-7695-0665-8/00 $10.00 � 2000 IEEE

We proceed by induction on the value of i. The base case is trivial.
In the induction step, let ~ei denote the execution S0

�1�!: : :
�i�!Si. Assume that for all sets F ,

mutatedF (~en�1) \ S0
existed �mutableS0(F)

We want to show

mutatedE(~en) \ S0
existed �mutableS0(E)

This follows because:

mutatedE(~en) \ S0
existed

= mutatedm utatedE(~en�1)(Sn�1
�n��!Sn) \ S0

existed

� (mutableSn�1(mutatedE(~en�1)) [mutatedE(~en�1)) \ S0
existed by Lemma 5

� (mutableSn�1(mutatedE(~en�1)) [mutableS0(E)) \ S0
existed by induction hypothesis

� ((mutableS0(mutatedE(~en�1)) \ S0
existed) [mutableS0(E)) by Lemma 4

\S0
existed

� mutableS0(mutableS0(E)) [mutableS0(E) induction hypothesis,
mutable() is monotonic

= mutableS0(E) by definition

The proof that read and readable are related follows easily from the definitions.

Figure 9. Proof outline for main theorem

Lemma 4 (Execution Reduces Authority):
If S0

�
�!S1, then for all E,

mutableS1(E) \ S0
existed �mutableS0(E \ S0

existed)

Lemma 5 (Mutation Implies Mutable):
If S0

�
�!S1, then for all E,

mutatedE(S0
�
�!S1)�E �mutableS0(E)

Figure 10. Major system properties

confinement requires that

mutatedfpg(~e) � fpg [mutableS(authorized)

The constructor requires that holes � authorized, and
therefore requires (by Lemma 3) thatmutableS(holes) �
mutableS(authorized). In other words, the client has
stated permission for information to flow via the holes. Pro-
vided the non-holes do not leak information, the “yield” of
the constructor is properly sandboxed.

With the main theorem, this is easy to show. The con-
structor is very conservative – the capabilities it consid-
ers as “safe” are those which will add no elements to
mutable(p). The only other capabilities it gives p are
members of the authorized set, so the statement of correct-
ness follows immediately from the theorem.

The encapsulation of the constructor “yield” follows

from the fact that the requester initially holds no capabil-
ities to the objects comprising the yield. When the yield
first begins execution, only those capabilities contained in
the holes represent possible leaks to the requester. Unless
the yield consents to be inspected by transmitting capabili-
ties through one of these holes, its encapsulation is assured.

5. Related Work

Noninterference: Rushby’s discussion of intransitive
non-interference [16] applies a similar kind of information
flow analysis to the one used here, extending earlier work
by Haigh and Young [5] and by Goguen and Meseguer [4].
That formulation is more general than the technique used
here, but would require extension to deal with systems in
which access rights are transferable. In particular, there is
no provision in the Rushby formulation for the actions of
the step function to revise the security assertions as access
rights are legitimately propagated or mandatory constraints
are revised.

PSOS: Neumann et al. constructed extensive proof syn-
thesis mechanisms in connection with PSOS [13]. While a
proof sketch of the security properties of this system was
included in the report, no proof of correctness for confine-
ment in the PSOS system has been published. The proof
sketched in the report fails to demonstrate that the opera-
tional semantics of the system architecture actually satisfies
the specification.

Mandatory Policy Enforcement: Boebert [1] and

0-7695-0665-8/00 $10.00 � 2000 IEEE

Karger [9] show that pure capability systems cannot enforce
the *-property. While their conclusion is correct, capability
systems do provide sufficient strength to construct manda-
tory policies at a higher level of abstraction with reasonable
performance, as has been done in KeySafe [14].

Karger has also shown that unmodified capability sys-
tems cannot enforce the confinement policy [8]. The appar-
ent discrepancy results from differences in term definition.
Karger’s confinement policy is a mandatory access control
policy: “this piece of information must not be disclosed
to that set of unauthorized parties.” That is, it is a policy
concerning the flow of information to subjects. Lampson’s
confinement problem [10] imposes a weaker constraint: in-
formation can flow out of the subsystem only through au-
thorized channels. That is, in the Lampson definition the
channels define an encapsulation boundary to be enforced.

KeySafe: The KeySafe system [14] implements a ref-
erence monitor that mediates interactions across compart-
ments. Each compartment is a confined subsystem created
by the reference monitor. Creating compartments in this
fashion ensures that no unauthorized channels out of the
compartment exist, and also that no inspection of the com-
partment contents is permitted.

Compartments in KeySafe can be used to encapsulate
security levels, users, intersections of level and user, or
any other entity that the security policy wishes to describe.
The granularity of policy enforcement under KeySafe is the
compartment rather than the process.

Where the security policy permits transfer of capabilities
from one compartment to another, the reference monitor
substitutes a capability to a transparent forwarding object
to allow later revocation. This is similar to the indirection
mechanism proposed by Redell [15]. Cross-compartment
calls are relatively rare, and the overhead of this indirection
(once established) is low. Intracompartment invocations in-
cur no overhead from the reference monitor.

We believe that the KeySafe architecture can enforce
both the *-property and Karger’s confinement policy, but
this does not directly contradict their claims. KeySafe is a
reference monitor built on top of a more primitive capability
mechanism; such a reference monitor constitutes a modified
capability system in the sense of Karger’s discussion.

Memoryless Execution: Jones’ dissertation [7] discusses
computing a closure containing all protection states that
can be derived from an initial protection state by the per-
formance of “environment transforming functions.” She
demonstrates the enforcement of a number of security poli-
cies using this sort of transitive closure, including a “Memo-
ryless Execution” policy closely related to our confinement
policy. The memoryless execution policy allows the called
procedure to modify its parameters, but does not allow mod-
ification of other objects. There appears to be no capability
in Jones’ model that names environments directly. Conse-

quently, there is no need to consider transitively accessible
mutation rights. Were such a capability introduced, some
variant of the wk right described here would be required.

By permitting the client to authorize exceptions to the
immutability constraint, the confinement policy defined
here slightly extends the memoryless execution policy. By
permitting recursive use of constructors that produce con-
fined subsystems, the confinement policy enables a form of
object-based software construction that is not possible un-
der the memoryless execution constraint. Recursive con-
struction enables EROS to bootstrap “copy on write” ad-
dress spaces, and can therefore be used to perform object
instance creation. The most common use of the EROS con-
structor is to create new process instances in this way.

Jones also proposes a rights amplification operation that
must be handled with considerable care, lest the supposedly
restricted subsystem gain mutate rights in unforeseen ways.
Amplify operations appear to have been excluded from the
systems verified in the thesis.

6. Conclusion

We have specified the security requirements and opera-
tions of a real operating system, and provided a formal def-
inition for one security policy: confinement. We have de-
veloped a methodology and proof structure for this policy,
and shown that it is enforced. This methodology general-
izes to information flow problems in many capability-based
architectures. The constructor implementation performs the
confinement check in no worse than n logn time, where n
is the number of holes known to the constructor. Construc-
tion is significantly faster than the equivalent UNIX fork
and exec combination [20].

The SW model faithfully captures EROS. This was not
accidental; both EROS and KeyKOS intentionally provide
as “pure” a model as the architects could contrive to build.
Related work on the EROS implementation has demon-
strated that a pure capability system of this form can be
made to perform quite well [19, 20].

Verifications such as this one have considerable practi-
cal utility. SW’s operational semantics was constructed by
reducing the behavior of a real system to a manageable col-
lection of primitives. Constructing the operational seman-
tics revealed an implementation error in the real system. It
also enabled the architecture to be significantly improved
by providing a clear identification of those aspects of the
semantics that were truly essential to security. Best of all, it
did so at modest cost.

The Execution Reduces Authority lemma provides a
powerful simplifying tool in analyzing security issues. Both
the statement of requirements and the corresponding proof
are drastically more complicated in systems that permit am-
plification of authority. Indeed, this lemma seems worth

0-7695-0665-8/00 $10.00 � 2000 IEEE

adopting as a basic principle of operating system design.
Capabilities provide two characteristics that are essential

to the proof structure we have adopted. First, they combine
denotation and access rights into a single entity, which al-
lows straightforward construction of the mutable and read-
able relations. Second, they are unforgeable, which guaran-
tees that this construction is closed. An equivalent security
analysis for ACL-based systems would be more complex:
modifications to a given resource’s access control list have
non-local consequences in the accessibility graphs, and may
violate the closure.

Capability systems provide a natural framework for
typed, protected objects. Component architectures such as
COM and CORBA are increasingly used for critical sys-
tems. Applications constructed using these technologies
may be viewed as subsystems connected by capabilities. We
expect that forthcoming e-Commerce applications will be
built using similar application frameworks. Therefore, se-
curity policy enforcement in capability systems is a critical
area of future research.

7. Acknowledgements

Norm Hardy, the principal architect of KeyKOS, first
suggested the need for this proof and its feasibility. Carl
Gunter, Jonathan Smith, and Insup Lee of the University of
Pennsylvania provided comments and feedback on this pa-
per at various stages. Maria Ebling, Stephen Holton, Guer-
ney Hunt, and Paul Karger of IBM also provided extensive
feedback, as did Chris Okasaki of Columbia University.

References

[1] W. E. Boebert. On the inability of an unmodified capability
machine to enforce the *-property. In Proc. 7th DoD/NBS
Computer Security Conference, pages 291–293, Gaithers-
burg, MD, USA, Sept. 1984. National Bureau of Standards.

[2] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy,
N. Hardy, C. R. Landau, and J. S. Shapiro. The KeyKOS
nanokernel architecture. In Proc. USENIX Workshop on
Micro-Kernels and Other Kernel Architectures, pages 95–
112. USENIX Association, Apr. 1992.

[3] W. Frantz, C. Landau, and N. Hardy. Gnosis: A secure op-
erating system for the ’90s. SHARE Proceedings, 1983.

[4] J. A. Goguen and J. Meseguer. Inference control and un-
winding. In Proc. Symposium on Security and Privacy,
pages 75–86, Oakland, CA, USA, Apr. 1984. IEEE Com-
puter Society.

[5] J. Haigh and W. Young. Extending the noninterference ver-
sion of mls for sat. IEEE Transactions on Software Engi-
neering, 13(2):141–150, Feb. 1987.

[6] N. Hardy. The KeyKOS architecture. Operating Systems
Review, pages 8–25, Oct. 1985.

[7] A. K. Jones. Protection in Programmed Systems. PhD thesis,
Carnegie-Mellon University, 1973.

[8] P. Karger. Improving Security and Performance for Capa-
bility Systems. PhD thesis, University of Cambridge, Oct.
1988. Technical Report No. 149.

[9] P. A. Karger and A. J. Herbert. An augmented capability
architecture to support lattice security and traceability of ac-
cess. In Proc. of the 1984 IEEE Symposium on Security and
Privacy, pages 2–12, Oakland, CA, Apr. 1984. IEEE.

[10] B. W. Lampson. A note on the confinement problem. Com-
munications of the ACM, 16(10):613–615, 1973.

[11] C. R. Landau. The checkpoint mechanism in KeyKOS. In
Proc. Second International Workshop on Object Orientation
in Operating Systems, pages 86–91. IEEE, Sept. 1992.

[12] J. Liedtke. Improving IPC by kernel design. In Proc. 14th
ACM Symposium on Operating System Principles, pages
175–188. ACM, 1993.

[13] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and
L. Robinson. A provably secure operating system: The sys-
tem, its applications, and proofs. Technical Report Report
CSL-116, Computer Science Laboratory, may 1980.

[14] S. A. Rajunas. The KeyKOS/KeySAFE system design.
Technical Report SEC009-01, Key Logic, Inc., Mar. 1989.
http://www.cis.upenn.edu/˜KeyKOS.

[15] D. D. Redell. Naming and Protection in Extensible Operat-
ing Systems. PhD thesis, University of California at Berke-
ley, 1974.

[16] J. R. Rushby. Noninterference, transitivity, and channel-
control security policies. Technical Report CSL-92-02,
Computer Science Laboratory, SRI International, Dec. 1992.

[17] J. S. Shapiro. The EROS Object Reference Manual.

[18] J. S. Shapiro. EROS: A Capability System. PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, PA 19104, 1999.

[19] J. S. Shapiro, D. J. Farber, and J. M. Smith. The mea-
sured performance of a fast local IPC. In Proc. 5th Inter-
national Workshop on Object Orientation in Operating Sys-
tems, pages 89–94, Seattle, WA, USA, Nov. 1996. IEEE.

[20] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast
capability system. In Proc. 17th ACM Symposium on Op-
erating Systems Principles, pages 170–185, Kiawah Island
Resort, near Charleston, SC, USA, Dec. 1999. ACM.

[21] J. S. Shapiro and S. Weber. Verifying operating system secu-
rity. Technical Report MS-CIS-97-26, University of Penn-
sylvania, Philadelphia, PA, USA, 1997.

0-7695-0665-8/00 $10.00 � 2000 IEEE

