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4.  Spec Reference Manual 

Spec is a language for writing specifications and the first few stages of successive refinement 
towards practical code. As a specification language it includes constructs (quantifiers, backtrack-
ing or non-determinism, some uses of atomic brackets) which are impractical in final code; they 
are there because they make it easier to write clear, unambiguous and suitably general specs. If 
you want to write a practical program, avoid them.  

This document defines the syntax of the language precisely and the semantics informally. You 
should read the Introduction to Spec (handout 3) before trying to read this manual. In fact, 
this manual is intended mainly for reference; rather than reading it carefully, skim through it, and 
then use the index to find what you need. For a precise definition of the atomic semantics read 
Atomic Semantics of Spec (handout 9). Handout 17 on Formal Concurrency gives the non-atomic 
semantics semi-formally.   

1. Overview 

Spec is a notation for writing specs for a discrete system. What do we mean by a spec? It is the 
allowed sequences of transitions of a state machine. So Spec is a notation for describing se-
quences of transitions of a state machine.  

Expressions and commands 

The Spec language has two essential parts:  

An expression describes how to compute a value as a function of other values, either con-
stants or the current values of state variables. 

A command describes possible transitions, or changes in the values of the state variables.  

Both are based on the state, which in Spec is a mapping from names to values. The names are 
called state variables or simply variables: in the examples below they are i and j.  

There are two kinds of commands: 

An atomic command describes a set of possible transitions. For instance, the command 
<< i := i + 1 >> describes the transitions i=1→i=2, i=2→i=3, etc. (Actually, many 
transitions are summarized by i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and  (i=1, 
j=15)→(i=2, j=15)). If a command allows more than one transition from a given state we 
say it is non-deterministic. For instance, the command, << i := 1 [] i := i + 1 >> al-
lows the transitions i=2→i=1 and i=2→i=3. More on this in Atomic Semantics of Spec. 

A non-atomic command describes a set of sequences of states. More on this in Formal Con-
currency. 

A sequential program, in which we are only interested in the initial and final states, can be de-
scribed by an atomic command.  

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s 
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended 

6.826—Principles of Computer Systems  2006 

Handout 4.  Spec Reference Manual 2 

by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct. 
1989, pp 517-561). The notation for expressions is derived from mathematics. 

Organizing a program 

In addition to the expressions and commands that are the core of the language, Spec has four 
other mechanisms that are useful for organizing your program and making it easier to under-
stand. 

A routine is a named computation with parameters (passed by value). There are four kinds:  

A function is an abstraction of an expression. 

An atomic procedure is an abstraction of an atomic command. 

A general procedure is an abstraction of a non-atomic command. 

A thread is the way to introduce concurrency. 

A type is a stylized assertion about the set of values that a name can assume. A type is also an 
easy way to group and name a collection of routines, called its methods, that operate on val-
ues in that set. 

An exception is a way to report an unusual outcome. 

A module is a way to structure the name space into a two-level hierarchy. An identifier i de-
clared in a module m is known as i in m and as m.i throughout the program. A class is a 
module that can be instantiated many times to create many objects. 

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a 
set of modules each of which declares some variables, routines, types, and exceptions. 

Outline 

This manual describes the language bottom-up: 
Lexical rules 
Types 
Expressions 
Commands 
Modules 

At the end there are two sections with additional information: 
Scope rules 
Built-in methods for set, sequence, and routine types. 

There is also an index. The Introduction to Spec has a one-page language summary. 

2. Grammar rules  

Nonterminal symbols are in lower case; terminal symbols are punctuation other than ::=, or are 
quoted, or are in upper case. 

Alternative choices for a  nonterminal are on separate lines. 

symbol* denotes zero of more occurrences of symbol. 
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The symbol empty denotes the empty string. 

If x is a nonterminal, the nonterminal xList is defined by 

xList ::= x 
x , xList 

A comment in the grammar runs from % to the end of the line; this is just like Spec itself. 

A [n] in a comment means that there is an explanation in a note labeled [n] that follows this chunk 
of grammar. 

3. Lexical rules 

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation 
( ) [ ] { } , ; : . | <<  >> := => -> [] [*]. Symbols must not have embedded white 
space. They are always taken to be as long as possible. 

A literal is a decimal number such as 3765, a quoted character such as 'x', or a double-quoted 
string such as "Hello\n". 

An identifier (id) is a letter followed by any number of letters, underscores, and digits followed 
by any number of  ' characters. Case is significant in identifiers. By convention type and proce-
dure identifiers begin with a capital letter. An identifier may not be the same as a keyword. The 
predefined identifiers Any, Bool, Char, Int, Nat, Null, String, true, false, and nil 
are declared in every program. The meaning of an identifier is established by a declaration; see 
section 8 on scope for details. Identifiers cannot be redeclared. 

By convention keywords are written in upper case, but you can write them in lower case if you 
like; the same strings with mixed case are not keywords, however. The keywords are 

ALL APROC AS BEGIN BY CLASS  
CONST DO  END  ENUM EXCEPT EXCEPTION  
EXISTS EXPORT  FI FUNC HAVOC IF   
IN IS  LAMBDA MODULE OD PROC   
RAISE RAISES  RET SEQ SET SKIP  
SUCHTHAT THREAD  TYPE  VAR WHILE WITH 

An operator is any sequence of the characters !@#$^&*-+=:.<>?/\|~ except the sequences 
: . | << >> := => ->  (these are punctuation), or one of the keyword operators AS, IN, and IS. 

A comment in a Spec program runs from a % outside of quotes to the end of the line. It does not 
change the meaning of the program. 
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4. Types 

A type defines a set of values; we say that a value v has type T if v is in T’s set. The sets are not 
disjoint, so a value can belong to more than one set and therefore can have more than one type. 
In addition to its value set, a type also defines a set of routines (functions or procedures) called 
its methods; a method normally takes a value of the type as its first argument. 

An expression has exactly one type, determined by the rules in section 5; the result of the expres-
sion has this type unless it is an exception.  

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You 
can skip them on first reading, or if you don’t care about type-checking. 

About unions: If the expression e has type T we say that e has a routine type W if T is a routine 
type W or if T is a union type and exactly one type W in the union is a routine type. Note that this 
covers sequence, tuple, and record types. Under corresponding conditions we say that e has a set 
type.  

Two types are equal if their definitions are the same (that is, have the same parse trees) after all 
type names have been replaced by their definitions and all WITH clauses have been discarded. 
Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the 
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by 
a type checker, whereas the set equality is intractable. 

A type T fits a type U if the type-checker thinks it’s OK to use a T where a U is required. This is 
true if the type-checker thinks they may have some non-trivial values in common. This can only 
happen if they have the same structure, and each part of T fits the corresponding part of U. ‘Fits’ 
is an equivalence relation. Precisely, T fits U if: 

T = U. 

T is T' SUCHTHAT F or (... + T' + ...) and T' fits U, or vice versa. There may be no val-
ues in common, but the type-checker can’t analyze the SUCHTHAT clauses to find out. There’s 
a special case for the SUCHTHAT clauses of record and tuple types, which the type-checker can 
analyze: T’s SUCHTHAT must imply U’s. 

T=T1->T2 RAISES EXt and U=U1->U2 RAISES EXu, or one or both RAISES are missing, and 
U1 fits T1 and T2 fits U2. Similar rules apply for PROC and APROC types. This also covers se-
quences. Note that the test is reversed for the argument types. 

T=SET T' and U=SET U' and T' fits U'. 

T includes U if the same conditions apply with “fits” replaced by “includes”, all the “vice versa” 
clauses dropped, and in the -> rule “U1 fits T1” replaced by “U1 includes T1 and EXt is a superset 
of EXu”. If T includes U then T’s value set includes U’s value set; again, the reverse is intractable. 

An expression e fits a type U in state s if e’s type fits U and the result of e in state s has type U or 
is an exception; in general this can only be checked at runtime unless U includes e’s type. The 
check that e fits T is required for assignment and routine invocation; together with a few other 
checks it is called type-checking. The rules for type-checking are given in sections 5 and 6. 
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type ::= name % name of a type 
"Any" % every value has this type 
"Null" % with value set {nil} 
"Bool" % with value set {true, false} 
"Char" % like an enumeration 
"String" % = SEQ Char 
"Int" % integers 
"Nat" % naturals: non-negative integers 
SEQ type % sequence [1] 
SET type % set 
[ declList ] % record with declared fields [7] 
( typeList ) % tuple; (T) is the same as T [8] 
 ( union ) % union of the types 
aType ->  type raises % function [2] 
aType ->> type raises % relation [2] 
APROC aType returns raises % atomic procedure [2] 
PROC  aType returns raises % non-atomic procedure [2] 
type WITH { methodDefList } % attach methods to a type [3] 
type SUCHTHAT primary % restrict the value set [4] 
IN exp % = T SUCHTHAT (\ t: T | t IN exp) 
 % where exp’s type has an IN method 
id [ typeList ] . id % type from a module [5] 

name ::= id . id % the first id denotes a module 
id % short for m.id if id is declared  
 % in the current module m, and for  
 % Global.id if id is declared globally 
type . id % the id method of type 

decl ::= id : type % id has this type 
id % short for id: Id [6] 

union ::= type  + type 
union + type 

aType ::= () 
type 

returns ::= empty % only for procedures 
-> type 

raises ::= empty 
RAISES exceptionSet % the exceptions it can return 

exceptionSet ::= { exceptionList } % a set of exceptions 
name % declared as an exception set  
exceptionSet \/ exceptionSet % set union  
exceptionSet - exceptionSet % set difference 

exception ::= id % means "id" 

method ::= id             
stringLiteral % the string must be an operator 
 % other than "=" or "#" (see section 3) 

methodDef ::= method := name % name is a routine 
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The ambiguity of the type grammar is resolved by taking -> to be right associative and giving 
WITH and RAISES higher precedence than ->. 

[1] A SEQ T is just a function from 0..size-1 to T. That is, it is short for  
(Int->T) SUCHTHAT (\ f: Int->T | (EXISTS size: Int | f.dom = 0..size-1)) 
         WITH { see section 9 }. 

This means that invocation, !, and * work for a sequence just as they do for any function. In ad-
dition, there are many other useful operators on sequences; see section 9. The String type is just 
SEQ Char; there are String literals, defined in section 5.  

[2] A T->U value is a partial function from a state and a value of type T to a value of type U. A 
T->U RAISES xs value is the same except that the function may raise the exceptions in xs. 

A function or procedure declared with names for the arguments, such as  
(\ i: Int, s: String | i + StringToInt(x)) 

has a type that ignores the names, (Int, String)->Int. However, it also has a method 
argNames that returns the sequence of argument names, {"i", "s"} in the example, just like a 
record. This makes it possible to match up arguments by name, as in the following example. 

A database is a set s of records. A selection query q is a predicate that we want to apply to the 
records. How do we get from the field names, which are strings, to the argument for q? Assume 
that q has an argNames method. So if r IN s, q.argNames * r is the tuple that we want to feed 
to q; q$(q.argNames * r) is the query, where $ is the operator that applies a function to a tuple 
of its arguments. 

 [3] We say m is a method of T defined by f, and denote f by T.m, if  

T = T' WITH {..., m := f, ...} and m is an identifier or is "op" where op is an operator 
(the construct in braces is a methodDefList), or 

T = T' WITH { methodDefList }, m is not defined in methodDefList, and m is a method 
of T' defined by f, or 

T = (... + T' + ...), m is a method of T' defined by f, and there is no other type in the 
union with a method m. 

There are two special forms for invoking methods: e1 infixOp e2 or prefixOp e, and 
e1.id(e2) or e.id or e.id(). They are explained in notes [1] and [3] to the expression grammar 
in the next section. This notation may be familiar from object-oriented languages. Unlike many 
such languages, Spec makes no provision for varying the method in each object, though it does 
allow inheritance and overriding. 

A method doesn’t have to be a routine, though the special forms won’t type-check unless the 
method is a routine. Any method m of T can be referred to by T.m. 

If type U has method m, then the function type V = T->U has a lifted method m that composes U.m 
with v, unless V already has a m method. V. m is defined by  

(\ v | (\ t | v(t).m)) 
so that v.m = v * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a sec-
ond argument of type W, then V.m takes a second argument of type VV = T->W and is defined on 
the intersection of the domains by applying m to the two results. Thus in this case V.m is 

(\ v, vv | (\ t :IN v.dom /\ vv.dom | v(t).m(vv(t)))) 
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Lifting also works for relations to U, and therefore also for SET U. Thus if R = (T,U)->Bool and 
m returns type X, R.m is defined by 

(\ r | (\ t, x | x IN {u | r(t, u) || u.m})) 
so that r.m = r * U.m.rel. If m takes a second argument, then R.m takes a second argument of 
type RR = T->W, and r.m(rr) relates t to u.m(w) whenever r relates t to u and rr relates t to w. 
In other words, R.m is defined by 

(\ r, rr | (\ t, x | x IN {u, w | r(t, u) /\ rr(t, w) || u.m(w)})) 
If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines 
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, r1 – r2 
the difference, and ~r the complement. 

[4] In T SUCHTHAT E, E is short for a predicate on T's, that is, a function (T -> Bool). If the 
context is TYPE U = T SUCHTHAT E and this doesn’t occur free in E, the predicate is (\ u: T 
| E), where u is U with the first letter changed to lower-case; otherwise the predicate is (\ 
this: T | E). The type T SUCHTHAT E has the same methods as T, and its value set is the val-
ues of T for which the predicate is true. See section 5 for primary. 

[5] If a type is defined by m[typeList].id and m is a parameterized module, the meaning is 
m'.id where m' is defined by MODULE m' = m[typeList] END m'. See section 7 for a full dis-
cussion of this kind of type. 

[6] Id is the id of a type, obtained from id by dropping trailing ' characters and digits, and capi-
talizing the first letter or all the letters (it’s an error if these capitalizations yield different identi-
fiers that are both known at this point). 

[7] The type of a record is String->Any SUCHTHAT .... The SUCHTHAT clauses are of the form 
this("f") IS T; they specify the types of the fields. In addition, a record type has a method 
called fields whose value is the sequence of field names (it’s the same for every record). Thus 
[f: T, g: U] is short for  

String->Any WITH { fields:=(\r: String->Any | (SEQ String){"f", "g"}) } 
            SUCHTHAT   this.dom >= {"f", "g"}  
             /\ this("f") IS T /\ this("g") IS U 

[8] The type of a tuple is Nat->Any SUCHTHAT .... As with records, the SUCHTHAT clauses are 
of the form this("f") IS T; they specify the types of the fields. In addition, a tuple type has a 
method called fields whose value is 0..n-1 if the tuple has n fields. Thus (T, U) is short for 

Int->Any WITH { fields:=(\r: Int->Any | 0..1) } 
            SUCHTHAT   this.dom = 0..1  
             /\ this(0) IS T /\ this(1) IS U 

Thus to convert a record r into a tuple, write r.fields * r, and to convert a tuple t into a re-
cord, write r.fields.inv * t. 

There is no special syntax for tuple fields, since you can just write t(2) and t(2) := e to read 
and write the third field, for example (remember that fields are numbered from 0). 
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5. Expressions 

An expression is a partial function from states to results; results are values or exceptions. That is, 
an expression computes a result for a given state. The state is a function from names to values. 
This state is supplied by the command containing the expression in a way explained later. The 
meaning of an expression (that is, the function it denotes) is defined informally in this section. 
The meanings of invocations and lambda function constructors are somewhat tricky, and the in-
formal explanation here is supplemented by a formal account in Atomic Semantics of Spec. Be-
cause expressions don’t have side effects, the order of evaluation of operands is irrelevant (but 
see [5] and [13]). 

Every expression has a type. The result of the expression is a member of this type if it is not an 
exception. This property is guaranteed by the type-checking rules, which require an expression 
used as an argument, the right hand side of an assignment, or a routine result to fit the type of the 
formal, left hand side, or routine range (see section 4 for the definition of ‘fit’). In addition, ex-
pressions appearing in certain contexts must have suitable types: in e1(e2), e1 must have a rou-
tine type; in e1+e2, e1 must have a type with a "+" method, etc. These rules are given in detail in 
the rest of this section. A union type is suitable if exactly one of the members is suitable. Also, if 
T is suitable in some context, so are T WITH {... } and T SUCHTHAT f.  

An expression can be a literal, a variable known in the scope that contains the expression, or a 
function invocation. The form of an expression determines both its type and its result in a state: 

literal has the type and value of the literal.  

name has the declared type of name and its value in the current state, state("name"). The 
form T.m (where T denotes a type) is also a name; it denotes the m method of T. Note that if 
name is id and id is declared in the current module m, then it is short for m.id. 

invocation f(e): f must have a function (not procedure) type U->T RAISES EX or U->T (note 
that a sequence is a function), and e must fit U; then f(e) has type T. In more detail, if f has 
result rf and e has type U' and result re, then U' must fit U (checked statically) and re must 
have type U (checked dynamically if U' involves a union or SUCHTHAT; if the dynamic check 
fails the result is a fatal error). Then f(e) has type T.  

If either rf or re is undefined, so is f(e). Otherwise, if either is an exception, that exception 
is the result of f(e); if both are, rf is the result.  

If both rf and re are normal, the result of rf at re can be: 

A normal value, which becomes the result of f(e). 

An exception, which becomes the result of f(e). If rf is defined by a function body that 
loops, the result is a special looping exception that you cannot handle.  

Undefined, in which case f(e) is undefined and the command containing it fails (has no 
outcome) — failure is explained in section 6.  

A function invocation in an expression never affects the state. If the result is an exception, 
the containing command has an exceptional outcome; for details see section 6. 

The other forms of expressions (e.id, constructors, prefix and infix operators, combinations, 
and quantifications) are all syntactic sugar for function invocations, and their results are obtained 
by the rule used for invocations. There is a small exception for conditionals [5] and for the condi-
tional logical operators /\,\/, and ==> that are defined in terms of conditionals [13].  
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exp ::= primary 
prefixOp exp % [1] 
exp infixOp exp % [1] 
infixOp : exp % exp’s elements combined by op [2] 
exp IS type % (EXISTS x: type | exp = x) 
exp AS type % error unless (exp IS type) [14] 

primary ::= literal 
name 
primary . id % method invocation [3] or record field 
primary arguments % function invocation 
constructor 
( exp ) 
( quantif declList | pred ) % /\:{d | p} for ALL, \/ for EXISTS [4] 
( pred => exp1 [*] exp2 ) % if pred then exp1 else exp2 [5] 
( pred => exp1 ) % undefined if pred is false 

literal ::= intLiteral % sequence of decimal digits 
charLiteral % 'x', x a printing character 
stringLiteral % "xxx", with \ escapes as in C 

arguments ::= ( expList ) % the arg is the tuple (expList) 
( ) 

constructor ::= { } % empty function/sequence/set [6] 
{ expList } % sequence/set constructor [6] 
( expList ) % tuple constructor 
name    { } % name denotes a func/seq/set type [6] 
name    { expList } % name denotes a seq/set/record type [6] 
primary { fieldDefList  } % record constructor [7] 
primary { exp -> result } % function or sequence constructor [8] 
primary { *   -> result } % function constructor [8] 
( LAMBDA signature = cmd ) % function with the local state [9] 
( \ declList | exp ) % short for (LAMBDA(d)->T=RET exp) [9] 
{ declList   | pred || exp } % set constructor [10] 
{ seqGenList | pred || exp } % sequence constructor [11] 

fieldDef ::= id := exp 

result ::= empty % the function is undefined 
exp % the function yields exp 
RAISE exception % the function yields exception 

seqGen ::= id := exp BY exp WHILE exp % sequence generator [11] 
id :IN exp   

pred ::= exp % predicate, of type Bool 
quantif ::= ALL  

EXISTS  
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    (precedence) argument/result types  operation 

infixOp ::= ** % (8) (Int, Int)->Int  exponentiate 
* % (7) (Int, Int)->Int  multiply 
 %  (T->U, U->V)->(T->V) [12] function composition 
/ % (7) (Int, Int)->Int  divide 
// % (7) (Int, Int)->Int  remainder 
+ % (6) (Int, Int)->Int  add 
 %  (SEQ T, SEQ T)->SEQ T [12] concatenation 
 % (T->U, T->U)->(T->U)  [12] function overlay 
- % (6) (Int, Int)->Int  subtract 
 %  (SET T, SET T)->SET T [12] set difference; 
 %  (SEQ T, SEQ T)->SEQ T [12] multiset difference 
!     % (6) (T->U, T)->Bool [12] function is defined 
!! % (6) (T->U, T)->Bool [12] func has normal value 
$ % (6) (T->U, T)->U [15] apply func to tuple 
.. % (5) (Int, Int)->SEQ Int [12] subrange  
<= % (4) (Int, Int)->Bool  less than or equal 
 %  (SET T, SET T)->Bool [12] subset 
 %  (SEQ T, SEQ T)->Bool [12] prefix 
< % (4) (T, T)->Bool, T with <= less than 
 %   e1<e2 = (e1<=e2 /\ e1#e2) 
> % (4)  (T, T)->Bool, T with <= greater than 
 %   e1>e2 = e2<e1 
>= % (4) (T, T)->Bool, T with <= greater or equal 
 %   e1>=e2 = e2<=e1 
= % (4) (Any, Any)->Bool [1] equal 
# % (4) (Any, Any)->Bool   not equal 
 %     e1#e2 = ~ (e1=e2) 
<<= % (4) (SEQ T, SEQ T)->Bool [12] non-contiguous sub-seq  
IN % (4) (T, SET T)->Bool [12] membership 
/\ % (2) (Bool, Bool)->Bool [13] conditional and 
 %  (SET T, SET T)->SET T [12] intersection 
\/ % (1) (Bool, Bool)->Bool [13] conditional or 
 %  (SET T, SET T)->SET T [12] union 
==> % (0) (Bool, Bool)->Bool [13] conditional implies 
op % (5) not one of the above [1] 

prefixOp ::= - % (6) Int->Int  negation 
~ % (3) Bool->Bool  complement 
op % (5) not one of the above [1] 
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The ambiguity of the expression grammar is resolved by taking the infixOps to be left associa-
tive and using the indicated precedences for the prefixOps and infixOps (with 8 for IS and AS 
and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The prece-
dence is determined by the operator symbol and doesn’t depend on the operand types. 

[1] The meaning of prefixOp e is T."prefixOp"(e), where T is e’s type, and of 
e1 infixOp e2 is T1."infixOp"(e1, e2), where T1 is e1’s type. The built-in types Int (and 
Nat with the same operations), Bool, sequences, sets, and functions have the operations given 
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than 
Int and Bool. Special case: e1 IN e2 means T2."IN"(e1, e2), where T2 is e2’s type. 

Note that the = operator does not require that the types of its arguments agree, since both are Any. 
Also, = and # cannot be overridden by WITH. To define your own abstract equality, use a different 
operator such as "==". 

[2] The exp must have type SEQ T or SET T. The value is the elements of exp combined into a 
single value by infixOp, which must be associative and have an identity, and must also be 
commutative if exp is a set.  Thus  
 + : {i: Int | 0<i /\ i<5 | i**2} = 1 + 4 + 9 + 16 = 30, 
and if s is a sequence of strings, + : s is the concatenation of the strings. For another example, 
see the definition of quantifications in [4]. Note that the entire set is evaluated; see [10]. 

[3] Methods can be invoked by dot notation.  
 The meaning of e.id or e.id() is T.id(e), where T is e’s type.  
 The meaning of e1.id(e2) is T.id(e1, e2), where T is e1’s type.  
Section 9 on built-in methods gives the methods for built-in types other than Int and Bool.  

[4] A quantification is a conjunction (if the quantifier is ALL) or disjunction (if it is EXISTS) of 
the pred with the id’s in the declList bound to every possible value (that is, every value in 
their types); see section 4 for decl. Precisely, (ALL d | p) = /\ : {d | p} and 
(EXISTS d | p) = \/ : {d | p}. All the expressions in these expansions are evaluated, 
unlike e2 in the expressions e1 /\ e2 and e1 \/ e2 (see [10] and [13]). 

[5] A conditional (pred => e1 [*] e2) is not exactly an invocation. If pred is true, the result 
is the result of e1 even if e2 is undefined or exceptional; if pred is false, the result is the result of 
e2 even if e1 is undefined or exceptional. If pred is undefined, so is the result; if pred raises an 
exception, that is the result. If [*] e2 is omitted and pred is false, the result is undefined. 

[6] In a constructor {expList} each exp must have the same type T, the type of the 
constructor is (SEQ T + SET T), and its value is the sequence containing the values of the 
exps in the given order, which can also be viewed as the set containing these values.  

If expList is empty the type is the union of all function, sequence and set types, and the value is 
the empty sequence or set, or a function undefined everywhere. If desired, these constructors can 
be prefixed by a name denoting a suitable set or sequence type. 

A constructor T{e1, ..., en}, where T is a record type [f1: T1, ..., fn: Tn], is short for 
a record constructor (see [7]) T{f1:=e1, ..., fn:=en}. 

[7] The primary must have a record type, and the constructor has the same type as its primary 
and denotes the same value except that the fields named in the fieldDefList have the given 
values. Each value must fit the type declared for its id in the record type.  The primary may also 
denote a record type, in which case any fields missing from the fieldDefList are given arbi-
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trary (but deterministic) values. Thus if R=[a: Int, b: Int], R{a := 3, b := 4} is a record 
of type R with a=3 and b=4, and R{a := 3, b := 4}{a := 5} is a record of type R with a=5 
and b=4. If the record type is qualified by a SUCHTHAT, the fields get values that satisfy it, and 
the constructor is undefined if that’s not possible. 

[8] The primary must have a function or sequence type, and the constructor has the same type as 
its primary and denotes a value equal to the value denoted by the primary except that it maps 
the argument value given by exp (which must fit the domain type of the function or sequence) to 
result (which must fit the range type if it is an exp). For a function, if result is empty the con-
structed function is undefined at exp, and if result is RAISE exception, then exception must 
be in the RAISES set of primary’s type. For a sequence result must not be empty or RAISE, and 
exp must be in primary.dom or the constructor expression is undefined.  

In the * form the primary must be a function type or a function, and the value of the constructor 
is a function whose result is result at every value of the function’s domain type (the type on the 
left of the ->). Thus if F=(Int->Int) and f=F{*->0}, then f is zero everywhere and f{4->1} is 
zero except at 4, where it is 1. If this value doesn’t have the function type, the constructor is un-
defined; this can happen if the type has a SUCHTHAT clause. For example, the type can’t be a se-
quence. 

[9] A LAMBDA constructor is a statically scoped function definition. When it is invoked, the 
meaning of the body is determined by the local state when the LAMBDA was evaluated and the 
global state when it is invoked; this is ad-hoc but convenient. See section 7 for signature and 
section 6 for cmd. The returns in the signature may not be empty. Note that a function can’t 
have side effects. 

The form (\ declList | exp) is short for (LAMBDA (declList) -> T = RET exp), where T 
is the type of exp. See section 4 for decl. 

[10] A set constructor { declList | pred || exp } has type SET T, where exp has type T 
in the current state augmented by declList; see section 4 for decl. Its value is a set that con-
tains x iff (EXISTS declList | pred /\ x = exp). Thus 

{i: Int | 0<i /\ i<5 || i**2} = {1, 4, 9, 16} 
and both have type SET Int. If pred is omitted it defaults to true. If   | exp is omitted it de-
faults to the last id declared: 

{i: Int | 0<i /\ i<5} = {1, 2, 3, 4 } 
Note that if s is a set or sequence, IN s is a type (see section 4), so you can write a constructor 
like {i :IN s | i > 4} for the elements of s greater than 4. This is shorter and clearer than  

{i | i IN s /\ i > 4} 

If there are any values of the declared id’s for which pred is undefined, or pred is true and exp 
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions; 
if more than one exception is raised, the result exception is an arbitrary choice among them. 

[11] A sequence constructor { seqGenList | pred || exp } has type SEQ T, where exp has 
type T in the current state augmented by seqGenList, as follows. The value of 

{x1 := e01 BY e1 WHILE p1, ... , xn := e0n BY en WHILE pn | pred || exp} 
is the sequence which is the value of result produced by the following program. Here exp has 
type T and result is a fresh identifier (that is, one that doesn’t appear elsewhere in the program). 
There’s an informal explanation after the program. 

VAR x2 := e02, ..., xn := e0n, result := T{}, x1 := e01 | 
DO p1 => x2 := e2; p2 => ... => xn := en; pn =>  
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    IF pred => result := result + {exp} [*] SKIP FI;  
    x1 := e1  
OD 

However, e0i and ei are not allowed to refer to xj if j > i. Thus the n sequences are unrolled 
in parallel until one of them ends, as follows. All but the first are initialized; then the first is ini-
tialized and all the others computed, then all are computed repeatedly. In each iteration, once all 
the xi have been set, if pred is true the value of exp is appended to the result sequence; thus 
pred serves to filter the result. As with set constructors, an omitted pred defaults to true, and an 
omitted || exp defaults to || xn. An omitted WHILE pi defaults to WHILE true. An omitted 
:= e0i defaults to  

:= {x: Ti | true}.choose  
where Ti is the type of ei; that is, it defaults to an arbitrary value of the right type. 

The generator xi :IN ei generates the elements of the sequence ei in order. It is short for 
j := 0 BY j + 1 WHILE j < ei.size, xi BY ei(j) 

where j is a fresh identifier. Note that if the :IN isn’t the first generator then the first element of 
ei is skipped, which is probably not what you want. Note that :IN in a sequence constructor 
overrides the normal use of IN s as a type (see [10]).  

Undefined and exceptional results are handled the same way as in set constructors. 

Examples 
{i := 0 BY i+1 WHILE i <= n} = 0..n = {0, 1, ..., n} 
(r := head BY r.next WHILE r # nil || r.val} the val fields of a list starting at head
{x :IN s, sum := 0 BY sum + x} partial sums of s 
{x :IN s, sum := 0 BY sum + x}.last + : s, the last partial sum 
{x :IN s, rev := {} BY {x} + rev}.last reverse of s 
{x :IN s || f(x)} s * f 
{i :IN 1..n | i // 2 # 0 || i * i} squares of odd numbers <= n 
{i :IN 1..n, iter := e BY f(iter)} {f(e), f2(e), ..., fn(e)} 

[12] These operations are defined in section 9. 

[13] The conditional logical operators are defined in terms of conditionals: 
e1 \/  e2 = (  e1 => true  [*] e2 ) 
e1 /\  e2 = ( ~e1 => false [*] e2 ) 
e1 ==> e2 = ( ~e1 => true  [*] e2 ) 

Thus the second operand is not evaluated if the value of the first one determines the result. 

[14] AS changes only the type of the expression, not its value. Thus if (exp IS type) the value 
of (exp AS type) is the value of exp, but its type is type rather than the type of exp. 

[15] f$t applies the function f to the tuple t. It differs from f(t), which makes a tuple out of the 
list of expressions in t and applies f to that tuple. 
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6. Commands 

A command changes the state (or does nothing). Recall that the state is a mapping from names to 
values; we denote it by state. Commands are non-deterministic. An atomic command is one 
that is inside <<...>> brackets. 

The meaning of an atomic command is a set of possible transitions (that is, a relation) between a 
state and an outcome (a state plus an optional exception); there can be any number of outcomes 
from a given state. One possibility is a looping exceptional outcome. Another is no outcomes. In 
this case we say that the atomic command fails; this happens because all possible choices within 
it encounter a false guard or an undefined invocation.  

If a subcommand fails, an atomic command containing it may still succeed. This can happen be-
cause it’s one operand of [] or [*] and the other operand succeeds. If can also happen because a 
non-deterministic construct in the language that might make a different choice. Leaving excep-
tions aside, the commands with this property are []and VAR (because it chooses arbitrary values 
for the new variables). If we gave an operational semantics for atomic commands, this situation 
would correspond to backtracking. In the relational semantics that we actually give (in Atomic 
Semantics of Spec), it corresponds to the fact that the predicate defining the relation is the “or” of 
predicates for the subcommands. Look there for more discussion of this point. 

A non-atomic command defines a collection of possible transitions, roughly one for each 
<<...>> command that is part of it. If it has simple commands not in atomic brackets, each one 
also defines a possible transition, except for assignments and invocations. An assignment 
defines two transitions, one to evaluate the right hand side, and the other to change the value of 
the left hand side. An invocation defines a transition for evaluating the arguments and doing 
the call and one for evaluating the result and doing the return, plus all the transitions of the body. 
These rules are somewhat arbitrary and their details are not very important, since you can always 
write separate commands to express more transitions, or atomic brackets to express fewer transi-
tions. The motivation for the rules is to have as many transitions as possible, consistent with the 
idea that an expression is evaluated atomically.  

A complete collection of possible transitions defines the possible sequences of states or histories; 
there can be any number of histories from a given state. A non-atomic command still makes 
choices, but it does not backtrack and therefore can have histories in which it gets stuck, even 
though in other histories a different choice allows it to run to completion. For the details, see 
handout 17 on formal concurrency. 
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cmd ::= SKIP % [1] 
HAVOC % [1] 
RET % [2] 
RET exp % [2] 
RAISE exception % [9] 
CRASH % [10] 
invocation % [3] 
assignment % [4] 

   cmd              []  cmd % or [5] 
cmd              [*] cmd % else [5] 
pred             =>  cmd % guarded cmd: if pred then cmd [5] 
VAR declInitList  |  cmd % variable introduction [6] 
cmd               ;  cmd % sequential composition 
cmd EXCEPT handler % handle exception [9] 

   << cmd >> % atomic brackets [7] 
BEGIN cmd END % just brackets 
IF cmd FI % just brackets [5] 
DO cmd OD % repeat until cmd fails [8] 

invocation ::= primary arguments % primary has a routine type [3]  

assignment ::= lhs         := exp % state := state{name -> exp} [4] 
lhs infixOp := exp % short for lhs := lhs infixOp exp 
lhs         := invocation % of a PROC or APROC 
( lhsList ) := exp % exp a tuple that fits lhsList 
( lhsList ) := invocation 

lhs ::= name % defined in section 4  
lhs . id % record field [4] 
lhs arguments % function  [4] 

declInit ::= decl % initially any value of the type [6] 
id : type := exp % initially exp, which must fit type [6] 
id        := exp % short for id: T := exp, where 
 %   T is the type of exp 

handler ::= exceptionSet => cmd % [9]. See section 4 for exceptionSet 

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions ;, [], and [*] to be left-associative and EXCEPT to be right associative, and giving [] and 
[*] lowest precedence, => and | next (to the right only, since their left operand is an exp), ; 
next, and EXCEPT highest precedence. 

[1] The empty command and SKIP make no change in the state. HAVOC produces an arbitrary out-
come from any state; if you want to specify undefined behavior when a precondition is not satis-
fied, write ~precondition => HAVOC. 

[2] A RET may only appear in a routine body, and the exp must fit the result type of the routine. 
The exp is omitted iff the returns of the routine’s signature is empty. 

[3] For arguments see section 5. The argument are passed by value, that is, assigned to the for-
mals of the procedure A function body cannot invoke a PROC or APROC; together with the rule for 
assignments (see [7]) this ensures that it can’t affect the state. An atomic command can invoke an 
APROC but not a PROC. A command is atomic iff it is << cmd >>, a subcommand of an atomic 
command, or one of the simple commands SKIP, HAVOC, RET, or RAISE. The type-checking rule 
for invocations is the same as for function invocations in expressions. 
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[4] You can only assign to a name declared with VAR or in a signature. In an assignment the 
exp must fit the type of the lhs, or there is a fatal error. In a function body assignments must be 
to names declared in the signature or the body, to ensure that the function can’t have side effects.  

An assignment to a left hand side that is not a name is short for assigning a constructor to a 
name. In particular,  

lhs(arguments) := exp is short for lhs := lhs{arguments->exp}, and 
lhs . id  := exp is short for lhs := lhs{id := exp}.  

These abbreviations are expanded repeatedly until lhs is a name. 

In an assignment the right hand side may be an invocation (of a procedure) as well as an ordi-
nary expression (which can only invoke a function). The meaning of lhs := exp or 
lhs := invocation is to first evaluate the exp or do the invocation and assign the result to a 
temporary variable v, and then do lhs := v. Thus the assignment command is not atomic unless 
it is inside <<...>>.  

If the left hand side of an assignment is a (lhsList), the exp must be a tuple of the same 
length, and each component must fit the type of the corresponding lhs. Note that you cannot 
write a tuple constructor that contains procedure invocations. 

[5] A guarded command fails if the result of pred is undefined or false. It is equivalent to cmd if 
the result of pred is true. A pred is just a Boolean exp; see section 4. 

S1 [] S2 chooses one of the Si to execute. It chooses one that doesn’t fail. Usually S1 and S2 
will be guarded. For example, 
x=1 => y:=0 [] x> 1 => y:=1 sets y to 0 if x=1, to 1 if x>1, and has no outcome if x<1. But 
x=1 => y:=0 [] x>=1 => y:=1 might set y to 0 or 1 if x=1. 

S1 [*] S2 is the same as S1 unless S1 fails, in which case it’s the same as S2. 

IF ... FI are just command brackets, but it often makes the program clearer to put them 
around a sequence of guarded commands, thus: 

IF x < 0 => y := 3 
[] x = 0 => y := 4 
[*]          y := 5 
FI 

[6] In a VAR the unadorned form of declInit initializes a new variable to an arbitrary value of 
the declared type. The := form initializes a new variable to exp. Precisely,  

VAR id: T := exp | c 
is equivalent to  

VAR id: T | id := exp; c  
The exp could also be a procedure invocation, as in an assignment. 

Several declInits after VAR is short for nested VARs. Precisely,  
VAR declInit ,     declInitList  | cmd 

is short for  
VAR declInit | VAR declInitList | cmd  

This is unlike a module, where all the names are introduced in parallel. 

[7] In an atomic command the atomic brackets can be used for grouping instead of BEGIN ... 
END; since the command can’t be any more atomic, they have no other meaning in this context. 

[8] Execute cmd repeatedly until it fails. If cmd never fails, the result is a looping exception that 
doesn’t have a name and therefore can’t be handled. Note that this is not the same as failure. 
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[9] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings 
(which are written without the enclosing quotes). A module can also declare an identifier that 
denotes a set of exceptions. A command can have an attached exception handler, which gets to 
look at any exceptions produced in the command (by RAISE or by an invocation) and not handled 
closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by 
the routine’s invocation. 

An exception ex must be in the RAISES set of a routine r if either RAISE ex or an invocation of a 
routine with ex in its RAISES set occurs in the body of r outside the scope of a handler for ex. 

[10] CRASH stops the execution of any current invocations in the module other than the one that 
executes the CRASH, and discards their local state. The same thing happens to any invocations 
outside the module from within it. After CRASH, no procedure in the module can be invoked from 
outside until the routine that invokes it returns. CRASH is meant to be invoked from within a spe-
cial Crash procedure in the module that models the effects of a failure. 

7. Modules 

A program is some global declarations plus a set of modules. Each module contains variable, 
routine, exception, and type declarations.  

Module definitions can be parameterized with mformals after the module id, and a parameter-
ized module can be instantiated. Instantiation is like macro expansion: the formal parameters are 
replaced by the arguments throughout the body to yield the expanded body. The parameters must 
be types, and the body must type-check without any assumptions about the argument that re-
places a formal other than the presence of a WITH clause that contains all the methods mentioned 
in the formal parameter list (that is, formals are treated as distinct from all other types). 

Each module is a separate scope, and there is also a Global scope for the identifiers declared at 
the top level of the program. An identifier id declared at the top level of a non-parameterized 
module m is short for m.id when it occurs in m. If it appears in the exports, it can be denoted by 
m.id anywhere. When an identifier id that is declared globally occurs anywhere, it is short for 
Global.id. Global cannot be used as a module id. 

An exported id must be declared in the module. If an exported id has a WITH clause, it must be 
declared in the module as a type with at least those methods, and only those methods are accessi-
ble outside the module; if there is no WITH clause, all its methods and constructors are accessible. 
This is Spec’s version of data abstraction. 
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program ::= toplevel* module* END 

module ::= modclass id mformals exports = body END id 

modclass ::= MODULE 
CLASS % [4] 

exports ::= EXPORT exportList 
export ::= id 

id WITH {methodList} % see section 4 for method  

mformals ::= empty 
[ mfpList ] 

mfp ::= id % module formal parameter 
id WITH { declList } % see section 4 for decl 

body ::= toplevel* % id must be the module id 
id [ typeList ] % instance of parameterized module 

toplevel ::= VAR declInit* % declares the decl ids [1] 
CONST declInit* % declares the decl ids as constant 
routineDecl % declares the routine id 
EXCEPTION exSetDecl* % declares the exception set ids 
TYPE typeDecl* % declares the type ids and any  
 % ids in ENUMs 

routineDecl ::= FUNC   id signature =  cmd % function 
APROC  id signature =<<cmd>> % atomic procedure 
PROC   id signature =  cmd % non-atomic procedure 
THREAD id signature =  cmd % one thread for each possible  
 % invocation of the routine [2] 

signature ::= ( declList ) returns raises % see section 4 for returns 
( )          returns raises %   and raises 

exSetDecl ::= id = exceptionSet % see section 4 for exceptionSet 

typeDecl ::= id = type % see section 4 for type 
id = ENUM [ idList ] % a value is one of the id’s [3] 

[1] The “:= exp” in a declInit (defined in section 6) specifies an initial value for the variable. 
The exp is evaluated in a state in which each variable used during the evaluation has been initial-
ized, and the result must be a normal value, not an exception. The exp sees all the names known 
in the scope, not just the ones that textually precede it, but the relation “used during evaluation of 
initial values” on the variables must be a partial order so that initialization makes sense. As in an 
assignment, the exp may be a procedure invocation as well as an ordinary expression. It’s a fa-
tal error if the exp is undefined or the invocation fails. 

[2] Instead of being invoked by the client of the module or by another procedure, a thread is 
automatically invoked in parallel once for every possible value of its arguments. The thread is 
named by the id in the declaration together with the argument values. So 

VAR sum := 0, count := 0 
THREAD P(i: Int) = i IN 0 .. 9 =>  
  VAR t | t := F(i); <<sum := sum + t>>; <<count := count + 1>> 
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adds up the values of F(0) ... F(9) in parallel. It creates a thread P(i) for every integer i; the 
threads P(0), ..., P(9) for which the guard is true invoke F(0), ..., F(9) in parallel and 
total the results in sum. When count = 10 the total is complete. 

A thread is the only way to get an entire program to do anything (except evaluate initializing ex-
pressions, which could have side effects), since transitions only happen as part of some thread. 

[3] The id’s in the list are declared in the module; their type is the ENUM type. There are no op-
erations on enumeration values except the ones that apply to all types: equality, assignment, and 
routine argument and result communication. 

[4] A class is shorthand for a module that declares a convenient object type. The next few para-
graphs specify the shorthand, and the last one explains the intended usage.  

If the class id is Obj, the module id is ObjMod. Each variable declared in a top level VAR in the 
class becomes a field of the ObjRec record type in the module. The module exports only a type 
Obj that is also declared globally. Obj indexes a collection of state records of type ObjRec stored 
in the module’s objs variable, which is a function Obj->ObjRec. Obj’s methods are all the 
names declared at top level in the class except the variables, plus the new method described be-
low; the exported Obj’s methods are all the ones that the class exports plus new.  

To make a class routine suitable as a method, it needs access to an ObjRec that holds the state of 
the object. It gets this access through a self parameter of type Obj, which it uses to refer to the 
object state objs(self). To carry out this scheme, each routine in the module, unless it appears 
in a WITH clause in the class, is ‘objectified’ by giving it an extra self parameter of type Obj. In 
addition, in a routine body every occurrence of a variable v declared at top level in the class is 
replaced by objs(self).v in the module, and every invocation of an objectified class routine 
gets self as an extra first parameter. 

The module also gets a synthesized and objectified StdNew procedure that adds a state record to 
objs, initializes it from the class’s variable initializations (rewritten like the routine bodies), and 
returns its Obj index; this procedure becomes the new method of Obj unless the class already has 
a new routine.  

A class cannot declare a THREAD. 

The effect of this transformation is that a variable obj of type Obj behaves like an object. The 
state of the object is objs(obj). The invocation obj.m or obj.m(x) is short for ObjMod.m(obj) 
or ObjMod.m(obj, x) by the usual rule for methods, and it thus invokes the method m; in m’s 
body each occurrence of a class variable refers to the corresponding field in obj’s state. 
Obj.new() returns a new and initialized Obj object. The following example shows how a class is 
transformed into a module. 

6.826—Principles of Computer Systems  2006 

Handout 4.  Spec Reference Manual 20 

CLASS Obj EXPORT T1, f, p, … = MODULE ObjMod EXPORT Obj WITH {T1, f, p, new} = 

TYPE T1 = … WITH {add:=AddT} TYPE T1 = … WITH {add:=AddT} 
CONST c := …   CONST c := … 

VAR v1:T1:=ei, v2:T2:=pi(v1), … TYPE ObjRec = [v1: T1, v2: T2, …] 
         Obj = Int WITH {T1, c, f:=f, p:=p, 
                         AddT:=AddT, …,new:=StdNew} 
    VAR  objs: Obj -> ObjRec := {} 

FUNC f(p1: RT1, …) = … v1 …  FUNC f(self: Obj, p1: RT1, …) =  
      … objs(self).v1 … 
PROC p(p2: RT2, …) = … v2 … PROC p(self: Obj, p2: RT2, …) =  
      … objs(self).v2 … 
FUNC AddT(t1, t2) = … FUNC AddT(t1, t2) = …  % in T1’s WITH, so not objectified 
…  … 
  PROC StdNew(self: Obj) -> Obj =  
    VAR obj: Obj | ~ obj IN objs.dom =>  
      objs(obj)    := ObjRec{};  
      objs(obj).v1 := ei;  
      objs(obj).v2 := pi(objs(obj).v1); 
      …; 
      RET obj 

END Obj   END ObjMod 

    TYPE Obj = ObjMod.Obj 

In abstraction functions and invariants we also write obj.n for field n in obj’s state, that is, for 
ObjMod.objs(obj).n. 

8. Scope 
The declaration of an identifier is known throughout the smallest scope in which the declaration 
appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms 
defined before section 7 have pointers to their definitions. A scope is one of 

the whole program, in which just the predefined (section 3), module, and globally declared 
identifiers are declared; 

a module; 

the part of a routineDecl or LAMBDA expression (section 5) after the =; 

the part of a VAR declInit | cmd command after the | (section 6); 

the part of a constructor or quantification after the first | (section 5). 

a record type or methodDefList (section 4); 

An identifier is declared by 

a module id, mfp, or toplevel (for types, exception sets, ENUM elements, and named rou-
tines), 

a decl in a record type (section 4), | constructor or quantification (section 5), declInit 
(section 6), routine signature, or WITH clause of a mfp, or 

a methodDef in the WITH clause of a type (section 4). 
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An identifier may not be declared in a scope where it is already known. An occurrence of an 
identifier id always refers to the declaration of id which is known at that point, except when id 
is being declared (precedes a :, the = of a toplevel, the := of a record constructor, or the := or 
BY in a seqGen), or follows a dot. There are four cases for dot: 

moduleId . id — the id must be exported from the basic module moduleId, and this ex-
pression denotes the meaning of id in that module. 

record . id — the id must be declared as a field of the record type, and this expression 
denotes that field of record. In an assignment’s lhs see [7]  in section 6 for the meaning. 

typeId . id — the typeId denotes a type, id must be a method of this type, and this ex-
pression denotes that method. 

primary . id — the id must be a method of primary’s type, and this expression, together 
with any following arguments, denotes an invocation of that method; see [2] in section 5 on 
expressions. 

If id refers to an identifier declared by a toplevel in the current module m, it is short for m.id. 
If it refers to an identifier declared by a toplevel in the program, it is short for Global.id. 
Once these abbreviations have been expanded, every name in the state is either global (contains a 
dot and is declared in a toplevel), or local (does not contain a dot and is declared in some other 
way). 

Exceptions look like identifiers, but they are actually string literals, written without the enclosing 
quotes for convenience. Therefore they do not have scope. 

9. Built-in methods 

Some of the type constructors have built-in methods, among them the operators defined in the 
expression grammar. The built-in methods for types other than Int and Bool are defined below. 
Note that these are not complete definitions of the types; they do not include the constructors. 

Sets 

A set has methods for 

computing union, intersection, and set difference (lifted from Bool; see note 3 in section 4), 
and adding or removing an element, testing for membership and subset; 

choosing (deterministically) a single element from a set, or a sequence with the same mem-
bers, or a maximum or minimum element, and turning a set into its characteristic predicate 
(the inverse is the predicate’s set method); 

composing a set with a function or relation, and converting a set into a relation from nil to 
the members of the set (the inverse of this is just the range of the relation).  

We define these operations with a module that represents a set by its characteristic predicate. 
Precisely, SET T behaves as though it were Set[T].S, where 
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MODULE Set[T] EXPORT S = 

TYPE S = Any->Bool SUCHTHAT (ALL any | s(any) ==> (any IS T)) 
% Defined everywhere so that type inclusion will work; see section 4. 
                   WITH {"\/":=Union, "/\":=Intersection, "-":=Difference,  
                         "IN":=In, "<=":=Subset, choose:=Choose, seq:=Seq,  
         pred:=Pred, rel:=Rel, id:=Id,univ:=Univ,include:=Incl,  
         perms:=Perms,fsort:=FSort,sort:=Sort,combine:=Combine, 
         fmax:=FMax, fmin:=FMin, max:=Max, min:=Min  
         "*":=ComposeF, "**":=ComposeR } 

FUNC Union(s1, s2)->S        = RET (\ t | s1(t) \/  s2(t)) % s1 \/ s2 
FUNC Intersection(s1, s2)->S = RET (\ t | s1(t) /\  s2(t)) % s1 /\ s2 
FUNC Difference(s1, s2)->S   = RET (\ t | s1(t) /\ ~s2(t)) % s1 - s2 
FUNC In(s, t)->Bool          = RET s(t)  % t IN s 
FUNC Subset(s1, s2)->Bool    = RET (ALL t| s1(t) ==> s2(t)) % s1 <= s2 
FUNC Size(s)->Int            =   % s.size 

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET 0 
FUNC Choose(s)->T            = VAR t | s(t) => RET t   % s.choose   
% Not really, since VAR makes a non-deterministic choice,  
% but choose makes a deterministic one. It is undefined if s is empty. 
FUNC Seq(s)->SEQ T           =   % s.seq 
% Defined only for finite sets. Note that Seq chooses a sequence deterministically. 

RET {q: SEQ T | q.rng = s /\ q.size = s.size}.choose  

FUNC Pred(s)->(T->Bool)      = RET s  % s.pred 
% s.pred is just s. We define pred for symmetry with seq, set, etc.  
FUNC Rel(s)->(Bool->>T)      = s.pred.inv 
FUNC Id(s)->(T->>T)          = RET {t :IN s || (t, t)}.pred.pToR 
FUNC Univ(s)->(T->>T)        = s.rel.inv * s.rel 
FUNC Incl(s)->(SET T->>T)    = (\ st: SET T, t | t IN (st /\ s)).pToR 

FUNC Perms(s)->SET SEQ T         = RET s.seq.perms  % s.perms 
FUNC FSort(s, f: (T,T)->Bool)->S = RET s.seq.fsort(f)  % s.fsort(f); f is compare 
FUNC Sort(s)->S                  = RET s.seq.sort  % s.sort; only if T has <= 
FUNC Combine(s, f: (T,T)->T)->T  = RET s.seq.combine(f) % useful if f is commutative 
FUNC FMax(s, f: (T,T)->Bool)->T  = RET s.fsort(f).last % s.fmax(f); a max under f 
FUNC FMin(s, f: (T,T)->Bool)->T  = RET s.fsort(f).head % s.fmin(f); a min under f 
FUNC Max(s)->T                   = RET s.fmax(T."<=")  % s.max; only if T has <= 
FUNC Min(s)->T                   = RET s.fmin(T."<=")  % s.min; only if T has <= 
% Note that these functions are undefined if s is empty. If there are extremal elements not distinguished by f or "<=", 
% they make an arbitrary deterministic choice. To get all the choices, use T.f.rel.leaves. 
% Note that this is not the same as /\ : s, unless s is totally ordered. 
FUNC ComposeF(s, f: T->U)->SET U = RET {t :IN s || f(t)} % s * f; image of s under f 
% ComposeF like sequences, pointwise on the elements. ComposeF(s, f) = ComposeR(s, f.rel) 
FUNC ComposeR(s, r:T->>U)->SET U = RET (s.rel * r).rng % s ** r; image of s under r 
% ComposeR is relational composition: anything you can get to by r, starting with a member of s.  
% We could have written it explicitly: {t :IN s, u | r(t, u) || u}, or as \/ : (s * r.setF). 

END Set 

There are constructors {} for the empty set, {e1, e2, ...} for a set with specific elements, and 
{declList | pred || exp} for a set whose elements satisfy a predicate. These constructors 
are described in [6] and [10] of section 5. Note that {t | p}.pred = (\ t | p), and similarly 
(\ t | p).set = {t | p}.  A method on T is lifted to a method on S, unless the name con-
flicts with one of S’s methods, exactly like lifting on S.rel; see note 3 in section 4.  
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Functions 

The function types T->U and T->U RAISES XS have methods for  

composition, overlay, inverse, and restriction; 

testing whether a function is defined at an argument and whether it produces a normal (non-
exceptional) result at an argument, and for the domain and range; 

converting a function to a relation (the inverse is the relation’s func method) or a function 
that produces a set to a relation with each element of the set (setRel; the inverse is the rela-
tion’s setF method). 

In other words, they behave as though they were Function[T, U].F, where (making allowances 
for the fact that XS and V are pulled out of thin air): 

MODULE Function[T, U] EXPORT F = 

TYPE F = T->U RAISES XS WITH {"*":=Compose, "+":=Overlay,  
                              inv:=Inverse, restrict:=Restrict, 
                              "!":=Defined, "!!":=Normal,  
                              dom:=Domain, rng:=Range, rel:=Rel, setRel:=SetRel}
     R = (T, U) -> Bool 

FUNC Compose(f, g: U -> V) -> (T -> V) = RET (\ t | g(f(t))) 
% Note that the order of the arguments is reversed from the usual mathematical convention. 

FUNC Overlay(f1, f2) -> F = RET (\ t | (f2!t => f2(t) [*] f1(t))) 
% (f1 + f2) is f2(x) if that is defined, otherwise f1(x) 

FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func 
FUNC Restrict(f, s: SET T) -> F = (s.id * f).func 

FUNC Defined(f, t)->Bool =  
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true 

FUNC Normal(f, t)->Bool = t IN f.dom 

FUNC Domain(f) -> SET T = f.rel.dom 
FUNC Range (f) -> SET U = f.rel.rng 

FUNC Rel(f) -> R = RET (\ t, u | f(t) = u).pToR 
FUNC SetRel(f) -> ((T, V)->Bool) = RET (\ t, v | (f!t ==> v IN f(t) [*] false) )
% if U = SET V, f.setRel relates each t in f.dom to each element of f(t). 

END Function 

Note that there are constructors {} for the function undefined everywhere, T{* -> result} for 
a function of type T whose value is result everywhere, and f{exp -> result} for a function 
which is the same as f except at exp, where its value is result. These constructors are described 
in [6] and [8] of section 5. There are also lambda constructors for defining a function by a compu-
tation, described in [9] of section 5. A method on U is lifted to a method on F, unless the name 
conflicts with a method of F; see note 3 in section 4. 

Functions declared with more than one argument take a single argument that is a tuple. So 
f(x: Int) takes an Int, but f(x: Int, y: Int) takes a tuple of type (Int, Int). This con-
vention keeps the tuples in the background as much as possible. The normal syntax for calling a 
function is f(x, y), which constructs the tuple (x, y) and passes it to f. However, f(x) is 
treated differently, since it passes x to f, rather than the singleton tuple {x}. If you have a tuple t 
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in hand, you can pass it to f by writing f$t without having to worry about the singleton case; if f 
takes only one argument, then t must be a singleton tuple and f$t will pass t(0) to f. Thus 
f$(x, y) is the same as f(x, y) and f${x} is the same as f(x). 

A function declared with names for the arguments, such as  
(\ i: Int, s: String | i + StringToInt(x)) 

has a type that ignores the names, (Int, String)->Int. However, it also has a method 
argNames that returns the sequence of argument names, {"i", "s"} in the example, just like a 
record. This makes it possible to match up arguments by name. 

A total function T->Bool is a predicate and has an additional method to compute the set of T’s 
that satisfy the predicate (the inverse is the set’s pred method). In other words, a predicate be-
haves as though it were Predicate[T].P, where 

MODULE Predicate[T] EXPORT P = 

TYPE P = T -> Bool WITH {set:=Set, pToR:=PToR} 
FUNC Set(p) -> SET T = RET {t | p(t)} 
END Predicate 

A predicate with T = (U, V) defines a relation U ->> V by  

FUNC PToR(p: (U, V)->Bool) -> (U ->> V) = RET (\u | {v | p(u, v)}).setRel 

It has additional methods to turn it into a function U -> V or a function U -> SET V, and to get 
its domain and range, invert it or compose it (overriding the methods for a function). In other 
words, it behaves as though it were Relation[U, V].R, where (allowing for the fact that W is 
pulled out of thin air in Compose): 

MODULE Relation[U, V] EXPORT R = 

TYPE R = (U, V) -> Bool WITH {pred:=Pred, set:=R.rng, restrict:=Restrict,  
             fun:=Fun, setF:=SetFunc, dom:=Domain, rng :=Range,  
                          inv:=Inverse, "*":=Compose} 

FUNC Pred(r) -> ((U,V)->Bool) = RET r(u, v) 
FUNC Restrict(r, s) -> R = RET s.id * r 

FUNC Fun(r) -> (U -> V) = % defined at u iff r relates u to a single 
RET (\ u | (r.setF(u).size = 1 => r.setF(u).choose)) 

FUNC SetFunc(r) -> (U -> SET V) = RET (\ u | {v | r(u, v)})  
% SetFunc(r) is defined everywhere, returning the set of V’s related to u. 

FUNC Domain(r) -> SET U = RET {u, v | r(u, v) || u} 
FUNC Range (r) -> SET V = RET {u, v | r(u, v) || v} 

FUNC Inverse(r) -> ((V, U) -> Bool) = RET (\ v, u | r(u, v)) 
FUNC Compose(r: R, s: (V, W)->Bool) -> (U, W)->Bool = % r * s 

RET (\ u, w | (EXISTS v | r(u, v) /\ s(v, w)) ) 

END Relation 

A method on V is lifted to a method on R, unless there’s a name conflict; see note 3 in section 4. 

A relation with U = V is a graph and has additional methods to yield the sequences of U’s that are 
paths in the graph, and to compute the transitive closure and its restriction to exit nodes. In other 
words, it behaves as though it were Graph[U].G, where 
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MODULE Graph[T] EXPORT G = 

TYPE G = T ->> T WITH {paths:=Paths, closure:=Closure, leaves:=Leaves } 
     P = SEQ T 

FUNC Paths(g) -> SET P = RET {p | (ALL i :IN p.dom - {0} | (g.pred)(p(i-1), p(i))
% Any p of size <= 1 is a path by this definition. 
FUNC Closure(g) -> G = RET (\ t1, t2 |   

(EXISTS p | p.size > 1 /\ p.head = t1 /\ p.last = t2 /\ p IN g.paths )) 
FUNC Leaves(g) -> G = RET g.closure * (g.rng – g.dom).id 

END Graph 

Records and tuples 

A record is a function from the string names of its fields to the field values, and an n-tuple is a 
function from 0..n-1 to the field values. There is special syntax for declaring records and tuples, 
and for reading and writing record fields: 

[f: T, g: U] declares a record with fields f and g of types T and U. It is short for 
String->Any WITH { fields:=(\r: String->Any | (SEQ String){"f", "g"}) } 
            SUCHTHAT   this.dom >= {"f", "g"}  
             /\ this("f") IS T /\ this("g") IS U 

Note the fields method, which gives the sequence of field names {"f", "g"}. 

(T, U) declares a tuple with fields of types T and U. It is short for 
Int->Any WITH { fields:=(\r: nt->Any | 0..1) } 
            SUCHTHAT   this.dom >= 0..1  
             /\ this(0) IS T /\ this(1) IS U 

Note the fields method, which gives the sequence of field names 0..1. 

r.f is short for r("f"), and r.f := e is short for r := r{"f"->e}.  

There is no special syntax for tuple fields, since you can just write t(2) and t(2) := e to 
read and write the third field, for example (remember that fields are numbered from 0). 

Thus to convert a record r into a tuple, write r.fields * r, and to convert a tuple t into a re-
cord, write r.fields.inv * t. 

There is also special syntax for constructing record and tuple values, illustrated in the following 
example. Given the type declaration 

TYPE Entry = [salary: Int, birthdate: String] 
we can write a record value 

Entry{salary := 23000, birthdate := "January 3, 1955"} 
which is short for the function constructor 

Entry{"salary" -> 23000, "birthdate" -> "January 3, 1955"}. 

The constructor ( 
23000, "January 3, 1955") 

yields a tuple of type (Int, String). It is short for 
{0 -> 23000, 1 -> "January 3, 1955"} 

This doesn’t work for a singleton tuple, since (x) has the same value as x. However, the se-
quence constructor {x} will do for constructing a singleton tuple, since a singleton SEQ T has the 
type (T). 
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Sequences 

A function is called a sequence if its domain is a finite set of consecutive Int’s starting at 0, that 
is, if it has type  

Q = Int -> T SUCHTHAT (\ q | (EXISTS size: Int | q.dom = (0 .. size-1).rng)) 
We denote this type (with the methods defined below) by SEQ T. A sequence inherits the meth-
ods of the function (though it overrides +), and it also has methods for  

head, tail, last, reml, addh, addl: detaching or attaching the first or last element,  
seg, sub: extracting a segment of a sequence,  
+, size: concatenating two sequences, or finding the size, 
fill: making a sequence with all elements the same, 
zip or ||: making a pair of sequences into a sequence of pairs 
<=, <<=: testing for prefix or sub-sequence (not necessarily contiguous), 
**: composing with a relation (SEQ T inherits composing with a function), 
lexical comparison, permuting, and sorting, 
iterate, combine: iterating a function over each prefix of a sequence, or the whole sequence 
treating a sequence as a multiset, with operations to: 

count the number of times an element appears, test membership and multiset equality, 
take differences, and remove an element ("+" or "\/" is union and addl adds an ele-
ment). 

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence 
is always defined regardless of the subscripts, by taking the largest number of elements allowed 
by the size of the sequence. 

We define the sequence methods with a module. Precisely, SEQ T is Sequence[T].Q, where: 

MODULE Sequence[T] EXPORTS Q = 

TYPE I = Int  
Q = (I -> T) SUCHTHAT q.dom = (0 .. q.size-1).rng 
  WITH { size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate, 
         head:=Head, tail:=Tail, addh:=AddHead, remh:=Tail,  
         last:=Last, reml:=RemoveLast, addl:=AddLast,  
                fill:=Fill, zip:=Zip, "||":=Zip, 
         "<=":=Prefix, "<<=":=SubSeq, 
         "**":=ComposeR, lexLE:=LexLE, perms:=Perms, 
         fsorter:=FSorter, fsort:=FSort, sort:=Sort, 
         iterate:=Iterate, combine:=Combine, 
 
  % These methods treat a sequence as a multiset (or bag). 
         count:=Count, "IN":=In, "==":=EqElem,  
         "\/":=Concatenate, "-":=Diff, set:=Q.rng } 

FUNC Size(q)-> Int  = RET q.dom.size 

FUNC Sub(q, i1, i2) -> Q =  
% q.sub(i1, i2); yields {q(i1),...,q(i2)}, or a shorter sequence if i1 < 0 or i2 >= q.size 

RET ({0, i1}.max .. {i2, q.size-1}.min) * q 

FUNC Seg(q, i, n: I) -> Q = RET q.sub(i, i+n-1) % q.seg(i,n); n T’s from q(i) 

FUNC Concatenate(q1, q2) -> Q = VAR q | % q1 + q2 
q.sub(0, q1.size-1) = q1 /\ q.sub(q1.size, q.size-1) = q2 => RET q 

FUNC Head(q) -> T = RET q(0) % q.head; first element 
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FUNC Tail(q) -> Q =  % q.tail; all but first 
q.size > 0 => RET q.sub(1, q.size-1) 

FUNC AddHead(q, t) -> Q = RET {t} + q % q.addh(t) 

FUNC Last(q) -> T = RET q(q.size-1) % q.last; last element 
FUNC RemoveLast(q) -> Q =  % q.reml; all but last 

q # {} => RET q.sub(0, q.size-2) 
FUNC AddLast(q, t) -> Q = RET q + {t} % q.addl(t) 

FUNC Fill(t, n: I) -> Q = RET {i :IN 0 .. n-1 || t} % yields n copies of t 

FUNC Zip(q, qU: SEQ U) -> SEQ (T, U) = % size is the min 
RET (\ i | (i IN (q.dom /\ qU.dom) => (q(i), qU(i)))) 

FUNC Prefix(q1, q2) -> Bool =  % q1 <= q2 
RET (EXISTS q | q1 + q = q2) 

FUNC SubSeq(q1, q2) -> Bool = % q1 <<= q2 
% Are q1’s elements in q2 in the same order, not necessarily contiguously. 

RET (EXISTS p: SET Int | p <= q2.dom /\ q1 = p.seq.sort * q2) 

FUNC ComposeR(q, r: (T, U)->Bool) -> SEQ U = % q ** r 
% Elements related to nothing are dropped. If an element is related to several things, they appear in arbitrary order. 

RET + : (q * r.setF * (\s: SET U | s.seq)) 

FUNC LexLE(q1, q2, f: (T,T)->Bool) -> Bool =  % q1.lexLE(q2, f); f is <= 
% Is q1 lexically less than or equal to q2. True if q1 is a prefix of q2,  
% or the first element in which q1 differs from q2 is less. 

RET    q1 <= q2  
    \/ (EXISTS i :IN q1.dom /\ q2.dom |   q1.sub(0, i-1) = q2.sub(0, i-1)  
                                      /\ q1(i) # q2(i)) /\ f(q1(i), q2(i)) 

FUNC Perms(q)->SET Q = % q.perms 
RET {q' | (ALL t | q.count(t) = q'.count(t))} 

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = % q.fsorter(f); f is <= 
% The permutation that sorts q stably. Note: can’t use min to define this, since min is defined using sort. 

VAR ps := {p :IN q.dom.perms  % all perms that sort q 
          | (ALL i :IN (q.dom - {0}) | f((p*q)(i-1), (p*q)(i))) } | 
  VAR p0 :IN ps |  % the one that reorders the least 

(ALL p :IN ps | p0.lexLE(p, Int."<=")) => RET p0  

FUNC FSort(q, f: (T,T)->Bool) -> Q = % q.fsort(f); f is <= for the sort 
RET q.fsorter(f) * q 

FUNC Sort(q)->Q = RET q.fsort(T.”<=”) % q.sort; only if T has <= 

FUNC Iterate(q, f: (T,T)->T) -> Q =  % q.iterate(f) 
% Yields qr = {q(0), qr(0) + q(1), qr(1) + q(2), ...), where t1 + t2 is f(t1, t2) 

RET {qr: Q |   qr.size=q.size /\ qr(0) = q(0)  
            /\ (ALL i IN q.dom–{0} | qr(i) = f(qr(i-1),q(i)))}.one 

FUNC Combine(q, f: T,T)->T) -> T = RET q.iterate(f).last  
% Yields q(0) + q(1) + ..., where t1 + t2 is f(t1, t2) 

FUNC Count(q, t)->Int = RET {t' :IN q | t' = t}.size % q.count(t) 
FUNC In(t, q)->Bool = RET (q.count(t) # 0) % t IN q 
FUNC EqElem(q1, q2) -> Bool = RET q1 IN q2.perms % q1 == q2; equal as multisets 
FUNC Diff(q1, q2) -> Q =   % q1 - q2 

RET {q | (ALL t | q.count(t) = {q1.count(t) - q2.count(t), 0}.max)}.choose  

END Sequence 
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A sequence is a special case of a tuple, in which all the elements have the same type.  

Int has a method .. for making sequences: i .. j = {i, i+1, ..., j-1, j}. If j < i, 
i .. j = {}.  You can also write i .. j as {k := i BY k + 1 WHILE k <= j}; see [11] in 
section 5. Int also has a seq method: i.seq = 0 .. i-1.  

There is a constructor {e1, e2, ...} for a sequence with specific elements and a constructor 
{} for the empty sequence. There is also a constructor q{e1 -> e2}, which is equal to q except 
at e1 (and undefined if e1 is out of range). For the constructors see [6] and [8] of section 5. To 
generate a sequence there are constructors {x :IN q | pred || exp} and {x := e1 BY e2 
WHILE pred1 | pred2 || exp}. For these see [11] of section 5. 

To map each element t of q to f(t) use function composition q * f. Thus if q: SEQ Int, 
q * (\ i: Int | i*i) yields a sequence of squares. You can also write this 
{i :IN q || i*i}. 
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choosing an element, 13, 21 
client, 2 
closure, 25 
Clu, 17 
cmd, 15 
combination, 25 
command, 1, 14 
command, 3, 6, 26 
comment, 3 
comment in a Spec program, 3 
communicate, 2 
commutative, 6 
compose, 16 
composition, 30, 23 
concatenation, 10 
conditional, 15, 27, 11 
conditional and, 11, 10 
conditional or, 11, 10 
conjunction, 6 
conjunctive, 6 
consequent, 6 
constructor, 9 
constructor, 24 
contract, 2 
contrapositive, 8 
count, 26 
decl, 5 
declaration, 20 
declare, 8 
defined, 10, 23 
defined, 24 
DeMorgan’s laws, 6 
DeMorgan’s laws, 9 
difference, 20, 26 
Dijkstra, 1 
disjunction, 6 
disjunctive, 6 
distribute, 6 
divide, 10 
DO, 15 
DO, 4, 30 

dot, 21 
e.id, 11 
e.id(), 11 
e1 infixOp e2, 11 
e1.id(e2), 11 
else, 28, 15 
empty, 3, 11 
empty sequence, 28 
empty set, 22 
END, 15, 18 
END, 28 
ENUM, 18 
equal, 10 
equal types, 4 
essential, 2 
EXCEPT, 15 
EXCEPT, 29 
exception, 5, 6, 8, 17 
exception, 5 
EXCEPTION, 18 
exceptional outcome, 6 
exceptionSet, 5 
exceptionSet % see section 4 for 
exceptionSet, 18 
existential quantification, 9 
existential quantifier, 5, 26 
EXISTS, 9 
EXISTS, 9 
exp, 9 
expanded definitions, 4 
EXPORT, 18 
expression, 1, 8 
expression, 4, 6 
expression has a type, 8 
extracting a segment of a sequence, 
concatenating two sequences, or finding the 
size,, 19, 26 
fail, 27, 29, 8, 14 
FI, 15 
FI, 28 
fill, 26 
fit, 8, 11, 15, 16 
follows from, 7 
formal parameters, 17 
free variables, 8 
func, 24 
FUNC, 7, 18 
function, 19, 2, 6, 15, 23, 26 
function, 7, 8, 9, 15 
function, 24 
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function constructor, 15, 24 
function declaration, 16 
function of type T whose value is result 
everywhere, 23 
function undefined everywhere, 23 
functional behavior, 2 
general procedure, 2 
global, 17, 18, 21 
global, 31 
GLOBAL.id, 17, 21 
grammar, 2 
graph, 24 
greater or equal, 10 
greater than, 10 
greatest lower bound, 8 
grouping, 16 
guard, 4, 26, 14, 15 
handler, 15 
handler, 5 
has a routine type, 4 
has type T, 4 
HAVOC, 15 
head, 26 
hierarchy, 31 
history, 3, 7 
id, 3 
Id, 7 
id := exp, 9 
id [ typeList ], 5 
identifier, 3 
if, 15 
if, 4, 26 
IF, 15 
IF, 28 
if a then b, 7 
implementer, 2 
implication, 6, 7, 3 
implies, 11, 10 
IN, 11, 10, 22, 26 
infinite, 3 
infixOp, 10 
initial value, 18 
initialize, 16 
instantiate, 17 
Int, 9 
intersection, 13, 10, 21 
Introduction to Spec, 1 
invocation, 26, 8, 11, 15 
IS, 9 
isPath, 25 

join, 8 
keyword, 3 
known, 20 
LAMBDA, 9, 12 
lambda expression, 9 
last, 26 
lattice, 8 
least upper bound, 8 
less than, 10 
lexical comparison, 20, 26 
List, 3 
literal, 3, 8, 9 
local, 21 
local, 4, 31 
logical operators, 13 
loop, 30 
looping exception, 8, 14 
m[typeList].id, 7 
meaning 

of an atomic command, 6 
of an expression, 6 

meaning of an atomic command, 14 
meaning of an expression, 8 
meet, 8 
membership, 13, 10, 21 
method, 4, 5, 6, 21 
method, 8, 30 
mfp, 18 
module, 2, 17, 18 
module, 8, 31 
monotonic, 8 
multiply, 10 
multiset, 20, 26 
multiset difference, 10 
name, 6, 1, 5, 8, 21 
name space, 31 
negation, 6 
Nelson, 1 
new variable, 16 
non-atomic command, 6, 1, 14 
non-atomic semantics, 7 
Non-Atomic Semantics of Spec, 1 
non-deterministic, 1 
non-deterministic, 4, 5, 6, 28, 29 
nonterminal symbol, 2 
normal outcome, 6, 29 
normal result, 23 
not, 6 
not equal, 11, 10 
Null, 5 
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OD, 15 
OD, 4, 30 
only if, 7 
operator, 3, 6 
operator, 10 
operators, 6 
or, 6, 4, 28 
ordering on Bool, 7 
organizing your program, 7, 2 
outcome, 14 
outcome, 6 
parameterized, 31 
parameterized module, 17 
path in the graph, 24 
precedence, 10, 11, 6, 10, 15 
precedence, 28 
precedence, 30 
precisely, 2 
precondition, 15 
pred, 9, 22 
predefined identifiers, 3 
predicate, 24 
predicate, 3, 25, 26 
Predicate logic, 8 
prefix, 10, 20, 10, 26 
prefixOp, 10 
prefixOp e, 11 
primary, 9 
PROC, 7, 5, 18 
procedure, 7 
program, 2, 17, 18 
program, 2, 4, 7 
program counter, 7 
propositions, 6 
punctuation, 3 
quantif, 9 
quantification, 11 
quantifier, 3, 4, 25 
quantifiers, 9 
quoted character, 3 
RAISE, 9, 15 
RAISE, 5 
RAISE exception, 12 
RAISES, 5, 12 
RAISES, 5 
RAISES set, 17 
record, 5, 11 
record constructor, 24 
redeclaration, 20 

Reflexive, 8 
relation, 24 
relation, 6 
remh, 26 
reml, 26 
remove an element, 20, 26 
removing an element, 13, 21 
repetition, 30 
result, 8 
result type, 15 
RET, 15 
RET, 5 
routine, 2, 15, 18 
routine, 7 
scope, 20 
seg, 26 
seq, 16 
SEQ, 5, 6, 26 
SEQ, 3 
SEQ Char, 6 
sequence, 28 
sequence, 9, 30 
sequence., 19, 26 
sequential composition, 15 
sequential program, 6, 1 
set, 13, 11, 12, 21, 24 
set, 3, 9 
SET, 5 
set constructor, 24 
set difference, 10 
set difference,,, 13, 21 
set of sequences of states, 6, 1 
set of values, 4 
set with specific elements, 22 
setF, 24 
side effects, 16 
side-effect, 8 
signature, 16, 18 
size, 26 
SKIP, 15 
Skolem function, 9 
spec, 2 
specification, 2, 4 
specifications, 1 
state, 1, 8, 14, 21 
state, 2, 6 
state machine, 1 
state transition, 2 
state variable, 6, 1 
String, 5, 6 
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stringLiteral, 5 
stronger than, 7 
strongly typed, 8 
sub, 26 
sub-sequence, 11, 20, 10, 26 
subset, 10, 13, 10, 21 
subtract, 10 
such that, 3 
SUCHTHAT, 9 
symbol, 3 
syntactic sugar, 8 
T.m, 6, 8 
T->U, 6 
tail, 26 
terminal symbol, 2 
terminates, 30 
test membership,, 20, 26 
Þ, 6 
then, 4, 26 
thread, 7 
THREAD, 7 
top, 8 
transition, 2, 6, 1 
Transitive, 8 
transitive closure, 24 

truth table, 6 
tuple, 5, 15, 16 
tuple constructor, 9 
two-level hierarchy, 8 
type, 2, 4, 5 
type, 7, 8 
TYPE, 18 
type equality, 4 
type-checking, 4, 8, 15 
undefined, 8, 11, 14 
undefined, 24, 26 
union, 13, 20, 5, 6, 10, 21, 26 
universal quantification, 9 
universal quantifier, 3, 25 
upper case, 3 
value, 6, 1 
VAR, 15, 16, 18 
VAR, 4, 5, 29 
variable, 1, 15, 16 
variable, 6 
variable introduction, 29 
weaker than, 7 
white space, 3 
WITH, 5, 6, 11, 18 
WITH, 9 
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5.  Examples of Specs and Code 

This handout is a supplement for the first two lectures. It contains several example specs and 
code, all written using Spec. 

Section 1 contains a spec for sorting a sequence. Section 2 contains two specs and one code for 
searching for an element in a sequence. Section 3 contains specs for a read/write memory. Sec-
tions 4 and 5 contain code for a read/write memory based on caching and hashing, respectively. 
Finally, Section 6 contains code based on replicated copies. 

1. Sorting 

The following spec describes the behavior required of a program that sorts sets of some type T 
with a "<=" comparison method. We do not assume that "<=" is antisymmetric; in other words, 
we can have t1 <= t2 and t2 <= t1 without having t1 = t2, so that "<=" is not enough to dis-
tinguish values of T. For instance, T might be the record type [name:String, salary: Int] 
with "<=" comparison of the salary field. Several T’s can have different names but the same 
salary. 

TYPE S = SET T 
Q = SEQ T 

APROC Sort(s) -> Q = << 
VAR q | (ALL t | s.count(t) = q.count(t)) /\ Sorted(q) => RET q >>  

This spec uses the auxiliary function Sorted, defined as follows. 

FUNC Sorted(q) -> Bool = RET (ALL i :IN q.dom – {0} |  q(i-1) <= q(i)) 

If we made Sort a FUNC rather than a PROC, what would be wrong?1 What could we change to 
make it a FUNC? 

We could have written this more concisely as 

APROC Sort(s) -> Q =  
<< VAR q :IN a.perms | Sorted(q) => RET q >>  

using the perms method for sets that returns a set of sequences that contains all the possible per-
mutations of the set. 

                                                 
1 Hint: a FUNC can’t have side effects and must be deterministic (return the same value for the same arguments). 


