
An Introduction to Separation Logic

(Preliminary Draft)

John C. Reynolds
Computer Science Department

Carnegie Mellon University
c©John C. Reynolds 2008

ITU University, Copenhagen

October 20–22, 2008, corrected October 23

Chapter 1

An Overview

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

Separation logic is a novel system for reasoning about imperative programs.
It extends Hoare logic with enriched assertions that can describe the separa-
tion of storage and other resources concisely. The original goal of the logic
was to facilitate reasoning about shared mutable data structures, i.e., struc-
tures where updatable fields can be referenced from more than one point.
More recently, the logic has been extended to deal with shared-variable con-
currency and information hiding, and the notion of separation has proven
applicable to a wider conceptual range, where access to memory is replaced
by permission to exercise capabilities, or by knowledge of structure. In a
few years, the logic has become a significant research area, with a growing
literature produced by a variety of researchers.

1.1 An Example of the Problem

The use of shared mutable data structures is widespread in areas as diverse
as systems programming and artificial intelligence. Approaches to reasoning
about this technique have been studied for three decades, but the result
has been methods that suffer from either limited applicability or extreme
complexity, and scale poorly to programs of even moderate size.

For conventional logics, the problem with sharing is that it is the default
in the logic, while nonsharing is the default in programming, so that declaring
all of the instances where sharing does not occur — or at least those instances
necessary for correctness — can be extremely tedious.

For example, consider the following program, which performs an in-place

3

4 CHAPTER 1. AN OVERVIEW

reversal of a list:

LREV
def
= j := nil ; while i 6= nil do (k := [i + 1] ; [i + 1] := j ; j := i ; i := k).

(Here the notation [e] denotes the contents of the storage at address e.)
The invariant of this program must state that i and j are lists representing

two sequences α and β such that the reflection of the initial value α0 can be
obtained by concatenating the reflection of α onto β:

∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β,

where the predicate list α i is defined by induction on the length of α:

list ε i
def
= i = nil list(a·α) i

def
= ∃j. i ↪→ a, j ∧ list α j

(and ↪→ can be read as “points to”).
Unfortunately, however, this is not enough, since the program will mal-

function if there is any sharing between the lists i and j. To prohibit this
we must extend the invariant to assert that only nil is reachable from both
i and j:

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil),
(1.1)

where

reachable(i, j)
def
= ∃n ≥ 0. reachablen(i, j)

reachable0(i, j)
def
= i = j

reachablen+1(i, j)
def
= ∃a, k. i ↪→ a, k ∧ reachablen(k, j).

Even worse, suppose there is some other list x, representing a sequence γ,
that is not supposed to be affected by the execution of our program. Then
it must not share with either i or j, so that the invariant becomes

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil)

∧ list γ x

∧ (∀k. reachable(x, k)

∧ (reachable(i, k) ∨ reachable(j, k))⇒ k = nil).

(1.2)

1.1. AN EXAMPLE OF THE PROBLEM 5

Even in this trivial situation, where all sharing is prohibited, it is evident
that this form of reasoning scales poorly.

In separation logic, however, this kind of difficulty can be avoided by
using a novel logical operation P ∗ Q, called the separating conjunction, that
asserts that P and Q hold for disjoint portions of the addressable storage.
Since the prohibition of sharing is built into this operation, Invariant (1.1)
can be written more succinctly as

(∃α, β. list α i ∗ list β j) ∧ α†
0 = α†·β, (1.3)

and Invariant (1.2) as

(∃α, β. list α i ∗ list β j ∗ list γ x) ∧ α†
0 = α†·β. (1.4)

A more general advantage is the support that separation logic gives to
local reasoning, which underlies the scalability of the logic. For example, one
can use (1.3) to prove a local specification:

{list α i}LREV {list α† j}.

In separation logic, this specification implies, not only that the program
expects to find a list at i representing α, but also that this list is the only
addressable storage touched by the execution of LREV (often called the foot-
print of LREV). If LREV is a part of a larger program that also manipulates
some separate storage, say containing the list k, then one can use an infer-
ence rule due to O’Hearn, called the frame rule, to infer directly that the
additional storage is unaffected by LREV:

{list α i ∗ list γ k}LREV {list α† j ∗ list γ k},

thereby avoiding the extra complexity of Invariant (1.4).

In a realistic situation, of course, LREV might be a substantial subpro-
gram, and the description of the separate storage might also be voluminous.
Nevertheless, one can still reason locally about LREV, i.e., while ignoring
the separate storage, and then scale up to the combined storage by using the
frame rule.

There is little need for local reasoning in proving toy examples. But it
provides scalability that is critical for more complex programs.

6 CHAPTER 1. AN OVERVIEW

1.2 Background

A partial bibliography of early work on reasoning about shared mutable data
structure is given in Reference [1].

The central concept of separating conjunction is implicit in Burstall’s
early idea of a “distinct nonrepeating tree system” [2]. In lectures in the fall
of 1999, the author described the concept explicitly, and embedded it in a
flawed extension of Hoare logic [3, 4]. Soon thereafter, a sound intuitionistic
version of the logic was discovered independently by Ishtiaq and O’Hearn
[5] and by the author [1]. Realizing that this logic was an instance of the
logic of bunched implications [6, 7], Ishtiaq and O’Hearn also introduced a
separating implication P −∗ Q.

The intuitionistic character of this logic implied a monotonicity property:
that an assertion true for some portion of the addressable storage would
remain true for any extension of that portion, such as might be created by
later storage allocation.

In their paper, however, Ishtiaq and O’Hearn also presented a classical
version of the logic that does not impose this monotonicity property, and can
therefore be used to reason about explicit storage deallocation; they showed
that this version is more expressive than the intuitionistic logic, since the
latter can be translated into the classical logic.

O’Hearn also went on to devise the frame rule and illustrate its importance
[8, 9, 10, 5].

Originally, in both the intuitionistic and classical version of the logic,
addresses were assumed to be disjoint from integers, and to refer to entire
records rather than particular fields, so that address arithmetic was pre-
cluded. Later, the author generalized the logic to permit reasoning about
unrestricted address arithmetic, by regarding addresses as integers which re-
fer to individual fields [8, 11]. It is this form of the logic that will be described
and used in most of these notes.

Since these logics are based on the idea that the structure of an assertion
can describe the separation of storage into disjoint components, we have come
to use the term separation logic, both for the extension of predicate calculus
with the separation operators and for the resulting extension of Hoare logic.

At present, separation logic has been used to manually verify a variety of
small programs, as well as a few that are large enough to demonstrate the
potential of local reasoning for scalability [12, 10, 13, 14, 15]. In addition:

1.2. BACKGROUND 7

1. It has been shown that deciding the validity of an assertion in separa-
tion logic is not recursively enumerable, even when address arithmetic
and the characteristic operation emp, 7→, ∗ , and −∗, but not ↪→ are
prohibited [16, 10]. On the other hand, it has also been shown that, if
the characteristic operations are permitted but quantifiers are prohib-
ited, then the validity of assertions is algorithmically decidable within
the complexity class PSPACE [16].

2. An iterated form of separating conjunction has been introduced to rea-
son about arrays [17].

3. The logic has been extended to procedures with global variables, where
a “hypothetical frame rule” permits reasoning with information hiding
[18, 19]. Recently, a further extension to higher-order procedures (in
the sense of Algol-like languages) has been developed [20].

4. The logic has been integrated with data refinement [21, 22], and with
object-oriented programming (i.e., with a subset of Java) [23, 24].

5. The logic has been extended to shared-variable concurrency with condi-
tional critical regions, where one can reason about the transfer of owner-
ship of storage from one process to another [25, 26]. Further extensions
have been made to nonblocking algorithms [27] and to rely/guarantee
reasoning [28].

6. In the context of proof-carrying code, separation logic has inspired work
on proving run-time library code for dynamic allocation [29].

7. A decision procedure has been devised for a restricted form of the logic
that is capable of shape analysis of lists [30].

8. Fractional permissions (in the sense of Boyland [31]) and counting per-
missions have been introduced so that one can permit several concur-
rent processes to have read-only access to an area of the heap [32]. This
approach has also been applied to program variables [33].

9. Separation logic itself has been extended to a higher-order logic [34].

10. Separation logic has been implemented in Isabelle/HOL [15].

8 CHAPTER 1. AN OVERVIEW

It should also be mentioned that separation logic is related to other recent
logics that embody a notion of separation, such as spatial logics or ambient
logic [35, 36, 37, 38, 39, 40].

1.3 The Programming Language

The programming language we will use is a low-level imperative language —
specifically, the simple imperative language originally axiomatized by Hoare
[3, 4], extended with new commands for the manipulation of mutable shared
data structures:

〈comm〉 ::= · · ·
| 〈var〉 := cons(〈exp〉, . . . , 〈exp〉) allocation

| 〈var〉 := [〈exp〉] lookup

| [〈exp〉] := 〈exp〉 mutation

| dispose 〈exp〉 deallocation

Memory managenent is explicit; there is no garbage collection. As we will
see, any dereferencing of dangling addresses will cause a fault.

Semantically, we extend computational states to contain two components:
a store (sometimes called a stack), mapping variables into values (as in the
semantics of the unextended simple imperative language), and a heap, map-
ping addresses into values (and representing the mutable structures).

In the early versions of separation logic, integers, atoms, and addresses
were regarded as distinct kinds of value, and heaps were mappings from finite
sets of addresses to nonempty tuples of values:

Values = Integers ∪ Atoms ∪ Addresses

where Integers, Atoms, and Addresses are disjoint

nil ∈ Atoms

StoresV = V → Values

Heaps =
⋃

A
fin
⊆Addresses

(A → Values+)

StatesV = StoresV × Heaps

where V is a finite set of variables.

1.3. THE PROGRAMMING LANGUAGE 9

(Actually, in most work using this kind of state, authors have imposed re-
stricted formats on the records in the heap, to reflect the specific usage of
the program they are specifying.)

To permit unrestricted address arithmetic, however, in the version of the
logic used in most of this paper we will assume that all values are integers,
an infinite number of which are addresses; we also assume that atoms are
integers that are not addresses, and that heaps map addresses into single
values:

Values = Integers

Atoms ∪ Addresses ⊆ Integers

where Atoms and Addresses are disjoint

nil ∈ Atoms

StoresV = V → Values

Heaps =
⋃

A
fin
⊆Addresses

(A → Values)

StatesV = StoresV × Heaps

where V is a finite set of variables.

(To permit unlimited allocation of records of arbitrary size, we require that,
for all n ≥ 0, the set of addresses must contain infinitely many consecutive
sequences of length n. For instance, this will occur if only a finite number of
positive integers are not addresses.)

Our intent is to capture the low-level character of machine language. One
can think of the store as describing the contents of registers, and the heap
as describing the contents of an addressable memory. This view is enhanced
by assuming that each address is equipped with an “activity bit”; then the
domain of the heap is the finite set of active addresses.

The semantics of ordinary and boolean expressions is the same as in the
simple imperative language:

[[e ∈ 〈exp〉]]exp
∈ (
⋃

V
fin
⊇FV(e)

StoresV) → Values

[[b ∈ 〈boolexp〉]]bexp
∈

(
⋃

V
fin
⊇FV(b)

StoresV) → {true, false}

(where FV(p) is the set of variables occurring free in the phrase p). In

10 CHAPTER 1. AN OVERVIEW

particular, expressions do not depend upon the heap, so that they are always
well-defined and never cause side-effects.

Thus expressions do not contain notations, such as cons or [−], that
refer to the heap; instead these notations are part of the structure of com-
mands (and thus cannot be nested). It follows that none of the new heap-
manipulating commands are instances of the simple assignment command
〈var〉 := 〈exp〉 (even though we write the allocation, lookup, and mutation
commands with the familiar operator :=). In fact, these commands will not
obey Hoare’s inference rule for assignment. However, since they alter the
store at the variable v, we will say that the commands v := cons(· · ·) and
v := [e], as well as v := e (but not [v] := e or dispose v) modify v.

Our strict avoidance of side-effects in expressions will allow us to use them
in assertions with the same freedom as in ordinary mathematics. This will
substantially simplify the logic, at the expense of occasional complications
in programs.

The semantics of the new commands is simple enough to be conveyed by
example. If we begin with a state where the store maps the variables x and
y into three and four, and the heap is empty, then the typical effect of each
kind of heap-manipulating command is:

Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1, 2) ; ⇓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 1] := 3 ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 3

Deallocation dispose(x + 1) ⇓
Store : x: 37, y: 1
Heap : 37: 1

The allocation operation cons(e1, . . . , en) activates and initializes n cells in
the heap. It is important to notice that, aside from the requirement that the
addresses of these cells be consecutive and previously inactive, the choice of
addresses is indeterminate.

1.4. ASSERTIONS 11

The remaining operations, for mutation, lookup, and deallocation, all
cause memory faults (denoted by the terminal configuration abort) if an
inactive address is dereferenced or deallocated. For example:

Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1, 2) ; ⇓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 2] := 3 ; ⇓
abort

1.4 Assertions

As in Hoare logic, assertions describe states, but now states contain heaps as
well as stores. Thus, in addition to the usual operations and quantifiers of
predicate logic, we have four new forms of assertion that describe the heap:

• emp (empty heap)
The heap is empty.

• e 7→ e′ (singleton heap)
The heap contains one cell, at address e with contents e′.

• p1 ∗ p2 (separating conjunction)
The heap can be split into two disjoint parts such that p1 holds for one
part and p2 holds for the other.

• p1 −∗ p2 (separating implication)
If the heap is extended with a disjoint part in which p1 holds, then p2

holds for the extended heap.

It is also useful to introduce abbreviations for asserting that an address e is
active:

e 7→ − def
= ∃x′. e 7→ x′ where x′ not free in e,

12 CHAPTER 1. AN OVERVIEW

that e points to e′ somewhere in the heap:

e ↪→ e′
def
= e 7→ e′ ∗ true,

and that e points to a record with several fields:

e 7→ e1, . . . , en
def
= e 7→ e1 ∗ · · · ∗ e + n− 1 7→ en

e ↪→ e1, . . . , en
def
= e ↪→ e1 ∗ · · · ∗ e + n− 1 ↪→ en

iff e 7→ e1, . . . , en ∗ true.

Notice that assertions of the form e 7→ e′, e 7→ −, and e 7→ e1, . . . , en

determine the extent (i.e., domain) of the heap they describe, while those
of the form e ↪→ e′ and e ↪→ e1, . . . , en do not. (Technically, the former are
said to be precise assertions. A precise definition of precise assertions will be
given in Section 2.3.3.)

By using 7→, ↪→, and both separating and ordinary conjunction, it is easy
to describe simple sharing patterns concisely. For instance:

1. x 7→ 3, y asserts that x points to an adjacent pair
of cells containing 3 and y (i.e., the store maps x
and y into some values α and β, α is an address,
and the heap maps α into 3 and α + 1 into β).

y
3-x

2. y 7→ 3, x asserts that y points to an adjacent pair
of cells containing 3 and x. x

3-y

3. x 7→ 3, y ∗ y 7→ 3, x asserts that situations (1)
and (2) hold for separate parts of the heap. ◦

3-x

◦
3 � y*Y

4. x 7→ 3, y∧y 7→ 3, x asserts that situations (1) and
(2) hold for the same heap, which can only happen
if the values of x and y are the same.

◦
3HHj

��*
x

y
y

5. x ↪→ 3, y ∧ y ↪→ 3, x asserts that either (3) or (4)
may hold, and that the heap may contain additional
cells.

1.4. ASSERTIONS 13

Separating implication is somewhat more subtle, but is illustrated by the
following example (due to O’Hearn): Suppose the assertion p asserts various
conditions about the store and heap, including that the store maps x into
the address of a record containing 3 and 4:

Store : x: α, . . .

Heap : α: 3, α + 1: 4, Rest of Heap
4

3-x
� ◦
� ◦

�
�

�

Rest
of
Heap

Then (x 7→ 3, 4) −∗ p asserts that, if one were to add to the current heap a
disjoint heap consisting of a record at address x containing 3 and 4, then the
resulting heap would satisfy p. In other words, the current heap is like that
described by p, except that the record is missing:

Store : x: α, . . .

Heap : Rest of Heap, as above
-x

� ◦
� ◦

�
�

�

Rest
of
Heap

Moreover, x 7→ 1, 2 ∗ ((x 7→ 3, 4) −∗ p) asserts that the heap consists of a
record at x containing 1 and 2, plus a separate part as above:

Store : x: α, . . .

Heap : α: 1, α + 1: 2,
Rest of Heap, as above 2

1-x
� ◦
� ◦

�
�

�

Rest
of
Heap

This example suggests that x 7→ 1, 2 ∗ ((x 7→ 3, 4) −∗ p) describes a state
that would be changed by the mutation operations [x] := 3 and [x + 1] := 4
into a state satisfying p. In fact, we will find that

{x 7→ 1, 2 ∗ ((x 7→ 3, 4) −∗ p)} [x] := 3 ; [x + 1] := 4 {p}

is a valid specification (i.e., Hoare triple) in separation logic — as is the more
general specification

{x 7→ −,− ∗ ((x 7→ 3, 4) −∗ p)} [x] := 3 ; [x + 1] := 4 {p}.

The inference rules for predicate calculus (not involving the new operators
we have introduced) remain sound in this enriched setting. Additional axiom
schemata for separating conjunction include commutative and associative

14 CHAPTER 1. AN OVERVIEW

laws, the fact that emp is a neutral element, and various distributive and
semidistributive laws:

p1 ∗ p2 ⇔ p2 ∗ p1

(p1 ∗ p2) ∗ p3 ⇔ p1 ∗ (p2 ∗ p3)

p ∗ emp ⇔ p

(p1 ∨ p2) ∗ q ⇔ (p1 ∗ q) ∨ (p2 ∗ q)

(p1 ∧ p2) ∗ q ⇒ (p1 ∗ q) ∧ (p2 ∗ q)

(∃x. p1) ∗ p2 ⇔ ∃x. (p1 ∗ p2) when x not free in p2

(∀x. p1) ∗ p2 ⇒ ∀x. (p1 ∗ p2) when x not free in p2

There is also an inference rule showing that separating conjunction is mono-
tone with respect to implication:

p1 ⇒ p2 q1 ⇒ q2

p1 ∗ q1 ⇒ p2 ∗ q2

(monotonicity)

and two further rules capturing the adjunctive relationship between separat-
ing conjunction and separating implication:

p1 ∗ p2 ⇒ p3

p1 ⇒ (p2 −∗ p3)
(currying)

p1 ⇒ (p2 −∗ p3)

p1 ∗ p2 ⇒ p3.
(decurrying)

On the other hand, there are two rules that one might expect to hold for
an operation called “conjunction” that in fact fail:

p ⇒ p ∗ p (Contraction — unsound)

p ∗ q ⇒ p (Weakening — unsound)

A counterexample to both of these axiom schemata is provided by taking p
to be x 7→ 1 and q to be y 7→ 2; then p holds for a certain single-field heap
while p ∗ p holds for no heap, and p ∗ q holds for a certain two-field heap
while p holds for no two-field heap. (Thus separation logic is a substructural
logic.)

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 15

Finally, we give axiom schemata for the predicate 7→. (Regrettably, these
are far from complete.)

e1 7→ e′1 ∧ e2 7→ e′2 ⇔ e1 7→ e′1 ∧ e1 = e2 ∧ e′1 = e′2

e1 ↪→ e′1 ∗ e2 ↪→ e′2 ⇒ e1 6= e2

emp ⇔ ∀x. ¬(x ↪→ −)

(e ↪→ e′) ∧ p ⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).

1.5 Specifications and their Inference Rules

While assertions describe states, specifications describe commands. In spec-
ification logic, specifications are Hoare triples, which come in two flavors:

〈specification〉 ::=

{〈assertion〉} 〈command〉 {〈assertion〉} (partial correctness)

| [〈assertion〉] 〈command〉 [〈assertion〉] (total correctness)

In both flavors, the initial assertion is called the precondition (or sometimes
the precedent), and the final assertion is called the postcondition (or some-
times the consequent).

The partial correctness specification {p} c {q} is true iff, starting in any
state in which p holds,

• No execution of c aborts, and

• When some execution of c terminates in a final state, then q holds in
the final state.

The total correctness specification [p] c [q] (which we will use much less
often) is true iff, starting in any state in which p holds,

• No execution of c aborts, and

• Every execution of c terminates, and

• When some execution of c terminates in a final state, then q holds in
the final state.

16 CHAPTER 1. AN OVERVIEW

These forms of specification are so similar to those of Hoare logic that it is
important to note the differences. Our specifications are implicitly quantified
over both stores and heaps, and also (since allocation is indeterminate) over
all possible executions. Moreover, any execution (starting in a state satisfying
p) that gives a memory fault falsifies both partial and total specifications.

The last point goes to the heart of separation logic. As O’Hearn [5]
paraphrased Milner, “Well-specified programs don’t go wrong.” As a con-
sequence, during the execution of a program that has been proved to meet
some specification (assuming that the program is only executed in initial
states satisfying the precondition of the specification), it is unnecessary to
check for memory faults, or even to equip heap cells with activity bits.

In fact, it is not the implementor’s responsibility to detect memory faults.
It is the programmer’s responsibility to avoid them — and separation logic
is a tool for this purpose. Indeed, according to the logic, the implementor
is free to implement memory faults however he wishes, since nothing can be
proved that might gainsay him.

Roughly speaking, the fact that specifications preclude memory faults
acts in concert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, during an execution of

c0 ; x := cons(1, 2) ; c1 ; [x + 2] := 7,

no allocation performed by the subcommand c0 or c1 can be guaranteed to
allocate the location x + 2; thus as long as c0 and c1 terminate and c1 does
not modify x, there is a possibility that the execution will abort. It follows
that there is no postcondition that makes the specification

{true} c0 ; x := cons(1, 2) ; c1 ; [x + 2] := 7 {?}

valid.
Sometimes, however, the notion of record boundaries dissolves, as in the

following valid (and provable) specification of a program that tries to form a
two-field record by gluing together two one-field records:

{x 7→ − ∗ y 7→ −}
if y = x + 1 then skip else

if x = y + 1 then x := y else

(dispose x ; dispose y ; x := cons(1, 2))

{x 7→ −,−}.

(1.5)

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 17

It is evident that such a program goes well beyond the discipline imposed by
type systems for mutable data structures.

In our new setting, the command-specific inference rules of Hoare logic
remain sound, as do such structural rules as

• Strengthening Precedent

p⇒ q {q} c {r}
{p} c {r}.

• Weakening Consequent

{p} c {q} q ⇒ r

{p} c {r}.

• Existential Quantification (Ghost Variable Elimination)

{p} c {q}
{∃v. p} c {∃v. q},

where v is not free in c.

• Conjunction
{p} c {q1} {p} c {q2}

{p} c {q1 ∧ q2}.

• Substitution
{p} c {q}

{p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn are the
variables occurring free in p, c, or q, and, if vi is modified by c, then ei

is a variable that does not occur free in any other ej.

(All of the inference rules presented in this section are the same for partial
and total correctness.)

An exception is what is sometimes called the “rule of constancy” [27,
Section 3.3.5; 28, Section 3.5]:

{p} c {q}
{p ∧ r} c {q ∧ r},

(unsound)

18 CHAPTER 1. AN OVERVIEW

where no variable occurring free in r is modified by c. It has long been
understood that this rule is vital for scalability, since it permits one to extend
a “local” specification of c, involving only the variables actually used by
that command, by adding arbitrary predicates about variables that are not
modified by c and will therefore be preserved by its execution.

Surprisingly, however, the rule of constancy becomes unsound when one
moves from traditional Hoare logic to separation logic. For example, the
conclusion of the instance

{x 7→ −} [x] := 4 {x 7→ 4}
{x 7→ − ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3}

is not valid, since its precondition does not preclude the case x = y, where
aliasing will falsify y 7→ 3 when the mutation command is executed.

O’Hearn realized, however, that the ability to extend local specifications
can be regained at a deeper level by using separating conjunction. In place
of the rule of constancy, he proposed the frame rule:

• Frame Rule
{p} c {q}

{p ∗ r} c {q ∗ r},
where no variable occurring free in r is modified by c.

By using the frame rule, one can extend a local specification, involving only
the variables and heap cells that may actually be used by c (which O’Hearn
calls the footprint of c), by adding arbitrary predicates about variables and
heap cells that are not modified or mutated by c. Thus, the frame rule is the
key to “local reasoning” about the heap:

To understand how a program works, it should be possible for
reasoning and specification to be confined to the cells that the
program actually accesses. The value of any other cell will auto-
matically remain unchanged [8].

In any valid specification {p} c {q}, p must assert that the heap contains
every cell in the footprint of c (except for cells that are freshly allocated
by c); “locality” is the converse implication that every cell asserted to be
contained in the heap belongs to the footprint. The role of the frame rule is
to infer from a local specification of a command the more global specification
appropriate to the possibly larger footprint of an enclosing command.

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 19

Beyond the rules of Hoare logic and the frame rule, there are inference
rules for each of the new heap-manipulating commands. Indeed, for each
of these commands, we can give three kinds of rules: local, global, and
backward-reasoning.

For mutation, for example, the simplest rule is the local rule:

• Mutation (local)

{e 7→ −} [e] := e′ {e 7→ e′},

which specifies the effect of mutation on the single cell being mutated. From
this, one can use the frame rule to derive a global rule:

• Mutation (global)

{(e 7→ −) ∗ r} [e] := e′ {(e 7→ e′) ∗ r},

which also specifies that anything in the heap beyond the cell being mutated
is left unchanged by the mutation. (One can rederive the local rule from the
global one by taking r to be emp.)

Beyond these forms, there is also:

• Mutation (backwards reasoning)

{(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p},

which is called a backward reasoning rule since, by substituting for p, one can
find a precondition for any postcondition. [5].

A similar development works for deallocation, except that the global form
is itself suitable for backward reasoning:

• Deallocation (local)

{e 7→ −} dispose e {emp}.

• Deallocation (global, backwards reasoning)

{(e 7→ −) ∗ r} dispose e {r}.

In the same way, one can give equivalent local and global rules for alloca-
tion commands in the nonoverwriting case where the old value of the variable
being modified plays no role. Here we abbreviate e1, . . . , en by e.

20 CHAPTER 1. AN OVERVIEW

• Allocation (nonoverwriting, local)

{emp} v := cons(e) {v 7→ e},

where v is not free in e.

• Allocation (nonoverwriting, global)

{r} v := cons(e) {(v 7→ e) ∗ r},

where v is not free in e or r.

Of course, we also need more general rules for allocation commands v :=
cons(e), where v occurs in e or the precondition, as well as a backward-
reasoning rule for allocation, and rules for lookup. Since all of these rules
are more complicated than those given above (largely because most of them
contain quantifiers), we postpone them to Section 3.7 (where we will also
show that the different forms of rules for each command are interderivable).

As a simple illustration of separation logic, the following is an anno-
tated specification of the command (1.5) that tries to glue together adjacent
records:

{x 7→ − ∗ y 7→ −}
if y = x + 1 then

{x 7→ −,−}
skip

else if x = y + 1 then

{y 7→ −,−}
x := y

else

({x 7→ − ∗ y 7→ −}
dispose x ;

{y 7→ −}
dispose y ;

{emp}

x := cons(1, 2))
{x 7→ −,−}.

1.6. LISTS 21

We will make the concept of an annotated specification — as a user-friendly
form for presenting proof of specifications — rigorous in Sections 3.3 and 3.6.
For the present, one can think of the intermediate assertions as comments
that must be true whenever control passes through them (assuming the initial
assertion is true when the program begins execution), and that must also
ensure the correct functioning of the rest of the program being executed.

A second example describes a command that uses allocation and mutation
to construct a two-element cyclic structure containing relative addresses:

{emp}
x := cons(a, a) ;

{x 7→ a, a}
y := cons(b, b) ;

{(x 7→ a, a) ∗ (y 7→ b, b)}
{(x 7→ a,−) ∗ (y 7→ b,−)}
[x + 1] := y − x ;

{(x 7→ a, y − x) ∗ (y 7→ b,−)}
[y + 1] := x− y ;

{(x 7→ a, y − x) ∗ (y 7→ b, x− y)}
{∃o. (x 7→ a, o) ∗ (x + o 7→ b, − o)}.

1.6 Lists

To specify a program adequately, it is usually necessary to describe more than
the form of its structures or the sharing patterns between them; one must
relate the states of the program to the abstract values that they denote. For
instance, to specify the list-reversal program in Section 1.1, it would hardly
be enough to say that “If i is a list before execution, then j will be a list
afterwards”. One needs to say that “If i is a list representing the sequence
α before execution, then afterwards j will be a list representing the sequence
that is the reflection of α.”

To do so in general, it is necessary to define the set of abstract values
(sequences, in this case), along with their primitive operations, and then to
define predicates on the abstract values by structural induction. Since these

22 CHAPTER 1. AN OVERVIEW

kinds of definition are standard, we will treat them less formally than the
novel aspects of our logic.

Sequences and their primitive operations are an easy first example since
they are a standard and well-understood mathematical concept, so that we
can omit their definition. To denote the primitive operations, we write ε for
the empty sequence, α · β for the composition of α followed by β, α† for the
reflection of α, and αi for the ith component of α.

The simplest list structure for representing sequences is the singly-linked
list. To describe this representation, we write list α i when i is a list repre-
senting the sequence α:

◦
α1-i

◦
α2

nil

αn* * · · · *

It is straightforward to define this predicate by induction on the structure
of α:

list ε i
def
= emp ∧ i = nil

list (a·α) i
def
= ∃j. i 7→ a, j ∗ list α j

(where ε denotes the empty sequence and α·β denotes the concatenation of
α followed by β), and to derive a test whether the list represents an empty
sequence:

list α i⇒ (i = nil ⇔ α = ε).

Then the following is an annotated specification of the program for reversing

1.7. TREES AND DAGS 23

a list:

{list α0 i}
{list α0 i ∗ (emp ∧ nil = nil)}
j := nil ;

{list α0 i ∗ (emp ∧ j = nil)}
{list α0 i ∗ list ε j}
{∃α, β. (list α i ∗ list β j) ∧ α†

0 = α†·β}
while i 6= nil do

({∃a, α, β. (list (a·α) i ∗ list β j) ∧ α†
0 = (a·α)†·β}

{∃a, α, β, k. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†
0 = (a·α)†·β}

k := [i + 1] ;

{∃a, α, β. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†
0 = (a·α)†·β}

[i + 1] := j ;

{∃a, α, β. (i 7→ a, j ∗ list α k ∗ list β j) ∧ α†
0 = (a·α)†·β}

{∃a, α, β. (list α k ∗ list (a·β) i) ∧ α†
0 = α†·a·β}

{∃α, β. (list α k ∗ list β i) ∧ α†
0 = α†·β}

j := i ; i := k

{∃α, β. (list α i ∗ list β j) ∧ α†
0 = α†·β})

{∃α, β. list β j ∧ α†
0 = α†·β ∧ α = ε}

{list α†
0 j}

Within the assertions here, Greek letters are used as variables denoting se-
quences. More formally, we have extended the state to map Greek variables
into sequences as well as sans serif variables into integers.

1.7 Trees and Dags

When we move from list to tree structures, the possible patterns of sharing
within the structures become richer.

At the outset, we face a problem of nomenclature: Words such as “tree”
and “graph” are often used to describe a variety of abstract structures, as

24 CHAPTER 1. AN OVERVIEW

well as particular ways of representing such structures. Here we will focus
on a particular kind of abstract value called an “S-expression” in the LISP
community. The set S-exps of these values is the least set such that

τ ∈ S-exps iff τ ∈ Atoms

or τ = (τ1 · τ2) where τ1, τ2 ∈ S-exps.

(Of course, this is just a particular, and very simple, initial algebra — as
is “sequence”. We could take carriers of any lawless many-sorted initial
algebra to be our abstract data, but this would complicate our exposition
while adding little of interest.)

For clarity, it is vital to maintain the distinction between abstract values
and their representations. Thus, we will call abstract values “S-expressions”,
while calling representations without sharing “trees”, and representations
with sharing but no cycles “dags” (for “directed acyclic graphs”).

We write tree τ (i) (or dag τ (i)) to indicate that i is the root of a tree
(or dag) representing the S-expression τ . Both predicates are defined by
induction on the structure of τ :

tree a (i) iff emp ∧ i = a

tree (τ1 · τ2) (i) iff ∃i1, i2. i 7→ i1, i2 ∗ tree τ1 (i1) ∗ tree τ2 (i2)

dag a (i) iff i = a

dag (τ1 · τ2) (i) iff k∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)).

(In Sections 5.1 and 5.2, we will see that tree τ (i) is a precise assertion, so
that it describes a heap containing a tree-representation of τ and nothing
else, while dag τ (i) is an intuitionistic assertion, describing sa heap that may
contain extra space as well as a tree-representation of τ .)

1.8 Arrays and the Iterated Separating Con-

junction

It is straightforward to extend our programming language to include heap-
allocated one-dimensional arrays, by introducing an allocation command
where the number of consecutive heap cells to be allocated is specified by
an operand. It is simplest to leave the initial values of these cells indetermi-
nate.

1.8. ARRAYS AND THE ITERATED SEPARATING CONJUNCTION25

We will use the syntax

〈comm〉 ::= · · · | 〈var〉 := allocate 〈exp〉

where v:=allocate e will be a command that allocates e consecutive locations
and makes the first of these locations the value of the variable v. For instance:

Store : x: 3, y: 4
Heap : empty

x := allocate y ⇓
Store : x: 37, y: 4
Heap : 37:−, 38:−, 39:−, 40:−

To describe such arrays, it is helpful to extend the concept of separating
conjunction to a construct that iterates over a finite contiguous set of integers.
We use the syntax

〈assert〉 ::= · · · | ⊙〈exp〉
〈var〉=〈exp〉 〈assert〉

Roughly speaking,
⊙e′

v=e p bears the same relation to ∗ that ∀e′
v=e p bears to

∧. More precisely, let I be the contiguous set { v | e ≤ v ≤ e′ } of integers
between the values of e and e′. Then

⊙e′

v=e p(v) is true iff the heap can be
partitioned into a family of disjoint subheaps, indexed by I, such that p(v)
is true for the vth subheap.

Then array allocation is described by the following inference rule:

{r} v := allocate e {(⊙v+e−1
i=v i 7→ −) ∗ r},

where v does not occur free in r or e.
A simple illustration of the iterated separating conjunction is the use of

an array as a cyclic buffer. We assume that an n-element array has been
allocated at address l, e.g., by l := allocate n, and we use the variables

m number of active elements
i address of first active element
j address of first inactive element.

Then when the buffer contains a sequence α, it should satisfy the assertion

0 ≤ m ≤ n ∧ l ≤ i < l + n ∧ l ≤ j < l + n ∧
j = i⊕m ∧ m = #α ∧
((
⊙m−1

k=0 i⊕ k 7→ αk+1) ∗ (
⊙n−m−1

k=0 j⊕ k 7→ −)),

where x⊕ y = x + y modulo n, and l ≤ x⊕ y < l + n.

26 CHAPTER 1. AN OVERVIEW

1.9 Proving the Schorr-Waite Algorithm

One of the most ambitious applications of separation logic has been Yang’s
proof of the Schorr-Waite algorithm for marking structures that contain shar-
ing and cycles [12, 10]. This proof uses the older form of classical separation
logic [5] in which address arithmetic is forbidden and the heap maps ad-
dresses into multifield records — each containing, in this case, two address
fields and two boolean fields.

Since addresses refer to entire records with identical number and types of
fields, it is easy to assert that the record at x has been allocated:

allocated(x)
def
= x ↪→ −,−,−,−,

that all records in the heap are marked:

markedR
def
= ∀x. allocated(x)⇒ x ↪→ −,−,−, true,

that x is not a dangling address:

noDangling(x)
def
= (x = nil) ∨ allocated(x),

or that no record in the heap contains a dangling address:

noDanglingR
def
= ∀x, l, r. (x ↪→ l, r,−,−)⇒

noDangling(l) ∧ noDangling(r).

The heap described by the main invariant of the program is the footprint
of the entire algorithm, which is exactly the structure that is reachable from
the address root. The invariant itself is:

noDanglingR ∧ noDangling(t) ∧ noDangling(p) ∧

(listMarkedNodesR(stack, p) ∗

(restoredListR(stack, t) −∗ spansR(STree, root))) ∧
(markedR ∗ (unmarkedR ∧ (∀x. allocated(x)⇒

(reach(t, x) ∨ reachRightChildInList(stack, x))))).

At the point in the computation described by this invariant, the value of the
variable t indicates the current subheap that is about to be scanned. At the

1.9. PROVING THE SCHORR-WAITE ALGORITHM 27

beginning of the computation, there is a path called the spine from root to
this value:

root
�
��
A
AU
�

��
C
CW
t
�

�
�

�
�

�
�

�

A
A
A
A
A
A
A
A

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

The assertion restoredListR(stack, t) describes this state of the spine; the ab-
stract variable stack encodes the information contained in the spine.

At the instant described by the invariant, however, the links in the spine
are reversed:

root

�
��

A
AK

�
��

p

t
�

�
�

�
�

�
�

�

A
A
A
A
A
A
A
A

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

This reversed state of the spine, again containing the information encoded
by stack, is described by the assertion listMarkedNodesR(stack, p).

The assertion spansR(STree, root), which also occurs in the precondition
of the algorithm, asserts that the abstract structure STree is a spanning tree
of the heap. Thus, the second and third lines of the invariant use separating
implication elegantly to assert that, if the spine is correctly restored, then
the heap will have the same spanning tree as it had initially. (In fact, the
proof goes through if spansR(STree, root) is any predicate about the heap

28 CHAPTER 1. AN OVERVIEW

that is independent of the boolean fields in the records; spanning trees are
used only because they are sufficent to determine the heap, except for the
boolean fields.) To the author’s knowledge, this part of the invariant is the
earliest conceptual use of separating implication in a real proof of a program
(as opposed to its formal use in expressing backward-reasoning rules and
weakest preconditions).

In the rest of the invariant, the heap is partitioned into marked and
unmarked records, and it is asserted that every active unmarked record can
be reached from the variable t or from certain fields in the spine. However,
since this assertion lies within the right operand of the separating conjunction
that separates marked and unmarked notes, the paths by which the unmarked
records are reached must consist of unmarked records. Anyone (such as the
author [41, Section 5.1]) who has tried to verify this kind of graph traversal,
even informally, will appreciate the extraordinary succinctness of the last two
lines of Yang’s invariant.

1.10 Shared-Variable Concurrency

O’Hearn has extended separation logic to reason about shared-variable con-
currency, drawing upon early ideas of Hoare [42] and Owicki and Gries [43].

For the simplest case, where concurrency is unconstrained by any kind of
synchronization mechanism, Hoare had given the straightforward rule:

{p1} c1 {q1} {p2} c2 {q2}
{p1 ∧ p2} c1 ‖ c2 {q1 ∧ q2},

when the free variables of p1, c1, and q1 are not modified by c2, and vice-versa.
Unfortunately, this rule fails in separation logic since, even though the

side condition prohibits the processes from interfering via assignments to
variables, they permit interference via mutations in the heap. O’Hearn real-
ized that the rule could be saved by replacing the ordinary conjunctions by
separating conjunctions, which separated the heap into parts that can only
be mutated by a single process:

{p1} c1 {q1} {p2} c2 {q2}
{p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2}

(with the same side condition as above).

1.10. SHARED-VARIABLE CONCURRENCY 29

Things became far less straightforward, however, when synchronization
was introduced. Hoare had investigated conditional critical regions, keyed to
“resources”, which were disjoint collections of variables. His crucial idea was
that there should be an invariant associated with each resource, such that
when one entered a critical region keyed to a resource, one could assume that
the invariant was true, but when one left the region, the invariant must be
restored.

O’Hearn was able to generalize these ideas so that both processes and
resources could “own” portions of the heap, and this ownership could move
among processes and resources dynamically as the processes entered and left
critical regions.

As a simple example, consider two processes that share a buffer consisting
of a single cons-cell. At the level of the processes, there are simply two
procedures: put(x), which accepts a cons-cell and makes it disappear, and
get(y), which makes a cons-cell appear. The first process allocates a cons-
cell and gives it to put(x); the second process obtains a cons-cell from get(y),
uses it, and deallocates it:

{emp}
{emp ∗ emp}

{emp} {emp}
x := cons(. . . , . . .) ; get(y) ;

{x 7→ −,−} ‖ {y 7→ −,−}
put(x) ; “Use y” ;

{emp} {y 7→ −,−}
dispose y ;

{emp}
{emp ∗ emp}

{emp}

Behind the scenes, however, there is a resource buf that implements a
small buffer that can hold a single cons-cell. Associated with this resource
are a boolean variable full, which indicates whether the buffer currently holds
a cell, and an integer variable c that points to the cell when full is true. Then
put(x) is implemented by a critical region that checks the buffer is empty
and then fills it with x, and get(y) is implemented by a conditional critical

30 CHAPTER 1. AN OVERVIEW

regions that checks the buffer is full and then empties it into y:

put(x) = with buf when ¬ full do (c := x ; full := true)

get(y) = with buf when full do (y := c ; full := false)

Associated with the resource buf is an invariant:

R
def
= (full ∧ c 7→ −,−) ∨ (¬ full ∧ emp).

The effect of O’Hearn’s inference rule for critical regions is that the resource
invariant is used explicitly to reason about the body of a critical region, but
is hidden outside of the critical region:

{x 7→ −,−}

put(x) = with buf when ¬ full do (
{(R ∗ x 7→ −,−) ∧ ¬ full}
{emp ∗ x 7→ −,−}
{x 7→ −,−}
c := x ; full := true

{full ∧ c 7→ −,−}
{R}

{R ∗ emp})
{emp}

{emp}

get(y) = with buf when full do (
{(R ∗ emp) ∧ full}
{c 7→ −,− ∗ emp}
{c 7→ −,−}
y := c ; full := false

{¬ full ∧ y 7→ −,−}
{(¬ full ∧ emp) ∗ y 7→ −,−}

{R ∗ y 7→ −,−})
{y 7→ −,−}

1.11. FRACTIONAL PERMISSIONS 31

On the other hand, the resource invariant reappears outside the declaration
of the resource, indicating that it must be initialized beforehand, and will
remain true afterwards:

{R ∗ emp}
resource buf in

{emp}
{emp ∗ emp}
... ‖ ...

{emp ∗ emp}
{emp}

{R ∗ emp}

1.11 Fractional Permissions

Especially in concurrent programming, one would like to extend separation
logic to permit passivity, i.e., to allow processes or other subprograms that are
otherwise restricted to separate storage to share access to read-only variables.
R. Bornat [32] has opened this possibility by introducing the concept of
permissions, originally devised by John Boyland [31].

The basic idea is to associate a fractional real number called a permission
with the 7→ relation. We write e

z7→ e′, where z is a real number such that

0 < z ≤ 1, to indicate that e points to e′ with permission z. Then e
17→ e′ has

the same meaning as e 7→ e′, so that a permission of one allows all operations,
but when z < 1 only lookup operations are allowed.

This idea is formalized by a conservation law for permissions:

e
z7→ e′ ∗ e

z′
7→ e′ iff e

z+z′
7−→ e′,

along with local axiom schemata for each of the heap-manipulating opera-
tions:

{emp}v := cons(e1, . . . , en){e 17→ e1, . . . , en}

{e 17→ −}dispose(e){emp}

{e 17→ −}[e] := e′{e 17→ e′}

{e z7→ e′}v := [e]{e z7→ e′ ∧ v = e},

32 CHAPTER 1. AN OVERVIEW

with appropriate restrictions on variable occurrences.

Chapter 2

Assertions

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

In this chapter, we give a more detailed exposition of the assertions of
separation logic: their meaning, illustrations of their usage, inference rules,
and several classes of assertions with special properties.

First, we discuss some general properties that are shared among assertions
and other phrases occurring in both our programming language and its logic.
In all cases, variable binding behaves in the standard manner. In expres-
sions there are no binding constructions, in assertions quantifiers are binding
constructions, and in commands declarations are binding constructions. In
each case, the scope of the variable being bound is the immediately following
subphrase, except that in declarations of the form newvar v = e in c, or
iterated separating conjunctions of the form

⊙e1
v=e0

p (to be introduced in
Section 6.1), the initialization e and the bounds e0 and e1 are not in the
scope of the binder v.

We write FV(p) for the set of variables occurring free in p, which is defined
in the standard way. The meaning of any phrase is independent of the value
of those variables that do not occur free in the phrase.

Substitution is also defined in the standard way. We begin by considering
total substitutions that act upon all the free variables of a phrase: For any
phrase p such that FV(p) ⊆ {v1, . . . , vn}, we write

p/v1 → e1, . . . , vn → en

to denote the phrase obtained from p by simultaneously substituting each
expression ei for the variable vi, (When there are bound variables in p, they
will be renamed to avoid capture.)

33

34 CHAPTER 2. ASSERTIONS

When expressions are substituted for variables in an expression or asser-
tion p, the effect mimics a change of the store. In the specific case where p
is an expression:

Proposition 1 (Total Substitution Law for Expressions) Let δ abbreviate
the substitution

v1 → e1, . . . , vn → en,

let s be a store such that FV(e1) ∪ · · · ∪ FV(en) ⊆ dom s, and let

ŝ = [v1: [[e1]]exps | . . . | vn: [[en]]exps].

If e is an expression (or boolean expression) such that FV(e) ⊆ {v1, . . . , vn},
then

[[e/δ]]exps = [[e]]expŝ.

Here we have introduced a notation for describing stores (and more generally,
functions with finite domains) by enumeration: We write [x1: y1 | . . . | xn: yn]
(where x1,. . . , xn are distinct) for the function with domain {x1, . . . , xn} that
maps each xi into yi.

Next, we generalize this result to partial substitutions that need not act
upon all the free variables of a phrase: When FV(p) is not a subset of
{v1, . . . , vn},

p/v1 → e1, . . . , vn → en

abbreviates

p/v1 → e1, . . . , vn → en, v
′
1 → v′1, . . . , v

′
k → v′k,

where {v′1, . . . , v′k} = FV(p)− {v1, . . . , vn}. Then the above proposition can
be generalized to

Proposition 2 (Partial Substitution Law for Expressions) Suppose e is an
expression (or boolean expression), and let δ abbreviate the substitution

v1 → e1, . . . , vn → en,

Then let s be a store such that (FV(e)−{v1, . . . , vn})∪FV(e1)∪· · ·∪FV(en)
⊆ dom s, and let

ŝ = [s | v1: [[e1]]exps | . . . | vn: [[en]]exps].

Then
[[e/δ]]exps = [[e]]expŝ.

2.1. THE MEANING OF ASSERTIONS 35

Here we have introduced a notation for describing the extension or variation
of a function. We write [f | x1: y1 | . . . | xn: yn] (where x1,. . . , xn are
distinct) for the function whose domain is the union of the domain of f with
{x1, . . . , xn}, that maps each xi into yi and all other members x of the domain
of f into f x.

A similar result for assertions will be given in the next section. As we will
see in the next chapter, however, the situation for commands is more subtle.

2.1 The Meaning of Assertions

When s is a store, h is a heap, and p is an assertion whose free variables all
belong to the domain of s, we write

s, h |= p

to indicate that the state s, h satisfies p, or p is true in s, h, or p holds in s, h.
Then the following formulas define this relation by induction on the structure
of p. (Here we write h0 ⊥ h1 when h0 and h1 are heaps with disjoint domains,
and h0 · h1 to denote the union of heaps with disjoint domains.)

s, h |= b iff [[b]]bexps = true,

s, h |= ¬ p iff s, h |= p is false,

s, h |= p0 ∧ p1 iff s, h |= p0 and s, h |= p1

(and similarly for ∨, ⇒, ⇔),

s, h |= ∀v. p iff ∀x ∈ Z. [s | v: x], h |= p,

s, h |= ∃v. p iff ∃x ∈ Z. [s | v: x], h |= p,

s, h |= emp iff dom h = {},

s, h |= e 7→ e′ iff dom h = {[[e]]exps} and h([[e]]exps) = [[e′]]exps,

s, h |= p0 ∗ p1 iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h and

s, h0 |= p0 and s, h1 |= p1,

s, h |= p0 −∗ p1 iff ∀h′. (h′ ⊥ h and s, h′ |= p0) implies

s, h · h′ |= p1.

36 CHAPTER 2. ASSERTIONS

All but the last four formulas coincide with the standard interpretation of
predicate logic, with the heap h being carried along without change.

When s, h |= p holds for all states s, h (such that the domain of s contains
the free variables of p), we say that p is valid. When s, h |= p holds for some
state s, h, we say that p is satisfiable.

The following illustrates the use of these formulas to determine the mean-
ing of an assertion:

s, h |= x 7→ 0 ∗ y 7→ 1 iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h

and s, h0 |= x 7→ 0

and s, h1 |= y 7→ 1

iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h

and dom h0 = {s x} and h0(s x) = 0

and dom h1 = {s y} and h1(s y) = 1

iff s x 6= s y

and dom h = {s x, s y}
and h(s x) = 0 and h(s y) = 1

iff s x 6= s y and h = [s x: 0 | s y: 1].

The following illustrate the meaning of 7→ and ↪→ (including the abbre-
viations defined in Section 1.4):

s, h |= x 7→ y iff dom h = {s x} and h(s x) = s y

s, h |= x 7→ − iff dom h = {s x}

s, h |= x ↪→ y iff s x ∈ dom h and h(s x) = s y

s, h |= x ↪→ − iff s x ∈ dom h

s, h |= x 7→ y, z iff h = [s x: s y | s x + 1: s z]

s, h |= x 7→ −,− iff dom h = {s x, s x + 1}

s, h |= x ↪→ y, z iff h ⊇ [s x: s y | s x + 1: s z]

s, h |= x ↪→ −,− iff dom h ⊇ {s x, s x + 1}.

2.1. THE MEANING OF ASSERTIONS 37

To illustrate the meaning of the separating conjunction, suppose s x and
s y are distinct addresses, so that

h0 = [s x: 0] and h1 = [s y: 1]

are heaps with disjoint domains. Then

If p is: then s, h |= p iff:

x 7→ 0 h = h0

y 7→ 1 h = h1

x 7→ 0 ∗ y 7→ 1 h = h0 · h1

x 7→ 0 ∗ x 7→ 0 false

x 7→ 0 ∨ y 7→ 1 h = h0 or h = h1

x 7→ 0 ∗ (x 7→ 0 ∨ y 7→ 1) h = h0 · h1

(x 7→ 0 ∨ y 7→ 1) ∗ (x 7→ 0 ∨ y 7→ 1) h = h0 · h1

x 7→ 0 ∗ y 7→ 1 ∗ (x 7→ 0 ∨ y 7→ 1) false

x 7→ 0 ∗ true h0 ⊆ h

x 7→ 0 ∗ ¬ x 7→ 0 h0 ⊆ h.

Here the behavior of disjunction is slightly surprising.
The effect of substitution on the meaning of assertions is similar to that

on expressions. We consider only the more general partial case:

Proposition 3 (Partial Substitution Law for Assertions) Suppose p is an
assertion, and let δ abbreviate the substitution

v1 → e1, . . . , vn → en,

Then let s be a store such that (FV(p)−{v1, . . . , vn})∪FV(e1)∪· · ·∪FV(en)
⊆ dom s, and let

ŝ = [s | v1: [[e1]]exps | . . . | vn: [[en]]exps].

Then
s, h |= (p/δ) iff ŝ, h |= p.

38 CHAPTER 2. ASSERTIONS

2.2 Inference

We will reason about assertions using inference rules of the form

P1 · · · Pn

C,

where the zero or more Pi are called the premisses and the C is called the
conclusion.

The premisses and conclusion are schemata, i.e., they may contain meta-
variables, each of which ranges over some set of phrases, such as expressions,
variables, or assertions. To avoid confusion, we will use italic (or occasionally
Greek) characters for metavariables, but sans serif characters for the object
variables of the logic and programming lanugage.

An instance of an inference rule is obtained by replacing each metavariable
by a phrase in its range. These replacements must satisfy the side conditions
(if any) of the rule. (Since this is replacement of metavariables rather than
substitution for variables, there is never any renaming.) For instance,

Inference Rules Instances

p0 p0 ⇒ p1

p1

x + 0 = x x + 0 = x ⇒ x = x + 0

x = x + 0

e1 = e0 ⇒ e0 = e1 x + 0 = x ⇒ x = x + 0

x + 0 = x x + 0 = x

An inference rule is sound iff, for all instances, if the premisses of the
instance are all valid, then the conclusion is valid.

A formal proof (for assertions) is a sequence of assertions, each of which
is the conclusion of some instance of a sound inference rule whose premisses
occur earlier in the sequence. For example,

x + 0 = x

x + 0 = x ⇒ x = x + 0

x = x + 0.

2.2. INFERENCE 39

Since we require the inference rules used in the proof to be sound, it
follows that the assertions in a formal proof must all be valid.

Notice the distinction between formal proofs, whose constituents are as-
sertions written in separation logic (or, in the next chapter, specifications
containing assertions and commands), and meta-proofs, which are ordinary
mathematical proofs using the semantics of assertions (and, in the next chap-
ter, of commands).

An inference rule with zero premisses is called an axiom schema. The
overbar is often omitted. (Notice that the first assertion in a proof must be an
instance of an axiom schema.) An axiom schema containing no metavariables
(so that it is its own unique instance) is called an axiom. The overbar is
usually omitted.

The following are inference rules that are sound for predicate calculus,
and remain sound for the extension to assertions in separation logic:

p p⇒ q

q
(modus ponens)

p⇒ q

p⇒ (∀v. q)
when v /∈ FV(p)

p⇒ q

(∃v. p)⇒ q
when v /∈ FV(q).

(2.1)

In addition, the following axiom schemas are sound for predicate calculus

40 CHAPTER 2. ASSERTIONS

and assertions in separation logic:

p ⇒ (q ⇒ p)

(p⇒ (q ⇒ r)) ⇒ ((p⇒ q)⇒ (p⇒ r))

(p ∧ q) ⇒ p

(p ∧ q) ⇒ q

p ⇒ (q ⇒ (p ∧ q))

p ⇒ (p ∨ q)

q ⇒ (p ∨ q)

(p⇒ r) ⇒ ((q ⇒ r)⇒ ((p ∨ q)⇒ r))

(p⇒ q) ⇒ ((p⇒¬ q)⇒¬ p)

¬(¬ p) ⇒ p

(p ⇔ q) ⇒ ((p⇒ q) ∧ (q ⇒ p))

((p⇒ q) ∧ (q ⇒ p)) ⇒ (p ⇔ q)

(∀v. p) ⇒ (p/v → e)

(p/v → e) ⇒ (∃v. p).

(2.2)

The rules in (2.1) and (2.2) (with the exception of the rules involving ⇔) are
taken from Kleene [44, page 82]. They are (one of many possible) complete
sets of logical inference rules (i.e., rules that are sound for any interpretation
of the domain of discourse or the function and predicate symbols).

It is important to notice the difference between

p

q
and p⇒ q.

A rule of the first form will be sound providing, for all instances, the validity
of p implies the validity of q, i.e., whenever p holds for all states, q holds
for all states. But a rule of the second form will be sound providing, for all
instances, p⇒ q is valid, i.e., for every state, if p holds in that state then q
holds in the same state. Consider the rule of generalization (which can be
derived from the rules above),

p

∀v. p
.

2.2. INFERENCE 41

This rule is sound; for example, the instance

x + y = y + x

∀x. x + y = y + x

is sound because its conclusion is valid, while the instance

x = 0

∀x. x = 0

is sound because its premiss is not valid.
On the other hand, the corresponding implication

p ⇒ ∀v. p (unsound)

is not sound, since, for instance, there is a state in which x = 0 holds but
∀x. x = 0 does not.

We have already seen the following general inference rules for assertions:

p0 ∗ p1 ⇔ p1 ∗ p0

(p0 ∗ p1) ∗ p2 ⇔ p0 ∗ (p1 ∗ p2)

p ∗ emp ⇔ p

(p0 ∨ p1) ∗ q ⇔ (p0 ∗ q) ∨ (p1 ∗ q)

(p0 ∧ p1) ∗ q ⇒ (p0 ∗ q) ∧ (p1 ∗ q)

(∃x. p0) ∗ p1 ⇔ ∃x. (p0 ∗ p1) when x not free in p1

(∀x. p0) ∗ p1 ⇒ ∀x. (p0 ∗ p1) when x not free in p1

(2.3)

p0 ⇒ p1 q0 ⇒ q1

p0 ∗ q0 ⇒ p1 ∗ q1

(monotonicity)

p0 ∗ p1 ⇒ p2

p0 ⇒ (p1 −∗ p2)
(currying)

p0 ⇒ (p1 −∗ p2)

p0 ∗ p1 ⇒ p2.
(decurrying)

as well as specific rules for 7→ and ↪→:

e0 7→ e′0 ∧ e1 7→ e′1 ⇔ e0 7→ e′0 ∧ e0 = e1 ∧ e′0 = e′1

e0 ↪→ e′0 ∗ e1 ↪→ e′1 ⇒ e0 6= e1

emp ⇔ ∀x. ¬(x ↪→ −)

(e ↪→ e′) ∧ p ⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).

(2.4)

42 CHAPTER 2. ASSERTIONS

2.3 Special Classes of Assertions

There are several classes of assertions that play an important role in separa-
tion logic. In each case, the class has a semantic definition that implies the
soundness of additional axiom schemata; often there are also useful syntactic
criteria that imply membership in the class.

2.3.1 Pure Assertions

The simplest such class is that of pure assertions, which are independent of
the heap. More precisely, an assertion p is pure iff, for all stores s and all
heaps h and h′,

s, h |= p iff s, h′ |= p.

A sufficient syntactic criteria is that an assertion is pure if it does not contain
emp, 7→, or ↪→.

When all of the subphrases of an assertion are pure, the distinction be-
tween separating and ordinary operations collapses, so that ∗ and ∧ are
interchangeable, as are −∗ and ⇒. The following axiom schemata delineate
the consequences when some subassertions are pure:

p0 ∧ p1 ⇒ p0 ∗ p1 when p0 or p1 is pure

p0 ∗ p1 ⇒ p0 ∧ p1 when p0 and p1 are pure

(p ∧ q) ∗ r ⇔ (p ∗ r) ∧ q when q is pure

(p0 −∗ p1) ⇒ (p0 ⇒ p1) when p0 is pure

(p0 ⇒ p1) ⇒ (p0 −∗ p1) when p0 and p1 are pure.

(The third of these schemata is ubiquitous in proofs of programs.)

2.3.2 Strictly Exact Assertions

At the opposite extreme from pure assertions are strictly exact assertions,
which uniquely determine the heap. An assertion is strictly exact iff, for all
stores s and all heaps h and h′,

s, h |= p and s, h′ |= p implies h = h′.

(This classification of assertions was introduced by Yang [10].)
Examples of strictly exact assertions include:

2.3. SPECIAL CLASSES OF ASSERTIONS 43

• emp.

• e 7→ e′.

• p ∗ q, when p and q are strictly exact.

• p ∧ q, when p or q is strictly exact.

• p, when p⇒ q is valid and q is strictly exact.

Proposition 4 When q is strictly exact,

((q ∗ true) ∧ p)⇒ (q ∗ (q −∗ p))

is valid.

Proof Suppose s, h |= (q ∗ true)∧p, so that s, h |= q ∗ true and s, h |= p.
Then there are heaps h0 and h1 such that h0 ⊥ h1, h0 ·h1 = h, and s, h0 |= q.

To see that s, h1 |= q −∗ p, let h′ be any heap such that h′ ⊥ h1 and
s, h′ |= q. Since q is strictly exact, h′ = h0, so that h′ · h1 = h0 · h1 = h, and
thus s, h′ · h1 |= p.

Then s, h0 · h1 |= q ∗ (q −∗ p), so that s, h |= q ∗ ((q −∗ p).
end of proof

For example, taking q to be the strictly exact assertion e 7→ e′ gives the
final axiom schema in (2.4).

2.3.3 Precise Assertions

Given a heap, if a precise assertion holds for any subheap, then it holds for
a unique subheap. In other words, an assertion q is precise iff, for all s and
h, there is at most one h′ ⊆ h such that

s, h′ |= q.

Examples of precise assertions include:

• Strictly exact assertions

• e 7→ −

• p ∗ q, when p and q are precise

44 CHAPTER 2. ASSERTIONS

• p ∧ q, when p or q is precise

• p, when p⇒ q is valid and q is precise

• list α e and ∃α. list α e

• tree τ (e) and ∃τ. tree τ (e),

where list is defined in Section 1.6, and tree is defined in Section 1.7.
On the other hand, the following are instances of imprecise assertions:

true emp ∨ x 7→ 10 x 7→ 10 ∨ y 7→ 10 ∃x. x 7→ 10

dag τ (i) ∃τ. dag τ (i),

where dag is defined as in Section 1.7.
There is a close connection between preciseness and distributivity. The

semi-distributive laws

(p0 ∧ p1) ∗ q ⇒ (p0 ∗ q) ∧ (p1 ∗ q)

(∀x. p) ∗ q ⇒ ∀x. (p ∗ q) when x not free in q

are valid for all assertions. But their converses

(p0 ∗ q) ∧ (p1 ∗ q) ⇒ (p0 ∧ p1) ∗ q

∀x. (p ∗ q) ⇒ (∀x. p) ∗ q when x not free in q

are not. For example, when

s(x) = 1 s(y) = 2 h = [1: 10 | 2: 20],

the assertion

(x 7→ 10 ∗ (x 7→ 10 ∨ y 7→ 20)) ∧ (y 7→ 20 ∗ (x 7→ 10 ∨ y 7→ 20))

is true, but

((x 7→ 10 ∧ y 7→ 20) ∗ (x 7→ 10 ∨ y 7→ 20))

is false.
However, the converses are valid when q is precise:

2.3. SPECIAL CLASSES OF ASSERTIONS 45

Proposition 5 When q is precise,

(p0 ∗ q) ∧ (p1 ∗ q) ⇒ (p0 ∧ p1) ∗ q

is valid. When q is precise and x is not free in q,

∀x. (p ∗ q) ⇒ (∀x. p) ∗ q

is valid.

Proof (of the first law) Suppose s, h |= (p0 ∗ q) ∧ (p1 ∗ q). Then there
are:

• An h0 ⊆ h such that s, h− h0 |= p0 and s, h0 |= q, and

• An h1 ⊆ h such that s, h− h1 |= p1 and s, h1 |= q.

Thus, since q is precise, h0 = h1, h − h0 = h − h1, s, h − h0 |= p0 ∧ p1, and
s, h |= (p0 ∧ p1) ∗ q. end of proof

2.3.4 Intuitionistic Assertions

Intuitionistic assertions are monotone with respect to the extension of heaps.
An assertion i is intuitionistic iff, for all stores s and heaps h and h′:

(h ⊆ h′ and s, h |= i) implies s, h′ |= i.

Assume i and i′ are intuitionistic assertions, p is any assertion, e and e′

are expressions, and τ denotes an S-expression. Then the following assertions
are intuitionistic:

Any pure assertion p ∗ i

p −∗ i i −∗ p

i ∧ i′ i ∨ i′

∀v. i ∃v. i

dag τ (e) ∃τ. dag τ (e),

and as special cases:

p ∗ true true −∗ p e ↪→ e′.

46 CHAPTER 2. ASSERTIONS

The following inference rules are sound when i and i′ are intuitionistic:

(i ∗ i′)⇒ (i ∧ i′)

(i ∗ p)⇒ i i⇒ (p −∗ i)

p⇒ i

(p ∗ true)⇒ i

i⇒ p

i⇒ (true −∗ p).

The last two of these rules, in conjunction with the rules

p⇒ (p ∗ true) (true −∗ p)⇒ p,

which hold for all assertions, implies that p ∗ true is the strongest intu-
itionistic assertion weaker than p, and true −∗ p is the weakest intuitionistic
assertion that is stronger than p. In turn this implies, when i is intuitionistic,

i ⇔ (i ∗ true) (true −∗ i) ⇔ i.

If we define the operations

i¬ p
def
= true −∗ (¬ p)

p
i⇒ q

def
= true −∗ (p ⇒ q)

p
i⇔ q

def
= true −∗ (p ⇔ q),

then the assertions built from pure assertions and e ↪→ e′, using these oper-
ations and ∧, ∨, ∀, ∃, ∗ , and −∗ form an intuitionistic version of separation
logic, which can be translated into the classical version by replacing the left
sides of the above definitions by their right sides.

This is the modal translation from intuitionistic to classical separation
logic given by Ishtiaq and O’Hearn [5]. It allows us to reason intuitionistically
within the classical logic rather than using the intuitionistic logic.

2.3.5 Supported Assertions

It is easily seen that no assertion that is true in any state can be both precise
and intuitionistic.

Thus satisfiable precise assertions do not inhabit the intuitionistic world.
This raises the question of whether there is a class of assertions that bears

2.3. SPECIAL CLASSES OF ASSERTIONS 47

the same relationship to intuitionistic assertions that precise assertions bear
to arbitrary (i.e., classical) assertions. In this section, we will see that this
role is filled by supported assertions.

An assertion q is supported iff, for all s, h0, and h1, if h0∪h1 is a function,
and s, h0 |= q and s, h1 |= q are true, then there is an h′ such that h′ ⊆ h0,
h′ ⊆ h1, and s, h′ |= q is true. Equivalently,

Proposition 6 An assertion q is supported iff, for all s and h, if the set

H = {h′ | h′ ⊆ h and s, h′ |= q }

is nonempty, then it has a least element.

Proof Suppose that q is supported, fix s and h, and let h0 be a member of
H with minimum domain size, and h1 be any member of H. Since h0 and h1

are both subsets of h, h0 ∪ h1 must be a function. Then the first definition
guarantees that there is an h′ ∈ H that is a subset of both h0 and h1. But
h′ must be equal to h0, since otherwise it would have a smaller domain size.
Thus h0 ⊆ h1 for every h1 ∈ H.

On the other hand, suppose that q meets the conditions of the proposition,
h0∪h1 is a function, s, h0 |= q and s, h1 |= q are true. Take h to be h0∪h1, so
that h0, h1 ∈ H. Then take h′ to be the least element of H. end of proof

For example, the following assertions are imprecise, intuitionistic, and
supported:

true x ↪→ 10 x ↪→ 10 ∧ y ↪→ 10 dag τ (i) ∃τ. dag τ (i),

imprecise, intuitionistic, and unsupported:

x ↪→ 10 ∨ y ↪→ 10 ∃x. x ↪→ 10 ¬ emp,

imprecise, nonintuitionistic, and supported:

emp ∨ x 7→ 10,

and imprecise, nonintuitionistic, and unsupported:

x 7→ 10 ∨ y 7→ 10 ∃x. x 7→ 10.

When q is supported and the remaining assertions are intuitionistic, the
semidistributive laws given earlier become full distributive laws:

48 CHAPTER 2. ASSERTIONS

Proposition 7 When p0 and p1 are intuitionistic and q is supported,

(p0 ∗ q) ∧ (p1 ∗ q) ⇒ (p0 ∧ p1) ∗ q

is valid. When p is intuitionistic, q is supported, and x is not free in q,

∀x. (p ∗ q) ⇒ (∀x. p) ∗ q

is valid.

Proof (of the first law): Suppose s, h |= (p0 ∗ q) ∧ (p1 ∗ q). Then there
are:

An h0 ⊆ h such that s, h− h0 |= p0 and s, h0 |= q,

An h1 ⊆ h such that s, h− h1 |= p1 and s, h1 |= q.

Then, since q is supported and h0 ∪ h1 is a function, there is an h′ ⊆ h0, h1

such that s, h′ |= q. Moreover, since h − h0, h − h1 ⊆ h − h′, and p0 and p1

are intuitionistic, s, h− h′ |= p0 ∧ p1, and therefore s, h |= (p0 ∧ p1) ∗ q.
end of proof

We have already seen that, if p is any assertion, then p ∗ true is intu-
itionistic, and if i is intuitionistic, then i ⇔ (i ∗ true). Thus, − ∗ true
maps arbitrary assertions into intuitionistic assertions, and acts as an identity
(up to equivalence of assertions) on the latter.

In addition,

Proposition 8 (1) If p is precise, then p is supported. (2) q is supported iff
q ∗ true is supported.

Proof (1) If p is precise, then, for any s and h, the set H = {h′ | h′ ⊆
h and s, h′ |= q } in Proposition 6 contains at most one element.

(2) Suppose q is supported, h0 ∪ h1 is a function, s, h0 |= q ∗ true and
s, h1 |= q ∗ true. Then there are h′

0 ⊆ h0 and h′
1 ⊆ h1 such that s, h′

0 |= q
and s, h′

1 |= q, and since q is supported, there is an h′ that is a subset
of h′

0 and h′
1, and therefore h0 and h1, such that s, h′ |= q, and therefore

s, h′ |= q ∗ true.
Suppose q ∗ true is supported, h0 ∪ h1 is a function, s, h0 |= q and

s, h1 |= q. Then s, h0 |= q ∗ true and s, h1 |= q ∗ true, and since q ∗ true
is supported, there is a common subset h′ of h0 and h1 such that s, h′ |= q ∗
true. But then there is a subset h′′ of h′, and therefore of h0 and h1, such
that s, h′′ |= q. end of proof

2.3. SPECIAL CLASSES OF ASSERTIONS 49

(The analogous conjecture, that q is supported iff true −∗ q is supported,
fails in both directions. Suppose q is 1 ↪→ 1 ∨ 2 ↪→ 2 ∨ emp. Then q is
supported, since the empty heap is the least heap in which it holds, but
true −∗ q is not supported, since it holds for the heaps [1: 1] and [2: 2], but
not for their only common subheap, which is the empty heap. On the other
hand, suppose q is 1 ↪→ 1∨ 2 7→ 2. Then true −∗ q is supported, since [1: 1]
is the least heap for which it holds, but q is not supported, since it holds for
[1: 1] and [2: 2], but not for the empty heap.)

Thus − ∗ true maps precise assertions into supported intuitionistic as-
sertions and acts as an identity (up to equivalence of assertions) on the latter.

2.3.6 The Precising Operation

Having found an operation that maps precise assertions into supported intu-
itionistic assertions, we now introduce an operation, due to Yang, that moves
in the opposite direction, which we call the precising operation:

Pr p
def
= p ∧ ¬(p ∗ ¬ emp).

For example,

Pr true iff emp

Pr (x ↪→ 10) iff x 7→ 10

Pr (emp ∨ x 7→ 10) iff emp

Pr (x ↪→ 10 ∧ y ↪→ 10) iff

if x = y then x 7→ 10 else (x 7→ 10 ∗ y 7→ 10)

Then

Proposition 9 (1) If p is supported, then Pr p is precise. (2) If p is precise,
then Pr p ⇔ p.

Proof (1) Suppose p is supported, and h0, h1 ⊆ h are such that s, h0 |= Pr p
and s, h1 |= Pr p.

We must show h0 = h1. Assume the contrary. Since Pr p is p ∧ ¬(p ∗
¬ emp),we have s, h0 |= p and s, h1 |= p. Then since p is supported, there is
a common subset h′ of h0 and h1 such that s, h′ |= p. Since h0 6= h1, however,

50 CHAPTER 2. ASSERTIONS

h′ must be a proper subset of hi for i = 0 or i = 1. Thus hi = h′ · (hi − h′),
where s, hi − h′ |= ¬ emp. Then s, hi |= p ∗ ¬ emp, which contradicts
s, hi |= Pr p.

(2) Obviously, Pr p ⇒ p. To show the opposite implication when p is
precise, assume s, h |= p. If s, h |= p ∗ ¬ emp held, then there would
be a proper subset h′ of h such that s, h′ |= p, which would contradict the
preciseness of p. Thus s, h |= ¬(p ∗ ¬ emp). end of proof

Thus Pr maps supported operations into precise operations, and acts as
an identity on the latter.

(The conjecture that, when p is supported, Pr p is the weakest precise
assertion stronger than p, is false. Suppose p is the supported assertion
1 7→ 1 ∨ emp. Then 1 7→ 1 is a precise assertion stronger than p, but Pr p,
which is equivalent to emp, is not weaker than 1 7→ 1.)

Additional relationships between − ∗ true and Pr are provided by

Proposition 10

(1) Pr (p ∗ true)⇒ p.

(2) p⇒ Pr (p ∗ true) when p is precise.

(3) (Pr q) ∗ true⇒ q when q is intuitionistic.

(4) q ⇒ (Pr q) ∗ true when q is supported.

Therefore, Pr (p ∗ true) ⇔ p when p is precise, and (Pr q) ∗ true ⇒ q
when q is supported and intuitionistic.

Proof (1) Suppose s, h |= Pr (p ∗ true). Then s, h |= p ∗ true and
s, h |= ¬(p ∗ true ∗ ¬ emp), and there is an h′ ⊆ h such that s, h′ |= p. If
h′ = h, we are done; otherwise, h′ is a proper subset of h, so that s, h |= p ∗
true ∗ ¬ emp, which contradicts s, h |= ¬(p ∗ true ∗ ¬ emp).

(2) Suppose s, h |= p. Then s, h |= p ∗ true. Moreover, s, h |= ¬(p ∗
true ∗ ¬ emp), for otherwise s, h |= p ∗ true ∗ ¬ emp would imply that
there is a proper subset h′ of h such that s, h′ |= p, which would contradict
the preciseness of p.

(3) Suppose s, h |= (Pr q) ∗ true. Then there is an h′ ⊆ h such that
s, h′ |= Pr q. Then s, h′ |= q, and since q is intuitionistic, s, h |= q.

(4) Suppose s, h |= q. Since q is supported, there is a least h′ ⊆ h such
that s, h′ |= q. Then s, h′ |= Pr q, since otherwise s, h′ |= q ∗ ¬ emp,

2.4. SOME DERIVED INFERENCE RULES 51

which would imply that a proper subset h′′ of h′ would satisfy s, h′′ |= q,
contradicting the leastness of h′. Thus s, h |= (Pr q) ∗ true.

end of proof

Thus − ∗ true and Pr are isomorphisms between the set of precise asser-
tions and the set of supported intuitionistic assertions, and act as identities
on these sets:

Precise

���?Pr

Supported Intuitionistic

���
�
− ∗ true

-− ∗ true
�

Pr

2.4 Some Derived Inference Rules

We conclude this chapter with the deriviations of five inference rules, which
are interesting in their own right and will be useful later.

An inference-rule derivation is a proof schema, such that appropriate
replacements of the metavariables will yield a formal proof from assumptions
(steps that do not follow from previous steps). At the schematic level the
assumptions are the premisses of the rule to be proved, and the final step is
the conclusion. Thus the derivation shows how any instance of the derived
rule can be replaced by a sound proof fragment.

To derive: q ∗ (q −∗ p)⇒ p (2.5)

1. q ∗ (q −∗ p)⇒ (q −∗ p) ∗ q (p0 ∗ p1 ⇒ p1 ∗ p0)

2. (q −∗ p)⇒ (q −∗ p) (p⇒ p)

3. (q −∗ p) ∗ q ⇒ p (decurrying, 2)

4. q ∗ (q −∗ p)⇒ p (trans impl, 1, 3)

where transitive implication is the inference rule

p⇒ q q ⇒ r

p⇒ r

(which can be derived from the rules in (2.1)).
Note that, from the rule derived above, it is easy to obtain

(q ∗ (q −∗ p))⇒ ((q ∗ true) ∧ p),

52 CHAPTER 2. ASSERTIONS

which is the converse of Proposition 4 (without the restriction that q must
be strictly exact).

To derive: r⇒ (q −∗ (q ∗ r)) (2.6)

1. (r ∗ q)⇒ (q ∗ r) (p0 ∗ p1 ⇒ p1 ∗ p0)

2. r⇒ (q −∗ (q ∗ r)) (currying, 1)

To derive: (p ∗ r)⇒ (p ∗ (q −∗ (q ∗ r))) (2.7)

1. p⇒ p (p⇒ p)

2. r⇒ (q −∗ (q ∗ r)) (derived above)

3. (p ∗ r)⇒ (p ∗ (q −∗ (q ∗ r))) (monotonicity, 1, 2)

To derive:
p0 ⇒ (q −∗ r) p1 ⇒ (r −∗ s)

p1 ∗ p0 ⇒ (q −∗ s)
(2.8)

1. p1 ⇒ p1 (p⇒ p)

2. p0 ⇒ (q −∗ r) (assumption)

3. p0 ∗ q ⇒ r (decurrying, 2)

4. p1 ∗ p0 ∗ q ⇒ p1 ∗ r (monotonicity, 1, 3)

5. p1 ⇒ (r −∗ s) (assumption)

6. p1 ∗ r⇒ s (decurrying, 5)

7. p1 ∗ p0 ∗ q ⇒ s (trans impl, 4, 6)

8. p1 ∗ p0 ⇒ (q −∗ s) (currying, 7)

2.4. SOME DERIVED INFERENCE RULES 53

To derive:
p′ ⇒ p q ⇒ q′

(p −∗ q) ⇒ (p′ −∗ q′).
(2.9)

1. (p −∗ q)⇒ (p −∗ q) (p⇒ p)

2. p′ ⇒ p (assumption)

3. (p −∗ q) ∗ p′ ⇒ (p −∗ q) ∗ p (monotonicity, 1, 2)

4. (p −∗ q) ∗ p ⇒ q (decurrying, 1)

5. (p −∗ q) ∗ p′ ⇒ q (trans impl, 3, 4)

6. q ⇒ q′ (assumption)

7. (p −∗ q) ∗ p′ ⇒ q′ (trans impl, 5, 6)

8. (p −∗ q)⇒ (p′ −∗ q′) (currying, 7)

54 CHAPTER 2. ASSERTIONS

Exercise 1

Give a formal proof of the valid assertion

(x 7→ y ∗ x′ 7→ y′) ∗ true⇒

((x 7→ y ∗ true) ∧ (x′ 7→ y′ ∗ true)) ∧ x 6= x′

from the rules in (2.3) and (2.4), and (some of) the following inference rules
for predicate calculus (which can be derived from the rules in (2.1) and (2.2)):

p⇒ true p⇒ p p ∧ true⇒ p

p⇒ q q ⇒ r

p⇒ r
(trans impl)

p⇒ q p⇒ r

p⇒ q ∧ r
(∧-introduction)

Your proof will be easier to read if you write it as a sequence of steps rather
than a tree. In the inference rules, you should regard ∗ as left associative,
e.g.,

e0 7→ e′0 ∗ e1 7→ e′1 ∗ true⇒ e0 6= e1

stands for
(e0 7→ e′0 ∗ e1 7→ e′1) ∗ true⇒ e0 6= e1.

For brevity, you may weaken ⇔ to ⇒ when it is the main operator of an
axiom. You may also omit instances of the axiom schema p⇒ p when it is
used as a premiss of the monotonicity rule.

2.4. SOME DERIVED INFERENCE RULES 55

Exercise 2

None of the following axiom schemata are sound. For each, given an instance
which is not valid, along with a description of a state in which the instance
is false.

p0 ∗ p1 ⇒ p0 ∧ p1 (unsound)

p0 ∧ p1 ⇒ p0 ∗ p1 (unsound)

(p0 ∗ p1) ∨ q ⇒ (p0 ∨ q) ∗ (p1 ∨ q) (unsound)

(p0 ∨ q) ∗ (p1 ∨ q) ⇒ (p0 ∗ p1) ∨ q (unsound)

(p0 ∗ q) ∧ (p1 ∗ q) ⇒ (p0 ∧ p1) ∗ q (unsound)

(p0 ∗ p1) ∧ q ⇒ (p0 ∧ q) ∗ (p1 ∧ q) (unsound)

(p0 ∧ q) ∗ (p1 ∧ q) ⇒ (p0 ∗ p1) ∧ q (unsound)

(∀x. (p0 ∗ p1)) ⇒ (∀x. p0) ∗ p1 when x not free in p1 (unsound)

(p0 ⇒ p1) ⇒ ((p0 ∗ q) ⇒ (p1 ∗ q)) (unsound)

(p0 ⇒ p1) ⇒ (p0 −∗ p1) (unsound)

(p0 −∗ p1) ⇒ (p0 ⇒ p1) (unsound)

56 CHAPTER 2. ASSERTIONS

Chapter 3

Specifications

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

From assertions, we move on to specifications, which describe the behavior
of commands. In this chapter, we will define the syntax and meaning of spec-
ifications, give and illustrate inference rules for proving valid specifications,
and define a compact form of proof called an “annotated specification”.

Since separation logic has been built upon it, we will review the basics of
Hoare logic. Further descriptions of this logic, including many examples of
proofs, have been given by the author [41, Chapters 1 and 2], [45, Chapters
3 and 4]. A more theoretical view appears in [46, Chapter 8].

The original papers by Hoare [3, 4], as well as earlier work by Naur [47]
and Floyd [48], are still well worth reading.

3.1 Hoare Triples

For much of these notes, the only kind of specification will be the Hoare triple,
which consists of two assertions surrounding a command. More precisely,
there are two forms of Hoare triple.

A partial correctness specification, written

{p} c {q}

is valid iff, starting in any state in which the assertion p holds, no execution
of the command c aborts and, for any execution of c that terminates in a
final state, the assertion q holds in the final state.

A total correctness specification, written

[p] c [q]

57

58 CHAPTER 3. SPECIFICATIONS

is valid iff, starting in any state in which p holds, no execution of c aborts,
every execution of c terminates, and, for any execution of c that terminates
in a final state, q holds in the final state. (In these notes, we will consider
total specifications infrequently.)

In both forms, p is called the precondition (or precedent) and q is called
the postcondition (or consequent).

Notice that, in both forms, there is an implicit universal quantification
over both initial and final states. Thus the meaning of a specification is
simply true or false, and does not depend upon a state. So to say that a
specification is true is the same as saying that it is valid. (This situation will
change when we introduce procedures in Section 4.5.)

The following are examples of valid partial correctness specifications of
simple commands:

{x− y > 3} x := x− y {x > 3}

{x + y ≥ 17} x := x + 10 {x + y ≥ 27}

{emp} x := cons(1, 2) {x 7→ 1, 2}

{x 7→ 1, 2} y := [x] {x 7→ 1, 2 ∧ y = 1}

{x 7→ 1, 2 ∧ y = 1} [x + 1] := 3 {x 7→ 1, 3 ∧ y = 1}

{x 7→ 1, 3 ∧ y = 1} dispose x {x + 1 7→ 3 ∧ y = 1}

{x ≤ 10} while x 6= 10 do x := x + 1 {x = 10}

{true} while x 6= 10 do x := x + 1 {x = 10} (∗)

{x > 10} while x 6= 10 do x := x + 1 {false} (∗)

A more elaborate example is a specification of the “record-gluing” program
(1.5):

{x 7→ − ∗ y 7→ −}
if y = x + 1 then skip

else if x = y + 1 then x := y

else (dispose x ; dispose y ; x := cons(1, 2))

{x 7→ −,−}

(All of the above examples, except those marked (∗), would also be valid as
total specifications.)

3.2. HOARE’S INFERENCE RULES FOR SPECIFICATIONS 59

3.2 Hoare’s Inference Rules for Specifications

As we did with assertions in Section 2.2, we will reason about specifications
using inference rules of the form

P1 · · · Pn

C,
where the premisses and conclusion may contain metavariables, each of which
ranges over some set of phrases, such as expressions, variables, or assertions.
Again, a rule is said to be sound iff, for every instance of the rule, the
conclusion of the instance is valid whenever all of the premisses of the instance
are valid. But now the premisses may be either specifications or assertions,
and the conclusion must be a specification.

In this section, we give the original rules of Hoare logic [3] (along with
a more recent rule for variable declarations and several alternative variants
of the rules. All of the rules given here remain valid for separation logic. In
each case, we give the rule and one or more of its instances:

• Assignment (AS)

{q/v → e} v := e {q}

Instances:

{2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 {2× y = 2k ∧ k ≤ n}

{2× y = 2k ∧ k ≤ n} y := 2× y {y = 2k ∧ k ≤ n}

• Sequential Composition (SQ)

{p} c1 {q} {q} c2 {r}
{p} c1 ; c2 {r}

An instance:

{2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 {2× y = 2k ∧ k ≤ n}
{2× y = 2k ∧ k ≤ n} y := 2× y {y = 2k ∧ k ≤ n}

{2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}

60 CHAPTER 3. SPECIFICATIONS

• Strengthening Precedent (SP)

p⇒ q {q} c {r}
{p} c {r}

An instance:

y = 2k ∧ k ≤ n ∧ k 6= n⇒ 2× y = 2k+1 ∧ k + 1 ≤ n

{2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}

{y = 2k ∧ k ≤ n ∧ k 6= n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}

In contrast to rules such as Assignment and Sequential Composition,
which are called command-specific rules, the rules for Strengthening Prece-
dents and Weakening Consequents (to be introduced later) are applicable to
arbitrary commands, and are therefore called structural rules.

These two rules are exceptional in having premisses, called verification
conditions, that are assertions rather than specifications. The verification
conditions are the mechanism used to introduce mathematical facts about
kinds of data, such as y = 2k ∧ k ≤ n∧ k 6= n⇒ 2× y = 2k+1 ∧ k + 1 ≤ n, into
proofs of specifications.

To be completely formal, our notion of proof should include formal sub-
proofs of verification conditions, using the rules of predicate calculus as well
as rules about integers and other kinds of data. In these notes, however, to
avoid becoming mired in proofs of simple arithmetic facts, we will often omit
the proofs of verification conditions. It must be emphasized, however, that
the soundness of a formal proof can be destroyed by an invalid verification
condition.

• Partial Correctness of while (WH)

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬ b}

An instance:

{y = 2k ∧ k ≤ n ∧ k 6= n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}

{y = 2k ∧ k ≤ n}
while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ ¬ k 6= n}

3.2. HOARE’S INFERENCE RULES FOR SPECIFICATIONS 61

Here the assertion i is the invariant of the while command. This is the one
inference rule in this chapter that does not extend to total correctness —
reflecting that the while command is the one construct in our present pro-
gramming language that can cause nontermination. (In Section 4.5, however,
we will find a similar situation when we introduce recursive procedures.)

• Weakening Consequent (WC)

{p} c {q} q ⇒ r

{p} c {r}

An instance:

{y = 2k ∧ k ≤ n}
while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ ¬ k 6= n}

y = 2k ∧ k ≤ n ∧ ¬ k 6= n⇒ y = 2n

{y = 2k ∧ k ≤ n}
while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n}

Notice that y = 2k∧k ≤ n∧¬ k 6= n⇒y = 2n is another verification condition.

At this stage, we can give a slightly nontrivial example of a formal proof

62 CHAPTER 3. SPECIFICATIONS

(of the heart of a simple program for computing powers of two):

1. y = 2k ∧ k ≤ n ∧ k 6= n⇒ 2× y = 2k+1 ∧ k + 1 ≤ n (VC)

2. {2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 {2× y = 2k ∧ k ≤ n} (AS)

3. {2× y = 2k ∧ k ≤ n} y := 2× y {y = 2k ∧ k ≤ n} (AS)

4. {2× y = 2k+1 ∧ k + 1 ≤ n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}
(SQ 2,3)

5. {y = 2k ∧ k ≤ n ∧ k 6= n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}
(SP 1,4)

6. {y = 2k ∧ k ≤ n} (WH 5)

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ ¬ k 6= n}

7. y = 2k ∧ k ≤ n ∧ ¬ k 6= n⇒ y = 2n (VC)

8. {y = 2k ∧ k ≤ n} (WC 6,7)

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n}

Additional rules describe additional forms of commands:

• skip (SK)

{q} skip {q}

An instance:

{y = 2k ∧ ¬ odd(k)} skip {y = 2k ∧ ¬ odd(k)}

• Conditional (CD)

{p ∧ b} c1 {q} {p ∧ ¬ b} c2 {q}
{p} if b then c1 else c2 {q}

3.2. HOARE’S INFERENCE RULES FOR SPECIFICATIONS 63

An instance:

{y = 2k ∧ odd(k)} k := k + 1 ; y := 2× y {y = 2k ∧ ¬ odd(k)}
{y = 2k ∧ ¬ odd(k)} skip {y = 2k ∧ ¬ odd(k)}

{y = 2k} if odd(k) then k := k + 1; y := 2× y else skip {y = 2k ∧ ¬ odd(k)}

• Variable Declaration (DC)

{p} c {q}
{p} newvar v in c {q}

when v does not occur free in p or q.

An instance:

{1 = 20 ∧ 0 ≤ n}
k := 0 ; y := 1 ;

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n}

{1 = 20 ∧ 0 ≤ n}
newvar k in

(k := 0 ; y := 1 ;

while k 6= n do (k := k + 1 ; y := 2× y))
{y = 2n}

Here the requirement on the declared variable v formalizes the concept of
locality, i.e., that the value of v when c begins execution has no effect on this
execution, and that the value of v when c finishes execution has no effect on
the rest of the program.

Notice that the concept of locality is context-dependent: Whether a vari-
able is local or not depends upon the requirements imposed by the surround-
ing program, which are described by the specification that reflects these
requirements. For example, in the specification

{true} t := x + y ; y := t× 2 {y = (x + y)× 2},

64 CHAPTER 3. SPECIFICATIONS

t is local, and can be declared at the beginning of the command being spec-
ified, but in

{true} t := x + y ; y := t× 2 {y = (x + y)× 2 ∧ t = (x + y)},

t is not local, and cannot be declared.
For several of the rules we have given, there are alternative versions. For

instance:

• Alternative Rule for Assignment (ASalt)

{p} v := e {∃v′. v = e′ ∧ p′}

where v′ /∈ {v}∪FV(e)∪FV(p), e′ is e/v → v′, and p′ is p/v → v′. The
quantifier can be omitted when v does not occur in e or p.

The difficulty with this “forward”rule (due to Floyd [48]) is the accumulation
of quantifiers, as in the verification condition in the following proof:

1. {y = 2k ∧ k < n} k := k + 1 {∃k′. k = k′ + 1 ∧ y′ = 2k′ ∧ k′ < n} (ASalt)

2. {∃k′. k = k′ + 1 ∧ y′ = 2k′ ∧ k′ < n} y := 2× y (ASalt)

{∃y′. y = 2× y′ ∧ (∃k′. k = k′ + 1 ∧ y′ = 2k′ ∧ k′ < n)}

3. {y = 2k ∧ k < n} k := k + 1 ; y := 2× y (SQ 1)

{∃y′. y = 2× y′ ∧ (∃k′. k = k′ + 1 ∧ y′ = 2k′ ∧ k′ < n)}

4. (∃y′. y = 2× y′ ∧ (∃k′. k = k′ + 1 ∧ y′ = 2k′ ∧ k′ < n))⇒ (y = 2k ∧ k ≤ n)

(VC)

5. {y = 2k ∧ k < n} k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n} (WC 3,4)

(Compare Step 4 with the verification condition in the previous formal proof.)

• Alternative Rule for Conditionals (CDalt)

{p1} c1 {q} {p2} c2 {q}
{(b⇒ p1) ∧ (¬ b⇒ p2)} if b then c1 else c2 {q}

3.2. HOARE’S INFERENCE RULES FOR SPECIFICATIONS 65

An instance:

{y = 2k ∧ odd(k)} k := k + 1 ; y := 2× y {y = 2k ∧ ¬ odd(k)}

{y = 2k ∧ ¬ odd(k)} skip {y = 2k ∧ ¬ odd(k)}

{(odd(k)⇒ y = 2k ∧ odd(k)) ∧ (¬ odd(k)⇒ y = 2k ∧ ¬ odd(k))}
if odd(k) then k := k + 1; y := 2× y else skip

{y = 2k ∧ ¬ odd(k)}

(A comparison with the instance of (CD) given earlier indicates why (CD) is
usually preferable to (CDalt).)

There is also a rule that combines the rules for strengthening precedents
and weakening consequences:

• Consequence (CONSEQ)

p⇒ p′ {p′} c {q′} q′ ⇒ q

{p} c {q}

An instance:
(n ≥ 0)⇒ (1 = 20 ∧ 0 ≤ n)

{1 = 20 ∧ 0 ≤ n}
k := 0 ; y := 1 ;

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ ¬ k 6= n}

(y = 2k ∧ k ≤ n ∧ ¬ k 6= n)⇒ (y = 2n)

{n ≥ 0}
k := 0 ; y := 1 ;

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n}

(One can use (CONSEQ) in place of (SP) and (WC), but the price is an
abundance of vacuous verification conditions of the form p⇒ p.)

66 CHAPTER 3. SPECIFICATIONS

3.3 Annotated Specifications

As was made evident in the previous section, full-blown formal proofs in
Hoare logic, even of tiny programs, are long and tedious. Because of this, the
usual way of presenting such proofs, at least to human readers, is by means of
a specification that has been annotated with intermediate assertions. Several
examples of such annotated specifications (also often called “proof outlines”)
have already appeared in Sections 1.5 and 1.10.

The purpose of an annotated specification is to provide enough informa-
tion so that it would be straightforward for the reader to construct a full
formal proof, or at least to determine the verification conditions occuring in
the proof. In this section, we will formulate rigorous criteria for achieving
this purpose.

In the first place, we note that without annotations, it is not straightfor-
ward to construct a proof of a specification from the specification itself. For
example, if we try to use the rule for sequential composition,

{p} c1 {q} {q} c2 {r}
{p} c1 ; c2 {r},

to obtain the main step of a proof of the specification

{n ≥ 0}
(k := 0 ; y := 1) ;

while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n},

there is no indication of what assertion should replace the metavariable q.

But if we were to change the rule to

{p} c1 {q} {q} c2 {r}
{p} c1 ; {q} c2 {r},

then the new rule would require the annotation q (underlined here for em-
phasis) to occur in the conclusion:

3.3. ANNOTATED SPECIFICATIONS 67

{n ≥ 0}
(k := 0 ; y := 1) ;

{y = 2k ∧ k ≤ n}
while k 6= n do (k := k + 1 ; y := 2× y)

{y = 2n}.
Then, once q has been determined, the premisses must be

{n ≥ 0}
(k := 0 ; y := 1) ;

{y = 2k ∧ k ≤ n}
and

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2n}.

The basic trick is to add annotations to the conclusions of the inference
rules so that the conclusion of each rule completely determines its premisses.
Fortunately, however, it is not necessary to annotate every semicolon in a
command — indeed, in many cases one can even omit the precondition (or
occasionally the postcondition) from an annotated specification.

The main reason for this state of affairs is that it is often the case that, for
a command c and a postcondition q, one can calculate a weakest precondition
pw, which is an assertion such that {p} c {q} holds just when p⇒ pw.

Thus, when we can calculate the weakest precondition pw of c and q, we
can regard c {q} as an annotated specification proving {pw} c {q} — since
c {q} provides enough information to determine pw.

(We are abusing terminology slightly here. For historical reasons, the
term weakest precondition is reserved for total correctness, while the phrase
weakest liberal precondition is used for partial correctness. In these notes,
however, since we will rarely consider total correctness, we will drop the
qualification “liberal”.)

For instance, the weakest precondition of the assignment command v := e
and a postcondition q is q/v → e. Thus we can regard v := e{q} as an
annotated specification for {q/v → e} v := e {q}.

In general, we will write the annotation description

A � {p} c {q},

and say that A establishes {p} c {q}, when A is an annotated specification
that determines the specification {p} c {q} and shows how to obtain a formal

68 CHAPTER 3. SPECIFICATIONS

proof of this specification. (The letter A, with various decorations, will be
a metavariable ranging over annotated specifications and their subphrases.)
We will define the valid annotation descriptions by means of inference rules.

For assignment commands, the inference rule is

• Assignment (ASan)

v := e {q} � {q/v → e} v := e {q}.

For example, we have the instances

y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k ∧ k ≤ n}
y := 2× y

{y = 2k ∧ k ≤ n}

and

k := k + 1

{2× y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1

{2× y = 2k ∧ k ≤ n}.
In general, we say that an annotated specification is left-complete if it

begins with a precondition, right-complete if it ends with a postcondition,
and complete if it is both left- and right-complete. Then

A
{p}A
A{q}

{p}A{q}


will match



any annotated specification.

any left-complete annotated specification.

any right-complete annotated specification.

any complete annotated specification.

For the sequential composition of commands, we have the rule:

• Sequential Composition (SQan)

A1 {q} � {p} c1 {q} A2 � {q} c2 {r}
A1 ;A2 � {p} c1 ; c2 {r}.

Here the right-complete annotated specification A1 {q} in the first premiss
must end in the postcondition {q}, which is stripped from this specification

3.3. ANNOTATED SPECIFICATIONS 69

when it occurs within the conclusion. This prevents {q} from being dupli-
cated in the conclusion A1 ; A2, or even from occurring there if A2 is not
left-complete.

For example, if we take the above conclusions inferred from (ASan) as
premisses, we can infer

k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}.

Next, there is the rule

• Strengthening Precedent (SPan)

p⇒ q A � {q} c {r}
{p}A � {p} c {r}.

Notice that this rule can be used to make any assertion left-complete
(trivially by using the implication p⇒p). As a nontrivial example, if we take
the above conclusion inferred from (SQan) as a premiss, along with the valid
verification condition

(y = 2k ∧ k ≤ n ∧ k 6= n)⇒ (2× y = 2k+1 ∧ k + 1 ≤ n),

we can infer

{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

�


{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}.

At this point, the reader may wonder whether intermediate assertions
are ever actually needed in annotated specifications. In fact, intermediate
assertions, and occasionally other annotations are needed for three reasons:

1. while commands and calls of recursive procedures do not always have
weakest preconditions that can be expressed in our assertion language.

2. Certain structural inference rules, such as the existential quantification
rule (EQ) or the frame rule (FR), do not fit well into the framework of
weakest assertions.

70 CHAPTER 3. SPECIFICATIONS

3. Intermediate assertions are often needed to simplify verification condi-
tions.

The first of these reasons is illustrated by the rule for the while command,
whose annotated specifications are required to contain their invariant, imme-
diately before the symbol while:

• Partial Correctness of while (WHan)

{i ∧ b} A {i} � {i ∧ b} c {i}
{i}while b do (A) � {i} while b do c {i ∧ ¬ b}.

(Here, the parentheses in the annotated specification {i}while b do (A) are
needed to separate postconditions of the body of the while command from
postconditions of the while command itself. A similar usage of parentheses
will occur in some other rules for annotation descriptions.)

For example, if we take the above conclusion inferred from (SPan) as a
premiss, we can infer

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

�



{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ k 6= n}.

The annotated specifications that can be concluded from the rule (WHan)
are not right-complete. However, one can add the postcondition i ∧ ¬ b, or
any assertion implied by i ∧ ¬ b, by using the rule

• Weakening Consequent (WCan)

A � {p} c {q} q ⇒ r

A{r} � {p} c {r},

which will make any annotated specification right-complete.
For example, if we take the above conclusion inferred from (WHan) as a

premiss, along with the valid verification condition

y = 2k ∧ k ≤ n ∧ k 6= n⇒ y = 2n,

3.4. MORE STRUCTURAL INFERENCE RULES 71

we obtain

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2n}


�



{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2n}.

The reader may verify that further applications of the rules (ASan),
(SQan), and (SPan) lead to the annotated specification given at the be-
ginning of this section.

There are additional rules for skip, conditional commands, and variable
declarations:

• Skip (SKan)

skip {q} � {q} skip {q}.

• Conditional (CDan)

{p ∧ b} A1 {q} � {p ∧ b} c1 {q} {p ∧ ¬ b} A2 {q} � {p ∧ ¬ b} c2 {q}
{p} if b then A1 else (A2) {q} � {p} if b then c1 else c2 {q}.

• Variable Declaration (DCan)

{p} A {q} � {p} c {q}
{p} newvar v in (A) {q} � {p} newvar v in c {q},

when v does not occur free in p or q.

It should be clear that the rules for annotated specifications given in this
section allow considerable flexibility in the choice of intermediate assertions.
To make proofs clearer, we will often provide more annotations than neces-
sary.

3.4 More Structural Inference Rules

In addition to Strengthening Precedent and Weakening Consequent, there
are a number of other structural inference rules of Hoare logic that remain
sound for separation logic. In this section and the next, we give a variety
of these rules. For the moment, we ignore annotated specifications, and give
the simpler rules that suffice for formal proofs.

72 CHAPTER 3. SPECIFICATIONS

• Vacuity (VAC)

{false} c {q}

This rule is sound because the definition of both partial and total correctness
specifications begin with a universal quantification over states satisfying the
precondition — and there are no states satisfying false. It is useful for
characterizing commands that are not executed (often the bodies of while
commands). For example, one can prove

1. (s = 0 ∧ a− 1 ≥ b ∧ k ≥ b ∧ k < b)⇒ false (VC)

2. {false} (VAC)

k := k + 1 ; s := s + k

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}

3. {s = 0 ∧ a− 1 ≥ b ∧ k ≥ b ∧ k < b} (SP)

k := k + 1 ; s := s + k

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}

4. {s = 0 ∧ a− 1 ≥ b ∧ k ≥ b} (WH)

while k < b do (k := k + 1 ; s := s + k)

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b ∧ ¬ k < b}.

• Disjunction (DISJ)

{p1} c {q} {p2} c {q}
{p1 ∨ p2} c {q}

For example, consider two (annotated) specifications of the same command:

{a− 1 ≤ b}
s := 0 ; k := a− 1 ;

{s =
∑k

i=a i ∧ k ≤ b}
while k < b do

(k := k + 1 ; s := s + k)

{s =
∑b

i=a i}

{a− 1 ≥ b}
s := 0 ; k := a− 1 ;

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}
while k < b do

(k := k + 1 ; s := s + k)

{s = 0 ∧ a− 1 ≥ b}
{s =

∑b
i=a i}.

3.4. MORE STRUCTURAL INFERENCE RULES 73

(Here, the second specification describes the situation where the body of
the while command is never executed, so that the subspecification of the
while command can be obtain by using (VAC).) Using these specifications
as premisses to (DISJ), we can obtain the main step in

{true}
{a− 1 ≤ b ∨ a− 1 ≥ b}
s := 0 ; k := a− 1 ;

while k < b do

(k := k + 1 ; s := s + k)

{s =
∑b

i=a i}.

• Conjunction (CONJ)

{p1} c {q1} {p2} c {q2}
{p1 ∧ p2} c {q1 ∧ q2}

(It should be noted that, in some extensions of separation logic, this
rule becomes unsound.)

• Existential Quantification (EQ)

{p} c {q}
{∃v. p} c {∃v. q},

where v is not free in c.

• Universal Quantification (UQ)

{p} c {q}
{∀v. p} c {∀v. q},

where v is not free in c.

When a variable v does not occur free in the command in a specification (as
is required of the premisses of the above two rules), it is said to be a ghost
variable of the specification.

74 CHAPTER 3. SPECIFICATIONS

• Substitution (SUB)
{p} c {q}

{p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn are the
variables occurring free in p, c, or q, and, if vi is modified by c, then ei

is a variable that does not occur free in any other ej.

The restrictions on this rule are needed to avoid aliasing. For example, in

{x = y} x := x + y {x = 2× y},

one can substitute x → z, y → 2× w − 1 to infer

{z = 2× w − 1} z := z + 2× w − 1 {z = 2× (2× w − 1)}.

But one cannot substitute x → z, y → 2× z− 1 to infer the invalid

{z = 2× z− 1} z := z + 2× z− 1 {z = 2× (2× z− 1)}.

This rule for substitution will become important when we consider pro-
cedures.

• Renaming (RN)

{p} newvar v in c {q}
{p} newvar v′ in (c/v → v′) {q},

where v′ does not occur free in c.

Actually, this is not a structural rule, since it is only applicable to variable
declarations. On the other hand, unlike the other nonstructural rules, it is
not syntax-directed.

The only time it is necessary to use this rule is when one must prove
a specification of a variable declaration that violates the proviso that the
variable being declared must not occur free in the pre- or postcondition. For
example,

1. {x = 0} y := 1 {x = 0} (AS)

2. {x = 0} newvar y in y := 1 {x = 0} (DC 1)

3. {x = 0} newvar x in x := 1 {x = 0}. (RN 2)

3.5. THE FRAME RULE 75

In practice, the rule is rarely used. It can usually be avoided by renaming
local variables in the program before proving it.

Renaming of bound variables in pre- and postconditions can be treated
by using verification conditions such as (∀x. z 6= 2× x)⇒ (∀y. z 6= 2× y) as
premisses in the rules (SP) and (WC).

3.5 The Frame Rule

In Section 1.5, we saw that the Hoare-logic Rule of Constancy fails for sepa-
ration logic, but is replaced by the more general

• Frame Rule (FR)
{p} c {q}

{p ∗ r} c {q ∗ r},
where no variable occurring free in r is modified by c.

In fact, the frame rule lies at the heart of separation logic, and provides the
key to local reasoning. An instance is

{list α i} “Reverse List” {list α† j}

{list α i ∗ list γ x} “Reverse List” {list α† j ∗ list γ x},

(assuming “Reverse List” does not modify x or γ).
The soundness of the frame rule is surprisingly sensitive to the semantics

of our programming language. Suppose, for example, we changed the behav-
ior of deallocation, so that, instead of causing a memory fault, dispose x be-
haved like skip when the value of x was not in the domain of the heap. Then
{emp} dispose x {emp} would be valid, and the frame rule could be used
to infer {emp ∗ x 7→ 10} dispose x {emp ∗ x 7→ 10}. Then, since emp
is a neutral element for ∗ , we would have {x 7→ 10} dispose x {x 7→ 10},
which is patently false.

To reveal the programming-language properties that the frame rule de-
pends upon, we begin with some definitions:

If, starting in the state s, h, no execution of a command c
aborts, then c is safe at s, h. If, starting in the state s, h, every
execution of c terminates without aborting, then c must terminate
normally at s, h.

76 CHAPTER 3. SPECIFICATIONS

Then the frame rule depends upon two properties of the programming lan-
guage, which capture the idea that a program will only depend upon or
change the part of the initial heap within its footprint, and will abort if any
of that part of the heap is missing:

Safety Monotonicity If ĥ ⊆ h and c is safe at s, h− ĥ, then c
is safe at s, h. If ĥ ⊆ h and c must terminate normally at s, h− ĥ,
then c must terminate normally at s, h.

The Frame Property If ĥ ⊆ h, c is safe at s, h− ĥ, and some
execution of c starting at s, h terminates normally in the state
s′, h′,

s, h− ĥ s, h ĥ

s′, h′

� ⊆ -⊇

?

c?
c safe

then ĥ ⊆ h′ and some execution of c starting at s, h−ĥ, terminates
normally in the state s′, h′ − ĥ:

s, h− ĥ s, h ĥ

s′, h′ − ĥ s′, h′

� ⊆ -⊇

?

c

?

c

� ⊆ ��

��

���

⊇

Then:

Proposition 11 If the programming language satisfies safety monotonicity
and the frame property, then the frame rule is sound for both partial and total
correctness.

Proof Assume {p} c {q} is valid, and s, h |= p ∗ r. Then there is an ĥ ⊆ h
such that s, h− ĥ |= p and s, ĥ |= r.

From {p} c {q}, we know that c is safe at s, h − ĥ (and in the total-
correctness case it must terminate normally). Then, by safety monotonicity,
we know that c is safe at s, h (and in the total-correctness case it must
terminate normally).

3.6. MORE RULES FOR ANNOTATED SPECIFICATIONS 77

Suppose that, starting in the state s, h, there is an execution of c that
terminates in the state s′, h′. Since c is safe at s, h− ĥ, we know by the frame
property that ĥ ⊆ h′ and that, starting in the state s, h − ĥ, there is some
execution of c that terminates in the state s′, h′ − ĥ. Then {p} c {q} and
s, h− ĥ |= p imply that s′, h′ − ĥ |= q.

Since an execution of c carries s, h into s′, h′, we know that s v = s′v for
all v that are not modified by c. Then, since these include the free variables
of r, s, ĥ |= r implies that s′, ĥ |= r. Thus s′, h′ |= q ∗ r. end of proof

3.6 More Rules for Annotated Specifications

We now consider how to enlarge the concept of annotated specifications to
encompass the structural rules given in the two preceding sections. Since
these rules are applicable to arbitrary commands, their annotated versions
will indicate explicitly which rule is being applied.

In all of these rules, we assume that the annotated specifications in the
premisses will often be sequences of several lines. In the unary rules (VACan),
(EQan), (UQan), (FRan), and (SUBan), braces are used to indicate the
vertical extent of the single operand. In the binary rules (DISJan), and
(CONJan), the two operands are placed symmetrically around the indicator
DISJ or CONJ.

For the vacuity rule, we have

• Vacuity (VACan)

{c}VAC {q} � {false} c {q}.

Here c contains no annotations, since no reasoning about its subcommands
is used. For example, using (VACan), (SPan), (WHan), and (WCan):

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}
while k < b do

(k := k + 1 ;

s := s + k)

}
VAC

{s = 0 ∧ a− 1 ≥ b}.

Notice that, here and with later unary structural rules, when the braced
sequence contains several lines, we will omit the left brace.

78 CHAPTER 3. SPECIFICATIONS

For the disjunction rule, we have

• Disjunction (DISJan)

A1 {q} � {p1} c {q} A2 {q} � {p2} c {q}
(A1 DISJA2) {q} � {p1 ∨ p2} c {q}.

For example,

{true}

{a− 1 ≤ b}
s := 0 ; k := a− 1 ;

{s =
∑k

i=a i ∧ k ≤ b}
while k < b do

(k := k + 1 ; s := s + k)

DISJ

{a− 1 ≥ b}
s := 0 ; k := a− 1 ;

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}
while k < b do

(k := k + 1 ; s := s + k)}VAC

{s = 0 ∧ a− 1 ≥ b}.

{s =
∑b

i=a i}.

In the remaining structural rules, the annotated specification in the con-
clusion need not be left- or right-complete; it simply contains the annotated
specifications of the premisses.

• Conjunction (CONJan)

A1 � {p1} c {q1} A2 � {p2} c {q2}
(A1 CONJ A2) � {p1 ∧ p2} c {q1 ∧ q2}.

• Existential Quantification (EQan)

A � {p} c {q}

{A}∃v � {∃v. p} c {∃v. q},
where v is not free in c.

• Universal Quantification (UQan)

A � {p} c {q}

{A}∀v � {∀v. p} c {∀v. q},
where v is not free in c.

3.7. INFERENCE RULES FOR MUTATION AND DISPOSAL 79

(In using the two rules above, we will often abbreviate {· · ·{A}∃v1 · · ·}∃vn

by {A}∃v1. . . . , vn, and {· · ·{A}∀v1 · · ·}∀vn by {A}∀v1. . . . , vn.)

• Frame (FRan)

A � {p} c {q}

{A} ∗ r � {p ∗ r} c {q ∗ r},
where no variable occurring free in r is modified by c.

For example,
{∃j. x 7→ −, j ∗ list α j}
{x 7→ −}
[x] := a

{x 7→ a}

 ∗ x + 1 7→ j ∗ list α j

∃j
{∃j. x 7→ a, j ∗ list α j}

• Substitution (SUBan)

A � {p} c {q}

{A}/δ � {p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn are the
variables occurring free in p, c, or q, and, if vi is modified by c, then ei

is a variable that does not occur free in any other ej.

In the conclusion of this rule, {A}/δ denotes an annotated specification in
which “/” and the substitution denoted by δ occur literally, i.e., the substi-
tution is not carried out on A. The total substitution δ may be abbreviated
by a partial substitution, but the conditions on what is substituted for the
vi must hold for all v1, . . . , vn occurring free in p, c, or q.

We omit any discussion of the renaming rule (RN), since it is rarely used,
and does not lend itself to annotated specifications.

3.7 Inference Rules for Mutation and Dis-

posal

Finally, we come to the new commands for manipulating the heap, which
give rise to a surprising variety of inference rules. For each of these four com-

80 CHAPTER 3. SPECIFICATIONS

mands, we can give three kinds of inference rule: local, global, and backward-
reasoning.

In this and the next two section, we will present these rules and show
that, for each type of command, the different rules are all derivable from one
another (except for specialized rules that are only applicable in the “nonover-
writing” case). (Some of the deriviations will make use of the inference rules
for assertions derived in Section 2.4.)

For mutation commands, we have

• The local form (MUL)

{e 7→ −} [e] := e′ {e 7→ e′}.

• The global form (MUG)

{(e 7→ −) ∗ r} [e] := e′ {(e 7→ e′) ∗ r}.

• The backward-reasoning form (MUBR)

{(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p}.

One can derive (MUG) from (MUL) by using the frame rule:

{(e 7→ −) ∗ r}
{e 7→ −}
[e] := e′

{e 7→ e′}

 ∗ r

{(e 7→ e′) ∗ r},

while to go in the opposite direction it is only necessary to take r to be emp:

{e 7→ −}
{(e 7→ −) ∗ emp}
[e] := e′

{(e 7→ e′) ∗ emp}
{e 7→ e′}.

3.8. RULES FOR ALLOCATION 81

To derive (MUBR) from (MUG), we take r to be (e 7→ e′) −∗ p and use
the derived axiom schema (2.5): q ∗ (q −∗ p)⇒ p.

{(e 7→ −) ∗ ((e 7→ e′) −∗ p)}
[e] := e′

{(e 7→ e′) ∗ ((e 7→ e′) −∗ p)}
{p},

while to go in the opposite direction we take p to be (e 7→ e′) ∗ r and use
the derived axiom schema (2.7): (p ∗ r)⇒ (p ∗ (q −∗ (q ∗ r))).

{(e 7→ −) ∗ r}
{(e 7→−) ∗ ((e 7→e′) −∗ ((e 7→e′) ∗ r))}
[e] := e′

{(e 7→e′) ∗ r}.

For deallocation, there are only two rules, since the global form is also
suitable for backward reasoning:

• The local form (DISL)

{e 7→ −} dispose e {emp}.

• The global (and backward-reasoning) form (DISBR)

{(e 7→ −) ∗ r} dispose e {r}.

As with the mutation rules, one can derive (DISBR) from (DISL) by using
the frame rule, and go in the opposite direction by taking r to be emp.

3.8 Rules for Allocation

When we turn to the inference rules for allocation and lookup, our story
becomes more complicated, since these commands modify variables. More
precisely, they are what we will call generalized assignment commands, i.e.,
commands that first perform a computation that does not alter the store

82 CHAPTER 3. SPECIFICATIONS

(though it may affect the heap), and then after this computation has finished,
change the value of the store for a single variable.

However, neither allocation nor lookup are assignment commands in the
sense we will use in these notes, since they do not obey the rule (AS) for
assignment. For example, if we tried to apply this rule to an allocation
command, we could obtain

{cons(1, 2) = cons(1, 2)} x := cons(1, 2) {x = x}, (syntactically illegal)

where the precondition is not a syntactically well-formed assertion, since
cons(1, 2) is not an expression — for the compelling reason that it has a side
effect.

Even in the analogous case for lookup,

{[y] = [y]} x := [y] {x = x} (syntactically illegal)

is prohibited since [y] can have the side effect of aborting.
For allocation (and lookup) it is simplest to begin with local and global

rules for the nonoverwriting case, where the old value of the variable being
modified plays no role. For brevity, we abbreviate the sequence e1, . . . , en of
expressions by e:

• The local nonoverwriting form (CONSNOL)

{emp} v := cons(e) {v 7→ e},

where v /∈ FV(e).

• The global nonoverwriting form (CONSNOG)

{r} v := cons(e) {(v 7→ e) ∗ r},

where v /∈ FV(e, r).

As with mutation and deallocation, one can derive the global form from the
local by using the frame rule, and the local from the global by taking r to be
emp.

The price for the simplicity of the above rules is the prohibition of over-
writing, which is expressed by the conditions v /∈ FV(e) and v /∈ FV(e, r).
Turning to the more complex and general rules that permit overwriting, we
have three forms for allocation:

3.8. RULES FOR ALLOCATION 83

• The local form (CONSL)

{v = v′ ∧ emp} v := cons(e) {v 7→ e′},

where v′ is distinct from v, and e′ denotes e/v → v′ (i.e., each e′i denotes
ei/v → v′).

• The global form (CONSG)

{r} v := cons(e) {∃v′. (v 7→ e′) ∗ r′},

where v′ is distinct from v, v′ /∈ FV(e, r), e′ denotes e/v → v′, and r′

denotes r/v → v′.

• The backward-reasoning form (CONSBR)

{∀v′′. (v′′ 7→ e) −∗ p′′} v := cons(e) {p},

where v′′ is distinct from v, v′′ /∈ FV(e, p), and p′′ denotes p/v → v′′.

To explain these rules, we begin with (CONSG). Here the existentially quan-
tified variable v′ denotes the old value of v, which has been overwritten by
the allocation command (and may possibly no longer be determined by the
store), much as in the alternative assignment rule (ASalt) in Section 3.2. A
typical instance is

{list α i} i := cons(3, i) {∃j. i 7→ 3, j ∗ list α j}.

One can derive (CONSG) from the nonoverwriting rule (CONSNOG)
by using a plausible equivalence that captures the essence of generalized
assignment:

v := cons(e) ∼= newvar v̂ in (v̂ := cons(e) ; v := v̂), (3.1)

where v̂ does not occur in e — and can be chosen not to occur in other
specified phrases. (Here ∼= denotes an equivalence of meaning between two
commands.)

We can regard this equivalence as defining the possibly overwriting case
of allocation on the left by the nonoverwriting case on the right. Then we
can derive (CONSG) from (CONSNOG) by existentially quantifying v and

84 CHAPTER 3. SPECIFICATIONS

renaming it to v′ (using the last axiom schema displayed in 2.2 in Section
2.2: (p/v → e)⇒ (∃v. p)).

{r}
newvar v̂ in

(v̂ := cons(e) ;

{(v̂ 7→ e) ∗ r}
{∃v. (v̂ 7→ e) ∗ r}
{∃v′. (v̂ 7→ e′) ∗ r′}

v := v̂)
{∃v′. (v 7→ e′) ∗ r′}

One might expect the local rule to be

{emp} v := cons(e) {∃v′. (v 7→ e′)},

(where v′ is distinct from v and v′ /∈ FV(e)), which can be derived from
(CONSG) by taking r to be emp. But this rule, though sound, is too weak.
For example, the postcondition of the instance

{emp} i := cons(3, i) {∃j. i 7→ 3, j}

gives no information about the second component of the new record.

In the stronger local rule (CONSL), the existential quantifier is dropped
and v′ becomes a variable that is not modified by v := cons(e), so that its
occurrences in the postcondition denote the same value as in the precondition.

For example, the following instance of (CONSL)

{i = j ∧ emp} i := cons(3, i) {i 7→ 3, j}

shows that the value of j in the postcondition is the value of i before the
assignment.

We can derive (CONSL) from (CONSG) by replacing r by v = v′ ∧ emp
and v′ by v′′, and using the fact that v′′ = v′ is pure, plus simple properties

3.8. RULES FOR ALLOCATION 85

of equality and the existential quantifier:

{v = v′ ∧ emp}
v := cons(e)

{∃v′′. (v 7→ e′′) ∗ (v′′ = v′ ∧ emp)}
{∃v′′. ((v 7→ e′′) ∧ v′′ = v′) ∗ emp}
{∃v′′. (v 7→ e′′) ∧ v′′ = v′}
{∃v′′. (v 7→ e′) ∧ v′′ = v′}
{v 7→ e′}.

(Here v′′ is chosen to be distinct from v, v′, and the free variables of e.)
Then to complete the circle (and show the adequacy of (CONSL)), we

derive (CONSG) from (CONSL) by using the frame rule and (EQ):

{r}
{∃v′. v = v′ ∧ r}

{v = v′ ∧ r}
{v = v′ ∧ r′}
{v = v′ ∧ (emp ∗ r′)}
{(v = v′ ∧ emp) ∗ r′}

{(v = v′ ∧ emp)}
v := cons(e)

{(v 7→ e′)}

 ∗ r′

{(v 7→ e′) ∗ r′}



∃v′

{∃v′. (v 7→ e′) ∗ r′}

In the backward-reasoning rule (CONSBR), the universal quantifier ∀v′′
in the precondition expresses the nondeterminacy of allocation. (We have
chosen the metavariable v′′ rather than v′ to simplify some deriviations.)
The most direct way to see this is by a semantic proof that the rule is sound:

Suppose the precondition holds in the state s, h, i.e., that

s, h |= ∀v′′. (v′′ 7→ e) −∗ p′′.

Then the semantics of universal quantification gives

∀`. [s | v′′: `], h |= (v′′ 7→ e) −∗ p′′,

86 CHAPTER 3. SPECIFICATIONS

and the semantics of separating implication gives

∀`, h′. h ⊥ h′ and [s | v′′: `], h′ |= (v′′ 7→ e) implies [s | v′′: `], h · h′ |= p′′,

where the underlined formula is equivalent to

h′ = [`: [[e1]]exps | . . . | ` + n− 1: [[en]]exps].

Thus

∀`. (`, . . . , ` + n− 1 /∈ dom h implies

[s | v′′: `], [h | `: [[e1]]exps | . . . | ` + n− 1: [[en]]exps] |= p′′).

Then, by Proposition 3 in Chapter 2, since p′′ denotes p/v → v′′, we have
[s | v′′: `], h′ |= p′′ iff ŝ, h′ |= p, where

ŝ = [s | v′′: ` | v: [[v′′]]exp[s | v
′′: `]] = [s | v′′: ` | v: `].

Moreover, since v′′ does not occur free in p, we can simplify ŝ, h′ |= p to
[s | v: `], h′ |= p. Thus

∀`. (`, . . . , ` + n− 1 /∈ dom h implies

[s | v: `], [h | `: [[e1]]exps | . . . | ` + n− 1: [[en]]exps] |= p).

Now execution of the allocation command v := cons(e), starting in the
state s, h, will never abort, and will always termininate in a state [s |
v: `], [h | `: [[e1]]exps | . . . | ` + n− 1: [[en]]exps] for some ` such that `, . . . , ` +
n − 1 /∈ dom h. Thus the condition displayed above insures that all possible
terminating states satisfy the postcondition p.

We also show that (CONSBR) and (CONSG) are interderivable. To de-
rive (CONSBR) from (CONSG), we choose v′ /∈ FV(e, p) to be distinct from
v and v′′, take r to be ∀v′′. (v′′ 7→ e) −∗ p′′, and use predicate-calculus
properties of quantifiers, as well as (2.5): q ∗ (q −∗ p)⇒ p.

{∀v′′. (v′′ 7→ e) −∗ p′′}
v := cons(e)

{∃v′. (v 7→ e′) ∗ (∀v′′. (v′′ 7→ e′) −∗ p′′)}
{∃v′. (v 7→ e′) ∗ ((v 7→ e′) −∗ p)}
{∃v′. p}
{p}.

3.9. RULES FOR LOOKUP 87

To go in the other direction, we choose v′′ /∈ FV(e, r) to be distinct from v
and v′, take p to be ∃v′. (v 7→ e′) ∗ r′, and use properties of quantifiers, as
well as (2.6): r⇒ (q −∗ (q ∗ r)).

{r}
{∀v′′. r}
{∀v′′. (v′′ 7→ e) −∗ ((v′′ 7→ e) ∗ r)}
{∀v′′. (v′′ 7→ e) −∗ (((v′′ 7→ e′) ∗ r′)/v′ → v)}
{∀v′′. (v′′ 7→ e) −∗ (∃v′. (v′′ 7→ e′) ∗ r′)}
v := cons(e)

{∃v′. (v 7→ e′) ∗ r′}.

3.9 Rules for Lookup

Finally, we come to the lookup command, which — for no obvious reason —
has the richest variety of inference rules. We begin with the nonoverwriting
rules:

• The local nonoverwriting form (LKNOL)

{e 7→ v′′} v := [e] {v = v′′ ∧ (e 7→ v)},

where v /∈ FV(e).

• The global nonoverwriting form (LKNOG)

{∃v′′. (e 7→ v′′) ∗ p′′} v := [e] {(e 7→ v) ∗ p},

where v /∈ FV(e), v′′ /∈ FV(e)∪(FV(p)−{v}), and p′′ denotes p/v → v′′.

In (LKNOG), there is no restriction preventing v′′ from being the same
variable as v. Thus, as a special case,

{∃v. (e 7→ v) ∗ p} v := [e] {(e 7→ v) ∗ p},

where v /∈ FV(e). For example, if we take

v to be j

e to be i + 1
p to be i 7→ 3 ∗ list α j,

88 CHAPTER 3. SPECIFICATIONS

(and remember that i 7→ 3, j abbreviates (i 7→ 3) ∗ (i + 1 7→ j)), then we
obtain the instance

{∃j. i 7→ 3, j ∗ list α j}
j := [i + 1]

{i 7→ 3, j ∗ list α j}.

In effect, the action of the lookup command is to erase an existential quan-
tifier. In practice, if one chooses the names of quantified variables with
foresight, most lookup commands can be described by this simple special
case.

Turning to the rules for the general case of lookup, we have

• The local form (LKL)

{v = v′ ∧ (e 7→ v′′)} v := [e] {v = v′′ ∧ (e′ 7→ v)},

where v, v′, and v′′ are distinct, and e′ denotes e/v → v′.

• The global form (LKG)

{∃v′′. (e 7→ v′′) ∗ (r/v′ → v)} v := [e]

{∃v′. (e′ 7→ v) ∗ (r/v′′ → v)},

where v, v′, and v′′ are distinct, v′, v′′ /∈ FV(e), v /∈ FV(r), and e′

denotes e/v → v′.

• The first backward-reasoning form (LKBR1)

{∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ p′′)} v := [e] {p},

where v′′ /∈ FV(e) ∪ (FV(p)− {v}), and p′′ denotes p/v → v′′.

• The second backward-reasoning form (LKBR2)

{∃v′′. (e ↪→ v′′) ∧ p′′} v := [e] {p},

where v′′ /∈ FV(e) ∪ (FV(p)− {v}), and p′′ denotes p/v → v′′.

3.9. RULES FOR LOOKUP 89

In each of these rules, one can think of v′ as denoting the value of v before
execution of the lookup command, and v′′ as denoting the value of v after
execution.

We begin with a semantic proof of the soundness of the local rule (LKL).
Suppose that the precondition holds in the state s0, h, i.e., that

s0, h |= v = v′ ∧ (e 7→ v′′).

Then s0 v = s0 v′ and h = [[[e]]exps0: s0 v′′].
Starting in the state s0, h, the execution of v := [e] will not abort (since

[[e]]exps0 ∈ dom h), and will terminate with the store s1 = [s0 | v: s0 v′′] and
the unchanged heap h. To see that this state satisfies the postcondition, we
note that s1 v = s0 v′′ = s1 v′′ and, since e′ does not contain v, [[e′]]exps1 =
[[e′]]exps0. Then by applying Proposition 3 in Chapter 2, with ŝ = [s0 |
v: s0 v′] = [s0 | v: s0 v] = s0, we obtain [[e′]]exps0 = [[e]]exps0. Thus h =
[[[e′]]exps1: s1 v], and s1, h |= v = v′′ ∧ (e′ 7→ v).

To derive (LKG) from (LKL), we use the frame rule and two applications
of (EQ):

{∃v′′. (e 7→ v′′) ∗ (r/v′ → v)}
{∃v′, v′′. (v = v′ ∧ (e 7→ v′′)) ∗ (r/v′ → v)}

{∃v′′. (v = v′ ∧ (e 7→ v′′)) ∗ (r/v′ → v)}
{(v = v′ ∧ (e 7→ v′′)) ∗ (r/v′ → v)}

{v = v′ ∧ (e 7→ v′′)}
v := [e]

{v = v′′ ∧ (e′ 7→ v)}

 ∗ r

{(v = v′′ ∧ (e′ 7→ v)) ∗ (r/v′′ → v)}


∃v′′

{∃v′′. (v = v′′ ∧ (e′ 7→ v)) ∗ (r/v′′ → v)}



∃v′

{∃v′, v′′. (v = v′′ ∧ (e′ 7→ v)) ∗ (r/v′′ → v)}
{∃v′. (e′ 7→ v) ∗ (r/v′′ → v)}.

The global form (LKG) is the most commonly used of the rules that allow
overwriting. As an example of an instance, if we take

v to be j

v′ to be m

v′′ to be k

e to be j + 1

r to be i + 1 7→ m ∗ k + 1 7→ nil,

90 CHAPTER 3. SPECIFICATIONS

then we obtain (with a little use of the commutivity of ∗)

{∃k. i + 1 7→ j ∗ j + 1 7→ k ∗ k + 1 7→ nil}
j := [j + 1]

{∃m. i + 1 7→ m ∗ m + 1 7→ j ∗ j + 1 7→ nil}.

To derive (LKL) from (LKG), we first rename the variables v′ and v′′ in
(LKG) to be v̂′ and v̂′′, chosen not to occur free in e, and then replace r in
(LKG) by v̂′ = v′ ∧ v̂′′ = v′′ ∧ emp. Then we use the purity of equality,
and predicate-calculus properties of equality and the existential quantifier,
to obtain

{v = v′ ∧ (e 7→ v′′)}
{∃v̂′′. v = v′ ∧ v̂′′ = v′′ ∧ (e 7→ v̂′′)}
{∃v̂′′. (e 7→ v̂′′) ∗ (v = v′ ∧ v̂′′ = v′′ ∧ emp)}
{∃v̂′′. (e 7→ v̂′′) ∗ ((v̂′ = v′ ∧ v̂′′ = v′′ ∧ emp)/v̂′ → v)}
v := [e]

{∃v̂′. (ê′ 7→ v) ∗ ((v̂′ = v′ ∧ v̂′′ = v′′ ∧ emp)/v̂′′ → v)}
{∃v̂′. (ê′ 7→ v) ∗ (v̂′ = v′ ∧ v = v′′ ∧ emp)}
{∃v̂′. v̂′ = v′ ∧ v = v′′ ∧ (ê′ 7→ v)}
{v = v′′ ∧ (e′ 7→ v)}

(where ê′ denotes e/v → v̂′).
Turning to the backward-reasoning rules, we will derive (LKBR1) from

(LKG). The reasoning here is tricky. We first derive a variant of (LKBR1)
in which the variable v′′ is renamed to a fresh variable v̂′′ that is distinct
from v. Specifically, we assume v̂′′ 6= v, v̂′′ /∈ FV(e) ∪ (FV(p) − {v}), and
p̂′′ = p/v → v̂′′. We also take v′ to be a fresh variable, and take r to be
(e′ 7→ v̂′′) −∗ p̂′′, where e′ = e/v → v′. Then, using (LKG) and the axiom
schema (2.5) q ∗ (q −∗ p)⇒ p, we obtain

{∃v̂′′. (e 7→ v̂′′) ∗ ((e 7→ v̂′′) −∗ p̂′′)}
v := [e]

{∃v′. (e′ 7→ v) ∗ ((e′ 7→ v) −∗ p)}
{∃v′. p}
{p},

3.9. RULES FOR LOOKUP 91

Now we consider (LKBR1) itself. The side condition v′′ /∈ FV(e) ∪
(FV(p) − {v}) implies v′′ /∈ FV(e) and, since v̂′′ is fresh, v′′ /∈ p̂′′. This
allows us to rename v̂′′ to v′′ in the first line of the proof, to obtain a proof
of (LKBR1).

To derive (LKBR2) from (LKBR1), we use the last axiom schema in (2.4):
(e ↪→ e′) ∧ p⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).

{∃v′′. (e ↪→ v′′) ∧ p′′}
{∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ p′′)}
v := [e]

{p}.

Then to derive (LKL) from (LKBR2), we rename v′′ to v̂ in the precondition
of (LKBR2), take p to be v = v′′∧(e′ 7→ v), and use properties of ↪→, equality,
and the existential quantifier:

{v = v′ ∧ (e 7→ v′′)}
{v = v′ ∧ (e ↪→ v′′) ∧ (e′ 7→ v′′)}
{(e ↪→ v′′) ∧ (e′ 7→ v′′)}
{∃v̂. (e ↪→ v′′) ∧ v̂ = v′′ ∧ (e′ 7→ v′′)}
{∃v̂. (e ↪→ v̂) ∧ v̂ = v′′ ∧ (e′ 7→ v̂)}
v := [e]

{v = v′′ ∧ (e′ 7→ v)}.

The reader may verify that we have given more than enough derivations
to establish that all of the rules for lookup that permit overwriting are inter-
derivable.

For good measure, we also derive the global nonoverwriting rule (LKNOG)
from (LKG): Suppose v and v′′ are distinct variables, v /∈ FV(e), and v′′ /∈

FV(e)∪FV(p). We take v′ to be a variable distinct from v and v′′ that does
not occur free in e or p, and r to be p′′ = p/v → v′′. (Note that v /∈ FV(e)

92 CHAPTER 3. SPECIFICATIONS

implies that e′ = e.) Then

{∃v′′. (e 7→ v′′) ∗ p′′}
{∃v′′. (e 7→ v′′) ∗ (p′′/v′ → v)}
v := [e]

{∃v′. (e′ 7→ v) ∗ (p′′/v′′ → v)}
{∃v′. (e 7→ v) ∗ p}
{(e 7→ v) ∗ p}.

In the first line, we can rename the quantified variable v′′ to be any variable
not in FV(e)∪ (FV(p)−{v}), so that v′′ does not need to be distinct from v.

3.10 Annotated Specifications for the New

Rules

It is straightforward to give annotated specifications for the backward-reasoning
rules for mutation, disposal, allocation, and lookup; as with all backward-
reasoning rules, these annotated specifications do not have explicit precon-
ditions. Thus (MUBR), (DISBR), (CONSBR), and (LKBR1) lead to:

• Mutation (MUBRan)

[e] := e′ {p} � {(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p}.

• Disposal (DISBRan)

dispose e {r} � {(e 7→ −) ∗ r} dispose e {r}.

• Allocation (CONSBRan)

v := cons(e) {p} � {∀v′′. (v′′ 7→ e) −∗ p′′} v := cons(e) {p},

where v′′ is distinct from v, v′′ /∈ FV(e, p), and p′′ denotes p/v → v′′.

• Lookup (LKBR1an)

v := [e] {p} � {∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ p′′)} v := [e] {p},

where v′′ /∈ FV(e) ∪ (FV(p)− {v}), and p′′ denotes p/v → v′′.

3.11. A FINAL EXAMPLE 93

Moreover, since the implicit preconditions of these rules are weakest precon-
ditions, the rules can be used to derive annotations (with explicit precondi-
tions) for the other forms of the heap-manipulating rules. For example, by
taking p in (MUBRan) to be e 7→ e′, and using the valid verification condition

VC = (e 7→ −)⇒ (e 7→ −) ∗ ((e 7→ e′) −∗ (e 7→ e′)),

we may use (SPan) to obtain a proof

VC [e] := e′ {e 7→ e′} � {(e 7→ −) ∗ ((e 7→ e′) −∗ (e 7→ e′))} [e] := e′ {e 7→ e′}
{e 7→ −} [e] := e′ {e 7→ e′} � {e 7→ −} [e] := e′ {e 7→ e′}

of an annotation description corresponding to the local form (MUL).

In such a manner, one may derive rules of the form

{p} c {q} � {p} c {q}

corresponding to each of rules (MUL), (MUG), (DISL), (CONSNOL), (CON-
SNOG), (CONSL), (CONSG), (LKNOL), (LKNOG), (LKL), (LKG), and
(LKBR2).

3.11 A Final Example

In conclusion, we reprise the annotated specification given at the end of
Section 1.5, this time indicating the particular inference rules and verification
conditions that are used. (To make the action of the inference rules clear,
we have also given the unabbreviated form of each assertion.)

94 CHAPTER 3. SPECIFICATIONS

{emp}

x := cons(a, a) ; (CONSNOL)

{x 7→ a, a} i.e., {x 7→ a ∗ x + 1 7→ a}

y := cons(b, b) ; (CONSNOG)

{(x 7→ a, a) ∗ (y 7→ b, b)}
i.e., {x 7→ a ∗ x + 1 7→ a ∗ y 7→ b ∗ y + 1 7→ b}

(p/v → e⇒∃v. p)
{(x 7→ a,−) ∗ (y 7→ b, b)}

i.e., {x 7→ a ∗ (∃a. x + 1 7→ a) ∗ y 7→ b ∗ y + 1 7→ b}

[x + 1] := y − x ; (MUG)

{(x 7→ a, y − x) ∗ (y 7→ b, b)}
i.e., {x 7→ a ∗ x + 1 7→ y − x ∗ y 7→ b ∗ y + 1 7→ b}

(p/v → e⇒∃v. p)
{(x 7→ a, y − x) ∗ (y 7→ b,−)}

i.e., {x 7→ a ∗ x + 1 7→ y − x ∗ y 7→ b ∗ (∃b. y + 1 7→ b)}

[y + 1] := x− y ; (MUG)

{(x 7→ a, y − x) ∗ (y 7→ b, x− y)}
i.e., {x 7→ a ∗ x + 1 7→ y − x ∗ y 7→ b ∗ y + 1 7→ x− y}

(x− y = −(y − x))
{(x 7→ a, y − x) ∗ (y 7→ b,−(y − x))}

i.e., {x 7→ a ∗ x + 1 7→ y − x ∗ y 7→ b ∗ y + 1 7→ −(y − x)}
(p/v → e⇒∃v. p)

{∃o. (x 7→ a, o) ∗ (x + o 7→ b, − o)}
i.e., {x 7→ a ∗ x + 1 7→ o ∗ x + o 7→ b ∗ x + o + 1 7→ −o}

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 95

3.12 More about Annotated Specifications

In this section, we will show the essential property of annotated specifications:
From a formal proof of a specification one can derive an annotated version of
the specification, from which one can reconstruct a similar (though perhaps
not identical) formal proof.

We begin by defining functions that map annotation descriptions into
their underlying specifications and annotated specifications:

erase-annspec(A � {p} c {q}) def
= {p} c {q}

erase-spec(A � {p} c {q}) def
= A.

We extend these functions to inference rules and proofs of annotation descrip-
tions, in which case they are applied to all of the annotation descriptions in
the inference rule or proof (while leaving verification conditions unchanged).

We also define a function “concl” that maps proofs (of either specifications
or annotation descriptions) into their conclusions.

Then we define a function cd that acts on an annotated specification
A by deleting annotations to produce the command imbedded within A.
For most forms of annotation, the definition is obvious, but in the case of
DISJ and CONJ, it relies on the fact that the commands imbedded in the
subannotations must be identical:

cd(A1 DISJA2) = cd(A1) = cd(A2)

cd(A1 CONJA2) = cd(A1) = cd(A2).

In the case of an annotation for the substitution rule, the substitution is
carried out:

cd({A}/δ) = cd(A)/δ.

Proposition 12 1. The function erase-annspec maps each inference rule
(Xan) into the rule (X). (We are ignoring the alternative rules (ASalt),
(CDalt), and (CONSEQ).)

2. The function erase-annspec maps proofs of annotation descriptions into
proofs of specifications.

3. Suppose A � {p} c {q} is a provable annotation description. Then
cd(A) = c. Moreover, if A is left-complete, then it begins with {p},
and if A is right-complete then it ends with {q}.

96 CHAPTER 3. SPECIFICATIONS

Proof The proof of (1) is by case analysis on the individual pairs of rules.
The proofs of (2) and (3) are straightforward inductions on the structure of
proofs of annotation descriptions. end of proof

We use P or Q (with occasional decorations) as variables that range
over proofs of specifications or of annotation descriptions. We also use the
notations P [{p} c {q}] or Q[A � {p} c {q}] as variables whose range is
limited to proofs with a particular conclusion.

Next, we introduce three endofunctions on proofs of annotation descrip-
tions that force annotations to be complete by introducing vacuous instances
of the rules (SP) and (WC). If A is left-complete, then

left-compl(Q[A � {p} c {q}]) = Q[A � {p} c {q}],

otherwise,

left-compl(Q[A � {p} c {q}]) =
p⇒ p Q[A � {p} c {q}]

{p}A � {p} c {q}.

Similarly, if A is right-complete, then

right-compl(Q[A � {p} c {q}]) = Q[A � {p} c {q}],

otherwise,

right-compl(Q[A � {p} c {q}]) =
Q[A � {p} c {q}] q ⇒ q

A{q} � {p} c {q}.

Then, combining these functions,

compl(Q[A � {p} c {q}]) =

left-compl(right-compl(Q[A � {p} c {q}])).

Now we can define a function Φ, mapping proofs of specifications into
proofs of annotation descriptions, that satisfies

Proposition 13 1. If P proves {p} c {q}, then Φ(P) proves A � {p} c {q}
for some annotated specification A.

2. erase-annspec(Φ(P)) is similar to P, except for the possible insertion
of instances of (SP) and (WC) in which the verification condition is a
trivial implication of the form p⇒ p.

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 97

Note that Part 2 of this proposition implies that, except for extra implica-
tions of the form p⇒ p, erase-annspec(Φ(P)) contains the same verification
conditions as P .

We define Φ(P) by induction on the structure of P , with a case analysis
on the final rule used to infer the conclusion of P . The above proposition is
proved concurrently (and straightforwardly) by the same induction and case
analysis.

(AS) If P is

{q/v → e} v := e {q},

then Φ(P) is

v := e {q} � {q/v → e} v := e {q}.

(SP) If P is
p⇒ q P ′[{q} c {r}]

{p} c {r},
and

Φ(P ′[{q} c {r}]) = Q′[A � {q} c {r}],

then Φ(P) is
p⇒ q Q′[A � {q} c {r}]

{p}A � {p} c {r}.

(WC) If P is
P ′[{p} c {q}] q ⇒ r

{p} c {r},
and

Φ(P ′[{p} c {q}]) = Q′[A � {p} c {q}],

then Φ(P) is
Q′[A � {p} c {q}] q ⇒ r

A{r} � {p} c {r}.

(SQ) If P is
P1[{p} c1 {q}] P2[{q} c2 {r}]

{p} c1 ; c2 {r},

98 CHAPTER 3. SPECIFICATIONS

and

right-compl(Φ(P1[{p} c1 {q}])) = Q1[A1{q} � {p} c1 {q}]

Φ(P2[{q} c2 {r}]) = Q2[A2 � {q} c2 {r}],

then Φ(P) is

Q1[A1 {q} � {p} c1 {q}] Q2[A2 � {q} c2 {r}]
A1 ;A2 � {p} c1 ; c2 {r}.

(WH) If P is
P ′[{i ∧ b} c {i}]

{i} while b do c {i ∧ ¬ b},
and

compl(Φ(P ′[{i ∧ b} c {i}])) = Q′[{i ∧ b} A {i} � {i ∧ b} c {i}],

then Φ(P) is

Q′[{i ∧ b} A {i} � {i ∧ b} c {i}]
{i}while b do (A) � {i} while b do c {i ∧ ¬ b}.

(SK) If P is

{q} skip {q},
then Φ(P) is

skip {q} � {q} skip {q}.

(CD) If P is
P1[{p ∧ b} c1 {q}] P2[{p ∧ ¬ b} c2 {q}]

{p} if b then c1 else c2 {q},
and

compl(Φ(P1[{p ∧ b} c1 {q}])) = Q1[{p ∧ b} A1 {q} � {p ∧ b} c1 {q}]

compl(Φ(P2[{p ∧ ¬ b} c2 {q}])) =

Q2[{p ∧ ¬ b} A2 {q} � {p ∧ ¬ b} c2 {q}],

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 99

then Φ(P) is

Q1[{p ∧ b} A1 {q} � {p ∧ b} c1 {q}]
Q2[{p ∧ ¬ b} A2 {q} � {p ∧ ¬ b} c2 {q}]

{p} if b then A1 else (A2) {q} � {p} if b then c1 else c2 {q}.

(DC) If P is
P ′[{p} c {q}]

{p} newvar v in c {q},
when v does not occur free in p or q, and

compl(Φ(P ′[{p} c {q}])) = Q′[{p} A {q} � {p} c {q}],

then Φ(P) is

Q′[{p} A {q} � {p} c {q}]
{p} newvar v in (A) {q} � {p} newvar v in c {q}.

(VAC) If P is

{false} c {q},
then Φ(P) is

{c}VAC {q} � {false} c {q}.

(DISJ) If P is
P1[{p1} c {q}] P2[{p2} c {q}]

{p1 ∨ p2} c {q},
and

right-compl(Φ(P1[{p1} c {q}])) = Q1[A1 {q} � {p1} c {q}]

right-compl(Φ(P2[{p2} c {q}])) = Q2[A2 {q} � {p2} c {q}],

then Φ(P) is

Q1[A1 {q} � {p1} c {q}] Q2[A2 {q} � {p2} c {q}]
(A1 DISJ A2) {q} � {p1 ∨ p2} c {q}.

100 CHAPTER 3. SPECIFICATIONS

(CONJ) If P is
P1[{p1} c {q1}] P2[{p2} c {q2}]

{p1 ∧ p2} c {q1 ∧ q2},
and

Φ(P1[{p1} c {q1}]) = Q1[A1 � {p1} c {q1}]

Φ(P2[{p2} c {q2}]) = Q2[A2 � {p2} c {q2}],

then Φ(P) is

Q1[A1 � {p1} c {q1}] Q2[A2 � {p2} c {q2}]
(A1 CONJ A2) � {p1 ∧ p2} c {q1 ∧ q2}.

(EQ) If P is
P ′[{p} c {q}]

{∃v. p} c {∃v. q},
where v is not free in c, and

Φ(P ′[{p} c {q}]) = Q′[A � {p} c {q}],

then Φ(P) is
Q′[A � {p} c {q}]

{A}∃v � {∃v. p} c {∃v. q}.

(UQ) is similar to (EQ).

(FR) If P is
P ′[{p} c {q}]

{p ∗ r} c {q ∗ r},
where no variable occurring free in r is modified by c, and

Φ(P ′[{p} c {q}]) = Q′[A � {p} c {q}],

then Φ(P) is
Q′[A � {p} c {q}]

{A} ∗ r � {p ∗ r} c {q ∗ r}.

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 101

(SUB) If P is
P ′[{p} c {q}]

{p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn are the
variables occurring free in p, c, or q, and, if vi is modified by c, then ei

is a variable that does not occur free in any other ej, and

Φ(P ′[{p} c {q}]) = Q′[A � {p} c {q}],

then Φ(P) is
Q′[A � {p} c {q}]

{A}/δ � {p/δ} (c/δ) {q/δ}.

(MUBR) If P is

{(e 7→ −) ∗ ((e 7→ e′) −∗ q)} [e] := e′ {q},
then Φ(P) is

[e] := e′ {q} � {(e 7→ −) ∗ ((e 7→ e′) −∗ q)} [e] := e′ {q}.

(DISBR) If P is

{(e 7→ −) ∗ q} dispose e {q},
then Φ(P) is

dispose e {q} � {(e 7→ −) ∗ q} dispose e {q}.

(CONSBR) If P is

{∀v′′. (v′′ 7→ e) −∗ q′′} v := cons(e) {q},
where v′′ is distinct from v, v′′ /∈ FV(e, q), and q′′ denotes q/v → v′′,
then Φ(P) is

v := cons(e) {q} � {∀v′′. (v′′ 7→ e) −∗ q′′} v := cons(e) {q}.

(LKBR1) If P is

{∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ q′′)} v := [e] {q},
where v′′ /∈ FV(e)∪(FV(q)−{v}), and q′′ denotes q/v → v′′, then Φ(P)
is

v := [e] {q} � {∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ q′′)} v := [e] {q}.

102 CHAPTER 3. SPECIFICATIONS

Finally, we will close the circle by defining a function Ψ that maps anno-
tated specifications into proofs of the specifications that they annotate. But
first, we must define certain sequences of premisses and proofs, and associated
concepts:

• A premiss from p to q is either a specification {p} c {q} or a verification
condition p⇒ q.

• A coherent premiss sequence from p to q is either a premiss from p to
q, or a shorter coherent premiss sequence from p to some r, followed
by a premiss from r to q. We use S (with occasional decorations) as a
variable that ranges over coherent premiss sequences, and S[p, q] as a
variable that ranges over coherent premiss sequences from p to q.

• A proof from p to q is either a proof of a specification {p} c {q} or a
verification condition p⇒ q.

• A coherent proof sequence from p to q is either a proof from p to q, or a
shorter coherent proof sequence from p to some r, followed by a premiss
from r to q. We use R (with occasional decorations) as a variable that
ranges over coherent proof sequences, and R[p, q] as a variable that
ranges over coherent proof sequences from p to q.

• A coherent premiss (or proof) sequence is proper if it contains at least
one specification (or proof of a specification).

• We extend the function “concl” to map coherent proof sequences into
coherent premiss sequences by replacing each proof of a specification
by its conclusion, and leaving verification conditions unchanged.

• The function “code” maps proper coherent premiss sequences into com-
mands by sequentially composing the commands occurring within the
premisses that are specifications. More precisely (where code′ is an
auxilliary function mapping coherent premiss sequences or the empty
sequence ε into commands):

code′(S, {p} c {q}) = code′(S) ; c

code′(S, p⇒ q) = code′(S)

code′(ε) = skip

code(S) = c when code′(S) = skip ; c.

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 103

The utility of these concepts is that, for any proper coherent premiss
sequence S from p to q, one can derive the inference rule

S
{p} code(S) {q}.

The derivation is obtained by using the rules (SQ), (SP), and (WC) to
build up a proper coherent proof sequence R from p to q in which the com-
ponents of S occur as assumptions. One begins by taking R to be S, and
then repeatedly applies the following nondeterminate step:

If R can be put in the form

R1,P1[{p′} c1 {q′}],P2[{q′} c2 {r′}],R2,

replace it by

R1,
P1[{p′} c1 {q′}] P2[{q′} c2 {r′}]

{p′} c1 ; c2 {r′}
,R2,

or, if R can be put in the form

R1, p
′ ⇒ q′,P2[{q′} c {r′}],R2,

replace it by

R1,
p′ ⇒ q′ P2[{q′} c {r′}]

{p′} c {r′}
,R2,

or if R can be put in the form

R1,P1[{p′} c {q′}], q′ ⇒ r′,R2,

replace it by

R1,
P1[{p′} c {q′}] q′ ⇒ r′

{p′} c {r′}
,R2.

Each step reduces the length of R while preserving code(concl(R)), so that
eventually one reaches the state whereR is a single proof, of {p} code(S) {q}.

104 CHAPTER 3. SPECIFICATIONS

We will define the function Ψ in terms of a function Ψ0 that maps an-
notations into proper coherent proof sequences. Specifically, if Ψ0(A) is a
proper coherent proof sequence from p to q, then

Ψ(A) =
Ψ0(A)

{p} code(concl(Ψ0(A))) {q}.

Strictly speaking, we should replace the final step of this proof by one
of its derivations. The annotation A contains insufficient information to
determine which of these derivations should be used; fortunately, the choice
doesn’t matter.

The function Ψ0 is defined as follows:

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 105

Ψ0({q}) = ε

Ψ0(A0 {p} {q}) = Ψ0(A0 {p}), p⇒ q

Ψ0(A0 v := e {q}) = Ψ0(A0 {q/v → e}), {q/v → e} v := e {q}

Ψ0(A0 ; {q}) = Ψ0(A0 {q})

Ψ0(A0 {i}while b do (A) {q}) = Ψ0(A0 {i}while b do (A)) {i ∧ ¬ b⇒ q}

Ψ0(A0 {i}while b do (A)) = Ψ0(A0 {i}),
Ψ({i ∧ b} A {i})

{i} while b do cd(A) {i ∧ ¬ b}

Ψ0(A0 skip {q}) = Ψ0(A0 {q}), {q} skip {q}

Ψ0(A0 {p} if b then A1 else (A2) {q}) =

Ψ0(A0 {p}),
Ψ({p ∧ b} A1 {q}) Ψ({p ∧ ¬ b} A2 {q})
{p} if b then cd(A1) else cd(A2) {q}

Ψ0(A0 {p} newvar v in (A) {q}) = Ψ0(A0 {p}),
Ψ({p} A {q})

{p} newvar v in cd(A) {q}

Ψ0(A0{c}VAC {q}) = Ψ0(A0 {false}), {false} c {q}

Ψ0(A0 (A1 DISJA2) {q}) = Ψ0(A0 {p1 ∨ p2}),
Ψ(A1 {q}) Ψ(A2 {q})

{p1 ∨ p2} c {q}

where Ψ(A1 {q}) proves {p1} c {q}
and Ψ(A2 {q}) proves {p2} c {q}

Ψ0(A0 (A1 CONJA2) {q}) = Ψ0(A0 (A1 CONJA2), q1 ∧ q2 ⇒ q

where Ψ(A1) proves {p1} c {q1}
and Ψ(A2) proves {p2} c {q2}

106 CHAPTER 3. SPECIFICATIONS

Ψ0(A0 (A1 CONJA2)) = Ψ0(A0 {p1 ∧ p2}),
Ψ(A1) Ψ(A2)

{p1 ∧ p2} c {q1 ∧ q2}

where Ψ(A1) proves {p1} c {q1}
and Ψ(A2) proves {p2} c {q2}

Ψ0(A0{A}∃v {r}) = Ψ0(A0{A}∃v), q ⇒ r

where Ψ(A) proves {p} c {q}

Ψ0(A0{A}∃v) = Ψ0(A0 {∃v. p}),
Ψ(A)

{∃v. p} c {∃v. q}

where Ψ(A) proves {p} c {q}

Ψ0(A0{A}∀v {r}) = Ψ0(A0{A}∀v), q ⇒ r

where Ψ(A) proves {p} c {q}

Ψ0(A0{A}∀v) = Ψ0(A0 {∀v. p}),
Ψ(A)

{∀v. p} c {∀v. q}

where Ψ(A) proves {p} c {q}

Ψ0(A0{A} ∗ r {s}) = Ψ0(A0{A} ∗ r), q ∗ r⇒ s

where Ψ(A) proves {p} c {q}

Ψ0(A0{A} ∗ r) = Ψ0(A0 {p ∗ r}),
Ψ(A)

{p ∗ r} c {q ∗ r}

where Ψ(A) proves {p} c {q}

Ψ0(A0{A}/δ {r}) = Ψ0(A0{A}/δ), q/δ ⇒ r

where Ψ(A) proves {p} c {q}

Ψ0(A0{A}/δ) = Ψ0(A0 {p/δ}),
Ψ(A)

{p/δ} c {q/δ}

where Ψ(A) proves {p} c {q}

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 107

Ψ0(A0 [e] := e′ {q}) = Ψ0(A0 {(e 7→ −) ∗ ((e 7→ e′) −∗ q)}),

{(e 7→ −) ∗ ((e 7→ e′) −∗ q)} [e] := e′ {q}

Ψ0(A0 dispose e {q}) = Ψ0(A0 {(e 7→ −) ∗ q}),

{(e 7→ −) ∗ q} dispose e {q}

Ψ0(A0 v := cons(e) {q}) = Ψ0(A0 {∀v′′. (v′′ 7→ e) −∗ q′′}),

{∀v′′. (v′′ 7→ e) −∗ q′′} v := cons(e) {q}

Ψ0(A0 v := [e] {q}) = Ψ0(A0 {∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ q′′)}),

{∃v′′. (e 7→ v′′) ∗ ((e 7→ v′′) −∗ q′′)} v := [e] {q},

where, in the last two equations, q′′ denotes q/v → v′′. Then:

Proposition 14 If A � {p} c {q} is provable by Q, then there is a a proper
coherent proof sequence R from p to q such that:

1. If Ψ0(A0 {p}) is defined, then:

(a) Ψ0(A0A) and Ψ0(A0A{r}) are defined,

(b) Ψ0(A0A) = Ψ0(A0 {p}),R ,

(c) Ψ0(A0A{r}) = Ψ0(A0 {p}),R, q ⇒ r ,

2. Ψ0(A) = R ,

3. Ψ(A) is a proof of {p} c {q} ,

4. The verification conditions in Ψ(A) are the verification conditions in
erase-annspec(Q).

Proof The proof is by induction on the structure of the proof Q. Note
that parts 2 and 3 are immediate consequences of Part 1b (taking A0 to be
empty) and the definition of Ψ in terms of Ψ0. end of proof

The developments in this section are summarized by the following dia-
gram, in which ' relates proofs containing the same verification conditions,

108 CHAPTER 3. SPECIFICATIONS

while ∼ relates proofs containing the same verification conditions, except
perhaps for additional trivial implications of the form p ⇒ p in the set of
proofs on the right:

Proofs of Specifications

Proofs of Annotation Descriptions Proofs of Specifications

Annotation Descriptions

Annotations

Proofs of Specifications

?

Φ

?

concl

?

erase-spec

?

Ψ

-erase-annspec

PP
PP

PP
PP

PP
PP

PP
PP

∼

��
��

��
��

��
��

��
��

��
��

��

'

Exercise 3

Fill in the postconditions in

{(e1 7→ −) ∗ (e2 7→ −)} [e1] := e′1 ; [e2] := e′2 {?}

{(e1 7→ −) ∧ (e2 7→ −)} [e1] := e′1 ; [e2] := e′2 {?}.

to give two sound inference rules describing a sequence of two mutations.
Your postconditions should be as strong as possible.

Give a derivation of each of these inference rules, exhibited as an anno-
tated specification.

Exercise 4

The alternative inference rule for conditional commands (CDalt), leads to
the following rule for annotated specifications:

3.12. MORE ABOUT ANNOTATED SPECIFICATIONS 109

• Alternative Rule for Conditionals (CDaltan)

A1 {q} � {p1} c1 {q} A2 {q} � {p2} c2 {q}

(if b then A1 else A2) {q} �
{(b⇒ p1) ∧ (¬ b⇒ p2)} (if b then c1 else c2) {q},

Examine the annotated specifications in this and the following chapters, and
determine how they would need to be changed if (CDan) were replaced by
(CDaltan).

Exercise 5

The following are alternative global rules for allocation and lookup that use
unmodified variables (v′ and v′′):

• The unmodified-variable global form for allocation (CONSGG)

{v = v′ ∧ r} v := cons(e) {(v 7→ e′) ∗ r′},

where v′ is distinct from v, e′ denotes e/v → v′, and r′ denotes r/v → v′.

• The unmodified-variable global form for lookup (LKGG)

{v = v′ ∧ ((e 7→ v′′) ∗ r)} v := [e] {v = v′′ ∧ ((e′ 7→ v) ∗ r)},

where v, v′, and v′′ are distinct, v /∈ FV(r), and e′ denotes e/v → v′.

Derive (CONSGG) from (CONSG), and (CONSL) from (CONSGG). De-
rive (LKGG) from (LKG), and (LKL) from (LKGG).

Exercise 6

Derive (LKNOL) from (LKNOG) and vice-versa. (Hint: To derive (LKNOL)
from (LKNOG), use the version of (LKNOG) where v′′ = v. To derive
(LKNOG) from (LKNOL), assume v and v′′ are distinct, and then apply
renaming of v′′ in the precondition to cover the case where v = v′′.)

110 CHAPTER 3. SPECIFICATIONS

Exercise 7

Closely akin to (3.1) is the following equivalence of meaning between two
lookup commands:

v := [e] ∼= newvar v̂ in (v̂ := [e] ; v := v̂). (3.2)

Use this equivalence to derive (LKG) from (LKNOG).

Chapter 4

Lists and List Segments

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

In this chapter, we begin to explore data structures that represent ab-
stract types of data. Our starting point will be various kinds of lists, which
represent sequences.

Sequences and their primitive operations are a sufficiently standard —
and straightforward — mathematical concept that we omit their definition.
We will use the following notations, where α and β are sequences:

• ε for the empty sequence.

• [a] for the single-element sequence containing a. (We will omit the
brackets when a is not a sequence.)

• α·β for the composition of α followed by β.

• α† for the reflection of α.

• #α for the length of α.

• αi for the ith component of α (where 1 ≤ i ≤ #α).

These operations obey a variety of laws, including:

α·ε = α ε·α = α (α·β)·γ = α·(β·γ)

ε† = ε [a]† = [a] (α·β)† = β†·α†

#ε = 0 #[a] = 1 #(α·β) = (#α) + (#β)

α = ε ∨ ∃a, α′. α = [a]·α′ α = ε ∨ ∃α′, a. α = α′·[a].

111

112 CHAPTER 4. LISTS AND LIST SEGMENTS

4.1 Singly-Linked List Segments

In Section 1.6, we defined the predicate list α i, indicating that i is a list
representing the sequence α,

◦
α1-i

◦
α2

nil

αn* * · · · *

by structural induction on α:

list ε i
def
= emp ∧ i = nil

list (a·α) i
def
= ∃j. i 7→ a, j ∗ list α j.

This was sufficient for specifying and proving a program for reversing a list,
but for many programs that deal with lists, it is necessary to reason about
parts of lists that we will call list “segments”.

We write lseg α (i, j) to indicate that i to j is a list segment representing
the sequence α:

◦
α1-i

◦
α2

j

αn* * · · · *

As with list, this predicate is defined by structural induction on α:

lseg ε (i, j)
def
= emp ∧ i = j

lseg a·α (i, k)
def
= ∃j. i 7→ a, j ∗ lseg α (j, k).

It is easily shown to satisfy the following properties (where a and b denote
values that are components of sequences):

lseg a (i, j) ⇔ i 7→ a, j

lseg α·β (i, k) ⇔ ∃j. lseg α (i, j) ∗ lseg β (j, k)

lseg α·b (i, k) ⇔ ∃j. lseg α (i, j) ∗ j 7→ b, k

list α i ⇔ lseg α (i,nil).

It is illuminating to prove (by structural induction on α) the second of
the above properties, which is a composition law for list segments. In the

4.1. SINGLY-LINKED LIST SEGMENTS 113

base case, where α is empty, we use the definition of lseg ε (i, j), the purity
of i = j, the fact that emp is a neutral element, and the fact that ε is an
identity for the composition of sequences, to obtain

∃j. lseg ε (i, j) ∗ lseg β (j, k)

⇔ ∃j. (emp ∧ i = j) ∗ lseg β (j, k)

⇔ ∃j. (emp ∗ lseg β (j, k)) ∧ i = j

⇔ ∃j. lseg β (j, k) ∧ i = j

⇔ lseg β (i, k)

⇔ lseg ε·β (i, k).

For the induction step, when α has the form a·α′, we use the definition of
lseg a·α′ (i, j), the induction hypothesis, the definition of lseg a·(α′·β) (i, j), and
the associativity of the composition of sequences:

∃j. lseg a·α′ (i, j) ∗ lseg β (j, k)

⇔ ∃j, l. i 7→ a, l ∗ lseg α′ (l, j) ∗ lseg β (j, k)

⇔ ∃l. i 7→ a, l ∗ lseg α′·β (l, k)

⇔ lseg a·(α′·β) (i, k)

⇔ lseg (a·α′)·β (i, k).

For lists, one can derive a law that shows clearly when a list represents
the empty sequence:

list α i⇒ (i = nil ⇔ α = ε).

Moreover, as we will see in Section 4.3, one can show that list α i and
∃α. list α i are precise predicates. For list segments, however, the situation is
more complex.

One can derive the following valid assertions, which, when lseg α (i, j)
holds, give conditions for determining whether a list segment is empty (i.e.,
denotes the empty sequence):

lseg α (i, j) ⇒ (i = nil ⇒ (α = ε ∧ j = nil))

lseg α (i, j) ⇒ (i 6= j ⇒ α 6= ε).

114 CHAPTER 4. LISTS AND LIST SEGMENTS

But these formulas do not say whether α is empty when i = j 6= nil. In this
case, for example, if the heap satisfies i 7→ a, j then lseg a (i, j) holds, but also
lseg ε (i, j) holds for a subheap (namely the empty heap). Thus ∃α. lseg α (i, j)
is not precise. Indeed, when i = j 6= nil, there may be no way to compute
whether the list segment is empty.

In general, when
lseg a1 · · · an (i0, in),

we have

∃i1, . . . in−1. (i0 7→ a1, i1) ∗ (i1 7→ a2, i2) ∗ · · · ∗ (in−1 7→ an, in).

Thus the addresses i0, . . . , in−1 are distinct, so that the list segment does not
overlap on itself. But in is not constrained, and may equal any of the i0, . . . ,
in−1. In this case, we say that the list segment is touching.

We can define nontouching list segments inductively by:

ntlseg ε (i, j)
def
= emp ∧ i = j

ntlseg a·α (i, k)
def
= i 6= k ∧ i + 1 6= k ∧ (∃j. i 7→ a, j ∗ ntlseg α (j, k)),

or equivalently, we can define them in terms of lseg:

ntlseg α (i, j)
def
= lseg α (i, j) ∧ ¬ j ↪→ −.

The obvious advantage of knowing that a list segment is nontouching is
that it is easy to test whether it is empty:

ntlseg α (i, j)⇒ (α = ε ⇔ i = j).

Fortunately, there are common situations where list segments must be non-
touching:

list α i ⇒ ntlseg α (i,nil)

lseg α (i, j) ∗ list β j ⇒ ntlseg α (i, j) ∗ list β j

lseg α (i, j) ∗ j ↪→ − ⇒ ntlseg α (i, j) ∗ j ↪→ −.

Nevertheless, there are cases where a list segment may be touching — an
example is the cyclic buffer described in the next section — and one must face
the fact that extra information is needed to determine whether the segment
is empty.

4.1. SINGLY-LINKED LIST SEGMENTS 115

It should be noted that list α i, lseg α (i, j), and ntlseq α (i, j) are all precise
assertions. On the other hand, although (as we will show in Section 4.3)
∃α. list α i and ∃α. ntlseq α (i, j) are precise, ∃α. lseg α (i, j) is not precise.

As simple illustrations of reasoning about list-processing, which illustrate
use of the inference rules for heap-manipulating commands, we give detailed
annotated specifications of programs for inserting and deleting list elements.
To insert an element a at the beginning of a list segment:

{lseg α (i, j)}
k := cons(a, i) ; (CONSNOG)

{k 7→ a, i ∗ lseg α (i, j)}
{∃i. k 7→ a, i ∗ lseg α (i, j)}
{lseg a·α (k, j)}
i := k (AS)

{lseg a·α (i, j)},
or, more concisely:

{lseg α (i, k)}
i := cons(a, i) ; (CONSG)

{∃j. i 7→ a, j ∗ lseg α (j, k)}
{lseg a·α (i, k)}.
To insert a at the end of a list segment, assuming j points to the last

record in the segment:

{lseg α (i, j) ∗ j 7→ a, k}
l := cons(b, k) ; (CONSNOG)

{lseg α (i, j) ∗ j 7→ a, k ∗ l 7→ b, k}
{lseg α (i, j) ∗ j 7→ a ∗ j + 1 7→ k ∗ l 7→ b, k}
{lseg α (i, j) ∗ j 7→ a ∗ j + 1 7→ − ∗ l 7→ b, k}
[j + 1] := l (MUG)

{lseg α (i, j) ∗ j 7→ a ∗ j + 1 7→ l ∗ l 7→ b, k}
{lseg α (i, j) ∗ j 7→ a, l ∗ l 7→ b, k}
{lseg α·a (i, l) ∗ l 7→ b, k}
{lseg α·a·b (i, k)}.

116 CHAPTER 4. LISTS AND LIST SEGMENTS

(Here we have included more annotations then we usually will, to make the
use of the global mutation rule (MUG) explicit.)

Next is a program for deleting an element at the beginning of a nonempty
list segment:

{lseg a·α (i, k)}
{∃j. i 7→ a, j ∗ lseg α (j, k)}
{∃j. i + 1 7→ j ∗ (i 7→ a ∗ lseg α (j, k))}
j := [i + 1] ; (LKNOG)

{i + 1 7→ j ∗ (i 7→ a ∗ lseg α (j, k))}
{i 7→ a ∗ (i + 1 7→ j ∗ lseg α (j, k))}
dispose i ; (DISG)

{i + 1 7→ j ∗ lseg α (j, k)}
dispose i + 1 ; (DISG)

{lseg α (j, k)}
i := j (AS)

{lseg α (i, k)}.

Notice that the effect of the lookup command is to erase the existential
quantifier of j.

Finally, to delete an element at the end of segment in constant time, we
must have pointers j and k to the last two records:

{lseg α (i, j) ∗ j 7→ a, k ∗ k 7→ b, l}
[j + 1] := l ; (MUG)

{lseg α (i, j) ∗ j 7→ a, l ∗ k 7→ b, l}
dispose k ; (DISG)

dispose k + 1 (DISG)

{lseg α (i, j) ∗ j 7→ a, l}
{lseg α·a (i, l)}.

4.2. A CYCLIC BUFFER 117

4.2 A Cyclic Buffer

As a more elaborate example, we consider a cyclic buffer, consisting of an
active list segment satisfying lseg α (i, j) (where the sequence α is the con-
tents of the buffer) and an inactive segment satisfying lseg β (j, i) (where the
sequence β is arbitrary). We will use an unchanging variable n to record the
combined length of the two buffers.

When i = j, the buffer is either empty (#α = 0) or full (#β = 0). To
distinguish these cases, one must keep track of additional information; we
will do this by recording the length of the active segment in a variable m.
Thus we have the following invariant, which must be preserved by programs
for inserting or deleting elements:

∃β. (lseg α (i, j) ∗ lseg β (j, i)) ∧m = #α ∧ n = #α + #β

The following program will insert the element x into the buffer:

{∃β. (lseg α (i, j) ∗ lseg β (j, i)) ∧m = #α ∧ n = #α + #β ∧ n−m > 0}
{∃b, β. (lseg α (i, j) ∗ lseg b·β (j, i)) ∧m = #α ∧ n = #α + #b·β}
{∃β, j′′. (lseg α (i, j) ∗ j 7→ −, j′′ ∗ lseg β (j′′, i)) ∧

m = #α ∧ n− 1 = #α + #β}
[j] := x ; (MUG)

{∃β, j′′. (lseg α (i, j) ∗ j 7→ x, j′′ ∗ lseg β (j′′, i)) ∧
m = #α ∧ n− 1 = #α + #β}

{∃β, j′′. j + 1 7→ j′′ ∗ ((lseg α (i, j) ∗ j 7→ x ∗ lseg β (j′′, i)) ∧
m = #α ∧ n− 1 = #α + #β)}

j := [j + 1] ; (LKG)

{∃β, j′. j′ + 1 7→ j ∗ ((lseg α (i, j′) ∗ j′ 7→ x ∗ lseg β (j, i)) ∧
m = #α ∧ n− 1 = #α + #β)}

{∃β, j′. (lseg α (i, j′) ∗ j′ 7→ x, j ∗ lseg β (j, i)) ∧
m = #α ∧ n− 1 = #α + #β}

{∃β. (lseg α·x (i, j) ∗ lseg β (j, i)) ∧m + 1 = #α·x ∧ n = #α·x + #β}
m := m + 1 (AS)

{∃β. (lseg α·x (i, j) ∗ lseg β (j, i)) ∧m = #α·x ∧ n = #α·x + #β}

118 CHAPTER 4. LISTS AND LIST SEGMENTS

Note the use of (LKG) for j := [j +1], with v, v′, and v′′ replaced by j, j′, and
j′′; e replaced by j + 1; and r replaced by

((lseg α (i, j′) ∗ j′ 7→ x ∗ lseg β (j′′, i)) ∧m = #α ∧ n− 1 = #α + #β).

4.3 Preciseness Revisited

Before turning to other kinds of lists and list segments, we establish the
preciseness of various assertions about simple lists. The basic idea is straigh-
forward, but the details become somewhat complicated since we wish to make
a careful distinction between language and metalanguage. In particular, we
will have both metavariables and object variables that range over sequences
(as well as both metavariables and object variables that range over integers).
We will also extend the concept of the store so that it maps object sequence
variables into sequences (as well as integer variables into integers). (Note,
however, that we will use α with various decorations for both object and
metavariables ranging over sequences.)

Proposition 15 (1) ∃α. list α i is a precise assertion. (2) list α i is a precise
assertion.

Proof (1) We begin with two preliminary properties of the list predicate:
(a) Suppose [i: i | α: ε], h |= list α i. Then

[i: i | α: ε], h |= list α i ∧ α = ε

[i: i | α: ε], h |= list ε i

[i: i | α: ε], h |= emp ∧ i = nil,

so that h is the empty heap and i = nil.
(b) On the other hand, suppose [i: i | α: a·α′], h |= list α i. Then

[i: i | α: a·α′ | a: a | α′: α′], h |= list α i ∧ α = a·α′

[i: i | a: a | α′: α′], h |= list (a·α′) i

[i: i | a: a | α′: α′], h |= ∃j. i 7→ a, j ∗ list α′ j

∃j. [i: i | a: a | j: j | α′: α′], h |= i 7→ a, j ∗ list α′ j,

so that there are j and h′ such that i 6= nil (since nil is not a location),
h = [i: a | i+1: j]·h′, and [j: j | α′: α′], h′ |= list α′ j — and by the substitution
theorem (Proposition 3 in Section 2.1) [i: j | α: α′], h′ |= list α i.

4.4. BORNAT LISTS 119

Now to prove (1), we assume s, h, h0, and h1 are such that h0, h1 ⊆ h
and

s, h0 |= ∃α. list α i s, h1 |= ∃α. list α i.

We must show that h0 = h1.
Since i is the only free variable of the above assertion, we can replace

s by [i: i], where i = s(i). Then we can use the semantic equation for the
existential quantifier to show that there are sequences α0 and α1 such that

[i: i | α: α0], h0 |= list α i [i: i | α: α1], h1 |= list α i.

We will complete our proof by showing, by structural induction on α0,
that, for all α0, α1, i, h, h0, and h1, if h0, h1 ⊆ h and the statements displayed
above hold, then h0 = h1.

For the base case, suppose α0 is empty. Then by (a), h0 is the empty
heap and i = nil.

Moreover, if α1 were not empty, then by (b) we would have the contra-
diction i 6= nil. Thus α1 must be empty, so by (a), h1 is the empty heap, so
that h0 = h1.

For the induction step suppose α0 = a0·α′
0. Then by (b), there are j0 and

h′
0 such that i 6= nil, h0 = [i: a0 | i+1: j0] ·h′

0. and [i: j0 | α: α′
0], h′

0 |= list α i.
Moreover, if α1 were empty, then by (a) we would have the contradiction

i = nil. Thus α1 must be a1·α′
1 for some a1 and α′

1. Then by (b), there are
j1 and h′

1 such that i 6= nil, h1 = [i: a1 | i+1: j1] ·h′
1. and [i: j1 | α: α′

1], h′
1 |=

list α i.
Since h0 and h1 are both subsets of h, they must map i and i+1 into the

same value. Thus [i: a0 | i + 1: j0] = [i: a1 | i + 1: j1], so that a0 = a1 and
j0 = j1. Then, since

[i: j0 | α: α′
0], h′

0 |= list α i and [i: j0 | α: α′
1], h′

1 |= list α i,

the induction hypothesis give h′
0 = h′

1. It follows that h0 = h1.
(2) As described in Section 2.3.3, p is precise whenever p⇒ q is valid and

q is precise. Thus, since list α i⇒∃α. list α i is valid, list α i is precise.
end of proof

4.4 Bornat Lists

An alternative approach to lists has been advocated by Richard Bornat. His
view is that a list represents, not a sequence of values, but a sequence of

120 CHAPTER 4. LISTS AND LIST SEGMENTS

addresses where values may be placed. To capture this concept we write
listN σ i to indicate that i is a Bornat list representing the sequence σ of
addresses:

◦

σ1

?
-i

◦

σ2

?

nil

σn

?

* * · · · *

The definition by structural induction on σ is:

listN ε i
def
= emp ∧ i = nil

listN (a·σ) i
def
= a = i ∧ ∃j. i + 1 7→ j ∗ listN σ j.

Notice that the heap described by listN σ i consists only of the link fields of
the list, not the data fields.

Similarly, one can define Bornat list segments and nontouching Bornat
list segments.

The following is an annotated specification of a program for reversing a
Bornat list — which is the same program as in Section 1.6, but with a very
different specification:

{listN σ0 i}
{listN σ0 i ∗ (emp ∧ nil = nil)}
j := nil ; (AS)

{listN σ0 i ∗ (emp ∧ j = nil)}
{listN σ0 i ∗ listN ε j}
{∃σ, τ. (listN σ i ∗ listN τ j) ∧ σ†

0 = σ†·τ}
while i 6= nil do

({∃σ, τ. (listN (i·σ) i ∗ listN τ j) ∧ σ†
0 = (i·σ)†·τ}

{∃σ, τ, k. (i + 1 7→ k ∗ listN σ k ∗ listN τ j) ∧ σ†
0 = (i·σ)†·τ}

k := [i + 1] ; (LKNOG)

{∃σ, τ. (i + 1 7→ k ∗ listN σ k ∗ listN τ j) ∧ σ†
0 = (i·σ)†·τ}

[i + 1] := j ; (MUG)

{∃σ, τ. (i + 1 7→ j ∗ listN σ k ∗ listN τ j) ∧ σ†
0 = (i·σ)†·τ}

{∃σ, τ. (listN σ k ∗ listN (i·τ) i) ∧ σ†
0 = σ†·i·τ}

4.5. SIMPLE PROCEDURES 121

{∃σ, τ. (listN σ k ∗ listN τ i) ∧ σ†
0 = σ†·τ}

j := i ; (AS)

i := k (ASan)

{∃σ, τ. (listN σ i ∗ listN τ j) ∧ σ†
0 = σ†·τ})

{∃σ, τ. listN τ j ∧ σ†
0 = σ†·τ ∧ σ = ε}

{listN σ†
0 j}

In fact, this is a stronger specification then that given earlier, since it shows
that the program does not alter the addresses where the list data is stored.

4.5 Simple Procedures

To program more complex examples of list processing, we will need proce-
dures — especially recursive procedures. So we will digress from our exposi-
tion to add a simple procedure mechanism to our programming language, and
to formulate additional inference rules for the verification of such procedures.

By “simple” procedures, we mean that the following restrictions are im-
posed:

• Parameters are variables and expressions, not commands or procedure
names.

• There are no “global” variables: All free variables of the procedure
body must be formal parameters of the procedure.

• Procedures are proper, i.e., their calls are commands.

• Calls are restricted to prevent aliasing.

An additional peculiarity, which substantially simplifies reasoning about sim-
ple procedures, is that we syntactically distinguish parameters that may be
modified from those that may not be.

A simple nonrecursive procedure definition is a command of the form

let h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′,

while a simple recursive procedure definition is a command of the form

letrec h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′,

where

122 CHAPTER 4. LISTS AND LIST SEGMENTS

• h is a binding occurrence of a procedure name, whose scope is c′ in the
nonrecursive case, and c and c′ in the recursive case. (Procedure names
are nonassignable variables that will have a different behavior than the
variables introduced earlier.)

• c and c′ are commands.

• v1, . . . , vm; v′1, . . . , v
′
n is a list of distinct variables, called formal param-

eters, that includes all of the free variables of c. The formal parameters
are binding occurrences whose scope is c.

• v1, . . . , vm includes all of the variables modified by c.

Then a procedure call is a command of the form

h(w1, . . . , wm; e′1, . . . , e
′
n),

where

• h is a procedure name.

• w1, . . . , wm and e′1, . . . , e
′
n are called actual parameters.

• w1, . . . , wm are distinct variables.

• e′1, . . . , e
′
n are expressions that do not contain occurrences of the vari-

ables w1, . . . , wm.

• The free variables of the procedure call are

FV(h(w1, . . . , wm; e′1, . . . , e
′
n)) = {w1, . . . , wm} ∪ FV(e′1) ∪ · · · ∪ FV(e′n)

and the variables modified by the call are w1, . . . , wm.

Whenever a procedure name in a procedure call is bound by the same name
in a procedure definition, the number of actual parameters in the call (on
each side of the semicolon) must equal the number of formal parameters in
the definition (on each side of the semicolon).

In the inference rules in the rest of this section, it is assumed that all
formal and actual parameter lists meet the restrictions described above.

If a command c contains procedure calls, then the truth of a specification
{p} c {q} will depend upon the meanings of the procedure names occurring

4.5. SIMPLE PROCEDURES 123

free in c, or, more abstractly, on a mapping of these names into procedure
meanings, which we will call an environment. (It is beyond the scope of
these notes to give a precise semantic definition of procedure meanings, but
the intuitive idea is clear.) Normally, we are not interested in whether a
specification holds in all environments, but only in the environments that
satisfy certain hypotheses, which may also be described by specifications.

We define a hypothetical specification to have the form

Γ ` {p} c {q},

where the context Γ is a sequence of specifications of the form {p0} c0 {q0}, . . . ,
{pn−1} cn−1 {qn−1}. We say that such a hypothetical specification is true iff
{p} c {q} holds for every environment in which all of the specifications in Γ
hold.

Thus procedure names are distinguished from variables by being implic-
itly quantified over hypothetical specifications rather than over Hoare triples
or assertions.

Before proceding further, we must transform the inference rules we have
already developed, so that they deal with hypothetical specifications. Fortu-
nately, this is trivial — one simply adds Γ ` to all premisses and conclusions
that are Hoare triples. For example, the rules (SP) and (SUB) become

• Strengthening Precedent (SP)

p⇒ q Γ ` {q} c {r}
Γ ` {p} c {r}.

• Substitution (SUB)

Γ ` {p} c {q}
Γ ` {p/δ} (c/δ) {q/δ},

where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn are the
variables occurring free in p, c, or q, and, if vi is modified by c, then ei

is a variable that does not occur free in any other ej.

Note that substitutions do not affect procedure names.
Next, there is a rule for using hypotheses, which allows one to infer any

hypothesis that occurs in the context:

124 CHAPTER 4. LISTS AND LIST SEGMENTS

• Hypothesis (HYPO)

Γ, {p} c {q}, Γ′ ` {p} c {q}.

Then there are rules that show how procedure declarations give rise to
hypotheses about procedure calls. In the nonrecursive case,

• Simple Procedures (SPROC)

Γ ` {p} c {q} Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p′} c′ {q′}

Γ ` {p′} let h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′},

where h does not occur free in any triple of Γ.

In other words, if one can prove {p} c {q} about the body of the definition
h(v1, . . . , vm; v′1, . . . , v

′
n) = c, one can use {p} h(v1, . . . , vm; v′1, . . . , v

′
n) {q} as

an hypothesis in reasoning about the scope of the definition.
In the recursive case (though only for partial correctness), one can also

use the hypothesis in proving {p} c {q}:

• Simple Recursive Procedures (SRPROC)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p} c {q}

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p′} c′ {q′}

Γ ` {p′} letrec h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′},

where h does not occur free in any triple of Γ.

In essence, one must guess a specification {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} of

the leftside of the definition, and then use this guess as a hypothesis to infer
that the rightside of the definition satisfies a similar specification {p} c {q}.

To keep our exposition straightforward, we have ignored some more gen-
eral possibilities for defining and reasoning about procedures. Most obvi-
ously, we have neglected simultaneous recursion. In addition, we have not
dealt with the possibility that a single procedure definition may give rise to
more than one useful hypothesis about its calls.

Turning to calls of procedures, one can derive a specialization of (HYPO)
in which the command c is a call:

• Call (CALL)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q}, Γ′ ` {p} h(v1, . . . , vm; v′1, . . . , v

′
n) {q}.

4.5. SIMPLE PROCEDURES 125

When used by itself, this rule specifies only procedure calls whose actual
parameters match the formal parameters of the corresponding definition.
However, one can follow (CALL) with an application of the rule (SUB) of
substitution to obtain a specification of any legal (i.e., nonaliasing) call. This
allow one to derive the following rule:

• General Call (GCALL)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q}, Γ′ `

{p/δ} h(w1, . . . , wm; e′1, . . . , e
′
n) {q/δ},

where δ is a substitution

δ = v1 → w1, . . . , vm → wm, v′1 → e′1, . . . , v
′
n → e′n, v

′′
1 → e′′1 . . . , v′′k → e′′k,

which acts on all the free variables in {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q},

and w1, . . . , wm are distinct variables that do not occur free in the
expressions e′1 . . . , e′n or e′′1 . . . , e′′k.

The reader may verify that the restrictions on δ, along with the syntactic
restrictions on actual parameters, imply the conditions on the substitution
in the rule (SUB).

It is important to note that there may be ghost variables in p and q, i.e.,
variables that are not formal parameters of the procedure, but appear as
v′′1 , . . . , v

′′
k in the substitution δ. One can think of these variables as formal

ghost parameters (of the procedure specification, rather than the procedure
itself), and the corresponding e′′1, . . . , e

′′
k as actual ghost parameters.

Now consider annotated specifications. Each annotated instance of the
rule (GCALL) must specify the entire substitution δ explicitly — including
the ghost parameters (if any). For this purpose, we introduce annotated
contexts, which are sequences of annotated hypotheses, which have the form

{p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q},

where v′′1 , . . . , v
′′
k is a list of formal ghost parameters (and all of the formal

parameters, including the ghosts, are distinct). (We ignore the possibility
of hypotheses about other commands than procedure calls, and assume that
each hypothesis in a context describes a different procedure name.)

We write Γ̂ to denote an annotated context, and Γ to denote the corre-
sponding ordinary context that is obtained by erasing the lists of ghost formal

126 CHAPTER 4. LISTS AND LIST SEGMENTS

parameters in each hypothesis. Then we generalize annotation descriptions
to have the form

Γ̂ ` A � {p} c {q},

meaning that Γ̂ ` A is an annotated hypothetical specification proving the
hypothetical specification Γ ` {p} c {q}.

Then (GCALL) becomes

• General Call (GCALLan)

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q}, Γ̂′ `

h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k} �

{p/δ} h(w1, . . . , wm; e′1, . . . , e
′
n) {q/δ},

where δ is the substitution

δ = v1 → w1, . . . , vm → wm, v′1 → e′1, . . . , v
′
n → e′n, v

′′
1 → e′′1 . . . , v′′k → e′′k,

which acts on all the free variables in {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q},

and w1, . . . , wm are distinct variables that do not occur free in the
expressions e′1 . . . , e′n or e′′1 . . . , e′′k.

It is straightforward to annotate procedure definitions — it is enough to
provide a list of the formal ghost parameters, along with annotated specifi-
cations of the procedure body and of the command in which the procedure
is used. However, the annotation of the procedure body must be complete
(at least in the recursive case — for simplicity, we impose this requirement
on nonrecursive definitions as well):

• Simple Procedures (SPROCan)

Γ̂ ` {p} A {q} � {p} c {q}
Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v

′
n){v′′1 , . . . , v′′k} {q} ` A′ � {p′} c′ {q′}

Γ̂ ` let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′ �

{p′} let h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′},

where h does not occur free in any triple of Γ̂.

4.5. SIMPLE PROCEDURES 127

• Simple Recursive Procedures (SRPROCan)

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q} ` {p} A {q} � {p} c {q}

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q} ` A′ � {p′} c′ {q′}

Γ̂ ` letrec h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′ �

{p′} letrec h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′},

where h does not occur free in any triple of Γ̂.

We conclude with a simple example involving modified, unmodified, and
ghost parameters: a recursive procedure multfact(r; n) that multiplies r by
the factorial of n. The procedure is used to multiply 10 by the factorial of 5:

{z = 10}
letrec multfact(r; n){r0} =

{n ≥ 0 ∧ r = r0}
if n = 0 then

{n = 0 ∧ r = r0} skip {r = n!× r0}
else

{n− 1 ≥ 0 ∧ n× r = n× r0}
r := n× r ;

{n− 1 ≥ 0 ∧ r = n× r0}
{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0}

 ∗ n− 1 ≥ 0

(∗)

(∗)
{n− 1 ≥ 0 ∧ r = (n− 1)!× n× r0}

{r = n!× r0}
in

{5 ≥ 0 ∧ z = 10} (∗)
multfact(z; 5){10}
{z = 5!× 10} (∗)

(In fact, our rules for annotation descriptions permit the lines marked (*) to
be omitted, but this would make the annotations harder to understand.)

128 CHAPTER 4. LISTS AND LIST SEGMENTS

To see how the annotations here determine an actual formal proof, we
first note that the application of (SRPROCan) to the letrec definition gives
rise to the hypothesis

{n ≥ 0 ∧ r = r0}
multfact(r; n){r0}
{r = n!× r0}.

Now consider the recursive call of multfact. By (GCALLan), the hypothesis
entails

{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0}.

Next, since n is not modified by the call multfact(r; n − 1), the frame rule
gives

{n− 1 ≥ 0 ∧ r = n× r0 ∗ n− 1 ≥ 0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0 ∗ n− 1 ≥ 0}.

But the assertions here are all pure, so that the separating conjunctions can
be replaced by ordinary conjunctions. (In effect, we have used the frame rule
as a stand-in for the rule of constancy in Hoare logic.) Then, some obvious
properties of ordinary conjunction allow us to strengthen the precondition
and weaken the postcondition, to obtain

{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{n− 1 ≥ 0 ∧ r = (n− 1)!× n× r0}.

As for the specification of the main-level call

{5 ≥ 0 ∧ z = 10}
multfact(z; 5){10}
{z = 5!× 10},

by (GCALLan) it is directly entailed by the hypothesis.
In the examples that follow, we will usually be interested in the spec-

ification of a procedure itself, rather than of some program that uses the

4.6. STILL MORE ABOUT ANNOTATED SPECIFICATIONS 129

procedure. In this situation, it is enough to establish the first premiss of
(SPROC) or (SRPROC).

4.6 Still More about Annotated Specifications

In this section, we will extend the developments in Section 3.12 to deal with
our more complex notion of specifications. The most pervasive changes deal
with the introduction of contexts.

We begin by redefining the function erase-annspec and erase-spec to ac-
cept hypothetical annotation descriptions and produce hypothetical specifi-
cations and annotated specifications:

erase-annspec(Γ̂ ` A � {p} c {q}) def
= Γ ` {p} c {q}

erase-spec(Γ̂ ` A � {p} c {q}) def
= Γ̂ ` A,

and extending the definition of cd to our new annotations:

cd(h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k}) = h(w1, . . . , wm; e′1, . . . , e

′
n)

cd(let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = A in A′)

= let h(v1, . . . , vm; v′1, . . . , v
′
n) = cd(A) in cd(A′),

and similarly for letrec.
Then Proposition 12 remains true, except that the supposition A �

{p} c {q} becomes Γ̂ ` A � {p} c {q}.
We also generalize the definitions of left-compl, right-compl, and compl

by prefixing Γ̂ ` to all annotation descriptions.
Our next task is to redefine the function Φ. For this purpose, we assume

a standard ordering for variables (say, alphabetic ordering), and we (tem-
porarily) redefine the annotated context Γ̂ to be in a standard form that is
uniquely determined by the unannotated Γ. Specifically, Γ̂ is obtained from
Γ by replacing each hypothesis

{p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q}

by

{p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q},

130 CHAPTER 4. LISTS AND LIST SEGMENTS

where v′′1 , . . . , v
′′
k lists, in the standard ordering, the variables occurring free

in p or q that are not among the formal parameters v1, . . . , vm, v′1, . . . , v
′
n.

This establishes a one-to-one correspondence between Γ and Γ̂.
Then we modify the clauses defining Φ in Section 12 by prefixing Γ ` to

all specifications and Γ̂ ` to all annotation descriptions.
Next, we add clauses to describe with our new inference rules. (We ignore

(HYPO) and (CALL), but deal with the derived rule (GCALL).)

(GCALL) Suppose P is

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q}, Γ′ `

{p/δ} h(w1, . . . , wm; e′1, . . . , e
′
n) {q/δ},

where δ is the substitution

δ = v1 → w1, . . . , vm → wm, v′1 → e′1, . . . , v
′
n → e′n, v

′′
1 → e′′1, . . . , v

′′
k → e′′k,

which acts on all the free variables in {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q},

and w1, . . . , wm are distinct variables that do not occur free in the
expressions e′1 . . . , e′n or e′′1 . . . , e′′k. Without loss of generality, we can
assume that the domain of δ is exactly the set of variables occurring
free in {p} h(v1, . . . , vm; v′1, . . . , v

′
n) {q}. Then Φ(P) is

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q}, Γ̂′ `

h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k} �

{p/δ} h(w1, . . . , wm; e′1, . . . , e
′
n) {q/δ},

where v′′1 , . . . , v
′′
k are listed in the standard ordering.

(SPROC) Suppose P is

P1[Γ ` {p} c {q}] P2[Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p′} c′ {q′}]

Γ ` {p′} let h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′},

where h does not occur free in any triple of Γ, and

compl(Φ(P1[Γ ` {p} c {q}])) = Q1(Γ̂ ` {p} A {q} � {p} c {q})

Φ(P2[Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p′} c′ {q′}]) =

Q2(Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q} ` A′ � {p′} c′ {q′}).

4.6. STILL MORE ABOUT ANNOTATED SPECIFICATIONS 131

Then Φ(P) is

Q1(Γ̂ ` {p} A {q} � {p} c {q})
Q2(Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v

′
n){v′′1 , . . . , v′′k} {q} ` A′ � {p′} c′ {q′})

Γ̂ ` let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′ �

{p′} let h(v1, . . . , vm; v′1, . . . , v
′
n) = c in c′ {q′}.

(SRPROC) is similar to (SPROC).

With this extension, the function Φ satisfies Proposition 13, except that
Part 1 of that proposition becomes:

1. If P proves Γ ` {p} c {q}, then Φ(P) proves Γ̂ ` A � {p} c {q} for
some annotated specification A.

Finally, we must extend the function Ψ appropriately. First, we redefine
a premiss from p to q to be either a hypothetical specification Γ ` {p} c {q}
or a verification condition p ⇒ q, and we require all the hypothetical spec-
ifications in a coherent premiss sequence (or the conclusions of a coherent
proof sequence) to contain the same context.

The function “code” ignores the contexts in its argument.
Now, for any proper coherent premiss sequence S from p to q, one can

derive the inference rule

S
Γ ` {p} code(S) {q},

where Γ is the common context of the one or more hypothetical specifications
in S. Thus, if Ψ0(A) is a proper coherent proof sequence from p to q, and
Γ is the common context of the hypothetical specifications in concl(Ψ0(A)),
then we may define

Ψ(A) =
Ψ0(A)

Γ ` {p} code(concl(Ψ0(A))) {q}.

The function Ψ becomes a map from hypothetical annotated specifica-
tions to proofs of hypothetical specifications. In the cases given in Sec-
tion 3.12, one prefixes Γ̂ to every annotated specification and Γ to every

132 CHAPTER 4. LISTS AND LIST SEGMENTS

specification. (We no longer require Γ̂ to be in standard form, but Γ is still
obtained from Γ̂ by erasing lists of ghost parameters.) For example:

Ψ0(Γ̂ ` A0 v := e {q}) = Ψ0(Γ̂ ` A0 {q/v → e}), Γ ` {q/v → e} v := e {q}

Ψ0(Γ̂ ` A0 {p} if b then A1 else (A2) {q}) =

Ψ0(Γ̂ ` A0 {p}),
Ψ(Γ̂ ` {p ∧ b} A1 {q}) Ψ(Γ̂ ` {p ∧ ¬ b} A2 {q})

Γ ` {p} if b then cd(A1) else cd(A2) {q}

Ψ0(Γ̂ ` A0{A}∃v) = Ψ0(Γ̂ ` A0 {∃v. p}),
Ψ(Γ̂ ` A)

Γ ` {∃v. p} c {∃v. q}

where Ψ(Γ̂ ` A) proves Γ ` {p} c {q}.

To extend Ψ0 to procedure calls, assume that Γ̂ contains the hypothesis
{p} h(v1, . . . , vm; v′1, . . . , v

′
n){v′′1 , . . . , v′′k} {q}. Then

Ψ0(Γ̂ ` A0 h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k} {r}) =

Ψ0(Γ̂ ` A0 h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k}), (q/δ)⇒ r

Ψ0(Γ̂ ` A0 h(w1, . . . , wm; e′1, . . . , e
′
n){e′′1, . . . , e′′k}) =

Ψ0(Γ̂ ` A0 {p/δ}), Γ ` {p/δ} h(w1, . . . , wm; e′1, . . . , e
′
n) {q/δ},

where δ is the substitution

δ = v1 → w1, . . . , vm → wm, v′1 → e′1, . . . , v
′
n → e′n, v

′′
1 → e′′1 . . . , v′′k → e′′k.

Then for simple procedure definitions, we have:

Ψ0(Γ̂ ` A0 let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′ {r}) =

Ψ0(Γ̂ ` A0 let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′), q′ ⇒ r

Ψ0(Γ̂ ` A0 let h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} = {p} A {q} in A′) =

Ψ0(Γ̂ ` A0 {p′}),

Ψ(Γ̂ ` {p} A {q})
Ψ(Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v

′
n){v′′1 , . . . , v′′k} {q} ` A′)

Γ̂ ` {p′} let h(v1, . . . , vm; v′1, . . . , v
′
n) = cd(A) in c′ {q′},

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 133

where

Ψ(Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v
′
n){v′′1 , . . . , v′′k} {q} ` A′) proves

Γ, {p} h(v1, . . . , vm; v′1, . . . , v
′
n) {q} ` {p′} c′ {q′}.

Then Proposition 14 generalizes to:

If Γ̂ ` A � {p} c {q} is provable by Q, then there is a a proper coherent
proof sequence R from p to q, in which each hypothetical specification contains
the context Γ̂, such that:

1. If Ψ0(Γ̂ ` A0 {p}) is defined, then:

(a) Ψ0(Γ̂ ` A0A) and Ψ0(Γ̂ ` A0A{r}) are defined,

(b) Ψ0(Γ̂ ` A0A) = Ψ0(Γ̂ ` A0 {p}),R ,

(c) Ψ0(Γ̂ ` A0A{r}) = Ψ0(Γ̂ ` A0 {p}),R, q ⇒ r ,

2. Ψ0(Γ̂ ` A) = R ,

3. Ψ(Γ̂ ` A) is a proof of Γ ` {p} c {q} ,

4. The verification conditions in Γ̂ ` Ψ(A) are the verification conditions
in erase-annspec(Q).

4.7 An Extended Example: Sorting by Merg-

ing

Returning to the subject of list processing, we now consider the use of recur-
sive procedures to sort a list by merging.

This example is partly motivated by a pet peeve of the author: Unlike
most textbook examples of sorting lists by merging, this program has the
n log n efficiency that one expects of any serious sorting program. (On the
other hand, unlike programs that sort arrays by merging, it is an in-place
algorithm.)

We begin by defining some simple concepts about sequences that will
allow us to assert and prove that one sequence is a sorted rearrangement of
another.

134 CHAPTER 4. LISTS AND LIST SEGMENTS

4.7.1 Some Concepts about Sequences

The image {α} of a sequence α is the set

{αi | 1 ≤ i ≤ #α }

of values occurring as components of α. It satisfies the laws:

{ε} = {} (4.1)

{[x]} = {x} (4.2)

{α·β} = {α} ∪ {β} (4.3)

#{α} ≤ #α. (4.4)

If ρ is a binary relation between values (e.g., integers), then ρ∗ is the
binary relation between sets of values such that

S ρ∗ T iff ∀x ∈ S. ∀y ∈ T. x ρ y.

Pointwise extension satisfies the laws:

S ′ ⊆ S ∧ S ρ∗ T ⇒ S ′ ρ∗ T (4.5)

T ′ ⊆ T ∧ S ρ∗ T ⇒ S ρ∗ T ′ (4.6)

{} ρ∗ T (4.7)

S ρ∗ {} (4.8)

{x} ρ∗ {y} ⇔ x ρ y (4.9)

(S ∪ S ′) ρ∗ T ⇔ S ρ∗ T ∧ S ′ ρ∗ T (4.10)

S ρ∗ (T ∪ T ′) ⇔ S ρ∗ T ∧ S ρ∗ T ′. (4.11)

It is frequently useful to apply pointwise extension to a single side of a rela-
tion. For this purpose, rather than giving additional definitions and laws, it
is sufficient to introduce the following abbreviations:

x ρ∗ T
def
= {x} ρ∗ T S ρ∗ y

def
= S ρ∗ {y}

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 135

We write ord α if the sequence α is ordered in nonstrict increasing order.
Then ord satisfies

#α ≤ 1 ⇒ ord α (4.12)

ord α·β ⇔ ord α ∧ ord β ∧ {α} ≤∗ {β} (4.13)

ord [x]·α ⇒ x ≤∗ {[x]·α} (4.14)

ord α·[x] ⇒ {α·[x]} ≤∗ x. (4.15)

We say that a sequence β is a rearrangement of a sequence α, written
β ∼ α, iff there is a permutation (i.e., isomorphism) φ, from the domain
(1 to #β) of β to the domain (1 to #α) of α such that

∀k. 1 ≤ k ≤ #β implies βk = αφ(k).

Then

α ∼ α (4.16)

α ∼ β ⇒ β ∼ α (4.17)

α ∼ β ∧ β ∼ γ ⇒ α ∼ γ (4.18)

α ∼ α′ ∧ β ∼ β′ ⇒ α·β ∼ α′·β′ (4.19)

α·β ∼ β·α (4.20)

α ∼ β ⇒ {α} = {β}. (4.21)

α ∼ β ⇒ #α = #β. (4.22)

4.7.2 The Sorting Procedure mergesort

The basic idea behind sorting by merging is to divide the input list segment
into two roughly equal halves, sort each half recursively, and then merge the
results. Unfortunately, however, one cannot divide a list segment into two
halves efficiently.

A way around this difficulty is to give the lengths of the input segments
to the commands for sorting and merging as explicit numbers. Thus such a
segment is determined by a pointer to a list that begins with that segment,
along with the length of the segment.

136 CHAPTER 4. LISTS AND LIST SEGMENTS

Suppose we define the abbreviation

lseg α (e,−)
def
= ∃x. lseg α (e, x).

Then we will define a sorting procedure mergesort satisfying the hypothesis

Hmergesort
def
= {lseg α (i, j0) ∧#α = n ∧ n ≥ 1}

mergesort(i, j; n){α, j0}
{∃β. lseg β (i,−) ∧ β ∼ α ∧ ord β ∧ j = j0}.

Here α and j0 are ghost parameters — α is used in the postcondition to show
that the output list segment represents a rearrangement of the input, while
j0 is used to show that mergesort will set j to the remainder of the input list
following the segment to be sorted.

The subsidiary processs of merging will be performed by a procedure
merge that satisfies

Hmerge
def
= {(lseg β1 (i1,−) ∧ ord β1 ∧#β1 = n1 ∧ n1 ≥ 1)

∗ (lseg β2 (i2,−) ∧ ord β2 ∧#β2 = n2 ∧ n2 ≥ 1)}
merge(i; n1, n2, i1, i2){β1, β2}
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}.

Here β1 and β2 are ghost parameters used to show that the output segment
represents a rearrangement of the concatenation of the inputs.

Notice that we assume both the input segments for the sorting and merg-
ing commands are nonempty. (We will see that this avoids unnecessary
testing since the recursive calls of the sorting command will never be given
an empty segment.)

4.7.3 A Proof for mergesort

Hmergesort, Hmerge ` {lseg α (i, j0) ∧#α = n ∧ n ≥ 1}
if n = 1 then

{lseg α (i,−) ∧ ord α ∧ i 7→ −, j0}
j := [i + 1]

{lseg α (i,−) ∧ ord α ∧ j = j0}
else

...

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 137

...

else newvar n1 in newvar n2 in newvar i1 in newvar i2 in

(n1 := n÷ 2 ; n2 := n− n1 ; i1 := i ;

{∃α1, α2, i2. (lseg α1 (i1, i2) ∗ lseg α2 (i2, j0))

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2}
{lseg α1 (i1, i2) ∧#α1 = n1 ∧ n1 ≥ 1}
mergesort(i1, i2; n1){α1, i2}
{∃β. lseg β (i1,−) ∧ β ∼ α1 ∧ ord β ∧ i2 = i2}
{∃β1. lseg β1 (i1,−) ∧ β1 ∼ α1 ∧ ord β1 ∧ i2 = i2}


∗ (lseg α2(i2, j0)

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)


∃α1, α2, i2

{∃α1, α2, β1. ((lseg β1 (i1,−) ∗ (lseg α2 (i2, j0)) ∧ β1 ∼ α1 ∧ ord β1

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2}
{lseg α2 (i2, j0) ∧#α2 = n2 ∧ n2 ≥ 1}
mergesort(i2, j; n2){α2, j0} ;

{∃β. lseg β (i2,−) ∧ β ∼ α2 ∧ ord β ∧ j = j0}
{∃β2. lseg β2 (i2,−) ∧ β2 ∼ α2 ∧ ord β2 ∧ j = j0}


∗ (lseg β1(i1,−) ∧ β1 ∼ α1 ∧ ord β1

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)


∃α1, α2, β1

{∃α1, α2, β1, β2. ((lseg β1 (i1,−) ∧ β1 ∼ α1 ∧ ord β1 ∧#α1 = n1 ∧ n1 ≥ 1)

∗ (lseg β2 (i2,−) ∧ β2 ∼ α2 ∧ ord β2 ∧#α2 = n2 ∧ n2 ≥ 1))

∧ α = α1·α2 ∧ j = j0}
{∃β1, β2. ((lseg β1 (i1,−) ∧ ord β1 ∧#β1 = n1 ∧ n1 ≥ 1)

∗ (lseg β2 (i2,−) ∧ ord β2 ∧#β2 = n2 ∧ n2 ≥ 1)) ∧ α ∼ β1·β2 ∧ j = j0}
{(lseg β1 (i1,−) ∧ ord β1 ∧#β1 = n1 ∧ n1 ≥ 1)

∗ (lseg β2 (i2,−) ∧ ord β2 ∧#β2 = n2 ∧ n2 ≥ 1)}
merge(i; n1, n2, i1, i2){β1, β2}
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}


∗ (emp ∧ α ∼ β1·β2 ∧ j = j0)


∃β1, β2

{∃β1, β2, β. lseg β(i,−) ∧ β ∼ β1·β2 ∧ ord β ∧ α ∼ β1·β2 ∧ j = j0})
{∃β. lseg β (i,−) ∧ β ∼ α ∧ ord β ∧ j = j0}.

138 CHAPTER 4. LISTS AND LIST SEGMENTS

Just after the variable declarations in this procedure, some subtle reason-
ing about arithmetic is needed. To determine the division of the input list
segment, the variables n1 and n2 must be set to two positive integers whose
sum is n. (Moreover, for efficiency, these variables must be nearly equal.)

At this point, the length n of the input list segment is at least two. Then
2 ≤ n and 0 ≤ n− 2, so that 2 ≤ n ≤ 2× n− 2, and since division by two is
monotone:

1 = 2÷ 2 ≤ n÷ 2 ≤ (2× n− 2)÷ 2 = n− 1.

Thus if n1 = n÷ 2 and n2 = n− n1, we have

1 ≤ n1 ≤ n− 1 1 ≤ n2 ≤ n− 1 n1 + n2 = n.

The reasoning about procedure calls is expressed very concisely. Con-
sider, for example, the first call of mergesort. From the hypothesis Hmergesort,
(GCALLan) is used to infer

{lseg α1 (i1, i2) ∧#α1 = n1 ∧ n1 ≥ 1}
mergesort(i1, i2; n1){α1, i2}
{∃β. lseg β (i1,−) ∧ β ∼ α1 ∧ ord β ∧ i2 = i2}}.

Then β is renamed β1 in the postcondition:

{lseg α1 (i1, i2) ∧#α1 = n1 ∧ n1 ≥ 1}
mergesort(i1, i2; n1){α1, i2}
{∃β1. lseg β1 (i1,−) ∧ β1 ∼ α1 ∧ ord β1 ∧ i2 = i2}.

Next, the frame rule is used to infer

{(lseg α1 (i1, i2) ∧#α1 = n1 ∧ n1 ≥ 1)

∗ (lseg α2(i2, j0)

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)}
mergesort(i1, i2; n1){α1, i2}
{(∃β1. lseg β1 (i1,−) ∧ β1 ∼ α1 ∧ ord β1 ∧ i2 = i2)

∗ (lseg α2(i2, j0)

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)}.

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 139

Then the rule (EQ) for existential quantification gives

{∃α1, α2, i2. (lseg α1 (i1, i2) ∧#α1 = n1 ∧ n1 ≥ 1)

∗ (lseg α2(i2, j0)

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)}
mergesort(i1, i2; n1){α1, i2}
{∃α1, α2, i2. (∃β1. lseg β1 (i1,−) ∧ β1 ∼ α1 ∧ ord β1 ∧ i2 = i2)

∗ (lseg α2(i2, j0)

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2)}.

Finally, i2 = i2 is used to eliminate i2 in the postcondition, and pure terms
are rearranged in both the pre- and postconditions:

{∃α1, α2, i2. (lseg α1 (i1, i2) ∗ lseg α2 (i2, j0))

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2}
mergesort(i1, i2; n1){α1, i2}
{∃α1, α2, β1. ((lseg β1 (i1,−) ∗ (lseg α2 (i2, j0)) ∧ β1 ∼ α1 ∧ ord β1

∧#α1 = n1 ∧ n1 ≥ 1 ∧#α2 = n2 ∧ n2 ≥ 1 ∧ α = α1·α2}.

140 CHAPTER 4. LISTS AND LIST SEGMENTS

4.7.4 A Proof for merge

Our program for merging is more complex than necessary, in order to avoid
unnecessary resetting of pointers. For this purpose, it keeps track of which
of the two list segments remaining to be merged is pointed to by the end of
the list segment of already-merged items.

The procedure merge is itself nonrecursive, but it calls a subsidiary tail-
recursive procedure named merge1, which is described by the hypothesis

Hmerge1 =

{∃β, a1, j1, γ1, j2, γ2.

(lseg β (i, i1) ∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−) ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ1 = n1− 1 ∧#γ2 = n2− 1 ∧ β·a1·γ1·a2·γ2 ∼ β1·β2

∧ ord (a1·γ1) ∧ ord (a2·γ2) ∧ ord β

∧ {β} ≤∗ {a1·γ1} ∪ {a2·γ2} ∧ a1 ≤ a2}
merge1(; n1, n2, i1, i2, a2){β1, β2, i}
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}.

(Note that merge1 does not modify any variables.)
The body of merge1 is verified by the annotated specification:

Hmerge1 `
{∃β, a1, j1, γ1, j2, γ2.

(lseg β (i, i1) ∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−) ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ1 = n1− 1 ∧#γ2 = n2− 1 ∧ β·a1·γ1·a2·γ2 ∼ β1·β2

∧ ord (a1·γ1) ∧ ord (a2·γ2) ∧ ord β

∧ {β} ≤∗ {a1·γ1} ∪ {a2·γ2} ∧ a1 ≤ a2}
if n1 = 1 then [i1 + 1] := i2

{∃β, a1, j2, γ2.

(lseg β (i, i1) ∗ i1 7→ a1, i2 ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ2 = n2− 1 ∧ β·a1·a2·γ2 ∼ β1·β2

∧ ord (a2·γ2) ∧ ord β ∧ {β} ≤∗ {a1} ∪ {a2·γ2} ∧ a1 ≤ a2}
...

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 141

else newvar j in newvar a1 in

(n1 := n1− 1 ; j := i1 ; i1 := [j + 1] ; a1 := [i1] ;

{∃β, a1′, j1, γ′
1, j2, γ2.

(lseg β (i, j) ∗ j 7→ a1′, i1 ∗ i1 7→ a1, j1 ∗ lseg γ′
1 (j1,−)

∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ′
1 = n1− 1 ∧#γ2 = n2− 1 ∧ β·a1′·a1·γ′

1·a2·γ2 ∼ β1·β2

∧ ord (a1′·a1·γ′
1) ∧ ord (a2·γ2) ∧ ord β

∧ {β} ≤∗ {a1′·a1·γ′
1} ∪ {a2·γ2} ∧ a1′ ≤ a2}

{∃β, a1′, j1, γ′
1, j2, γ2.

(lseg β (i, j) ∗ j 7→ a1′, i1 ∗ i1 7→ a1, j1 ∗ lseg γ′
1 (j1,−)

∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ′
1 = n1− 1 ∧#γ2 = n2− 1 ∧ (β·a1′)·a1·γ′

1·a2·γ2 ∼ β1·β2

∧ ord (a1·γ′
1) ∧ ord (a2·γ2) ∧ ord (β·a1′) ∧ {β·a1′} ≤∗ {a1·γ′

1} ∪ {a2·γ2}}
if a1 ≤ a2 then

{∃β, a1, j1, γ1, j2, γ2.

(lseg β (i, i1) ∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−) ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ1 = n1− 1 ∧#γ2 = n2− 1 ∧ β·a1·γ1·a2·γ2 ∼ β1·β2

∧ ord (a1·γ1) ∧ ord (a2·γ2) ∧ ord β

∧ {β} ≤∗ {a1·γ1} ∪ {a2·γ2} ∧ a1 ≤ a2}
merge1(; n1, n2, i1, i2, a2){β1, β2, i}
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}

else ([j + 1] := i2 ;

{∃β, a2, j2, γ2, j1, γ1.

(lseg β (i, i2) ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−) ∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−))

∧#γ2 = n2− 1 ∧#γ1 = n1− 1 ∧ β·a2·γ2·a1·γ1 ∼ β2·β1

∧ ord (a2·γ2) ∧ ord (a1·γ1) ∧ ord β

∧ {β} ≤∗ {a2·γ2} ∪ {a1·γ1} ∧ a2 ≤ a1}

merge1(; n2, n1, i2, i1, a1)){β2, β1, i})
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}

{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}

142 CHAPTER 4. LISTS AND LIST SEGMENTS

When merge1 is called, the precondition of Hmerge1 describes the situation:

◦

?

i

*
· · ·

*

◦

*

◦

a1

?

i1

*
· · ·

◦

a2-i2 *
· · ·

|∧

β︷ ︸︸ ︷ γ1︷ ︸︸ ︷

︸ ︷︷ ︸
γ2

In the else clause of the outer conditional command, we know that the
γ1 is nonempty. The effect of the variable declarations, assignments, and
lookups is to move i1 and a1 one step down the list segment representing γ1,
and to save the old values of these variables in the program variable j and the
existentially quantified variable a1. The remainder of the sequence γ after
the first element a1 is denoted by the existentially quantifier γ′:

◦

?

i

*
· · ·

*

◦

*

◦

a1′
?

j

*

◦

a1

?

i1

*
· · ·

◦

a2-i2 *
· · ·

|∧

β︷ ︸︸ ︷ γ1︷ ︸︸ ︷

︸ ︷︷ ︸
γ2

γ′
1︷ ︸︸ ︷

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 143

This situation is described by the first assertion in the else clause. The
step to the next assertion is obtained by the following argument about or-
dering:

ord (a1′·a1·γ′
1) ∧ ord (a2·γ2) ∧ ord β

∧ {β} ≤∗ {a1′·a1·γ′
1} ∪ {a2·γ2}} ∧ a1′ ≤ a2


⇒

 ord (a1·γ′
1) ∧ ord (a2·γ2) ∧ ord (β·a1′)

∧ {β·a1′} ≤∗ {a1·γ′
1} ∪ {a2·γ2}}

since

1. ord (a1′·a1·γ′
1) (assumption)

∗2. ord (a1·γ′
1) (4.13),1

3. a1′ ≤∗ {a1·γ′
1} (4.13),1

4. a1′ ≤ a2 (assumption)

∗5. ord (a2·γ2) (assumption)

6. a1′ ≤∗ {a2·γ2} (4.14),4,5

7. a1′ ≤∗ {a1·γ′
1} ∪ {a2·γ2} (4.11),3,6

8. {β} ≤∗ {a1′·a1·γ′
1} ∪ {a2·γ2} (assumption)

9. {β} ≤∗ {a1·γ′
1} ∪ {a2·γ2} (4.3),(4.6),8

∗10. {β·a1′} ≤∗ {a1·γ′
1} ∪ {a2·γ2} (4.10),(4.3),7,9

11. ord β (assumption)

12. ord a1′ (4.12)

13. {β} ≤∗ a1′ (4.3),(4.6),8

∗14. ord (β·a1′) (4.13),11,12,13

(Here the asterisks indicate conclusions.)

After the test of a1 ≤ a2, the pointer at the end of the list segment
representing β·a1′ is either left unchanged at i1 or reset to i2. Then the
meaning of the existentially quantified β and γ1 are taken to be the former
meanings of β·a1′ and γ′

1, and either a1 or a2 is existentially quantified (since
its value will not be used further in the program).

144 CHAPTER 4. LISTS AND LIST SEGMENTS

4.7.5 merge with goto commands

By using goto commands, it is possible to program merge without recursive
calls:

merge(i; n1, n2, i1, i2){β1, β2} =

newvar a1 in newvar a2 in newvar j in

(a1 := [i1] ; a2 := [i2] ;

if a1 ≤ a2 then i := i1 ; goto `1 else i := i2 ; goto `2 ;

`1: if n1 = 1 then [i1 + 1] := i2 ; goto out else

n1 := n1− 1 ; j := i1 ; i1 := [j + 1] ; a1 := [i1];

if a1 ≤ a2 then goto `1 else [j + 1] := i2 ; goto `2 ;

`2: if n2 = 1 then [i2 + 1] := i1 ; goto out else

n2 := n2− 1 ; j := i2 ; i2 := [j + 1] ; a2 := [i2];

if a2 ≤ a1 then goto `2 else [j + 1] := i1 ; goto `1 ;

out:)

The absence of recursive calls makes this procedure far more efficient than
that given in the preceeding section. In the author’s opinion, it is also easier
to understand (when properly annotated).

Although we have not formalized the treatment of goto’s and labels in
separation logic (or Hoare logic), it is essentially straightforward (except for
jumps out of blocks or procedure bodies). One associates an assertion with
each label that should be true whenever control passes to the label.

When a command is labeled, its precondition is associated with the label.
When the end of a block or a procedure body is labeled, the postcondition
of the block or procedure body is associated with the label.

The assertion associated with a label becomes the precondition of every
goto command that addresses the label. The postcondition of goto com-
mands is false, since these commands never returns control.

The following is an annotated specification of the procedure. The as-
sertions for the labels `1 and `2 correspond to the preconditions of the two
recursive calls in the procedure in the previous section. The assertion for the
label out is the postcondition of the procedure body.

4.7. AN EXTENDED EXAMPLE: SORTING BY MERGING 145

merge(i; n1, n2, i1, i2){β1, β2} =

{(lseg β1 (i1,−) ∧ ord β1 ∧#β1 = n1 ∧ n1≥1)

∗ (lseg β2 (i2,−) ∧ ord β2 ∧#β2 = n2 ∧ n2≥1)}
newvar a1 in newvar a2 in newvar j in

(a1 := [i1] ; a2 := [i2] ;

if a1 ≤ a2 then i := i1 ; goto `1 else i := i2 ; goto `2 ;

`1: {∃β, a1, j1, γ1, j2, γ2.

(lseg β (i, i1) ∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−)

∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ1 = n1− 1 ∧#γ2 = n2− 1

∧ β·a1·γ1·a2·γ2∼β1·β2 ∧ ord (a1·γ1) ∧ ord (a2·γ2)

∧ ord β ∧ {β} ≤∗ {a1·γ1} ∪ {a2·γ2} ∧ a1 ≤ a2}
if n1 = 1 then [i1 + 1] := i2 ; goto out else

n1 := n1− 1 ; j := i1 ; i1 := [j + 1] ; a1 := [i1];

{∃β, a1′, j1, γ′
1, j2, γ2.

(lseg β (i, j) ∗ j 7→ a1′, i1 ∗ i1 7→ a1, j1 ∗ lseg γ′
1 (j1,−)

∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−))

∧#γ′
1 = n1− 1 ∧#γ2 = n2− 1

∧ β·a1′·a1·γ′
1·a2·γ2∼β1·β2 ∧ ord (a1′·a1·γ′

1) ∧ ord (a2·γ2)

∧ ord β ∧ {β} ≤∗ {a1′·a1·γ′
1} ∪ {a2·γ2} ∧ a1′ ≤ a2}

if a1 ≤ a2 then goto `1 else [j + 1] := i2 ; goto `2 ;

...

146 CHAPTER 4. LISTS AND LIST SEGMENTS

...

`2: {∃β, a2, j2, γ2, j1, γ1.

(lseg β (i, i2) ∗ i2 7→ a2, j2 ∗ lseg γ2 (j2,−)

∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−))

∧#γ2 = n2− 1 ∧#γ1 = n1− 1

∧ β·a2·γ2·a1·γ1∼β2·β1 ∧ ord (a2·γ2) ∧ ord (a1·γ1)

∧ ord β ∧ {β} ≤∗ {a2·γ2} ∪ {a1·γ1} ∧ a2 ≤ a1}
if n2 = 1 then [i2 + 1] := i1 ; goto out else

n2 := n2− 1 ; j := i2 ; i2 := [j + 1] ; a2 := [i2];

{∃β, a2′, j2, γ′
2, j1, γ1.

(lseg β (i, j) ∗ j 7→ a2′, i2 ∗ i2 7→ a2, j2 ∗ lseg γ′
2 (j2,−)

∗ i1 7→ a1, j1 ∗ lseg γ1 (j1,−))

∧#γ′
2 = n2− 1 ∧#γ1 = n1− 1

∧ β·a2′·a2·γ′
2·a1·γ1∼β2·β1 ∧ ord (a2′·a2·γ′

2) ∧ ord (a1·γ1)

∧ ord β ∧ {β} ≤∗ {a2′·a2·γ′
2} ∪ {a1·γ1} ∧ a2′ ≤ a1}

if a2 ≤ a1 then goto `2 else [j + 1] := i1 ; goto `1 ;

out:)
{∃β. lseg β (i,−) ∧ β ∼ β1·β2 ∧ ord β}.

4.8 Doubly-Linked List Segments

A doubly-linked list segment is a collection of three-field records with both
a forward linkage using the second fields and a backward linkage using the
third fields. To capture this concept, we write dlseg α (i, i′, j, j′) to describe
the situation

i′

◦
α1-i

◦
◦
α2

◦
j

αn j′�
* * *k k k· · ·

· · ·

4.8. DOUBLY-LINKED LIST SEGMENTS 147

The author knows of no way to verbalize this predicate succinctly — “(i, i′)
to (j, j′) is a doubly-linked list representing α” is both unwieldly and unlikely
to summon the right picture to mind. But, as usual, the concept can be
defined precisely by structural induction:

dlseg ε (i, i′, j, j′)
def
= emp ∧ i = j ∧ i′ = j′

dlseg a·α (i, i′, k, k′)
def
= ∃j. i 7→ a, j, i′ ∗ dlseg α (j, i, k, k′).

The second of these equations is illustrated by the following diagram:

i′

◦
a-i

◦
◦
α1

?

j

◦
k

αn k′�
* * *k k k· · ·

· · ·

Much as with simple list segments, one can prove the properties

dlseg a (i, i′, j, j′) ⇔ i 7→ a, j, i′ ∧ i = j′

dlseg α·β (i, i′, k, k′) ⇔ ∃j, j′. dlseg α (i, i′, j, j′) ∗ dlseg β (j, j′, k, k′)

dlseg α·b (i, i′, k, k′) ⇔ ∃j′. dlseg α (i, i′, k′, j′) ∗ k′ 7→ b, k, j′.

One can also define a doubly-linked list by

dlist α (i, j′) = dlseg α (i,nil,nil, j′).

However, one cannot define dlist directly by structural induction, since no
proper substructure of a doubly-linked list is a doubly-linked list.

Also as with simple list segments, one can derive emptyness conditions,
but now these conditions can be formulated for either the forward or back-
ward linkages:

dlseg α (i, i′, j, j′) ⇒ (i = nil ⇒ (α = ε ∧ j = nil ∧ i′ = j′))

dlseg α (i, i′, j, j′) ⇒ (j′ = nil ⇒ (α = ε ∧ i′ = nil ∧ i = j))

dlseg α (i, i′, j, j′) ⇒ (i 6= j ⇒ α 6= ε)

dlseg α (i, i′, j, j′) ⇒ (i′ 6= j′ ⇒ α 6= ε).

148 CHAPTER 4. LISTS AND LIST SEGMENTS

Nevertheless, when i = j ∧ i′ = j′, one may have either an empty segment
or nonempty touching (i.e., cyclic) one. (One can also define nontouching
segments.)

To illustrate programming with doubly-linked lists, we begin with a pro-
gram for deleting an element at an arbitrary address k in a list. Here j and
l are existentially quantified variables that address the neighbors of the el-
ement to be removed, or have the value nil if these neighbors do not exist;
they are made into program variables by lookup operations at the beginning
of the program.

nil

◦
α1

?

i

◦
◦

αm

?

(j)

◦
◦
b
?

k

◦
◦
β1

?

(l)

◦
nil

βn

?

m

*k *k *k *k *k *k· · ·
· · ·

· · ·
· · ·

4.8. DOUBLY-LINKED LIST SEGMENTS 149

{∃j, l. dlseg α (i,nil, k, j) ∗ k 7→ b, l, j ∗ dlseg β (l, k,nil, m)}
l := [k + 1] ; j := [k + 2] ;

{dlseg α (i,nil, k, j) ∗ k 7→ b, l, j ∗ dlseg β (l, k,nil, m)}
dispose k ; dispose k + 1 ; dispose k + 2 ;

{dlseg α (i,nil, k, j) ∗ dlseg β (l, k,nil, m)}
if j = nil then

{i = k ∧ nil = j ∧ α = ε ∧ dlseg β (l, k,nil, m)}
i := l

{i = l ∧ nil = j ∧ α = ε ∧ dlseg β (l, k,nil, m)}
else

{∃α′, a, n. (dlseg α′ (i,nil, j, n) ∗ j 7→ a, k, n

∗ dlseg β (l, k,nil, m)) ∧ α = α′·a}
[j + 1] := l ;

{∃α′, a, n. (dlseg α′ (i,nil, j, n) ∗ j 7→ a, l, n

∗ dlseg β (l, k,nil, m)) ∧ α = α′·a}
{dlseg α (i,nil, l, j) ∗ dlseg β (l, k,nil, m)}
if l = nil then

{dlseg α (i,nil, l, j) ∧ l = nil ∧ k = m ∧ β = ε}
m := j

{dlseg α (i,nil, l, j) ∧ l = nil ∧ j = m ∧ β = ε}
else

{∃a, β′, n. (dlseg α (i,nil, l, j) ∗ l 7→ a, n, k

∗ dlseg β′ (n, l,nil, m)) ∧ β = a·β′}
[l + 2] := j

{∃a, β′, n. (dlseg α (i,nil, l, j) ∗ l 7→ a, n, j

∗ dlseg β′ (n, l,nil, m)) ∧ β = a·β′}
{dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}
{dlseg α·β (i,nil,nil, m)}

After looking up the values of j and l, and deallocating the record at k, the
program either resets the forward pointer in the lefthand neighbor to l (the

150 CHAPTER 4. LISTS AND LIST SEGMENTS

forward pointer of the deallocated record) or, if the left subsegment is empty,
it sets i to l. Then it performs a symmetric operation on the right subsegment.

To develop another example, we introduce some tiny nonrecursive pro-
cedures for examining and changing doubly-linked list segments. We begin
with a procedure that examines a left-end segment

nil

◦
α1

?

i

◦
j0

αm

?

j′

*k *k· · ·
· · ·

and sets the variable j to the last address (or nil) on the forward linkage:

lookuprpt(j; i, j′){α, j0} =

{dlseg α (i,nil, j0, j
′)}

if j′ = nil then

{dlseg α (i,nil, j0, j
′) ∧ i = j0}

j := i

else

{∃α′, b, k′. α = α′·b ∧ (dlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, j0, k
′)}

j := [j′ + 1]

{∃α′, b, k′. α = α′·b ∧
(dlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, j0, k

′) ∧ j = j0}
{dlseg α (i,nil, j0, j

′) ∧ j = j0}.

Notice that the parameter list here makes it clear that the procedure call will
only modify the variable j, and will not even evaluate the ghost parameters
α or j0. This information is an essential requirement for the procedure;
otherwise the specification could be met by the assignment j := j0.

Next, we define a procedure that changes a left-end segment so that the

4.8. DOUBLY-LINKED LIST SEGMENTS 151

last address in the forward linkage is the value of the variable j:

setrpt(i; j, j′){α, j0} =

{dlseg α (i,nil, j0, j
′)}

if j′ = nil then

{α = ε ∧ emp ∧ j′ = nil}
i := j

{α = ε ∧ emp ∧ j′ = nil ∧ i = j}
else

{∃α′, b, k′. α = α′·b ∧ (dlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, j0, k
′)}

[j′ + 1] := j

{∃α′, b, k′. α = α′·b ∧ (dlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, j, k′)}
{dlseg α (i,nil, j, j′)}.

It is interesting to note that the Hoare triples specifying lookuprpt and
setrpt have the same precondition, and the postcondition of lookuprpt implies
that of setrpt, Thus, by weakening consequent, we find that lookuprpt satisfies
the same specification as setrpt (though not vice-versa):

{dlseg α (i,nil, j0, j
′)}

lookuprpt(j; i, j′){α, j0}
{dlseg α (i,nil, j, j′)}.

The real difference between the procedures is revealed by their parameter
lists: lookuprpt(j; i, j′){α, j0} modifies only j, while setrpt(i; j, j′){α, j0} modifies
only i.

One can define a symmetric pair of procedures that act upon right-end
segments. By similar proofs, one can establish

lookuplpt(i′; i, j′){α, i′0} =

{dlseg α (i, i′0,nil, j′)}
if i = nil then i′ := j′ else i′ := [i + 2]

{dlseg α (i, i′0,nil, j′) ∧ i′ = i′0}

152 CHAPTER 4. LISTS AND LIST SEGMENTS

and

setlpt(j′; i, i′){α, i′0} =

{dlseg α (i, i′0,nil, j′)}
if i = nil then j′ := i′ else [i + 2] := i′

{dlseg α (i, i′,nil, j′)}

Now we can use these procedures in a program for inserting an element
into a doubly-linked list after the element at address j:

nil

◦
α1

?

i

◦
◦

αm

?

j

◦
◦
β1

?

(l)

◦
nil

βn

?

m

*k *k *k *k *k· · ·
· · ·

· · ·
· · ·

4.8. DOUBLY-LINKED LIST SEGMENTS 153

{dlseg α (i,nil, j0, j
′)} lookuprpt(j; i, j′){α, j0} {dlseg α (i,nil, j0, j

′) ∧ j = j0},
{dlseg α (i,nil, j0, j

′)} setrpt(i; j, j′){α, j0} {dlseg α (i,nil, j, j′)},
{dlseg α (i, i′0,nil, j′) lookuplpt(i′; i, j′){α, i′0} {dlseg α (i, i′0,nil, j′) ∧ i′ = i′0},
{dlseg α (i, i′0,nil, j′) setlpt(j′; i, i′){α, i′0} {dlseg α (i, i′,nil, j′)} `

{∃l. dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}
{dlseg α (i,nil, j0, j) ∗ dlseg β (j0, j,nil, m)}
{dlseg α (i,nil, j0, j)}
lookuprpt(l; i, j){α, j0}
{dlseg α (i,nil, j0, j) ∧ l = j0}

 ∗ dlseg β (j0, j,nil, m)

{(dlseg α (i,nil, j0, j) ∗ dlseg β (j0, j,nil, m)) ∧ l = j0}
{dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}


∃ j0

{dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}
k := cons(a, l, j) ;

{dlseg α (i,nil, l, j) ∗ k 7→ a, l, j ∗ dlseg β (l, j,nil, m)}
{dlseg α (i,nil, l, j)}
setrpt(i; k, j){α, l}
{dlseg α (i,nil, k, j)}

 ∗ k 7→ a, l, j ∗ dlseg β (l, j,nil, m)

{dlseg α (i,nil, k, j) ∗ k 7→ a, l, j ∗ dlseg β (l, j,nil, m)}
{dlseg β (l, j,nil, m)}
setlpt(m; l, k){β, j}
{dlseg β (l, k,nil, m)}

 ∗ dlseg α (i,nil, k, j) ∗ k 7→ a, l, j

{dlseg α (i,nil, k, j) ∗ k 7→ a, l, j ∗ dlseg β (l, k,nil, m)}
{dlseg α·a·β (i,nil,nil, m)}

Here there are calls of three of the four procedures we have defined, justified
by the use of (GCALLan), the frame rule, and in the first case, the rule for
existential quantification.

The annotations for these procedure calls are quite compressed. For ex-
ample, those for the the call of lookuprpt embody the following argument:

154 CHAPTER 4. LISTS AND LIST SEGMENTS

Beginning with the hypothesis

{dlseg α (i,nil, j0, j
′)}

lookuprpt(j; i, j′){α, j0}
{dlseg α (i,nil, j0, j

′) ∧ j = j0},

we use (GCALLan) to infer

{dlseg α (i,nil, j0, j)}
lookuprpt(l; i, j){α, j0}
{dlseg α (i,nil, j0, j) ∧ l = j0}.

Next, after checking that the only variable l modified by lookuprpt(l; i, j) does
not occur free in dlseg β (j0, j,nil, m), we use the frame rule, the purity of
l = j0, and obvious properties of equality to obtain

{dlseg α (i,nil, j0, j) ∗ dlseg β (j0, j,nil, m)}
lookuprpt(l; i, j){α, j0}
{(dlseg α (i,nil, j0, j) ∧ l = j0) ∗ dlseg β (j0, j,nil, m)}
{(dlseg α (i,nil, j0, j) ∗ dlseg β (j0, j,nil, m)) ∧ l = j0}
{dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}.

Finally, after checking that j0 is not modified by lookuprpt(l; i, j), we use
the rule for existential quantification, as well as predicate-calculus rules for
renaming and eliminating existential quantifiers, to obtain

{∃l. dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}
{∃j0. dlseg α (i,nil, j0, j) ∗ dlseg β (j0, j,nil, m)}
lookuprpt(l; i, j){α, j0}
{∃j0. dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}
{dlseg α (i,nil, l, j) ∗ dlseg β (l, j,nil, m)}.

We can now illustrate how the difference in the variables modified by
lookuprpt and setrpt affects the usage of these procedures. For example, if
we replaced the call setrpt(i; k, j){α, l} in the insertion program by the call
lookuprpt(k; i, j){α, l}, which satisfies the same triple, the application of the
frame rule would fail, since the call would modify the actual parameter k,
which occurs free in k 7→ a, l, j ∗ dlseg β (l, j,nil, m).

4.9. XOR-LINKED LIST SEGMENTS 155

4.9 Xor-Linked List Segments

An xor-linked list segment is a variation of the doubly-linked case where, in
place of the forward and backward address fields, one stores in a single field
the exclusive or of these values. We write xlseg α (i, i′, j, j′) to describe the
situation

⊕
i′

◦
α1-i

⊕
◦
◦
α2

⊕
◦

j

αn j′�
* * *k k k· · ·

· · ·

which is defined inductively by

xlseg ε (i, i′, j, j′)
def
= emp ∧ i = j ∧ i′ = j′

xlseg a·α (i, i′, k, k′)
def
= ∃j. i 7→ a, (j⊕ i′) ∗ xlseg α (j, i, k, k′),

where ⊕ denotes the exclusive or operation.

The basic properties are very similar to those of doubly-linked segments:

xlseg a (i, i′, j, j′) ⇔ i 7→ a, (j⊕ i′) ∧ i = j′

xlseg α·β (i, i′, k, k′) ⇔ ∃j, j′. xlseg α (i, i′, j, j′) ∗ xlseg β (j, j′, k, k′)

xlseg α·b (i, i′, k, k′) ⇔ ∃j′. xlseg α (i, i′, k′, j′) ∗ k′ 7→ b, (k⊕ j′),

while the emptyness conditions are the same:

xlseg α (i, i′, j, j′) ⇒ (i = nil ⇒ (α = ε ∧ j = nil ∧ i′ = j′))

xlseg α (i, i′, j, j′) ⇒ (j′ = nil ⇒ (α = ε ∧ i′ = nil ∧ i = j))

xlseg α (i, i′, j, j′) ⇒ (i 6= j ⇒ α 6= ε)

xlseg α (i, i′, j, j′) ⇒ (i′ 6= j′ ⇒ α 6= ε).

as is the definition of lists:

xlist α (i, j′) = xlseg α (i,nil,nil, j′).

To illustrate programming with xor-linked list segments, we define a pro-
cedure analogous to setrpt in the previous section, which changes a left-end

156 CHAPTER 4. LISTS AND LIST SEGMENTS

segment so that the last address in the forward linkage is the value of the
variable j. As before, the procedure body is a conditional command:

xsetrpt(i; j, j′, k){α} =

{xlseg α (i,nil, j, j′)}
if j′ = nil then

{α = ε ∧ emp ∧ j′ = nil}
i := k

{α = ε ∧ emp ∧ j′ = nil ∧ i = k}
else

{∃α′, b, k′. α = α′·b ∧ (xlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, (j⊕ k′))}
{j′ 7→ b, (j⊕ k′)}
newvar x in

(x := [j′ + 1] ;

{x = j⊕ k′ ∧ j′ 7→ b,−}
[j′ + 1] := x⊕ j⊕ k

{x = j⊕ k′ ∧ j′ 7→ b, x⊕ j⊕ k}
{j′ 7→ b, j⊕ k′ ⊕ j⊕ k})

{j′ 7→ b, k⊕ k′}



∗
(

α = α′·b ∧
xlseg α′ (i,nil, j′, k′)

)



∃α′, b, k′

{∃α′, b, k′. α = α′·b ∧ (xlseg α′ (i,nil, j′, k′) ∗ j′ 7→ b, (k⊕ k′))}
{xlseg α (i,nil, k, j′)}.

(Notice that what was the ghost variable j0 in the specification of setrpt has
become a variable j that is evaluated (but not modified) by xsetrpt.

Similarly, one can define a procedure

xsetlpt(j′; i, i′, k){α} =

{xlseg α (i, i′,nil, j′)}
if i = nil then j′ := k else

newvar x in (x := [i + 1] ; [i + 1] := x⊕ i′ ⊕ k)

{xlseg α (i, k,nil, j′)}

that changes the last address in the backward linkage of a right-hand segment.

4.9. XOR-LINKED LIST SEGMENTS 157

Then one can use these procedures in a program for inserting an element
into an xor-linked list:

⊕
nil

◦
α1

?

i

⊕
◦
◦

αm

?

j

⊕
◦
◦
β1

?

l

⊕
◦
nil

βn

?

m

*k *k *k *k *k· · ·
· · ·

· · ·
· · ·

{xlseg α (i,nil, l, j) ∗ xlseg β (l, j,nil, m)}
k := cons(a, l⊕ j) ;

{xlseg α (i,nil, l, j) ∗ k 7→ a, (l⊕ j) ∗ xlseg β (l, j,nil, m)}
{xlseg α (i,nil, l, j)}
xsetrpt(i; l, j, k){α}
{xlseg α (i,nil, k, j)}

 ∗ k 7→ a, (l⊕ j) ∗ xlseg β (l, j,nil, m)

{xlseg α (i,nil, k, j) ∗ k 7→ a, (l⊕ j) ∗ xlseg β (l, j,nil, m)}
{xlseg β (l, j,nil, m)}
xsetlpt(m; l, j, k){β}
{xlseg β (l, k,nil, m)}

 ∗ xlseg α (i,nil, k, j) ∗ k 7→ a, (l⊕ j)

{xlseg α (i,nil, k, j) ∗ k 7→ a, (l⊕ j) ∗ xlseg β (l, k,nil, m)}
{xlseg α·a·β (i,nil,nil, m)}

Notice that, to know where to insert the new element, this program must be
provided with the addresses of both the preceding and following elements.
Typically, in working with xor-linked lists, one must work with pairs of ad-
dresses of adjacent elements. (As a minor consequence, the insertion program
does not need to use a procedure analogous to lookuprpt.)

Finally, we note that xor-linked segments have the extraordinary property
that, as can be proved by induction on α,

xlseg α (i, i′, j, j′) ⇔ xlseg α† (j′, j, i′, i),

and thus
xlist α (i, j′) ⇔ xlist α† (j′, i).

Thus xor-linked segments can be reversed in constant time, and xor-linked
lists can be reversed without changing the heap.

158 CHAPTER 4. LISTS AND LIST SEGMENTS

Exercise 8

Write an annotated specification for a program that will remove an element
from a cyclic buffer and assign it to y. The program should satisfy

{∃β. (lseg a·α (i, j) ∗ lseg β (j, i)) ∧m = #a · α ∧ n = #a·α + #β ∧m > 0}
· · ·
{∃β. (lseg α (i, j) ∗ lseg β (j, i)) ∧m = #α ∧ n = #α + #β ∧ y = a}.

Exercise 9

Prove that ∃α. ntlseg α (i, j) is a precise assertion.

Exercise 10

When
∃α, β. (lseg α (i, j) ∗ lseg β (j, k)) ∧ γ = α·β,

we say that j is an interior pointer of the list segment described by lseg γ (i, k).

1. Give an assertion describing a list segment with two interior pointers
j1 and j2, such that j1 comes before than, or at the same point as, j2 in
the ordering of the elements of the list segment.

2. Give an assertion describing a list segment with two interior pointers j1
and j2, where there is no constraint on the relative positions of j1 and
j2.

3. Prove that the first assertion implies the second.

Exercise 11

A braced list segment is a list segment with an interior pointer j to its last
element; in the special case where the list segment is empty, j is nil. Formally,

brlseg ε (i, j, k)
def
= emp ∧ i = k ∧ j = nil

brlseg α·a (i, j, k)
def
= lseg α (i, j) ∗ j 7→ a, k.

4.9. XOR-LINKED LIST SEGMENTS 159

Prove the assertion

brlseg α (i, j, k)⇒ lseg α (i, k).

Exercise 12

Write nonrecursive procedures for manipulating braced list segments, that
satisfy the following hypotheses. In each case, give an annotated specification
of the body that proves it is a correct implementation of the procedure. In
a few cases, you may wish to use the procedures defined in previous cases.

1. A procedure for looking up the final pointer:

{brlseg α (i, j, k0)} lookuppt(k; i, j){α, k0} {brlseg α (i, j, k0) ∧ k = k0}.

(This procedure should not alter the heap.)

2. A procedure for setting the final pointer:

{brlseg α (i, j, k0)} setpt(i; j, k){α, k0} {brlseg α (i, j, k)}.

(This procedure should not allocate or deallocate heap storage.)

3. A procedure for appending an element on the left:

{brlseg α (i, j, k0)} appleft(i, j; a){α, k0} {brlseg a·α (i, j, k0)}.

4. A procedure for deleting an element on the left:

{brlseg a·α (i, j, k0)} delleft(i, j;){α, k0} {brlseg α (i, j, k0)}.

5. A procedure for appending an element on the right:

{brlseg α (i, j, k0)} appright(i, j; a){α, k0} {brlseg α·a (i, j, k0)}.

6. A procedure for concatenating two segments:

{brlseg α (i, j, k0) ∗ brlseg β (i′, j′, k′0)}
conc(i, j; i′, j′){α, β, k0, k

′
0}

{brlseg α·β (i, j, k′0)}.

(This procedure should not allocate or deallocate heap storage.)

160 CHAPTER 4. LISTS AND LIST SEGMENTS

Exercise 13

Rewrite the program in Section 4.8, for deleting an element from a doubly-
linked list, to use the procedures setrpt and setlpt. Give an annotated speci-
fication. The program should satisfy:

{∃j, l. dlseg α (i,nil, k, j) ∗ k 7→ b, l, j ∗ dlseg β (l, k,nil, m)}
· · ·
{dlseg α·β (i,nil,nil, m)}.

Exercise 14

Give an annotated specification for a program to delete the element at k from
an xor-linked list.

⊕
nil

◦
α1

?

i

⊕
◦
◦

αm

?

j

⊕
◦
◦
b
?

k

⊕
◦
◦
β1

?

(l)

⊕
◦

nil

βn

?

m

*k *k *k *k *k *k· · ·
· · ·

· · ·
· · ·

The program should use the procedures xsetrpt and xsetlpt, and should sat-
isfy:

{∃l. xlseg α (i,nil, k, j) ∗ k 7→ b, (l⊕ j) ∗ xlseg β (l, k,nil, m)}
· · ·
{xlseg α·β (i,nil,nil, m)}.

Exercise 15

Prove, by structural induction on α, that

xlseg α (i, i′, j, j′) ⇔ xlseg α† (j′, j, i′, i).

Chapter 5

Trees and Dags

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

In this chapter, we consider various representations of abstract tree-like
data. In general, such data are elements of (possibly many-sorted) initial or
free algebras without laws. To illustrate the use of separation logic, however,
it is simplest to limit our discussion to a particular form of abstract data.

For this purpose, as discussed in Section 1.7, we will use “S-expressions”,
which were the form of data used in early LISP [49]. The set S-exps of
S-expressions is the least set such that

τ ∈ S-exps iff τ ∈ Atoms

or τ = (τ1 · τ2) where τ1, τ2 ∈ S-exps.

Here atoms are values that are not addresses, while (τ1 · τ2) is the LISP nota-
tion for an ordered pair. (Mathematically, S-expressions are the initial lawless
algebra with an infinite number of constants and one binary operation.)

5.1 Trees

We use the word “tree” to describe a representation of S-expressions by
two-field records, in which there is no sharing between the representation
of subexpressions. More precisely, we define the predicate tree τ (i) — read
“i is (the root of) a tree representing the S-expression τ” — by structural
induction on τ :

tree a (i) iff emp ∧ i = a when a is an atom

tree (τ1 · τ2) (i) iff ∃i1, i2. i 7→ i1, i2 ∗ tree τ1 (i1) ∗ tree τ2 (i2).

161

162 CHAPTER 5. TREES AND DAGS

One can show that the assertions tree τ (i) and ∃τ. tree τ (i) are precise.

To illustrate the use of this definition, we define and verify a recursive
procedure copytree(j; i) that nondestructively copies the tree i to j, i.e., that
satisfies {tree τ(i)} copytree(j; i){τ} {tree τ(i) ∗ tree τ(j)}. (Here τ is a ghost
parameter.) Essentially, our proof is an annotated specification that is an

5.1. TREES 163

instance of the first premiss of the rule (SRPROC):

{tree τ(i)} copytree(j; i){τ} {tree τ(i) ∗ tree τ(j)} `
{tree τ(i)}

if isatom(i) then

{isatom(τ) ∧ emp ∧ i = τ}
{isatom(τ) ∧ ((emp ∧ i = τ) ∗ (emp ∧ i = τ))}
j := i

{isatom(τ) ∧ ((emp ∧ i = τ) ∗ (emp ∧ j = τ))}
else

{∃τ1, τ2. τ = (τ1 · τ2) ∧ tree (τ1 · τ2)(i)}
newvar i1, i2, j1, j2 in

(i1 := [i] ; i2 := [i + 1] ;

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗ tree τ1 (i1) ∗ tree τ2 (i2))}
{tree τ1(i1)}
copytree(j1; i1){τ1}
{tree τ1(i1) ∗ tree τ1(j1)}

 ∗


τ = (τ1 · τ2) ∧
(i 7→ i1, i2 ∗

tree τ2 (i2))


∃τ1, τ2

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗
tree τ1 (i1) ∗ tree τ2 (i2) ∗ tree τ1 (j1))}

{tree τ2(i2)}
copytree(j2; i2){τ2}
{tree τ(i2) ∗ tree τ2(j2)}

 ∗


τ = (τ1 · τ2) ∧
(i 7→ i1, i2 ∗

tree τ1 (i1) ∗
tree τ1 (j1))




∃τ1, τ2

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗
tree τ1 (i1) ∗ tree τ2 (i2) ∗ tree τ1 (j1) ∗ tree τ2 (j2))}

j := cons(j1, j2)

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗ j 7→ j1, j2 ∗
tree τ1 (i1) ∗ tree τ2 (i2) ∗ tree τ1 (j1) ∗ tree τ2 (j2))}

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (tree (τ1·τ2) (i) ∗ tree (τ1·τ2) (j))})
{tree τ(i) ∗ tree τ(j)}.

164 CHAPTER 5. TREES AND DAGS

Since this specification has the same pre- and post-condition as the assumed
specification of the procedure call, we have closed the circle of recursive
reasoning, and may define

copytree(j; i) =
if isatom(i) then j := i else

newvar i1, i2, j1, j2 in

(i1 := [i] ; i2 := [i + 1] ;

copytree(j1; i1) ; copytree(j2; i2) ; j := cons(j1, j2)).

(5.1)

5.2 Dags

We use the acronym “dag” (for “directed acyclic graph”) to describe a repre-
sentation for S-expressions by two-field records, in which sharing is permitted
between the representation of subexpressions (but cycles are not permitted).
More precisely, we define the predicate dag τ (i) — read “i is (the root of) a
dag representing the S-expression τ — by structural induction on τ :

dag a (i) iff i = a when a is an atom

dag (τ1 · τ2) (i) iff ∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)).

The essential change from the definition of tree is the use of ordinary rather
than separating conjunction in the second line, which allows the dag’s describ-
ing subtrees to share the same heap. However, if dag τ (i) meant that the heap
contained the dag representing τ and nothing else, then dag τ1 (i1)∧dag τ2 (i2)
would imply that τ1 and τ2 have the same representation (and are therefore
the same S-expression). But we have dropped emp from the base case, so
that dag τ (i) only means that a dag representing τ occurs somewhere within
the heap. In fact,

Proposition 16 (1) dag τ (i) and (2) ∃τ. dag τ (i) are intuitionistic asser-
tions.

Proof (1) By induction on τ , using the fact that an assertion p is intu-
itionistic iff p ∗ true⇒ p. If τ is an atom a, then

dag a (i) ∗ true

⇒ i = a ∗ true

⇒ i = a

⇒ dag a (i),

5.2. DAGS 165

since i = a is pure. Otherwise, τ = (τ1 · τ2), and

dag (τ1 · τ2) (i) ∗ true

⇒ ∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)) ∗ true

⇒ ∃i1, i2. i 7→ i1, i2 ∗

((dag τ1 (i1) ∗ true) ∧ (dag τ2 (i2) ∗ true))

⇒ ∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2))

⇒ dag (τ1 · τ2) (i),

by the induction hypothesis for τ1 and τ2.
(2) Again, using the fact that an assertion p is intuitionistic,

(∃τ. dag τ (i)) ∗ true

⇒ ∃τ. (dag τ (i) ∗ true)

⇒ ∃τ. dag τ (i).

end of proof

Moreover,

Proposition 17 (1) For all i, τ0, τ1, h0, h1, if h0 ∪ h1 is a function, and

[i: i | τ : τ0], h0 |= dag τ (i) and [i: i | τ : τ1], h1 |= dag τ (i), (5.2)

then τ0 = τ1 and
[i: i | τ : τ0], h0 ∩ h1 |= dag τ (i).

(2) dag τ i is a supported assertion. (3) ∃τ. dag τ (i) is a supported assertion.

Proof We first note that: (a) When a is an atom, [i: i | τ : a], h |= dag τ (i)
iff i = a. (b) [i: i | τ : (τl·τr)], h |= dag τ (i) iff i is not an atom and there are
il, ir, and h′ such that

h = [i: il | i + 1: ir] · h′

[i: il | τ : τl], h
′ |= dag τ (i)

[i: ir | τ : τr], h′ |= dag τ (i).

(1) The proof is by structural induction on τ0. For the base case, suppose
τ0 is an atom a. Then by (a), i = a. Moreover, if τ1 were not an atom, then

166 CHAPTER 5. TREES AND DAGS

by (b) we would have the contradiction that i is not an atom. Thus τ1 must
be atom a′, and by (a), i = a′, so that τ0 = τ1 = i = a = a′. Then, also by
(a), [i: i | τ : τ0], h |= dag τ (i) holds for any h.

For the induction step suppose τ0 = (τ0l·τ0r). Then by (b), i is not an
atom, and there are i0l, i0r, and h′

0 such that

h0 = [i: i0l | i + 1: i0r] · h′
0

[i: i0l | τ : τ0l], h
′
0 |= dag τ (i)

[i: i0r | τ : τ0r], h′
0 |= dag τ (i).

Moreover, if τ1 were an atom, then by (a) we would have the contradiction
that i is an atom. Thus, τ1 must have the form (τ1l·τ1r), so that by (b) there
are i1l, i1r, and h′

1 such that

h1 = [i: i1l | i + 1: i1r] · h′
1

[i: i1l | τ : τ1l], h
′
1 |= dag τ (i)

[i: i1r | τ : τ1r], h′
1 |= dag τ (i).

Since h0 ∪ h1 is a function, h0 and h1 must map i and i + 1 into the same
values. Thus [i: i0l | i + 1: i0r] = [i: i1l | i + 1: i1r], so that i0l = i1l and
i0r = i1r, and also,

h0 ∩ h1 = [i: i0l | i + 1: i0r]·(h′
0 ∩ h′

1).

Then, since

[i: i0l | τ : τ0l], h
′
0 |= dag τ (i) and [i: i1l | τ : τ1l], h

′
1 |= dag τ (i),

the induction hypothesis for τ0l gives

τ0l = τ1l and [i: i0l | τ : τ0l], h
′
0 ∩ h′

1 |= dag τ (i),

and the induction hypothesis for τ0r gives

τ0r = τ1r and [i: i0r | τ : τ0r], h′
0 ∩ h′

1 |= dag τ (i).

Thus, (b) gives
[i: i | τ : (τ0l·τ0r)], h0 ∩ h1 |= dag τ (i),

5.2. DAGS 167

which, with τ0 = (τ0l·τ0r) = (τ1l·τ1r) = τ1, establishes (1).
(2) Since τ and i are the only free variables in dag τ (i), we can regard s

and [i: i | τ : τ], where i = s(i) and τ = s(τ), as equivalent stores. Then (2)
follows since h0 ∩ h1 is a subset of both h0 and h1.

(3) Since i is the only free variable in ∃τ. dag τ (i), we can regard s and
[i: i], where i = s(i), as equivalent stores. Then we can use the semantic
equation for the existential quantifier to show that there are S-expressions
τ0 and τ1 such that (5.2) holds. Then (1) and the semantic equation for
existentials shows that [i: i], h0 ∩h1 |= dag τ (i), and (3) follows since h0 ∩h1

is a subset of both h0 and h1. end of proof

It follows that we can use the “precising” operation of Section 2.3.6,

Pr p
def
= p ∧ ¬(p ∗ ¬ emp),

to convert dag τ (i) and ∃τ. dag τ (i) into the precise assertions

dag τ (i) ∧ ¬(dag τ (i) ∗ ¬ emp)

(∃τ. dag τ (i)) ∧ ¬((∃τ. dag τ (i)) ∗ ¬ emp),

each of which asserts that the heap contains the dag at i and nothing else.
Now consider the procedure copytree(j; i). It creates a new tree rooted at

j, but it never modifies the structure at i, nor does it compare any pointers
for equality (or any other relation). So we would expect it to be impervious
to sharing in the structure being copied, and thus to satisfy

{dag τ(i)} copytree(j; i){τ} {dag τ(i) ∗ tree τ(j)}.

In fact, this specification is satisfied, but if we try to mimic the proof in the
previous section, we encounter a problem. If we take the above specification
as the hypothesis about recursive calls of copytree, then we will be unable to
prove the necessary property of the first recursive call:

{i 7→ i1, i2 ∗ (dag τ1(i1) ∧ dag τ2(i2))}
copytree(j1; i1){τ1}
{i 7→ i1, i2 ∗ (dag τ1(i1) ∧ dag τ2(i2)) ∗ tree τ1(j1)}.

(Here, we ignore pure assertions in the pre- and postconditions that are
irrelevant to this argument.) But the hypothesis is not strong enough to

168 CHAPTER 5. TREES AND DAGS

imply this. For example, suppose τ1 = ((3 · 4) · (5 · 6)) and τ2 = (5 · 6).
Then, even though it satisfies the hypothesis, the call copytree(i1, τ ; j1) might
change the state from

◦

◦-i1

6

5
��*

i2

4

3*

j
into

◦

◦-i1

4

3
��*

i2

6

53

s

◦

◦-j1

6

5

4

3*

j

where dag τ2 (i2) is false.
To circumvent this problem, we must strengthen the specification of

copytree to specify that a call of the procedure does not change the heap
that exists when it begins execution. There are (at least) three possible
approaches:

1. Introduce ghost variables and parameters denoting heaps. Suppose h0

is such a variable, and the assertion this(h0) is true just in the heap
that is the value of h0. Then we could specify

{this(h0) ∧ dag τ(i)} copytree(j; i){τ, h0} {this(h0) ∗ tree τ(j)}.

2. Introduce ghost variables and parameters denoting assertions (or se-
mantically, denoting properties of heaps). Then we could use an asser-
tion variable p to specify that every property of the initial heap is also
a property of the final subheap excluding the newly created copy:

{p ∧ dag τ(i)} copytree(j; i){τ, p} {p ∗ tree τ(j)}.

3. Introduce fractional permissions [32], or some other form of assertion
that part of the heap is read-only or passive. Then one could define an
assertion passdag τ(i) describing a read-only heap containing a dag, and
use it to specify that the initial heap is at no time altered by copytree:

{passdag τ(i)} copytree(j; i){τ} {passdag τ(i) ∗ tree τ(j)}.

Here we will explore the second approach.

5.3. ASSERTION VARIABLES 169

5.3 Assertion Variables

To extend our language to encompass assertion variables, we introduce this
new type of variable as an additional form of assertion. Then we extend the
concept of state to include an assertion store mapping assertion variables
into properties of heaps:

AStoresA = A → (Heaps → B)

StatesAV = AStoresA × StoresV × Heaps,

where A denotes a finite set of assertion variables.
Since assertion variables are always ghost variables, assertion stores have

no effect on the execution of commands, but they affect the meaning of
assertions. Thus, when as is an assertion store, s is a store, h is a heap, and
p is an assertion whose free assertion variables all belong to the domain of
as and whose free variables all belong to the domain of s, we write

as , s, h |= p

(instead of s, h |= p) to indicate that the state as , s, h satisfies p.
The formulas in Section 2.1 defining the relation of satisfaction are all

generalized by changing the left side to as , s, h |= and leaving the rest of the
formula unchanged. Then we add a formula for the case where an assertion
variable a is used as an assertion:

as , s, h |= a iff as(a)(h).

This generalization leads to a generalization of the substitution law, in
which substitutions map assertion variables into assertions, as well as ordi-
nary variables into expressions. We write AV(p) for the assertion variables
occurring free in p. (Since, we have not introduced any binders of assertion
variables, all of their occurrences are free.)

Proposition 18 (Generalized Partial Substitution Law for Assertions) Sup-
pose p is an assertion, and let δ abbreviate the substitution

a1 → p1, . . . , am → pm, v1 → e1, . . . , vn → en,

Then let s be a store such that

(FV(p)− {v1, . . . , vn}) ∪ FV(p1, . . . , pm, e1, . . . , en) ⊆ dom s,

170 CHAPTER 5. TREES AND DAGS

and let as be an assertion store such that

(AV(p)− {a1, . . . , am}) ∪ AV(p1, . . . , pm) ⊆ dom as ,

and let

ŝ = [s | v1: [[e1]]exps | . . . | vn: [[en]]exps]

âs = [as | a1: λh. (as , s, h |= p1) | . . . | am: λh. (as , s, h |= pm)]

Then

as , s, h |= (p/δ) iff âs , ŝ, h |= p.

The definition of Hoare triples remains unchanged, except that one uses —
and quantifies over — the new enriched notion of states. Command execution
neither depends upon nor alters the new assertion-store component of these
states.

The inference rules for substitution (in both the setting of explicit proofs
and of annotated specifications) must also be extended:

• Substitution (SUB)
{p} c {q}

{p/δ} (c/δ) {q/δ},
where δ is the substitution a1 → p1, . . . , am → pm, v1 → e1, . . . , vn →
en; a1, . . . , am are the assertion variables occurring in p or q; v1, . . . , vn

are the variables occurring free in p, c, or q; and, if vi is modified by c,
then ei is a variable that does not occur free in any other ej or in any
pj.

• Substitution (SUBan)

A � {p} c {q}

{A}/δ � {p/δ} c {q/δ},

where δ is the substitution a1 → p1, . . . , am → pm, v1 → e1, . . . , vn →
en; a1, . . . , am are the assertion variables occurring in p or q; v1, . . . , vn

are the variables occurring free in p, c, or q; and, if vi is modified by c,
then ei is a variable that does not occur free in any other ej or in any
pj.

5.4. COPYING DAGS TO TREES 171

In {a} x := y {a}, for example, we can substitute a → (y = z), x → x, y → y
to obtain

{y = z} x := y {y = z},

but we cannot substitute a → (x = z), x → x, y → y to obtain

{x = z} x := y {x = z}.

We must also extend the rules for annotated specifications of procedure
calls and definitions to permit assertion variables to be used as ghost param-
eters. The details are left to the reader.

5.4 Copying Dags to Trees

Now we can prove that the procedure copytree defined by (5.1) satisfies

{p ∧ dag τ(i)} copytree(j; i){τ, p} {p ∗ tree τ(j)}.

In this specification, we can substitute dag τ(i) for p to obtain the weaker
specification

{dag τ(i)} copytree(j; i){τ, dag τ(i)} {dag τ(i) ∗ tree τ(j)},

but, as we have seen, the latter specification is too weak to serve as a recursion
hypothesis.

172 CHAPTER 5. TREES AND DAGS

Our proof is again an annotated instance of the first premiss of (SRPROC):

{p ∧ dag τ(i)} copytree(j; i){τ, p} {p ∗ tree τ(j)} `
{p ∧ dag τ(i)}
if isatom(i) then

{p ∧ isatom(τ) ∧ τ = i}
{p ∗ (isatom(τ) ∧ τ = i ∧ emp)}
j := i

{p ∗ (isatom(τ) ∧ τ = j ∧ emp)}
else

{∃τ1, τ2. τ = (τ1 · τ2) ∧ p ∧ dag (τ1 · τ2)(i)}
newvar i1, i2, j1, j2 in

(i1 := [i] ; i2 := [i + 1] ;

{∃τ1, τ2. τ = (τ1 · τ2) ∧
p ∧ (i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)))}

{∃τ1, τ2. τ = (τ1 · τ2) ∧
p ∧ (true ∗ (dag τ1 (i1) ∧ dag τ2 (i2)))}

{∃τ1, τ2. τ = (τ1 · τ2) ∧
p ∧ ((true ∗ dag τ1 (i1)) ∧ (true ∗ dag τ2 (i2)))}

{∃τ1, τ2. τ = (τ1 · τ2) ∧ p ∧ dag τ2 (i2) ∧ dag τ1 (i1)} (∗)
{τ = (τ1 · τ2) ∧ p ∧ dag τ2 (i2) ∧ dag τ1(i1)}
copytree(j1; i1){τ1, τ = (τ1 · τ2) ∧ p ∧ dag τ2 (i2)}
{(τ = (τ1 · τ2) ∧ p ∧ dag τ2 (i2)) ∗ tree τ1(j1)}

∃τ1, τ2

{∃τ1, τ2. (τ = (τ1 · τ2) ∧ p ∧ dag τ2 (i2)) ∗ tree τ1 (j1)}
{τ = (τ1 · τ2) ∧ p ∧ dag τ2(i2)}
copytree(j2; i2){τ2, τ = (τ1 · τ2) ∧ p}
{(τ = (τ1 · τ2) ∧ p) ∗ tree τ2(j2)}

 ∗ tree τ1 (j1)

∃τ1, τ2

{∃τ1, τ2. (τ = (τ1 · τ2) ∧ p) ∗ tree τ1 (j1) ∗ tree τ2 (j2)}
j := cons(j1, j2)

{∃τ1, τ2. (τ = (τ1 · τ2) ∧ p) ∗
j 7→ j1, j2 ∗ tree τ1 (j1) ∗ tree τ2 (j2)}

{∃τ1, τ2. (τ = (τ1 · τ2) ∧ p) ∗ tree (τ1 · τ2) (j)})
{p ∗ tree τ(j)}

5.5. SUBSTITUTION IN S-EXPRESSIONS 173

(Here, the assertion marked (∗) is obtained from the preceeding assertion by
using true ∗ dag τ (i)⇒dag τ (i), which holds since dag τ (i) is intuitionistic.)

5.5 Substitution in S-expressions

To obtain further programs dealing with trees and dags, we consider the
substitution of S-expressions for atoms in S-expressions. We write τ/a → τ ′

for the result of substituting τ ′ for the atom a in τ , which is defined by
structural induction on τ :

a/a → τ ′ = τ ′

b/a → τ ′ = b when b ∈ Atoms− {a}
(τ1 · τ2)/a → τ ′ = ((τ1/a → τ ′) · (τ2/a → τ ′)).

Although we are using the same notation, this operation is different from
the substitution for variables in expressions, assertions, or commands. In
particular, there is no binding or renaming.

We will define a procedure that, given a tree representing τ and a dag
representing τ ′, produces a tree representing τ/a → τ ′, i.e.,

{tree τ (i) ∗ (p ∧ dag τ ′ (j))}
subst1(i; a, j){τ.τ ′, p}
{tree (τ/a → τ ′) (i) ∗ p},

The procedure copytree will be used to copy the dag at j each time the atom
a is encountered in the tree at i.

174 CHAPTER 5. TREES AND DAGS

The following is an annotated specification for the procedure body:

{tree τ (i) ∗ (p ∧ dag τ ′ (j))}
if isatom(i) then

{(isatom(τ) ∧ τ = i ∧ emp) ∗ (p ∧ dag τ ′ (j))}
if i = a then

{(isatom(τ) ∧ τ = a ∧ emp) ∗ (p ∧ dag τ ′ (j))}
{((τ/a → τ ′) = τ ′ ∧ emp) ∗ (p ∧ dag τ ′ (j))}
{p ∧ dag τ ′(j)}
copytree(i; j){τ ′, p}
{p ∗ tree τ ′(i)}

 ∗ ((τ/a → τ ′) = τ ′ ∧ emp)

{((τ/a → τ ′) = τ ′ ∧ emp) ∗ tree τ ′ (i) ∗ p}
else

{(isatom(τ) ∧ τ 6= a ∧ τ = i ∧ emp) ∗ p}
{((τ/a → τ ′) = τ ∧ isatom(τ) ∧ τ = i ∧ emp) ∗ p}
skip

...

5.5. SUBSTITUTION IN S-EXPRESSIONS 175

...

else newvar i1, i2 in (
{∃τ1, τ2, i1, i2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗

tree τ1 (i1) ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j)))}
i1 := [i] ; i2 := [i + 1] ;

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ −,− ∗ (∗)
tree τ1 (i1) ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j) ∧ dag τ ′ (j)))}

{tree τ1 (i1) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j))) ∧ dag τ ′(j))}

subst1(i1; a, j){τ1, τ
′, τ = (τ1 · τ2) ∧

(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j)))}
{tree (τ1/a → τ ′) (i1) ∗ (τ = (τ1 · τ2) ∧

(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j))))}


∃τ1, τ2

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ −,− ∗ (∗∗)
tree τ2 (i2) ∗ tree (τ1/a → τ ′) (i1) ∗ (p ∧ dag τ ′ (j)))}

{tree τ2 (i2) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree (τ1/a → τ ′) (i1) ∗ p) ∧ dag τ ′ (j))}

subst1(i2; a, j){τ2, τ
′, τ = (τ1 · τ2) ∧

(i 7→ −,− ∗ tree (τ1/a → τ ′) (i1) ∗ p)}
{tree (τ2/a → τ ′) (i2) ∗ (τ = (τ1 · τ2) ∧

(i 7→ −,− ∗ tree (τ1/a → τ ′) (i1) ∗ p))}


∃τ1, τ2

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ −,− ∗
tree (τ2/a → τ ′) (i2) ∗ tree (τ1/a → τ ′) (i1) ∗ p)}

[i] := i1 ; [i + 1] := i2

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ i1, i2 ∗
tree (τ2/a → τ ′) (i2) ∗ tree (τ1/a → τ ′) (i1) ∗ p)}

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (tree ((τ1/a → τ ′) · (τ2/a → τ ′)) (i) ∗ p)})
{tree (τ/a → τ ′) (i) ∗ p}

176 CHAPTER 5. TREES AND DAGS

The following argument explains why the assertion marked (∗) implies
the precondition of the application of (EQan) that follows it. From (∗):

{∃τ1, τ2. τ = (τ1 · τ2) ∧ (i 7→ −,− ∗
tree τ1 (i1) ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j) ∧ dag τ ′ (j)))},

we obtain, since τ = (τ1 · τ2) is pure,

{∃τ1, τ2. tree τ1 (i1) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j) ∧ dag τ ′ (j))))}.

Then by the semidistributive law for ∗ and ∧,

{∃τ1, τ2. tree τ1 (i1) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j)))

∧ (i 7→ −,− ∗ tree τ2 (i2) ∗ dag τ ′ (j)))},

and by the monotonicity of ∗ ,

{∃τ1, τ2. tree τ1 (i1) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j)))

∧ (true ∗ dag τ ′ (j)))},

and since dag τ ′ (j) is intuitionistic,

{∃τ1, τ2. tree τ1 (i1) ∗ (τ = (τ1 · τ2) ∧
(i 7→ −,− ∗ tree τ2 (i2) ∗ (p ∧ dag τ ′ (j))) ∧ dag τ ′ (j))}.

A similar argument applies to the assertion marked (∗∗).
Since the pre- and postcondition in this annotated specification match

those in the assumption about procedure calls, we have shown that the as-
sumption is satisfied by the procedure

subst1(i; a, j) =

if isatom(i) then if i = a then copytree(i ; j) else skip

else newvar i1, i2 in (i1 := [i] ; i2 := [i + 1] ;

subst1(i1; a, j) ; subst1(i2; a, j) ; [i] := i1 ; [i + 1] := i2).

5.6. SKEWED SHARING 177

5.6 Skewed Sharing

Unfortunately, the definition we have given for dag permits a phenomenon
called skewed sharing, where two records can overlap without being identical.
For example,

dag ((1 · 2) · (2 · 3)) (i)

holds when

◦

◦-i

3

2

1

-

-

Skewed sharing is not a problem for the algorithms we have seen so far,
which only examine dags while ignoring their sharing structure. But it causes
difficulties with algorithms that modify dags or depend upon the sharing
structure.

A straightforward solution that controls skewed sharing is to add to each
state a mapping φ from the domain of the heap to natural numbers, called the
field count. Then, when v := cons(e1, . . . , en) creates a n-element record, the
field count of the first field is set to n, while the field count of the remaining
fields are set to zero. Thus if a is the address of the first field (i.e., the value
assigned to the variable v), the field count is extended so that

φ(a) = n φ(a + 1) = 0 · · · φ(a + n− 1) = 0.

The field count is an example of a heap auxiliary, i.e. an attribute of the
heap that can be described by assertions but plays no role in the execution
of commands.

To describe the field count, we introduce a new assertion of the form

e
[ê]7→ e′, with the meaning

s, h, φ |= e
[ê]7→ e′ iff

dom h = {[[e]]exps} and h([[e]]exps) = [[e′]]exps and φ([[e]]exps) = [[ê]]exps.

178 CHAPTER 5. TREES AND DAGS

We also introduce the following abbreviations:

e
[ê]7→ − def

= ∃x′. e
[ê]7→ x′ where x′ not free in e

e
[ê]
↪→ e′

def
= e

[ê]7→ e′ ∗ true

e
!7→ e1, . . . , en

def
= e

[n]7→ e1 ∗ e + 1
[0]7→ e2 ∗ · · · ∗ e + n− 1

[0]7→ en

e
!

↪→ e1, . . . , en
def
= e

[n]
↪→ e1 ∗ e + 1

[0]
↪→ e2 ∗ · · · ∗ e + n− 1

[0]
↪→ en

iff e
!7→ e1, . . . , en ∗ true.

Axiom schema for reasoning about these new assertions include:

e
[n]7→ e′ ⇒ e 7→ e′

e
[m]
↪→ −∧ e

[n]
↪→ − ⇒ m = n

2 ≤ k ≤ n ∧ e
[n]
↪→ −∧ e + k− 1 ↪→ − ⇒ e + k− 1

[0]
↪→ −

e
!

↪→ e1, . . . , em ∧ e′
!

↪→ e′1, . . . , e
′
n ∧ e 6= e′ ⇒

e
!7→ e1, . . . , em ∗ e′

!7→ e′1, . . . , e
′
n ∗ true.

(The last of these axiom schemas makes it clear that skewed sharing has been
prohibited.)

The inference rules for allocation, mutation, and lookup remain sound,
but they are supplemented with additional rules for these commands that
take field counts into account. We list only the simplest forms of these rules:

• Allocation: the local nonoverwriting form (FCCONSNOL)

{emp} v := cons(e) {v !7→ e},

where v /∈ FV(e).

• Mutation: the local form (FCMUL)

{e [ê]7→ −} [e] := e′ {e [ê]7→ e′}.

5.6. SKEWED SHARING 179

• Lookup: the local nonoverwriting form (FCLKNOL)

{e [ê]7→ v′′} v := [e] {v = v′′ ∧ (e
[ê]7→ v)},

where v /∈ FV(e, ê).

The operation of deallocation, however, requires more serious change. If
one can deallocate single fields, the use of field counts can be disrupted by
deallocating a part of record, since the storage allocator may reallocate the
same address as the head of a new record. For example, the command

j := cons(1, 2) ; dispose j + 1 ; k := cons(3, 4) ; i := cons(j, k)

could produce the skewed sharing illustrated at the beginning of this section
if the new record allocated by the second cons operation were placed at
locations j + 1 and j + 2.

A simple solution (reminiscent of the free operation in C) is to replace
dispose e with an command dispose (e, n) that disposes of an entire n-field
record — and then to require that this record must have been created by an
execution of cons. The relevant inference rules are:

• The local form (FCDISL)

{e !7→ −n} dispose (e, n) {emp}.

• The global (and backward-reasoning) form (FCDISG)

{(e !7→ −n) ∗ r} dispose (e, n) {r}.

(Here −n denotes a list of n occurrences of −.)

180 CHAPTER 5. TREES AND DAGS

Exercise 16

If τ is an S-expression, then |τ |, called the flattening of τ , is the sequence
defined by:

|a| = [a] when a is an atom

|(t1 · t2)| = |τ1| · |τ2|.

Here [a] denotes the sequence whose only element is a, and the “·” on the
right of the last equation denotes the concatenation of sequences.

Define and prove correct (by an annotated specification of its body) a
recursive procedure flatten that mutates a tree denoting an S-expression τ
into a singly-linked list segment denoting the flattening of τ . This procedure
should not do any allocation or disposal of heap storage. However, since a list
segment representing |τ | contains one more two-cell than a tree representing
τ , the procedure should be given as input, in addition to the tree representing
τ , a single two-cell, which will become the initial cell of the list segment that
is constructed.

More precisely, the procedure should satisfy

{tree τ (i) ∗ j 7→ −,−}
flatten(; i, j, k){τ}
{lseg |τ | (j, k)}.

(Note that flatten must not assign to the variables i, j, or k.)

Chapter 6

Iterated Separating
Conjunction

An Introduction
to Separation Logic
c©2008 John C. Reynolds
October 23, 2008

In this chapter, we introduce an iterative version of the separating con-
junction that is useful in describing arrays, as well as certain properties of
list structures.

6.1 A New Form of Assertion

We extend the language of assertions with an binding operator
⊙

, which is
used to construct an assertion of the form⊙e′

v=e p,

where the occurrence of v in the subscript is a binder whose scope is p.
Roughly speaking, this assertion describes the separating conjunction

(p/v → e) ∗ (p/v → e + 1) ∗ · · · ∗ (p/v → e′).

More precisely, for a state s, h, let m = [[e]]exps and n = [[e′]]exps be the
lower and upper bounds, and I = { i | m ≤ i ≤ n } be the set of indices.
Then s, h |= ⊙e′

v=e p iff there is a function H ∈ I → Heaps that partitions h
into an indexed set of heaps,

h =
⋃
{Hi | i ∈ I } and ∀i, j ∈ I. i 6= j implies Hi ⊥ Hj,

such that, for all indices i ∈ I, [s | v: i], Hi |= p.

181

182 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

This new form satisfies the following axiom schemata, in which, for read-
ability, we have written p(e) for p/i → e:

m > n ⇒ (⊙n
i=m p(i) ⇔ emp) (6.1)

m = n ⇒ (⊙n
i=m p(i) ⇔ p(m)) (6.2)

k ≤ m ≤ n + 1 ⇒ (⊙n
i=k p(i) ⇔ (⊙m−1

i=k p(i) ∗ ⊙n
i=m p(i))) (6.3)⊙n

i=m p(i) ⇔ ⊙n−k
i=m−k p(i + k) (6.4)

m ≤ n ⇒ ((⊙n
i=m p(i)) ∗ q ⇔ ⊙n

i=m(p(i) ∗ q)) (6.5)

when q is pure and i /∈ FV(q)

m ≤ n ⇒ ((⊙n
i=m p(i)) ∧ q ⇔ ⊙n

i=m(p(i) ∧ q)) (6.6)

when q is pure and i /∈ FV(q)

m ≤ j ≤ n ⇒ ((⊙n
i=m p(i))⇒ (p(j) ∗ true)). (6.7)

6.2 Arrays

The most obvious use of the iterated separating conjunction is to describe
arrays that occur in the heap. To allocate such arrays, as discussed in Section
1.8, we introduce the command

〈comm〉 ::= · · · | 〈var〉 := allocate 〈exp〉

The effect of v :=allocate e is to allocate a block of size e, and to assign the
address of the first element to v. The initialization of the array elements is
not specified.

The inference rules for this new command are similar to those for the
ordinary allocation of records:

• The local nonoverwriting form (ALLOCNOL)

{emp} v := allocate e {⊙v+e−1
i=v i 7→ −},

where v /∈ FV(e).

6.2. ARRAYS 183

• The global nonoverwriting form (ALLOCNOG)

{r} v := allocate e {(⊙v+e−1
i=v i 7→ −) ∗ r},

where v /∈ FV(e, r).

• The local form (ALLOCL)

{v = v′ ∧ emp} v := allocate e {⊙v+e′−1
i=v i 7→ −},

where v′ is distinct from v, and e′ denotes e/v → v′.

• The global form (ALLOCG)

{r} v := allocate e {∃v′. (
⊙v+e′−1

i=v i 7→ −) ∗ r′},

where v′ is distinct from v, v′ /∈ FV(e, r), e′ denotes e/v → v′, and r′

denotes r/v → v′.

• The backward-reasoning form (ALLOCBR)

{∀v′′. (
⊙v′′+e−1

i=v′′ i 7→ −) −∗ p′′} v := allocate e {p},

where v′′ is distinct from v, v′′ /∈ FV(e, p), and p′′ denotes p/v → v′′.

184 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Usually, (one-dimensional) arrays are used to represent sequences. We
define

array α (a, b)
def
= #α = b− a + 1 ∧⊙b

i=a i 7→ αi−a+1.

When array α (a, b) holds, we say that a to b (more precisely, the heap from
a to b) represents the sequence α.

Notice that, since the length of a sequence is never negative, the assertion
array α (a, b) implies that a ≤ b + 1. In fact, it would be consistent to define
a to b to represent the empty sequence when a > b+1 (as well as a = b+1),
but we will not use such “irregular” representations in these notes. (An
integrated approach to regular and irregular represetations is discussed in
Reference [41, Chapter 2].)

This new form of assertion satisfies the following axioms:

array α (a, b) ⇒ #α = b− a + 1

array α (a, b) ⇒ i ↪→ αi−a+1 when a ≤ i ≤ b

array ε (a, b) ⇔ b = a− 1 ∧ emp

array x (a, b) ⇔ b = a ∧ a 7→ x

array x·α (a, b) ⇔ a 7→ x ∗ array α (a + 1, b)

array α·x (a, b) ⇔ array α (a, b− 1) ∗ b 7→ x

array α (a, c) ∗ array β (c + 1, b)

⇔ array α·β (a, b) ∧ c = a + #α− 1

⇔ array α·β (a, b) ∧ c = b−#β

6.3 Partition

As an example, we present a program that, given an array representing a
sequence, and a pivot value r, rearranges the sequence so that it splits into
two contiguous parts, containing values smaller or equal to r and values larger
than r, respectively. (This is a variant of the well-known program “Partition”
by C. A. R. Hoare [50].)

6.3. PARTITION 185

{array α(a, b)}

newvar d, x, y in (c := a− 1 ; d := b + 1 ;

{∃α1, α2, α3. (array α1 (a, c) ∗ array α2 (c + 1, d− 1) ∗ array α3 (d, b))

∧ α1·α2·α3 ∼ α ∧ {α1} ≤∗ r ∧ {α3} >∗ r}

while d > c + 1 do (x := [c + 1];

if x ≤ r then

{∃α1, α2, α3. (array α1 (a, c) ∗ c + 1 7→ x ∗ array α2 (c + 2, d− 1)

∗ array α3 (d, b)) ∧ α1·x·α2·α3 ∼ α ∧ {α1·x} ≤∗ r ∧ {α3} >∗ r}
c := c + 1

else (y := [d− 1];

if y > r then

{∃α1, α2, α3. (array α1 (a, c) ∗ array α2 (c + 1, d− 2) ∗ d− 1 7→ y

∗ array α3 (d, b)) ∧ α1·α2·y·α3 ∼ α ∧ {α1} ≤∗ r ∧ {y·α3} >∗ r}
d := d− 1

else

{∃α1, α2, α3. (array α1 (a, c) ∗ c + 1 7→ x

∗ array α2 (c + 2, d− 2) ∗ d− 1 7→ y ∗ array α3 (d, b))

∧ α1·x·α2·y·α3 ∼ α ∧ {α1} ≤∗ r ∧ {α3} >∗ r ∧ x > r ∧ y ≤ r}

([c + 1] := y ; [d− 1] := x ; c := c + 1 ; d := d− 1))))
{∃α1, α2. (array α1(a, c) ∗ array α2(c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ r ∧ r <∗ {α2}}.

For the most part, the reasoning here is straightforward. It should be no-
ticed, however, that the assertion following the second else depends upon
the validity of the implication

c + 1 ↪→ x ∧ d− 1 ↪→ y ∧ x > r ∧ y ≤ r⇒ c + 1 6= d− 1.

It is also straightforward to encapsulate the above program as a nonre-

186 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

cursive procedure. If we define

partition(c; a, b, r) =

newvar d, x, y in (c := a− 1 ; d := b + 1 ;

while d > c + 1 do

(x := [c + 1] ; if x ≤ r then c := c + 1 else

(y := [d− 1] ; if y > r then d := d− 1 else

([c + 1] := y ; [d− 1] := x ; c := c + 1 ; d := d− 1)))),

then partition satisfies

{array α(a, b)}
partition(c; a, b, r){α}
{∃α1, α2. (array α1(a, c) ∗ array α2(c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ r ∧ r <∗ {α2}}.

6.4 From Partition to Quicksort

We can use the procedure partition to define a version of the recursive sorting
procedure called quicksort (which is again a variant of a well-known algorithm
by Hoare [51]).

Since quicksort is recursive, we must state the specification of the proce-
dure before we prove the correctness of its body, in order to reason about the
recursive calls within the body. Fortunately, the specification is an obvious
formalization of the requirements for a sorting procedure: We assume the
specification

{array α (a, b)}
quicksort(; a, b){α}
{∃β. array β (a, b) ∧ β ∼ α ∧ ord β}.

(6.8)

(Notice that quicksort does not modify any variables.)
The basic idea behind quicksort is straightforward: One chooses a pivot

value, partitions the array to be sorted into segments that are smaller or
equal to the pivot and larger or equal to the pivot. Then one uses recursive
calls to sort the two segments.

6.4. FROM PARTITION TO QUICKSORT 187

In our version, there is a complication because it is possible that one of the
segments produced by the procedure partition will be empty while the other
is the entire array to be sorted, in which case a naive version of quicksort
will never terminate. (Consider, for example, the case where all elements of
the array have the same value.) To circumvent this problem, we sort the
end elements of the array separately, use their mean as the pivot value, and
apply partition only to the interior of the array, so that the division of the
entire array always has at least one element in each segment.

Then the following is an annotated specification of the body of quicksort:

{array α (a, b)}
if a < b then newvar c in

({∃x1, α0, x2. (a 7→ x1 ∗ array α0(a + 1, b− 1) ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α}
newvar x1, x2, r in

(x1 := [a] ; x2 := [b] ;

if x1 > x2 then ([a] := x2 ; [b] := x1) else skip ;

r := (x1 + x2)÷ 2 ;

{∃x1, α0, x2. (a 7→ x1 ∗ array α0(a + 1, b− 1) ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α ∧ x1 ≤ r ≤ x2}
{array α0(a + 1, b− 1)}
partition(c; a + 1, b− 1, r){α0}
{∃α1, α2. (array α1(a + 1, c)

∗ array α2(c + 1, b− 1))

∧ α1·α2 ∼ α0

∧ {α1} ≤∗ r ∧ r <∗ {α2}}


∗


(a 7→ x1 ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α

∧ x1 ≤ r ≤ x2




∃x1, α0, x2

{∃x1, α1, α2, x2.

(a 7→ x1 ∗ array α1(a + 1, c) ∗ array α2(c + 1, b− 1) ∗ b 7→ x2)

∧ x1·α1·α2·x2 ∼ α ∧ x1 ≤ r ≤ x2 ∧ {α1} ≤∗ r ∧ r <∗ {α2}}) ;

{∃α1, α2. (array α1 (a, c) ∗ array α2 (c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ {α2}}
...

188 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

...

{∃α1, α2. (array α1 (a, c) ∗ array α2 (c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ {α2}}
{array α1 (a, c)}
quicksort(; a, c){α1}
{∃β. array β (a, c)

∧ β ∼ α1 ∧ ord β}


∗


array α2(c + 1, b)

∧ α1·α2 ∼ α

∧ {α1} ≤∗ {α2}



∃α1,∃α2

{∃β1, α2. (array β1 (a, c) ∗ array α2 (c + 1, b))

∧ β1·α2 ∼ α ∧ {β1} ≤∗ {α2} ∧ ord β1}
{array α2 (c + 1, b)}
quicksort(; c + 1, b){α2}
{∃β. array β (c + 1, b)

∧ β ∼ α2 ∧ ord β}


∗


array β1(a, c)

∧ β1·α2 ∼ α

∧ {β1} ≤∗ {α2}
∧ ord β1




∃β1,∃α2

{∃β1, β2. (array β1 (a, c) ∗ array β2 (c + 1, b))

∧ β1·β2 ∼ α ∧ {β1} ≤∗ {β2} ∧ ord β1 ∧ ord β2})
else skip

{∃β. array β (a, b) ∧ β ∼ α ∧ ord β}

The pre- and postconditions of the above specification match those of the
assumed specification 6.8. Moreover, the only free variables of the specified
command are a and b, neither of which is modified. Thus we may satisfy 6.8

6.5. ANOTHER CYCLIC BUFFER 189

by using the command as the body of the procedure declaration:

quicksort(a, b) =

if a < b then newvar c in

(newvar x1, x2, r in

(x1 := [a] ; x2 := [b] ;

if x1 > x2 then ([a] := x2 ; [b] := x1) else skip ;

r := (x1 + x2)÷ 2 ; partition(a + 1, b− 1, r; c)) ;

quicksort(a, c) ; quicksort(c + 1, b))
else skip.

6.5 Another Cyclic Buffer

When an array is used as a cyclic buffer, it represents a sequence in a more
complex way than is described by the predicate array: The array location
holding a sequence element is determined by modular arithmetic.

To illustrate, we assume that an n-element array has been allocated at
location l, and we write x⊕ y for the integer such that

x⊕ y = x + y modulo n and l ≤ j < l + n.

We will also use the following variables:

m : number of active elements
i : pointer to first active element
j : pointer to first inactive element.

Let R abbreviate the assertion

R
def
= 0 ≤ m ≤ n ∧ l ≤ i < l + n ∧ l ≤ j < l + n ∧ j = i⊕m

It is easy to show (using ordinary Hoare logic) that

{R ∧m < n} m := m + 1 ; if j = l + n− 1 then j := l else j := j + 1 {R}

and

{R ∧m > 0} m := m− 1 ; if i = l + n− 1 then i := l else i := i + 1 {R}

190 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Then the following invariant describes the situation where the cyclic buffer
contains the sequence α:

((
⊙m−1

k=0 i⊕ k 7→ αk+1) ∗ (
⊙n−m−1

k=0 j⊕ k 7→ −)) ∧m = #α ∧R,

and the following is an annotated specification of a command that inserts
the value x at the end of the sequence α. (The indications on the right refer
to axiom schema in Section 6.1.)

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ (

⊙n−m−1
k=0 j⊕ k 7→ −))

∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ (

⊙0
k=0 j⊕ k 7→ −) ∗ (6.3)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ j⊕ 0 7→ − ∗ (6.2)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

[j] := x ;

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ j⊕ 0 7→ x ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ i⊕m 7→ x ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ i⊕m 7→ (α·x)m+1 ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙m
k=m i⊕ k 7→ (α·x)k+1) ∗ (6.2)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−1
k=1 j⊕ k 7→ −)) (6.3)

∧m + 1 = #(α·x) ∧R ∧m < n}

{((⊙m
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−2
k=0 j⊕ k⊕ 1 7→ −)) (6.4)

∧m + 1 = #(α·x) ∧R ∧m < n}

m := m + 1 ; if j = l + n− 1 then j := l else j := j + 1

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−1
k=0 j⊕ k 7→ −))

∧m = #(α·x) ∧R}

6.6. CONNECTING TWO VIEWS OF SIMPLE LISTS 191

6.6 Connecting Two Views of Simple Lists

Somewhat surprisingly, the iterated separating conjunction can be used prof-
itably to describe lists as well as arrays. A simple example is the connection
between ordinary simple lists and Bornat lists:

◦
α1

σ1

?
-i

◦
α2

σ2

?

nil

αn

σn

?

* * · · · *

From the definitions

list ε i
def
= emp ∧ i = nil

list (a·α) i
def
= ∃j. i 7→ a, j ∗ list α j

and
listN ε i

def
= emp ∧ i = nil

listN (b·σ) i
def
= b = i ∧ ∃j. i + 1 7→ j ∗ listN σ j,

one can show that list can be described in terms of listN and the separating
conjunction by

list α i ⇔ ∃σ. #σ = #α ∧ (listN σ i ∗ ⊙#α
k=1 σk 7→ αk).

The proof is by structural induction on α.

6.7 Specifying a Program for Subset Lists

A more spectacular example of the use of separated iterative conjunction with
lists is provided by an early LISP program that, given a list representing a
finite set, computes a list of lists representing all subsets of the input. (More
generally, the program maps a list representing a finite multiset into a list of
lists representing all sub-multisets; sets are the special case where the lists
contain no duplicate elements.)

This algorithm was historically important since it created sublists that
shared storage extensively, to an extent that reduced the use of storage to a
lower order of complexity compared with unshared sublists.

192 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Indeed, the resulting sharing structure is far more complex than anything
produced by the other algorithms in these notes. Thus, it is significant that
the program can be proved in separation logic, and even more so that, with
the use of the iterated separating conjunction, one can prove enough about
the result to determine its size precisely.

In this section, we reason about an iterative version of the algorithm.

We use the following variables to denote various kinds of sequences:

α : sequences of integers

β, γ : nonempty sequences of addresses

σ : nonempty sequences of sequences of integers.

Then our program will satisfy the specification

{list α i}
“Set j to list of lists of subsets of i”

{∃σ, β. ss(α†, σ) ∧ (list β j ∗ (Q(σ, β) ∧R(β)))}.
(6.9)

Here ss(α, σ) asserts that σ is a sequence of the sequences that represent the
subsets of (the set represented by) α. The inductive definition also specifies
the order of elements in σ and its elements (to the extent that the value of
σ is uniquely determined by α):

ss(ε, σ)
def
= σ = [ε]

ss(a·α, σ)
def
= ∃σ′. (ss(α, σ′) ∧ σ = (extaσ

′)†·σ′),

where exta is a function that prefixes a to every element of its argument:

#extaσ
def
= #σ

∀#σ
i=1 (extaσ)i

def
= a·σi.

(Here ∀#σ
i=1 p abbreviates ∀i. (1 ≤ i ≤ #σ)⇒ p.)

The formula Q(σ, β) asserts that the elements of β are lists representing
the elements of σ:

Q(σ, β)
def
= #β = #σ ∧ ∀#β

i=1 (list σi βi ∗ true).

6.7. SPECIFYING A PROGRAM FOR SUBSET LISTS 193

The formula R(β) uses the iterated separating conjunction to assert that the
final element of β is the empty list, and that every previous element is a list
consisting of a single record followed by a list occurring later in β:

R(β)
def
= (β#β = nil ∧ emp) ∗⊙#β−1

i=1 (∃a, k. i < k ≤ #β ∧ βi 7→ a, βk).

We will also need to define the formula

W (β, γ, a)
def
= #γ = #β ∧

#γ⊙
i=1

γi 7→ a, (β†)i,

which asserts that γ is a sequence of addresses such that γi is a list consisting
of a followed by the ith element of the reflection of β.

It is immediately evident that:

Q([ε], [nil]) ⇔ true

R([nil]) ⇔ emp.

Less trivial are the following:

Proposition 19

W (β, γ, a) ∗ g 7→ a, b ⇔ W (β·b, g·γ, a).

Proof

W (β, γ, a) ∗ g 7→ a, b

⇔ #γ = #β ∧ (g 7→ a, b ∗ ⊙#γ
i=1 γi 7→ a, (β†)i)

⇔ #g·γ = #β·b ∧ ((⊙1
i=1(g·γ)i 7→ a, ((β·b)†)i) ∗

(⊙#g·γ−1
i=1 (g·γ)i+1 7→ a, ((β·b)†)i+1))

⇔ #g·γ = #β·b ∧⊙#g·γ
i=1 (g·γ)i 7→ a, ((β·b)†)i

⇔ W (β·b, g·γ, a).

end of proof

194 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Proposition 20

Q(σ, β) ∗ W (β, γ, a) ⇒ Q((extaσ)†·σ, γ·β).

Proof Let
p(i)

def
= list σi βi

q(i)
def
= γi 7→ a, (β†)i

n
def
= #σ.

Then

Q(σ, β) ∗ W (β, γ, a)

⇒ (#β = n ∧ ∀#β
i=1p(i) ∗ true) ∗ (#γ = #β ∧⊙#γ

i=1 q(i))

⇒ #β = n ∧#γ = n ∧ ((∀n
i=1p(i) ∗ true) ∗ ⊙n

i=1 q(i))

⇒ #β = n ∧#γ = n ∧ ((∀i. 1 ≤ i ≤ n⇒ p(i) ∗ true) ∗ ⊙n
i=1 q(i)) (a)

⇒ #β = n ∧#γ = n ∧ (∀i. ((1 ≤ i ≤ n⇒ p(i) ∗ true) ∗ ⊙n
j=1 q(j))) (b)

⇒ #β = n ∧#γ = n ∧ (∀i. (1 ≤ i ≤ n⇒ (p(i) ∗ true ∗ ⊙n
j=1 q(j)))) (c)

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true ∗ ⊙n

j=1 q(j))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧

∀n
i=1(p(n + 1− i) ∗ true ∗ ⊙n

j=1 q(j))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧

∀n
i=1(p(n + 1− i) ∗ true ∗ q(i))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧

∀n
i=1(list (σ†)i (β

†)i ∗ true ∗ γi 7→ a, (β†)i)

⇒ #γ = n ∧#β = n ∧ ∀n
i=1(list σi βi ∗ true) ∧

∀n
i=1(list ((extaσ)†)i γi ∗ true)

⇒ #γ·β = #(extaσ)†·σ ∧ ∀#γ·β
i=1 (list ((extaσ)†·σ)i (γ·β)i ∗ true)

⇒ Q((extaσ)†·σ, γ·β).

6.7. SPECIFYING A PROGRAM FOR SUBSET LISTS 195

Here (a) implies (b) by the semidistributive law for ∗ and ∀, while, as the
reader may verify, (b) implies (c) since n = #β is larger than zero.

end of proof

Proposition 21

R(β) ∗ W (β, γ, a) ⇒ R(γ·β).

Proof

R(β) ∗ W (β, γ, a)

⇒ (β#β = nil ∧ emp) ∗⊙#γ
i=1 γi 7→ a, (β†)i ∗⊙#β−1
i=1 (∃a, k. i < k ≤ #β ∧ βi 7→ a, βk)

⇒ ((γ·β)#γ·β = nil ∧ emp) ∗⊙#γ
i=1(∃a, k. #γ < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k) ∗⊙#γ·β−1
i=#γ+1(∃a, k. i < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k)

⇒ ((γ·β)#γ·β = nil ∧ emp) ∗⊙#γ·β−1
i=1 (∃a, k. i < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k)

⇒ R(γ·β).

end of proof

From the last two propositions, we have

(Q(σ, β) ∧R(β)) ∗ W (β, γ, a)

⇒ (Q(σ, β) ∗ W (β, γ, a)) ∧ (R(β) ∗ W (β, γ, a))

⇒ Q((extaσ)†·σ, γ·β) ∧R(γ·β).

Using these results, we can verify a program satisfying (6.9). The program
contains two nested while commands. The invariant of the outer while is

∃α′, α′′, σ, β. α′†·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ list β j ∗ (Q(σ, β) ∧R(β))),

196 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

and the invariant of the inner while is

∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m) ∗ list β′′ m ∗

(Q(σ, β′·β′′) ∧R(β′·β′′)) ∗ W (β′, γ, a)).

At the completion of the inner while, we will have

∃α′, α′′, σ, β′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ list β′ j ∗

(Q(σ, β′) ∧R(β′)) ∗ W (β′, γ, a)).

In full detail, the annotated specification is:

{list α i}
j := cons(nil,nil) ;

{list α i ∗ j 7→ nil,nil}
{list α i ∗ list [nil] j}
{ss(ε, [ε]) ∧ (list α i ∗ list [nil] j ∗ (Q([ε], [nil]) ∧R([nil])))}
{∃α′, α′′, σ, β. α′†·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ list β j ∗ (Q(σ, β) ∧R(β)))}
while i 6= nil do Body of the Outer while ;

{∃σ, β. ss(α†, σ) ∧ (list β j ∗ (Q(σ, β) ∧R(β)))},

where the body of the outer while is:

{∃α′, α′′, σ, β, a, k. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(i 7→ a, k ∗ list α′′ k ∗ list β j ∗ (Q(σ, β) ∧R(β)))}

(a := [i] ; k := [i + 1] ; dispose i ; dispose i + 1 ; i := k ;

{∃α′, α′′, σ, β. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ list β j ∗ (Q(σ, β) ∧R(β)))}

{∃α′, α′′, σ, β. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg ε (j, j) ∗ lseg ε (j, j) ∗ list β j ∗

(Q(σ, ε·β) ∧R(ε·β)) ∗ W (ε, ε, a))}

6.7. SPECIFYING A PROGRAM FOR SUBSET LISTS 197

l := j ; m := j ;

{∃α′, α′′, σ, β. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg ε (l, j) ∗ lseg ε (j, m) ∗ list β m ∗

(Q(σ, ε·β) ∧R(ε·β)) ∗ W (ε, ε, a))}
{∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m) ∗ list β′′ m ∗
(Q(σ, β′·β′′) ∧R(β′·β′′)) ∗ W (β′, γ, a))}

while m 6= nil do Body of the Inner while ;

{∃α′, α′′, σ, β′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg γ (l, j) ∗ list β′ j ∗

(Q(σ, β′) ∧R(β′)) ∗ W (β′, γ, a))}
{∃α′, α′′, σ, β′, γ. (a·α′)†·α′′ = α ∧ ss(a·α′, (extaσ)†·σ) ∧

(list α′′ i ∗ list (γ·β′) l ∗ (Q((extaσ)†·σ, γ·β′) ∧R(γ·β′)))}
{∃α′, α′′, σ, β. α′†·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ list β l ∗ (Q(σ, β) ∧R(β)))}
j := l),

and the body of the inner while is:

{∃α′, α′′, σ, β′, β′′, γ, b, m′′. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m) ∗ m 7→ b, m′′ ∗

list β′′ m′′ ∗ (Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a))}

(b := [m] ;

{∃α′, α′′, σ, β′, β′′, γ, m′′. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m) ∗ m 7→ b, m′′ ∗

list β′′ m′′ ∗ (Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a))}
m := [m + 1] ;

{∃α′, α′′, σ, β′, β′′, γ, m′. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m′) ∗ m′ 7→ b, m ∗

list β′′ m ∗ (Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a))}
{∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′·b (j, m) ∗ list β′′ m ∗

198 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

(Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a))}
g := cons(a, b) ;

{∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′·b (j, m) ∗ list β′′ m ∗

(Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a) ∗ g 7→ a, b)}
l := cons(g, l)

{∃α′, α′′, σ, β′, β′′, γ, l′. α′†·a·α′′ = α ∧ ss(α′, σ) ∧
(list α′′ i ∗ l 7→ g, l′ ∗ lseg γ (l′, j) ∗ lseg β′·b (j, m) ∗ list β′′ m ∗

(Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′, γ, a) ∗ g 7→ a, b)}
{∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss(α′, σ) ∧

(list α′′ i ∗ lseg g·γ (l, j) ∗ lseg β′·b (j, m) ∗ list β′′ m ∗

(Q(σ, β′·b·β′′) ∧R(β′·b·β′′)) ∗ W (β′·b, g·γ, a))}).

Exercise 17

Derive the axiom scheme

m ≤ j ≤ n ⇒ ((⊙n
i=m p(i))⇒ (p(j) ∗ true))

from the other axiom schemata for iterating separating conjunction given in
Section 6.1.

Exercise 18

The following is an alternative global rule for allocation that uses a ghost
variable (v′):

• The ghost-variable global form (ALLOCGG)

{v = v′ ∧ r} v := allocate e {(⊙v+e′−1
i=v i 7→ −) ∗ r′},

where v′ is distinct from v, e′ denotes e/v → v′, and r′ denotes r/v → v′.

Derive (ALLOCGG) from (ALLOCG) and (ALLOCL) from (ALLOCGG).

Bibliography

[1] John C. Reynolds. Intuitionistic reasoning about shared mutable data
structure. In Jim Davies, Bill Roscoe, and Jim Woodcock, editors, Mil-
lennial Perspectives in Computer Science, pages 303–321, Houndsmill,
Hampshire, 2000. Palgrave.

[2] Rodney M. Burstall. Some techniques for proving correctness of pro-
grams which alter data structures. In Bernard Meltzer and Donald
Michie, editors, Machine Intelligence 7, pages 23–50. Edinburgh Uni-
versity Press, Edinburgh, Scotland, 1972.

[3] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580 and 583, October 1969.

[4] C. A. R. Hoare. Proof of a program: FIND. Communications of the
ACM, 14(1):39–45, January 1971.

[5] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. In Conference Record of POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 14–26, New York, 2001. ACM.

[6] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, June 1999.

[7] David J. Pym. The Semantics and Proof Theory of the Logic of
Bunched Implications. Applied Logic Series. Kluwer Academic Pub-
lishers, Boston, Massachusetts, 2002. (to appear).

[8] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local rea-
soning about programs that alter data structures. In Laurent Fribourg,

199

200 BIBLIOGRAPHY

editor, Computer Science Logic, volume 2142 of Lecture Notes in Com-
puter Science, pages 1–19, Berlin, 2001. Springer-Verlag.

[9] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local rea-
soning. In M. Nielsen and U. Engberg, editors, Foundations of Software
Science and Computation Structures, volume 2303 of Lecture Notes in
Computer Science, pages 402–416, Berlin, 2002. Springer-Verlag.

[10] Hongseok Yang. Local Reasoning for Stateful Programs. Ph. D. disser-
tation, University of Illinois, Urbana-Champaign, Illinois, July 2001.

[11] John C. Reynolds and Peter W. O’Hearn. Reasoning about shared mu-
table data structure (abstract of invited lecture). In Fritz Henglein,
John Hughes, Henning Makholm, and Henning Niss, editors, SPACE
2001: Informal Proceedings of Workshop on Semantics, Program Anal-
ysis and Computing Environments for Memory Management, page 7. IT
University of Copenhagen, 2001. The slides for this lecture are available
at ftp://ftp.cs.cmu.edu/user/jcr/spacetalk.ps.gz.

[12] Hongseok Yang. An example of local reasoning in BI pointer logic:
The Schorr-Waite graph marking algorithm. In Fritz Henglein, John
Hughes, Henning Makholm, and Henning Niss, editors, SPACE 2001:
Informal Proceedings of Workshop on Semantics, Program Analysis and
Computing Environments for Memory Management, pages 41–68. IT
University of Copenhagen, 2001.

[13] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reason-
ing about a copying garbage collector. In Conference Record of POPL
2004: The 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 220–231, New York, 2004. ACM Press.

[14] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning
about a copying garbage collector. To appear in the ACM Transactions
on Programming Languages and Systems, 2008.

[15] Carsten Varming and Lars Birkedal. Higher-order separation logic in
Isabelle/HOL. To appear in the Proceedings of the 24th Annual Con-
ference on Mathematical Foundations of Programming Semantics, Elec-
tronic Notes in Theoretical Computer Science, 2008.

BIBLIOGRAPHY 201

[16] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Com-
putability and complexity results for a spatial assertion language for data
structures. In Ramesh Hariharan, Madhavan Mukund, and V. Vinay,
editors, FST TCS 2001: Foundations of Software Technology and The-
oretical Computer Science, volume 2245 of Lecture Notes in Computer
Science, pages 108–119, Berlin, 2001. Springer-Verlag.

[17] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings Seventeenth Annual IEEE Symposium on
Logic in Computer Science, pages 55–74, Los Alamitos, California, 2002.
IEEE Computer Society.

[18] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separa-
tion and information hiding. In Conference Record of POPL 2004: The
31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 268–280, New York, 2004. ACM Press.

[19] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separa-
tion and information hiding. To appear in the ACM Transactions on
Programming Languages and Systems, 2009.

[20] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of
separation-logic typing and higher-order frame rules. In Proceedings
Twentieth Annual IEEE Symposium on Logic in Computer Science, Los
Alamitos, California, 2005. IEEE Computer Society.

[21] Ivana Mijajlović and Noah Torp-Smith. Refinement in a separation
context. In SPACE 2004: Informal Proceedings of Second Workshop on
Semantics, Program Analysis and Computing Environments for Memory
Management, 2004.

[22] Ivana Mijajlović, Noah Torp-Smith, and Peter W. O’Hearn. Refine-
ment and separation contexts. In Kamal Lodaya and Meena Mahajan,
editors, FSTTCS 2004: Foundations of Software Technology and The-
oretical Computer Science, volume 3328 of Lecture Notes in Computer
Science, pages 421–433, Berlin, 2004. Springer-Verlag.

[23] Matthew J. Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In Conference Record of POPL 2005: The 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
247–258, New York, 2005. ACM Press.

202 BIBLIOGRAPHY

[24] Matthew J. Parkinson. Local Reasoning in Java. Ph. D. dissertation,
University of Cambridge, Cambridge, England, August 2005.

[25] Peter W. O’Hearn. Resources, concurrency and local reasoning. In
CONCUR 2004 — Concurrency Theory, Proceedings of the 15th Inter-
national Conference, volume 3170 of Lecture Notes in Computer Science,
pages 49–67, Berlin, 2004. Springer-Verlag.

[26] Stephen D. Brookes. A semantics for concurrent separation logic. In
CONCUR 2004 — Concurrency Theory, Proceedings of the 15th Inter-
national Conference, volume 3170 of Lecture Notes in Computer Science,
pages 16–34, Berlin, 2004. Springer-Verlag.

[27] Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular
verification of a non-blocking stack. In Conference Record of POPL
2007: The 34nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, New York, 2007. ACM Press.

[28] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of
rely/guarantee and separation logic. In CONCUR 2007 — Concurrency
Theory, Proceedings of the 18th International Conference, Lecture Notes
in Computer Science, Berlin, 2007. Springer-Verlag.

[29] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified
libraries for PCC: Dynamic storage allocation. Science of Computer
Programming, 50:101–127, 2004.

[30] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable
fragment of separation logic. In Kamal Lodaya and Meena Mahajan,
editors, FSTTCS 2004: Foundations of Software Technology and The-
oretical Computer Science, volume 3328 of Lecture Notes in Computer
Science, pages 97–109, Berlin, 2004. Springer-Verlag.

[31] John Boyland. Checking interference with fractional permissions. In
Radhia Cousot, editor, Static Analysis: 10th International Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 55–72, Berlin,
2003. Springer-Verlag.

[32] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew
Parkinson. Permission accounting in separation logic. In Conference

BIBLIOGRAPHY 203

Record of POPL 2005: The 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 259–270, New York,
2005. ACM Press.

[33] Richard Bornat. Variables as resource in separation logic. Electronic
Notes in Computer Science, 21st Annual Conference on Mathematical
Foundations of Programming Semantics, 155:247–276, 2005.

[34] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. Bi-hyperdoctrines
and higher order separation logic. In Proceedings of ESOP 2005: The
European Symposium on Programming, pages 233–247, 2005.

[35] Luis Caires and L. Monteiro. Verifiable and executable specifications of
concurrent objects in Lπ. In C. Hankin, editor, Programming Languages
and Systems — ESOP ’98, volume 1381 of Lecture Notes in Computer
Science, pages 42–56, Berlin, 1998. Springer-Verlag.

[36] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal
logics for mobile ambients. In Conference Record of POPL ’00: The
27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 365–377, New York, 2000. ACM.

[37] G. Conforti, Giorgio Ghelli, A. Albano, D. Colazzo, P. Manghi, and
C. Sartiani. The query language TQL. In Proceedings of the 5th In-
ternational Workshop on the Web and Databases (WebDB), Madison,
Wisconsin, 2002.

[38] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic
for querying graphs. In Matthew Hennessy and P. Widmayer, editors,
Automata, Languages and Programming, Lecture Notes in Computer
Science, Berlin, 2002. Springer-Verlag.

[39] Luca Cardelli and Giorgio Ghelli. A query language based on the ambi-
ent logic. In D. Sands, editor, Programming Languages and Systems —
ESOP 2001, volume 2028 of Lecture Notes in Computer Science, pages
1–22, Berlin, 2001. Springer-Verlag.

[40] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic
and tree update. In Conference Record of POPL 2005: The 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 271–282, New York, 2005. ACM Press.

204 BIBLIOGRAPHY

[41] John C. Reynolds. The Craft of Programming. Prentice-Hall Interna-
tional, London, 1981.

[42] C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R.
Hoare and R. H. Perrott, editors, Operating Systems Techniques, vol-
ume 9 of A.P.I.C. Studies in Data Processing, pages 61–71, London,
1972. Academic Press.

[43] Susan Speer Owicki and David Gries. Verifying properties of paral-
lel programs: An axiomatic approach. Communications of the ACM,
19(5):279–285, May 1976.

[44] Stephen Cole Kleene. Introduction to Metamathematics, volume 1 of
Bibliotheca Mathematica. North-Holland, Amsterdam, 1952.

[45] John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, Cambridge, England, 1998.

[46] Jacques Loeckx, Kurt Sieber, and Ryan D. Stansifer. The Foundations
of Program Verification. Wiley, Chichester, England, second edition,
1987.

[47] Peter Naur. Proof of algorithms by general snapshots. BIT, 6:310–316,
1966.

[48] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, volume 19 of Pro-
ceedings of Symposia in Applied Mathematics, pages 19–32, Providence,
Rhode Island, 1967. American Mathematical Society.

[49] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM, 3(4):184–
195, April 1960.

[50] C. A. R. Hoare. Algorithm 63: Partition. Communications of the ACM,
4(7):321, July 1961.

[51] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM,
4(7):321, July 1961.

