CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Concurrency; Dynamic Classification
April 22, 2025

Process Calculus: Actions & Events

To begin with, we will focus on sequential processes, which simply await the arrival of
one of several possible actions, known as an event.

Proc P := await(E) $E synchronize

Evt FE = null 0 null
OI‘(El; Ez) E1 + E2 choice
quelal(P) ?a;P query
sigla|(P) la;P signal

The variable a ranges over symbols serving as channels that mediate communication among
the processes.

An illustrative example of Milner’s is a simple vending machine that may take in a 2p
coin, then optionally either allow a request for a cup of tea, or take another 2p coin, then
allow a request for a cup of coffee.

V =82p:$ (Itea;V 4+ 72p;$ (Icof;V))) (39.2)

Process Calculus: Actions & Events

We will not distinguish between events that differ only up to structural congruence,
which is defined to be the strongest equivalence relation closed under these rules:

E=FE
$E=$E

EIEEi EzEEé

El—l—EzEEi—l—Eé

P=P
%P = P’
P=P
la;P = la;P’

(39.1a)
(39.1b)
(39.1¢)
(39.1e)
EFE+0=F
(39.1d)
(39.11)
E\+ E,=E> + E;
(39.1g)

Ei+(Exy+ E3) = (E1 + Ey) + E3

Process Calculus: Interactions

Processes become interesting when they are allowed to interact with one another to achieve
a common goal. To account for interaction, we enrich the language of processes with
concurrent composition.

Proc P := await(E) $E synchronize
stop 1 inert
conc(Py; P,) Py ® P, composition

Process Calculus: Interactions

We will identify processes up to structural congruence, the strongest equivalence relation
closed under these rules:

(39.3a)
PRX1=P

(39.3b)

PIP,=P QP
(39.3¢)

PIR(PRQP)=(PIQP)Q P

Pr=P P,=P

1= f2= (39.3d)

Up to structural congruence every process has the form
$SEIQ...Q8$E,

for some n > 0, it being understood that when n = 0 this stands for the null process 1.

Process Calculus: Interactions

Interaction between processes consists of synchronization of two complementary actions.
The dynamics of interaction is defined by two forms of judgment. The transition judgment
P —— P’ states that the process P evolves to the process P’ as a result of a single step
of computation. The family of transition judgments, P — P’, where « is an action, states
that the process P may evolve to the process P’ as long as the action « is permissible in
the context in which the transition occurs. As a notational convenience, we often regard the
unlabeled transition to be the labeled transition corresponding to the special silent action.

The possible actions are given by the following grammar:

Act o := quela] a? query
siglal] a! signal
sil € silent

Process Calculus: Interactions

The query action a ! and the signal action a ! are complementary, and the silent action &,
is self-complementary. We define the complementary action to « to be the action @ given
by the equationsa? =a!,a! =a? and € = €.

' (39.4a)

$(la;P + E) = P
- (39.4b)

$(?a;P + E) = P
A A (39.4c)

PL® P> P/ ® P,
P, P, P, P} (39.4d)

P1®P2}—>P{®P2/

Process Calculus: Interactions

As an example, let us consider the vending machine V, given by Equation (39.2),
interacting with the user process U defined as follows:

U = $!2p;$!2p;$ 2cof;1. V =8(2p:$ (Itea;V + 72p;§ (Icof;V)))
Here is a trace of the interaction between V and U':

VRUr— $(1tea;V + 72p;$ lcof;V) ® $ 12p;$ 2cof;1
> $!cof;V ® $ 7cof;l

— V

These steps are justified by the following pairs of labeled transitions:
U P U = §12p:$ 2cof:1

VL V= §(lveasV + 22p:$ lcof: V)

; 2p! 17 .
Ur— U" =3%7o0f;1

; 2p? ” .
Vi V' =§$!cof;V

cof ?
U'—> 1

,y cof!

V Vv

Process Calculus: Replication

Some presentations of process calculi forego reliance on defining equations for processes
in favor of a replication construct, which we write as * P. This process stands for as many
concurrently executing copies of P as needed. Implicit replication can be expressed by the
structural congruence

*xP=PQ®xP. (39.5)

Understood as a principle of structural congruence, this rule hides the steps of process
creation and gives no hint as to how often it should be applied. We could alternatively build
replication into the dynamics to model the details of replication more closely:

*Pr— PQx*xP. (39.6)

‘ (39.102)
¥$(a:P +E)i— PR x*$(la;P + E)

. (39.10b)
¥$a:P+ E)i—> PR *$(2a;P + E)

Process Calculus: Allocating Channels

Proc P := new(a.P) va.P new channel

The channel a is bound within the process P. To simplify notation, we sometimes write
va,...,ag.P for the iterated declaration vay....vai.P.
We then extend structural congruence with the following rules:

P=, P

39.11a
P=P ()
= (39.11b)
va.P=va.P’
a¢ b

va.P)Q P,=va.(P® P,) (39.11¢)
(39.114d)

vavb.P=vbva.P
gl (39.11e)

va.P =P

PiC Statics

To account for the scopes of channels, we extend the statics of PiC with a signature X
comprising a finite set of active channels. The judgment -5 P proc states that a process P
1s well-formed relative to the channels declared in the signature X.

e (39.12a)
- i12p2c® ;;pfscproc (39.12b)
;z $EEe:)er2tC (39.12¢)
~x.a P proc (39.12d)

s va.P proc

PiC Statics

The foregoing rules make use of an auxiliary judgment, 5 E event, stating that E is a

well-formed event relative to X.

s 0 event

Fs.q P proc

Fs.4 7a;P event

Fs.qa P proc

Fs.4 la; P event

sy Eq{ event s E, event
s Ey 4+ E, event

The judgment 5 « action states that « 1s a well-formed action relative to X:

x.4 a?action

Fx.4 a!l action

s € action

(39.13a)

(39.13b)

(39.13c¢)

(39.13d)

(39.14a)

(39.14b)

(39.14c¢)

PiC Dynamics

The dynamics of the current fragment of PiC is correspondingly generalized to keep
track of the set of active channels. The judgment P % P’ states that P transitions to P’

with action « relative to channels 2. The dynamics of this extension is obtained by indexing
the transitions by the signature, and adding a rule for channel declaration.

a! (39.152)
$(la;P + E) = P
a? (39.15b)
$(?a;P + E) IZ—> P
P = P
- (39.15¢)
Pi® P e P{® P,
P& Pl PSP
z z (39.15d)
PP IE> P/ ® P,
P |2i> P’ Fyxy o action
- (39.15¢)

(0%
va.P— va.P’
>

PiC Communication

To account for interprocess communication, we enrich the language of processes to
include variables, as well as channels, in the formalism. Variables range, as always, over
types, and are given meaning by substitution. Channels, on the other hand, are assigned
types that classify the data carried on that channel and are given meaning by send and
recelve events that generalize the signal and query events considered in Section 39.2. The
abstract syntax of communication events is given by the following grammar:

Evt E ::= sndlal(e;P) 'a(e; P) send
rcvlal(x.P) ?a(x.P) receive

The event rcv[a](x.P) represents the receipt of a value x on the channel a, passing x to
the process P. The variable x is bound within P. The event snd[a](e; P) represents the
transmission of e on a and continuing with P.

We modify the syntax of declarations to account for the type of value sent on a channel.
Proc P := new{t}(a.P) va~7t.P typedchannel

The process new|[7](a. P) introduces a new channel a with associated type 7 for use within
the process P. The channel a is bound within P.

PiC Communication

The statics is extended to account for the type of a channel. The judgment I =5 P proc
states that P is a well-formed process involving the channels declared in X and the variables
declared in I'. It is inductively defined by the following rules, wherein we assume that the
typing judgment I =5 e : T is given separately.

(39.16a)
I' Fx 1 proc
I' =y Py proc I'kFx P, proc
N
I' =y P1 ® P, proc (39.16b)
I' =% 4,~; P proc
: 39.16
I' s va~rt.P proc ()
'ty E
r © event (39.16d)

I' v $ E proc

PiC Communication

Rules (39.16) make use of the auxiliary judgment I 5 E event, stating that £ is a
well-formed event relative to I" and X, which is defined as follows:

(39.17a)
I' 5 0 event
'ty Eyevent I' sy E, event
39.17b
I’ |_E E1 + E2 event (7)
I''x:tbkx 4~ P proc
Tt Rar O P (39.17¢)
I' Fg.4~r 7a(x.P) event
I'Fs y~re:t I'Fs 4~y P proc
Zs Z, i (39.17d)

I' Fs 4~r la(e; P) event

Rule (39.17d) makes use of a typing judgment for expressions that ensures that the type of
a channel is respected by communication.

PiC Communication

The dynamics of communication extends that of synchronization by enriching send and
receive actions with the value sent or received.

Act o 1= rcvlalle) a?e receive
sndlal(e) a!e send
sil € silent

Complementarity is defined as before, by switching the orientation of an action: a ? e = ale,
ale=a?e,and e = ¢.

The statics ensures that the expression associated with these actions is a value of a type

suitable for the channel:
FE,GNT e : ‘C € Valz,awf

39.18
s.a~c a ! e action (39.18a)
Fsa~re: T evalg g~
’ ’ .18b
5 .a~c a ? e action (39.18b)
(39.18¢)

s € action

PiC Communication

The dynamics is defined by replacing the synchronization rules (39.15a) and (39.15b)
with the following communication rules:

e — ¢

>,a~T

$Cale; P)+E)r—r $(ta(e’; P)+ E)

(39.19a)

e Va|2’awt

sla(e: P)+ E) ale | p (39.19b)

>,a~T

e valy 4~1

$(QaCe.P) + E) = [e/x]P (39.19¢)

Using synchronous communication, both the sender and the receiver of a message are
blocked until the interaction is completed. Therefore the sender must be notified whenever
a message 1s received, which means that there must be an implicit reply channel from
receiver to sender that carries the notification. This means that synchronous communication
can be decomposed into a simpler asynchronous send operation, which sends a message
on a channel without waiting for its receipt, together with channel passing to send an
acknowledgment channel along with the message data.

PiC Communication

Asynchronous communication is defined by removing the synchronous send event from
the process calculus and adding a new form of process that simply sends a message on a
channel. The syntax of asynchronous send is as follows:

Proc P := asndlal(e) 'a(e) send

The process asnd[a](e) sends the message e on channel a and then terminates immediately.
Without the synchronous send event, every event is, up to structural congruence, a choice
of zero or more read events. The statics of asynchronous send is given by the following

rule:
I'Fyagrert

I' b5 4~c la(e) proc (39.20)
The dynamics is given similarly:
e valy
La(e) r%i 1 (39.21)

The rule for communication remains unchanged. A pending asynchronous send is essen-
tially a buffer holding the value to be sent once a receiver is available.

PiC Channel Passing

The syntax of channel reference types is given by the following grammar:

Typ t = |chan(r) 7 chan channel type

Exp e = chrefla] &a reference

Evt E = sndref(e;;e;P) !!'(eg;er; P) send
rcvref(e;x.P) (e ;x.P) receive

The events sndref(e;;e;; P) and rcvref(e;x.P) are dynamic versions of the events
snd[a](e; P) and rcv[a](x.P) in which the channel reference is determined dynamically
by evaluation of an expression.

The statics of channel references is given by the following rules:

(39.22a)
I' s 4~r &a : 7 chan
I'Fye:tchan I'Fyey:7 I' g P proc (39.22b)
[' x5 !(er;er; P)event
Fye:tchan I, x:1hky P proc (39.22¢)

I' 5 ??7(e; x.P) event

PiC Channel Passing

Because channel references are forms of expression, events must be evaluated to deter-
mine the channel to which they refer.

E— E’
>,a~tT

$ (E) — $(E)

(39.23a)

e valy 4~;

$(!(&aie; P)+ E)—> $('ale; P)+ E) (39.23b)

e vals g~r
$(??(&a;x.P)+ E) —— $(2a(x.P) + E) (39.23c¢)

Dynamic Classes

A dynamic class is a symbol generated at run-time.

A classified value consists of a symbol of type t and a value of that type.
To compute with a classified value, it is compared with a known class.

* If the value is of this class, the underlying instance data is passed to the

positive branch;
* Otherwise, the negative branch is taken

The syntax of dynamic classification is given by the following grammar:

clsfd clsfd classified
Exp e = 1inlal(e) a-e instance
isinlal(e;x.ej;e;) matcheasa-x <> ejow < e; comparison

Typ

Dynamic Classes (Statics)

The statics of dynamic classification is defined by these rules:

I'Fygre:t
I' g 4~¢ in[al(e) : c1lsfd

(33.1a)

FFgg~re:clsfd TMx:thkggre T Dhgg~r @ T

(33.1b)

I' Fg.u~c isinlal(e; x.e15e2) : T’

Theorem 33.1 (Safety).

I. Ifrse:tandvZ{e}—— v’ {e}, then X' O X andby e : t.

2. If b5 e : 1, then either e valy, orv X {e} —— v X' { e} for some e and X'

Dynamic Classes (Dynamics)

To maximize the flexibility in using dynamic classification, we will consider a free dynamics
for symbol generation. Within this framework, the dynamics of classification is given by
the following rules:

e Va|2
in[a](e) valy (33.23)
.UE{e}|—>vZ’{ci’} (33.2b)

v X {in[a](e)} — v X' {in[a](€’)}

e valy
Vv X {isinla](inlal(e); x.e;;er)} —> v X {[e/x]e; } (33.2¢)
vz @Fa) (33.2d)

v Y {isinla](in[a’](e'); x.e1;e2) } —> v X {es }

vX{el—vX'{e)} (33.2¢)

v X {isin[a](e;x.e1;e2)} —> v X' {isin[a](e’;x.e1;e2))

Class References (Syntax & Statics)

The type cls(t) has as values references to classes.

Typ t© == cls(r) T cls class reference
Exp e 1= cls|al &a reference
mk(eq; er) mk(eq;er) instance
isof(ep;er;x.ex;e3) isof(ep;er;x.ey;e3) dispatch
The statics of these constructs is given by the following rules:
(33.3a)
[' F5.4~r clsla] : cls(7)
['Fyep:cls(t) I'kser:t (33.3b)
I' 5 mk(e;;ep) : clsfd
[Fysey:cls(t) Tkxep:clsfd IMNx:thkxse:t Thyey:t
(33.3¢)

I' s isof(eg;er;x.ex;e3) : 1T’

Class References (Dynamics)

The corresponding dynamics is given by these rules:

vI{e}—vX{e}

(33.4a)

VX {mk(er;ep)} —> v X' {mk(e|;en)}
egvaly vEI{ex}r— vX'{e]} (33.4b)

v Y {mk(er;ez)} > v X' {mk(er;e))}

e vals
v X {mk(clsla];e)} — v X {in[a](e) } (334¢)
| vE{eo}|—>vE{ci0} (33.44)
v X {isof(eg;er;x.ex;e3)} —> v X' {isof(ey; er;x.e2;5e3)}

(33.4e)

v X {isof(clslal;e;; x.ex;e3)} —> v X {isinlal(e;; x.ex;e3)}

Classifying Secrets

Dynamic classification can be used to enforce confidentiality and integrity of data
values in a program. A value of type clsfd may only be constructed by sealing it
with some class a and may only be deconstructed by a case analysis that includes
a branch for a. By controlling which parties have access to the classifier a we may
control how classified values are created (ensuring their integrity) and how they
are inspected (ensuring their confidentiality). Any party that lacks access to a
cannot decipher a value classified by a, nor may it create a classified value with
this class. Because classes are dynamically generated symbols, they offer a
confidentiality guarantee among parties in a computation
Consider the following simple protocol for controlling the integrity and confidentiality
of data in a program. A fresh symbol a is introduced, and we return a pair of functions of
type
(t — clsfd) x (clsfd — 7 opt),

called the constructor and destructor functions for that class, which is accomplished by

writing

new a ~ 7 1in
(A(x:7)a-x,
A(x:clsfd)matchxasa:y <> just(y)ow < null).

Concurrent Algol

The syntax of CA is obtained by removing assignables from MA, and adding a syntactic
level of processes to represent the global state of a program:

Typ t© = cmd(7) T cmd commands
Exp e = cmd(m) cmd m command
Cmd m := rete rete return
bnd(e;x.m) bndx <—e;m sequence
Proc p = stop 1 idle
run(m) run(m) atomic
conc(pis p2) p1Q p2 concurrent

new[t|(a.p) va~rt.p new channel

Concurrent Algol

The process run(m) is an atomic process executing the command m. The other forms of
process are adapted from Chapter 39. If X has the form a; ~ 7y, ..., a, ~ 7,, then we
sometimes write v 2 { p} for the iterated form va; ~ 7;....va, ~ 1,.p.

The statics of CA is given by these judgments:

I'Fye:t expression typing
I'Fym 1 command typing
I' =% p proc process formation
I' s a action action formation

Concurrent Algol

Process formation is defined by the following rules:

s 1 proc

Fgm@f

s run(m) proc

s p1 proc Fx ps proc
= p1 ® pa proc

5.4~ p proc
s va~t.p proc

Processes are identified up to structural congruence, as described in Chapter 39.

Action formation is defined by the following rules:

s € action

s e : clsfd e valy
s e! action

Fy e:clsfd e valy
s e ? action

(40.1a)

(40.1b)

(40.1c)

(40.1d)

(40.2a)

(40.2b)

(40.2¢)

Concurrent Algol

The dynamics of CA is defined by transitions between processes, which represent the
state of the computation. More precisely, the judgment p % p' states that the process p

evolves in one step to the process p’ while undertaking action «.

m:;>v2’{m/®p}

. (40.3a)
run(m) = v Y'{run(m’) ® p}
e valy
run(ret e) % 1 (40.35)
P1 % P/l
o (40.3¢)
P1® p2 = P ® p2
PL Py P2 P 4034)
P1® p2 % Py ® p;
p IEL> p’ Fx a action
,a~Tt (40.3e)

o
va~t.p=>va~t.p
)

Concurrent Algol

Executing a command in CA may, in addition to evolving to another command, allocate
a new channel or may spawn a new process. More precisely, the judgment!

m:}vE’{m’@p’}

states that the command m transitions to the command m’ while creating new channels X'
and new processes p’. The action « specifies the interactions of which m is capable when
executed. As a notational convenience, we drop mention of the new channels or processes
when either are trivial.

Concurrent Algol

The following rules define the execution of the basic forms of command inherited from
MA:

e |§> e
£ . (40.4a)
rete =2> rete
mi = v {m ®p'}
o (40.4b)
bnd x <—cmdm; ;m; =Z> v X {bndx < cmdm| ;my ® p'}
e valy
bnd x <— cmd (rete);ms :;> [e/x]m> (40.4¢)
el = €}
b
(40.4d)

I
bnd x <—e; ;my; = bndx < e} ; m;
>

These rules are supplemented by rules governing communication and synchronization
among processes in the next two sections.

CA with Broadcast Communication

The syntax of the commands pertinent to broadcast communication is given by the
following grammar:

Cmd m := _spawn(e) spawn(e) spawn
emit(e) emit(e) emit message
acc acc accept message
newch{r} mnewch new channel

The command spawn(e) spawns a process that executes the encapsulated command given
by e. The commands emit(e) and acc emit and accept messages, which are classified
values whose class is the channel on which the message is sent. The command newch[7]
returns a reference to a fresh class carrying values of type 7.

CA with Broadcast Communication

The statics of broadcast communication is given by the following rules:

'y e : cmd(unit)

[by spawn(e) ~ unit (40-52)
'y e:clsfd 40.5b
I' by emit(e) ~ unit (40.55)
(40.5¢)

I' sy acc ~ clsfd
(40.5d)

I" by, newch{r} ~ cls(7)

CA with Broadcast Communication

Execution of these commands 1s defined as follows:

- (40.6a)
spawn(cmd(m)) :Z> ret () ® run(m)
e ¢
b
- (40.6b)
spawn(e) :2> spawn(e’)
e valy
emit(e) % ret () (40.6¢)
e ¢
>
e (40.6d)
emit(e) :E> emit(e’)
e Valg
e? (40.6¢)
acc :Z> rete
(40.6f)

newch{r} :;> va~t{ret(&a)}

CA with Broadcast Communication

Lemma 40.1. /f m % VX' {m'®p'}, s m ~ 1, thenbs a action, Fs sy m' ~ 1, and

Fs s p’ proc
Proof By induction on rules (40.4). []
With this in hand, the proof of preservation goes along familiar lines.

Theorem 40.2 (Preservation). If 5 p proc and p = p’, then 5, p’ proc.

Proof By induction on transition, appealing to Lemma 40.1 for the crucial steps. []

Typing does not, however, guarantee progress with respect to unlabeled transition, for the
simple reason that there may be no other process with which to communicate. By extending
progress to labeled transitions, we may state that this is the only way for process execution
to get stuck. But some care must be taken to account for allocating new channels.

Theorem 40.3 (Progress). If s p proc, then either p = I, or p = v 2'{p'} such that

a 'l
p' —— p’ for some x5 p” and some x5 a action.
2P

CA with Selective Communication

Typ 7
Exp
Cmd m

event(t)
rcv|a]
never{r}
or(er;ez)
wrap(ep; x.ep)
sync(e)

T event

Ta

never

€1 0or é;
¢1as x inep
sync(e)

events

selective read
null

choice
post-composition
synchronize

CA with Selective Communication

The statics of event expressions is given by the following rules:

I'F5 rfvl[_ail :Ne:rent(r) (40.7a)

I' k5 never{r} : event(r) (40.7b)

T e v (4070
'y e :event(t) x:tbser:n w070

I' by wrap(e;; x.ey) : event(t;)

CA with Selective Communication

The corresponding dynamics is defined by these rules:

YhFa~t

rcv|a] vals (40.82)
(40.8b)
never{t} valy
epvaly er valsy (40.8¢)
or(e;;ep) valy
e = e
>
- (40.8d)
or(ej;ez) = or(e;ez)
ejvaly e €
- (40.8¢)
or(e;ez) = or(e;e;)
e = e
p
- - (40.8f)
wrap(ey; x.e;) i;> wrap(e; x.e,)
I
SRL: (40.8g)

wrap(e;; x.ep) valy

CA with Selective Communication

The statics of the synchronization command is given by the following rule:

' -5 e: event(r)
[' -y sync(e) + 7

(40.9a)

The type of the event determines the type of value returned by the synchronization
command.
Execution of a synchronization command depends on the event.

er> e’
- (40.10a)
sync(e) =Z> sync(e’)
evals Fye:1 XFa~t
sync(rcvla]) %; ret(e) (40.10b)
sync(e;) :;> mi
(40.10c¢)

sync(or(ey; e2)) :;> mi

CA with Selective Communication

sync(es) =;> my
(40.10d)

sync(or(e;ez)) =;> my

(07
sync(ep) :E> mi

- (40.10e)
sync(wrap(ey; x.e2)) ? bnd(cmd(m;); x.ret(ez))

