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Process Calculus: Actions & Events

39 Process Calculus

So far we have studied the statics and dynamics of programs in isolation, without regard
to their interaction with each other or the world. But to extend this analysis to even the
most rudimentary forms of input and output requires that we consider external agents that
interact with the program. After all, the purpose of a computer is, ultimately, to interact
with a person!

To extend our investigations to interactive systems, we develop a small language, called
PiC, which is derived from a variety of similar formalisms, called process calculi, that give
an abstract formulation of interaction among independent agents. The development will
be carried out in stages, starting with simple action models, then extending to interacting
concurrent processes, and finally to synchronous and asynchronous communication. The
calculus consists of two main syntactic categories, processes and events. The basic form
of process is one that awaits the arrival of an event. Processes are formed by concurrent
composition, replication, and declaration of a channel. The basic forms of event are signaling
on a channel and querying a channel; these are later generalized to sending and receiving data
on a channel. Events are formed from send and receive events by finite non-deterministic
choice.

39.1 Actions and Events

Concurrent interaction is based on events, which specify the actions that a process can
take. Two processes interact by taking two complementary actions, a signal and a query
on a channel. The processes synchronize when one signals on a channel that the other is
querying, after which they continue to interact with other processes.

To begin with, we will focus on sequential processes, which simply await the arrival of
one of several possible actions, known as an event.

Proc P ::= await(E) $ E synchronize
Evt E ::= null 0 null

or(E1; E2) E1 + E2 choice
que[a](P ) ?a;P query
sig[a](P ) !a;P signal

The variable a ranges over symbols serving as channels that mediate communication among
the processes.
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360 Process Calculus

We will not distinguish between events that differ only up to structural congruence,
which is defined to be the strongest equivalence relation closed under these rules:

E ≡ E′

$ E ≡ $ E′ (39.1a)

E1 ≡ E′
1 E2 ≡ E′

2

E1 + E2 ≡ E′
1 + E′

2
(39.1b)

P ≡ P ′

?a;P ≡ ?a;P ′ (39.1c)

P ≡ P ′

!a;P ≡ !a;P ′ (39.1d)

E + 0 ≡ E
(39.1e)

E1 + E2 ≡ E2 + E1
(39.1f)

E1 + (E2 + E3) ≡ (E1 + E2) + E3
(39.1g)

Imposing structural congruence on sequential processes enables us to think of an event as
having the form

!a;P1 + · · · + ?a;Q1 + · · ·

consisting of a sum of signal and query events, with the sum of no events being the null
event 0.

An illustrative example of Milner’s is a simple vending machine that may take in a 2p
coin, then optionally either allow a request for a cup of tea, or take another 2p coin, then
allow a request for a cup of coffee.

V = $ (?2p;$ (!tea;V + ?2p;$ (!cof;V ))) (39.2)

As the example indicates, we allow recursive definitions of processes, with the understand-
ing that a defined identifier may always be replaced with its definition wherever it occurs.
(Later we will show how to avoid reliance on recursive definitions.)

Because the computation occurring within a process is suppressed, sequential processes
have no dynamics on their own, but only through their interaction with other processes. For
the vending machine to work, there must be another process (you) who initiates the events
expected by the machine, causing both your state (the coins in your pocket) and its state
(as just described) to change as a result.
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39.2 Interaction

Processes become interesting when they are allowed to interact with one another to achieve
a common goal. To account for interaction, we enrich the language of processes with
concurrent composition:

Proc P ::= await(E) $ E synchronize
stop 1 inert
conc(P1; P2) P1 ⊗ P2 composition

The process 1 represents the inert process, and the process P1⊗P2 represents the concurrent
composition of P1 and P2. We may identify 1 with $ 0, the process that awaits the event
that will never occur, but we prefer to treat the inert process as a primitive concept.

We will identify processes up to structural congruence, the strongest equivalence relation
closed under these rules:

P ⊗ 1 ≡ P
(39.3a)

P1 ⊗ P2 ≡ P2 ⊗ P1
(39.3b)

P1 ⊗ (P2 ⊗ P3) ≡ (P1 ⊗ P2) ⊗ P3
(39.3c)

P1 ≡ P ′
1 P2 ≡ P ′

2

P1 ⊗ P2 ≡ P ′
1 ⊗ P ′

2
(39.3d)

Up to structural congruence every process has the form

$ E1 ⊗ . . . ⊗ $ En

for some n ≥ 0, it being understood that when n = 0 this stands for the null process 1.
Interaction between processes consists of synchronization of two complementary actions.

The dynamics of interaction is defined by two forms of judgment. The transition judgment
P %−→ P ′ states that the process P evolves to the process P ′ as a result of a single step
of computation. The family of transition judgments, P

α%−→ P ′, where α is an action, states
that the process P may evolve to the process P ′ as long as the action α is permissible in
the context in which the transition occurs. As a notational convenience, we often regard the
unlabeled transition to be the labeled transition corresponding to the special silent action.

The possible actions are given by the following grammar:

Act α ::= que[a] a ? query
sig[a] a ! signal
sil ε silent
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The query action a ? and the signal action a ! are complementary, and the silent action ε,
is self-complementary. We define the complementary action to α to be the action α given
by the equations a ? = a !, a ! = a ?, and ε = ε.

$ (!a;P + E) a !!−→ P
(39.4a)

$ (?a;P + E) a ?!−→ P
(39.4b)

P1
α!−→ P ′

1

P1 ⊗ P2
α!−→ P ′

1 ⊗ P2

(39.4c)

P1
α!−→ P ′

1 P2
α!−→ P ′

2

P1 ⊗ P2 !−→ P ′
1 ⊗ P ′

2

(39.4d)

Rules (39.4a) and (39.4b) specify that any of the events on which a process is syn-
chronizing may occur. Rule (39.4d) synchronizes two processes that take complementary
actions.

As an example, let us consider the vending machine V , given by Equation (39.2),
interacting with the user process U defined as follows:

U = $ !2p;$ !2p;$ ?cof;1.

Here is a trace of the interaction between V and U :

V ⊗ U !−→ $ (!tea;V + ?2p;$ !cof;V ) ⊗ $ !2p;$ ?cof;1
!−→ $ !cof;V ⊗ $ ?cof;1
!−→ V

These steps are justified by the following pairs of labeled transitions:

U
2p !!−→ U ′ = $ !2p;$ ?cof;1

V
2p ?!−−→ V ′ = $ (!tea;V + ?2p;$ !cof;V )

U ′ 2p !!−→ U ′′ = $ ?cof;1

V ′ 2p ?!−−→ V ′′ = $ !cof;V

U ′′ cof ?!−−→ 1

V ′′ cof !!−−→ V

We have suppressed uses of structural congruence in the foregoing derivation to avoid
clutter, but it is important to see its role in managing the non-deterministic choice of events
by a process.
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39.3 Replication

Some presentations of process calculi forego reliance on defining equations for processes
in favor of a replication construct, which we write as ∗ P . This process stands for as many
concurrently executing copies of P as needed. Implicit replication can be expressed by the
structural congruence

∗P ≡ P ⊗ ∗ P . (39.5)

Understood as a principle of structural congruence, this rule hides the steps of process
creation and gives no hint as to how often it should be applied. We could alternatively build
replication into the dynamics to model the details of replication more closely:

∗ P $−→ P ⊗ ∗P . (39.6)

Because there is no constraint on the use of this rule, it can at any time create a new copy
of the replicated process P . It is also possible to tie its use to send and receive events so
that replication is causal, rather than spontaneous.

So far we have used recursive process definitions to define processes that interact repeat-
edly according to some protocol. Rather than take recursive definition as a primitive notion,
we may instead use replication to model repetition. We do so by introducing an “activator”
process that is used to cause the replication. Consider the recursive definition X = P (X),
where P is a process expression that may refer to itself as X. Such a self-referential process
can be simulated by defining the activator process

A = ∗ $ (?a;P ($ (!a;1))),

in which we have replaced occurrences of X within P by an initiator process that signals
the event a to the activator. Note that the activator A is structurally congruent to the process
A′ ⊗ A, where A′ is the process

$ (?a;P ($ (!a;1))).

To start process P , we concurrently compose the activator A with an initiator process,
$ (!a;1). Note that

A ⊗ $ (!a;1) $−→ A ⊗ P ($ !a;1),

which starts the process P while maintaining a running copy of the activator, A.
As an example, let us consider Milner’s vending machine, written using replication,

instead of recursive process definition:

V0 = $ (!v;1) (39.7)

V1 = ∗ $ (?v;V2) (39.8)

V2 = $ (?2p;$ (!tea;V0 + ?2p;$ (!cof;V0))) (39.9)

The process V1 is a replicated server that awaits a signal on channel v to create another
instance of the vending machine. The recursive calls are replaced by signals along v to
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re-start the machine. The original machine V is simulated by the concurrent composition
V0 ⊗ V1.

This example motivates replacing spontaneous replication by replicated synchronization,
which is defined by the following rules:

∗ $ (!a;P + E) a !#−→ P ⊗ ∗ $ (!a;P + E)
(39.10a)

∗ $ (?a;P + E) a ?#−→ P ⊗ ∗ $ (?a;P + E)
(39.10b)

The process ∗ $ (E) is to be regarded not as a composition of replication and synchroniza-
tion, but as the inseparable combination of these two constructs. The advantage is that the
replication occurs only as needed, precisely when a synchronization with another process
is possible, avoiding the need “guess” when replication is needed.

39.4 Allocating Channels

It is often useful (particularly once we have introduced inter-process communication) to
introduce new channels within a process, and not assume that all channels of interaction are
given a priori. To allow for this, we enrich the syntax of processes with channel declaration:

Proc P ::= new(a.P ) ν a.P new channel

The channel a is bound within the process P . To simplify notation, we sometimes write
ν a1, . . . , ak.P for the iterated declaration ν a1.. . . ν ak.P .

We then extend structural congruence with the following rules:

P =α P ′

P ≡ P ′ (39.11a)

P ≡ P ′

ν a.P ≡ ν a.P ′ (39.11b)

a /∈ P2

(ν a.P1) ⊗ P2 ≡ ν a.(P1 ⊗ P2) (39.11c)

ν a.ν b.P ≡ ν b.ν a.P
(39.11d)

(a /∈ P )
ν a.P ≡ P

(39.11e)

Rule (39.11c), called scope extrusion, will be especially important in Section 39.6.
Rule (39.11e) states that channels are de-allocated once they are no longer in use.
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(39.10b)

The process ∗ $ (E) is to be regarded not as a composition of replication and synchroniza-
tion, but as the inseparable combination of these two constructs. The advantage is that the
replication occurs only as needed, precisely when a synchronization with another process
is possible, avoiding the need “guess” when replication is needed.

39.4 Allocating Channels

It is often useful (particularly once we have introduced inter-process communication) to
introduce new channels within a process, and not assume that all channels of interaction are
given a priori. To allow for this, we enrich the syntax of processes with channel declaration:

Proc P ::= new(a.P ) ν a.P new channel

The channel a is bound within the process P . To simplify notation, we sometimes write
ν a1, . . . , ak.P for the iterated declaration ν a1.. . . ν ak.P .

We then extend structural congruence with the following rules:

P =α P ′

P ≡ P ′ (39.11a)

P ≡ P ′

ν a.P ≡ ν a.P ′ (39.11b)

a /∈ P2

(ν a.P1) ⊗ P2 ≡ ν a.(P1 ⊗ P2) (39.11c)

ν a.ν b.P ≡ ν b.ν a.P
(39.11d)

(a /∈ P )
ν a.P ≡ P

(39.11e)

Rule (39.11c), called scope extrusion, will be especially important in Section 39.6.
Rule (39.11e) states that channels are de-allocated once they are no longer in use.
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To account for the scopes of channels, we extend the statics of PiC with a signature !

comprising a finite set of active channels. The judgment !! P proc states that a process P

is well-formed relative to the channels declared in the signature !.

!! 1 proc
(39.12a)

!! P1 proc !! P2 proc
!! P1 ⊗ P2 proc

(39.12b)

!! E event
!! $ E proc

(39.12c)

!!,a P proc

!! ν a.P proc
(39.12d)

The foregoing rules make use of an auxiliary judgment, !! E event, stating that E is a
well-formed event relative to !.

!! 0 event
(39.13a)

!!,a P proc

!!,a ?a;P event
(39.13b)

!!,a P proc

!!,a !a;P event
(39.13c)

!! E1 event !! E2 event
!! E1 + E2 event

(39.13d)

The judgment !! α action states that α is a well-formed action relative to !:

!!,a a ? action
(39.14a)

!!,a a ! action
(39.14b)

!! ε action
(39.14c)

The dynamics of the current fragment of PiC is correspondingly generalized to keep
track of the set of active channels. The judgment P

α#−→
!

P ′ states that P transitions to P ′

with action α relative to channels !. The dynamics of this extension is obtained by indexing
the transitions by the signature, and adding a rule for channel declaration.

$ (!a;P + E) a !#−−→
!,a

P
(39.15a)

$ (?a;P + E) a ?#−−→
!,a

P
(39.15b)
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The dynamics of the current fragment of PiC is correspondingly generalized to keep
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!

P ′ states that P transitions to P ′

with action α relative to channels !. The dynamics of this extension is obtained by indexing
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To account for the scopes of channels, we extend the statics of PiC with a signature !

comprising a finite set of active channels. The judgment !! P proc states that a process P

is well-formed relative to the channels declared in the signature !.

!! 1 proc
(39.12a)

!! P1 proc !! P2 proc
!! P1 ⊗ P2 proc

(39.12b)

!! E event
!! $ E proc

(39.12c)

!!,a P proc

!! ν a.P proc
(39.12d)

The foregoing rules make use of an auxiliary judgment, !! E event, stating that E is a
well-formed event relative to !.

!! 0 event
(39.13a)

!!,a P proc

!!,a ?a;P event
(39.13b)

!!,a P proc

!!,a !a;P event
(39.13c)

!! E1 event !! E2 event
!! E1 + E2 event

(39.13d)

The judgment !! α action states that α is a well-formed action relative to !:

!!,a a ? action
(39.14a)

!!,a a ! action
(39.14b)

!! ε action
(39.14c)

The dynamics of the current fragment of PiC is correspondingly generalized to keep
track of the set of active channels. The judgment P

α#−→
!

P ′ states that P transitions to P ′

with action α relative to channels !. The dynamics of this extension is obtained by indexing
the transitions by the signature, and adding a rule for channel declaration.

$ (!a;P + E) a !#−−→
!,a

P
(39.15a)

$ (?a;P + E) a ?#−−→
!,a

P
(39.15b)

6""�!�  3�7�� 5 ������� ��.�����
	�
�������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

366 Process Calculus

P1
α!−→
"

P ′
1

P1 ⊗ P2
α!−→
"

P ′
1 ⊗ P2

(39.15c)

P1
α!−→
"

P ′
1 P2

α!−→
"

P ′
2

P1 ⊗ P2 !−→
"

P ′
1 ⊗ P ′

2

(39.15d)

P
α!−−→

",a
P ′ &" α action

ν a.P
α!−→
"

ν a.P ′
(39.15e)

Rule (39.15e) ensures that no process may interact with ν a.P along the channel a by using
the identification convention to choose a /∈ ".

Consider again the definition of the vending machine using replication instead of re-
cursion. The channel v used to initialize the machine is private to the machine itself. The
process V = ν v.(V0 ⊗ V1) declares a new channel v for use by V0 and V1, which are defined
essentially as before. The interaction of the user process U with V begins as follows:

(ν v.(V0 ⊗ V1)) ⊗ U !−→
"

(ν v.V2) ⊗ U ≡ ν v.(V2 ⊗ U ).

The interaction continues within the scope of the declaration, which ensures that v does
not occur within U .

39.5 Communication

Synchronization coordinates the execution of two processes that take the complementary
actions of signaling and querying a common channel. Synchronous communication gen-
eralizes synchronization to pass a data value betwen two synchronizing processes, one of
which is the sender of the value and the other its receiver. The type of the data is immaterial
to the communication.

To account for interprocess communication, we enrich the language of processes to
include variables, as well as channels, in the formalism. Variables range, as always, over
types, and are given meaning by substitution. Channels, on the other hand, are assigned
types that classify the data carried on that channel and are given meaning by send and
receive events that generalize the signal and query events considered in Section 39.2. The
abstract syntax of communication events is given by the following grammar:

Evt E ::= snd[a](e; P ) ! a(e ; P ) send
rcv[a](x.P ) ? a(x.P ) receive

The event rcv[a](x.P ) represents the receipt of a value x on the channel a, passing x to
the process P . The variable x is bound within P . The event snd[a](e; P ) represents the
transmission of e on a and continuing with P .
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P1
α!−→
"

P ′
1

P1 ⊗ P2
α!−→
"

P ′
1 ⊗ P2

(39.15c)

P1
α!−→
"

P ′
1 P2

α!−→
"

P ′
2

P1 ⊗ P2 !−→
"

P ′
1 ⊗ P ′

2

(39.15d)

P
α!−−→

",a
P ′ &" α action

ν a.P
α!−→
"

ν a.P ′
(39.15e)

Rule (39.15e) ensures that no process may interact with ν a.P along the channel a by using
the identification convention to choose a /∈ ".

Consider again the definition of the vending machine using replication instead of re-
cursion. The channel v used to initialize the machine is private to the machine itself. The
process V = ν v.(V0 ⊗ V1) declares a new channel v for use by V0 and V1, which are defined
essentially as before. The interaction of the user process U with V begins as follows:

(ν v.(V0 ⊗ V1)) ⊗ U !−→
"

(ν v.V2) ⊗ U ≡ ν v.(V2 ⊗ U ).

The interaction continues within the scope of the declaration, which ensures that v does
not occur within U .

39.5 Communication

Synchronization coordinates the execution of two processes that take the complementary
actions of signaling and querying a common channel. Synchronous communication gen-
eralizes synchronization to pass a data value betwen two synchronizing processes, one of
which is the sender of the value and the other its receiver. The type of the data is immaterial
to the communication.

To account for interprocess communication, we enrich the language of processes to
include variables, as well as channels, in the formalism. Variables range, as always, over
types, and are given meaning by substitution. Channels, on the other hand, are assigned
types that classify the data carried on that channel and are given meaning by send and
receive events that generalize the signal and query events considered in Section 39.2. The
abstract syntax of communication events is given by the following grammar:

Evt E ::= snd[a](e; P ) ! a(e ; P ) send
rcv[a](x.P ) ? a(x.P ) receive

The event rcv[a](x.P ) represents the receipt of a value x on the channel a, passing x to
the process P . The variable x is bound within P . The event snd[a](e; P ) represents the
transmission of e on a and continuing with P .
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We modify the syntax of declarations to account for the type of value sent on a channel.

Proc P ::= new{τ }(a.P ) ν a ∼ τ .P typed channel

The process new[τ ](a.P ) introduces a new channel a with associated type τ for use within
the process P . The channel a is bound within P .

The statics is extended to account for the type of a channel. The judgment # "$ P proc
states that P is a well-formed process involving the channels declared in $ and the variables
declared in #. It is inductively defined by the following rules, wherein we assume that the
typing judgment # "$ e : τ is given separately.

# "$ 1 proc
(39.16a)

# "$ P1 proc # "$ P2 proc
# "$ P1 ⊗ P2 proc

(39.16b)

# "$,a∼τ P proc

# "$ ν a ∼ τ .P proc
(39.16c)

# "$ E event
# "$ $ E proc

(39.16d)

Rules (39.16) make use of the auxiliary judgment # "$ E event, stating that E is a
well-formed event relative to # and $, which is defined as follows:

# "$ 0 event
(39.17a)

# "$ E1 event # "$ E2 event
# "$ E1 + E2 event

(39.17b)

#, x : τ "$,a∼τ P proc

# "$,a∼τ ? a(x.P ) event
(39.17c)

# "$,a∼τ e : τ # "$,a∼τ P proc

# "$,a∼τ ! a(e ; P ) event
(39.17d)

Rule (39.17d) makes use of a typing judgment for expressions that ensures that the type of
a channel is respected by communication.

The dynamics of communication extends that of synchronization by enriching send and
receive actions with the value sent or received.

Act α ::= rcv[a](e) a ? e receive
snd[a](e) a ! e send
sil ε silent

Complementarity is defined as before, by switching the orientation of an action: a ? e = a!e,
a ! e = a ? e, and ε = ε.
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The dynamics of communication extends that of synchronization by enriching send and
receive actions with the value sent or received.
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snd[a](e) a ! e send
sil ε silent

Complementarity is defined as before, by switching the orientation of an action: a ? e = a!e,
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The statics ensures that the expression associated with these actions is a value of a type
suitable for the channel:

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ! e action
(39.18a)

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ? e action
(39.18b)

!! ε action
(39.18c)

The dynamics is defined by replacing the synchronization rules (39.15a) and (39.15b)
with the following communication rules:

e #−−−→
!,a∼τ

e′

$ (! a(e ; P ) + E) #−−−→
!,a∼τ

$ (! a(e′ ; P ) + E)
(39.19a)

e val!,a∼τ

$ (! a(e ; P ) + E) a!e#−−−→
!,a∼τ

P
(39.19b)

e val!,a∼τ

$ (? a(x.P ) + E) a?e#−−−→
!,a∼τ

[e/x]P (39.19c)

Rule (39.19c) is non-deterministic in that it “guesses” the value e to be received along
channel a. Rules (39.19) make reference to the dynamics of expressions, which is left
unspecified because nothing depends on it.

Using synchronous communication, both the sender and the receiver of a message are
blocked until the interaction is completed. Therefore the sender must be notified whenever
a message is received, which means that there must be an implicit reply channel from
receiver to sender that carries the notification. This means that synchronous communication
can be decomposed into a simpler asynchronous send operation, which sends a message
on a channel without waiting for its receipt, together with channel passing to send an
acknowledgment channel along with the message data.

Asynchronous communication is defined by removing the synchronous send event from
the process calculus and adding a new form of process that simply sends a message on a
channel. The syntax of asynchronous send is as follows:

Proc P ::= asnd[a](e) ! a(e) send

The process asnd[a](e) sends the message e on channel a and then terminates immediately.
Without the synchronous send event, every event is, up to structural congruence, a choice
of zero or more read events. The statics of asynchronous send is given by the following
rule:

$ !!,a∼τ e : τ

$ !!,a∼τ ! a(e) proc
(39.20)
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The statics ensures that the expression associated with these actions is a value of a type
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[e/x]P (39.19c)

Rule (39.19c) is non-deterministic in that it “guesses” the value e to be received along
channel a. Rules (39.19) make reference to the dynamics of expressions, which is left
unspecified because nothing depends on it.

Using synchronous communication, both the sender and the receiver of a message are
blocked until the interaction is completed. Therefore the sender must be notified whenever
a message is received, which means that there must be an implicit reply channel from
receiver to sender that carries the notification. This means that synchronous communication
can be decomposed into a simpler asynchronous send operation, which sends a message
on a channel without waiting for its receipt, together with channel passing to send an
acknowledgment channel along with the message data.

Asynchronous communication is defined by removing the synchronous send event from
the process calculus and adding a new form of process that simply sends a message on a
channel. The syntax of asynchronous send is as follows:

Proc P ::= asnd[a](e) ! a(e) send

The process asnd[a](e) sends the message e on channel a and then terminates immediately.
Without the synchronous send event, every event is, up to structural congruence, a choice
of zero or more read events. The statics of asynchronous send is given by the following
rule:

$ !!,a∼τ e : τ

$ !!,a∼τ ! a(e) proc
(39.20)
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The statics ensures that the expression associated with these actions is a value of a type
suitable for the channel:

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ! e action
(39.18a)

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ? e action
(39.18b)

!! ε action
(39.18c)

The dynamics is defined by replacing the synchronization rules (39.15a) and (39.15b)
with the following communication rules:

e #−−−→
!,a∼τ

e′

$ (! a(e ; P ) + E) #−−−→
!,a∼τ

$ (! a(e′ ; P ) + E)
(39.19a)

e val!,a∼τ

$ (! a(e ; P ) + E) a!e#−−−→
!,a∼τ

P
(39.19b)

e val!,a∼τ

$ (? a(x.P ) + E) a?e#−−−→
!,a∼τ

[e/x]P (39.19c)

Rule (39.19c) is non-deterministic in that it “guesses” the value e to be received along
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unspecified because nothing depends on it.
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blocked until the interaction is completed. Therefore the sender must be notified whenever
a message is received, which means that there must be an implicit reply channel from
receiver to sender that carries the notification. This means that synchronous communication
can be decomposed into a simpler asynchronous send operation, which sends a message
on a channel without waiting for its receipt, together with channel passing to send an
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Asynchronous communication is defined by removing the synchronous send event from
the process calculus and adding a new form of process that simply sends a message on a
channel. The syntax of asynchronous send is as follows:

Proc P ::= asnd[a](e) ! a(e) send

The process asnd[a](e) sends the message e on channel a and then terminates immediately.
Without the synchronous send event, every event is, up to structural congruence, a choice
of zero or more read events. The statics of asynchronous send is given by the following
rule:

$ !!,a∼τ e : τ

$ !!,a∼τ ! a(e) proc
(39.20)
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The statics ensures that the expression associated with these actions is a value of a type
suitable for the channel:

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ! e action
(39.18a)

!!,a∼τ e : τ e val!,a∼τ

!!,a∼τ a ? e action
(39.18b)

!! ε action
(39.18c)

The dynamics is defined by replacing the synchronization rules (39.15a) and (39.15b)
with the following communication rules:

e #−−−→
!,a∼τ

e′

$ (! a(e ; P ) + E) #−−−→
!,a∼τ

$ (! a(e′ ; P ) + E)
(39.19a)

e val!,a∼τ

$ (! a(e ; P ) + E) a!e#−−−→
!,a∼τ

P
(39.19b)

e val!,a∼τ

$ (? a(x.P ) + E) a?e#−−−→
!,a∼τ

[e/x]P (39.19c)

Rule (39.19c) is non-deterministic in that it “guesses” the value e to be received along
channel a. Rules (39.19) make reference to the dynamics of expressions, which is left
unspecified because nothing depends on it.

Using synchronous communication, both the sender and the receiver of a message are
blocked until the interaction is completed. Therefore the sender must be notified whenever
a message is received, which means that there must be an implicit reply channel from
receiver to sender that carries the notification. This means that synchronous communication
can be decomposed into a simpler asynchronous send operation, which sends a message
on a channel without waiting for its receipt, together with channel passing to send an
acknowledgment channel along with the message data.

Asynchronous communication is defined by removing the synchronous send event from
the process calculus and adding a new form of process that simply sends a message on a
channel. The syntax of asynchronous send is as follows:

Proc P ::= asnd[a](e) ! a(e) send

The process asnd[a](e) sends the message e on channel a and then terminates immediately.
Without the synchronous send event, every event is, up to structural congruence, a choice
of zero or more read events. The statics of asynchronous send is given by the following
rule:

$ !!,a∼τ e : τ

$ !!,a∼τ ! a(e) proc
(39.20)
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The dynamics is given similarly:

e val!

! a(e) a!e!−→
!

1 (39.21)

The rule for communication remains unchanged. A pending asynchronous send is essen-
tially a buffer holding the value to be sent once a receiver is available.

39.6 Channel Passing

An interesting case of interprocess communication arises when one process passes channel
reference, a form of value, to another along a common channel. The receiving process need
not have any direct access to the channel referred to by the reference. It merely operates on
it using send and receive operations that act on channel references instead of fixed channels.
Doing so allows for new patterns of communication to be established among processes. For
example, two processes, P and Q, may share a channel a along which they may send and
receive messages. If the scope of a is confined to these processes, then no other process R

may communicate on that channel; it is, in effect, a private channel between P and Q.
The following process expression illustrates such a situation:

(ν a ∼ τ .(P ⊗ Q)) ⊗ R.

The process R is excluded from the scope of the channel a, which however includes both P

and Q. The processes P and Q may communicate with each other on channel a, but R has
no access to this channel. If P and Q wish to allow R to communicate along a, they may
do so by sending a reference to a to R along some channel b known to all three processes.
Thus, we have the following situation:

ν b ∼ τ chan.((ν a ∼ τ .(P ⊗ Q)) ⊗ R).

Assuming that P initiates the inclusion of R into its communication with Q along a, it has
the form $ (! b(& a ; P ′)). The process R correspondingly takes the form $ (? b(x.R′)). The
system of processes therefore has the form

ν b ∼ τ chan.(ν a ∼ τ .($ (! b(& a ; P ′)) ⊗ Q) ⊗ $ (? b(x.R′))).

Sending a reference to a to R would seem to violate the scope of a. The communication
of the reference would seem to escape the scope of the referenced channel, which would
be nonsensical. It is here that the concept of scope extrusion, introduced in Section 39.4
comes into play:

ν b ∼ τ chan.ν a ∼ τ .($ (! b(& a ; P ′)) ⊗ Q ⊗ $ (? b(x.R′))).
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The scope of a expands to encompass R, preparing the ground for communication between
P and R, resulting in

ν b ∼ τ chan.ν a ∼ τ .(P ′ ⊗ Q ⊗ [& a/x]R′).

The reference to the channel a is substituted for the variable x within R′.
The process R may now communicate with P and Q by sending and receiving messages

along the channel reference substituted for the variable x. For this, we use dynamic forms
of send and receive in which the channel on which to communicate is determined by
evaluation of an expression. For example, to send a message e of type τ along the channel
referred to by x, the process R′ would have the form

$ (!! (x ; e ; R′′)).

Similarly, to receive along the referenced channel, the process R′ would have the form

$ (?? (x ; y.R′′)).

In both cases, the dynamic communication forms evolve to the static communication forms
once the referenced channel has been determined.

The syntax of channel reference types is given by the following grammar:

Typ τ ::= chan(τ ) τ chan channel type
Exp e ::= chref[a] & a reference
Evt E ::= sndref(e1; e2; P ) !! (e1 ; e2 ; P ) send

rcvref(e; x.P ) ?? (e ; x.P ) receive

The events sndref(e1; e2; P ) and rcvref(e; x.P ) are dynamic versions of the events
snd[a](e; P ) and rcv[a](x.P ) in which the channel reference is determined dynamically
by evaluation of an expression.

The statics of channel references is given by the following rules:

# $$,a∼τ & a : τ chan
(39.22a)

# $$ e1 : τ chan # $$ e2 : τ # $$ P proc
# $$ !! (e1 ; e2 ; P ) event

(39.22b)

# $$ e : τ chan #, x : τ $$ P proc
# $$ ?? (e ; x.P ) event

(39.22c)

Because channel references are forms of expression, events must be evaluated to deter-
mine the channel to which they refer.

E %−−−→
$,a∼τ

E′

$ (E) %−−−→
$,a∼τ

$ (E′)
(39.23a)

e val$,a∼τ

$ (!! (& a ; e ; P ) + E) %−−−→
$,a∼τ

$ (! a(e ; P ) + E) (39.23b)
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The scope of a expands to encompass R, preparing the ground for communication between
P and R, resulting in

ν b ∼ τ chan.ν a ∼ τ .(P ′ ⊗ Q ⊗ [& a/x]R′).

The reference to the channel a is substituted for the variable x within R′.
The process R may now communicate with P and Q by sending and receiving messages

along the channel reference substituted for the variable x. For this, we use dynamic forms
of send and receive in which the channel on which to communicate is determined by
evaluation of an expression. For example, to send a message e of type τ along the channel
referred to by x, the process R′ would have the form

$ (!! (x ; e ; R′′)).

Similarly, to receive along the referenced channel, the process R′ would have the form

$ (?? (x ; y.R′′)).

In both cases, the dynamic communication forms evolve to the static communication forms
once the referenced channel has been determined.

The syntax of channel reference types is given by the following grammar:

Typ τ ::= chan(τ ) τ chan channel type
Exp e ::= chref[a] & a reference
Evt E ::= sndref(e1; e2; P ) !! (e1 ; e2 ; P ) send

rcvref(e; x.P ) ?? (e ; x.P ) receive

The events sndref(e1; e2; P ) and rcvref(e; x.P ) are dynamic versions of the events
snd[a](e; P ) and rcv[a](x.P ) in which the channel reference is determined dynamically
by evaluation of an expression.

The statics of channel references is given by the following rules:

# $$,a∼τ & a : τ chan
(39.22a)

# $$ e1 : τ chan # $$ e2 : τ # $$ P proc
# $$ !! (e1 ; e2 ; P ) event

(39.22b)

# $$ e : τ chan #, x : τ $$ P proc
# $$ ?? (e ; x.P ) event

(39.22c)

Because channel references are forms of expression, events must be evaluated to deter-
mine the channel to which they refer.

E %−−−→
$,a∼τ

E′

$ (E) %−−−→
$,a∼τ

$ (E′)
(39.23a)

e val$,a∼τ

$ (!! (& a ; e ; P ) + E) %−−−→
$,a∼τ

$ (! a(e ; P ) + E) (39.23b)
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e val!,a∼τ

$ (?? (& a ; x.P ) + E) "−−−→
!,a∼τ

$ (? a(x.P ) + E) (39.23c)

Events must similarly be evaluated; see Chapter 40 for guidance on how to formulate such
a dynamics.

39.7 Universality

The process calculus PiC developed in this chapter is universal in the sense that the untyped
λ-calculus can be encoded within it. Consequently, via this encoding, the same functions
on the natural numbers are definable in PiC as are definable in ! and hence, by Church’s
Law, any known programming language. This claim is remarkable because PiC has so few
capabilities that one might suspect that it is too weak to be a useful programming language.
The key to seeing that PiC is universal is to note that communication allows processes to
send and receive values of an arbitrary type. So long as recursive and channel reference
types are available, then it is a purely technical matter to show that ! is encodable within
it. After all, what makes ! universal is that its one type is a recursive type (see Chapter 21),
so it is natural to guess that with messages of recursive type available then PiC would be
universal. And indeed it is.

To prove universality it suffices to give an encoding of the untyped λ-calculus under
a call-by-name dynamics into PiC. To motivate the translation, consider a call-by-name
stack machine for evaluating λ-terms. A stack is a composition of frames, each of which
have the form −(e2) corresponding to the evaluation of the function part of an application.
A stack is represented in PiC by a reference to a channel that expects an expression (the
function to apply) and another channel reference (the stack on which to evaluate the result
of the application). A λ-term is represented by a reference to a channel that expects a stack
on which the expression is evaluated.

Let κ be the type of continuations. It should be isomorphic to the type of references to
channels that carry a pair of values, an argument, whose type is a reference to a channel
carrying a continuation, and another continuation to which to deliver the result of the
application. Thus, we seek to have the following type isomorphism:

κ ∼= (κ chan × κ) chan.

The solution is a recursive type, as described in Chapter 20. Thus, just as for ! itself, the
key to the universality of PiC is the use of the recursive type κ .

We now give the translation of ! into PiC. For the sake of the induction, the translation
of a ! expression u is given relative to a variable of type κ , representing the continuation
to which the result will be sent. The representation is given by the following equations:

x @ k ! !! (x ; k)

λ (x) u @ k ! $ ?? (unfold(k) ; 〈x, k′〉.u @ k′)

u1(u2) @ k !
ν a1 ∼ κ chan × κ.(u1 @ fold(& a1)) ⊗ ν a ∼ κ.∗ $ ? a(k2.u2 @ k2) ⊗ ! a1(〈& a, k〉)
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Dynamic Classes
A dynamic class is a symbol generated at run-time. 

A classified value consists of a symbol of type τ and a value of that type. 

To compute with a classified value, it is compared with a known class. 
• If the value is of this class, the underlying instance data is passed to the 

positive branch; 
• Otherwise, the negative branch is taken

33 Dynamic Classification

In Chapters 11 and 26, we investigated the use of sums for classifying values of disparate
type. Every value of a classified type is labeled with a symbol that determines the type of
the instance data. A classified value is decomposed by pattern matching against a known
class, which reveals the type of the instance data. Under this representation, the possible
classes of an object are determined statically by its type. However, it is sometimes useful
to allow the possible classes of data value to be determined dynamically.

Dynamic generation of classes has many applications, most of which derive from the
guarantee that a newly allocated class is distinct from all others that have been or ever will
be generated. In this regard a dynamic class is a “secret” whose disclosure can be used to
limit the flow of information in a program. In particular, a dynamically classified value is
opaque unless its identity has been disclosed by its creator. Thus, dynamic classification
can be used to ensure that an exception reaches only its intended handler, or that a message
on a communication channel reaches only the intended recipient.

33.1 Dynamic Classes

A dynamic class is a symbol is generated at run-time. A classified value consists of a
symbol of type τ together with a value of that type. To compute with a classified value, it is
compared with a known class. If the value is of this class, the underlying instance data are
passed to the positive branch; otherwise, the negative branch is taken, where it is matched
against other known classes.

33.1.1 Statics

The syntax of dynamic classification is given by the following grammar:

Typ τ ::= clsfd clsfd classified
Exp e ::= in[a](e) a · e instance

isin[a](e; x.e1; e2) match e as a · x ↪→ e1 ow ↪→ e2 comparison

The expression in[a](e) is a classified value with class a and underlying value e. The
expression isin[a](e; x.e1; e2) checks whether the class of the value given by e is a. If so,
the classified value is passed to e1; if not, the expression e2 is evaluated instead.
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Dynamic Classes (Statics)292 Dynamic Classification

The statics of dynamic classification is defined by these rules:

! !",a∼τ e : τ

! !",a∼τ in[a](e) : clsfd
(33.1a)

! !",a∼τ e : clsfd !, x : τ !",a∼τ e1 : τ ′ ! !",a∼τ e2 : τ ′

! !",a∼τ isin[a](e; x.e1; e2) : τ ′ (33.1b)

The typing judgment is indexed by a signature associating a type to each symbol. Here the
type governs the instance data associated to each symbol.

33.1.2 Dynamics

To maximize the flexibility in using dynamic classification, we will consider a free dynamics
for symbol generation. Within this framework, the dynamics of classification is given by
the following rules:

e val"
in[a](e) val"

(33.2a)

ν " { e } $−→ ν "′ { e′ }
ν " { in[a](e) } $−→ ν "′ { in[a](e′) }

(33.2b)

e val"
ν " { isin[a](in[a](e); x.e1; e2) } $−→ ν " { [e/x]e1 } (33.2c)

e′ val" (a '= a′)
ν " { isin[a](in[a′](e′); x.e1; e2) } $−→ ν " { e2 }

(33.2d)

ν " { e } $−→ ν "′ { e′ }
ν " { isin[a](e; x.e1; e2) } $−→ ν "′ { isin[a](e′; x.e1; e2) } (33.2e)

Throughout, if the states involved are well-formed, then there will be a declaration a ∼ τ

for some type τ in ".
The dynamics of the elimination form for the type clsfd relies on disequality of names

(specifically, rule (33.2d)). Because disequality is not preserved under substitution, it is not
sensible to consider any language construct whose dynamics relies on such a substitution.
To see what goes wrong, consider the expression

match b · 〈〉 as a · ↪→ true ow ↪→ match b · 〈〉 as b · ↪→ false ow ↪→ true.

This expression evaluates to false, because the outer conditional is on the class a, which
is a priori different from b. However, if we substitute b for a in this expression, we obtain

match b · 〈〉 as b · ↪→ true ow ↪→ match b · 〈〉 as b · ↪→ false ow ↪→ true,

which evaluate to true, because now the outer conditional governs the evaluation.
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33.1.3 Safety

Theorem 33.1 (Safety).

1. If !! e : τ and ν ! { e } "−→ ν !′ { e′ }, then !′ ⊇ ! and !!′ e′ : τ .
2. If !! e : τ , then either e val! or ν ! { e } "−→ ν !′ { e′ } for some e′ and !′.

Proof Similar to the safety proofs given in Chapters 11 and 31.

33.2 Class References

The type cls(τ ) has as values references to classes.

Typ τ ::= cls(τ ) τ cls class reference
Exp e ::= cls[a] & a reference

mk(e1; e2) mk(e1; e2) instance
isof(e0; e1; x.e2; e3) isof(e0; e1; x.e2; e3) dispatch

The statics of these constructs is given by the following rules:

$ !!,a∼τ cls[a] : cls(τ )
(33.3a)

$ !! e1 : cls(τ ) $ !! e2 : τ

$ !! mk(e1; e2) : clsfd
(33.3b)

$ !! e0 : cls(τ ) $ !! e1 : clsfd $, x : τ !! e2 : τ ′ $ !! e3 : τ ′

$ !! isof(e0; e1; x.e2; e3) : τ ′ (33.3c)

The corresponding dynamics is given by these rules:

ν ! { e1 } "−→ ν !′ { e′
1 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e′
1; e2) }

(33.4a)

e1 val! ν ! { e2 } "−→ ν !′ { e′
2 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e1; e′
2) }

(33.4b)

e val!
ν ! { mk(cls[a]; e) } "−→ ν ! { in[a](e) } (33.4c)

ν ! { e0 } "−→ ν !′ { e′
0 }

ν ! { isof(e0; e1; x.e2; e3) } "−→ ν !′ { isof(e′
0; e1; x.e2; e3) }

(33.4d)

ν ! { isof(cls[a]; e1; x.e2; e3) } "−→ ν ! { isin[a](e1; x.e2; e3) }
(33.4e)
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292 Dynamic Classification

The statics of dynamic classification is defined by these rules:

! !",a∼τ e : τ

! !",a∼τ in[a](e) : clsfd
(33.1a)

! !",a∼τ e : clsfd !, x : τ !",a∼τ e1 : τ ′ ! !",a∼τ e2 : τ ′

! !",a∼τ isin[a](e; x.e1; e2) : τ ′ (33.1b)

The typing judgment is indexed by a signature associating a type to each symbol. Here the
type governs the instance data associated to each symbol.

33.1.2 Dynamics

To maximize the flexibility in using dynamic classification, we will consider a free dynamics
for symbol generation. Within this framework, the dynamics of classification is given by
the following rules:

e val"
in[a](e) val"

(33.2a)

ν " { e } $−→ ν "′ { e′ }
ν " { in[a](e) } $−→ ν "′ { in[a](e′) }

(33.2b)

e val"
ν " { isin[a](in[a](e); x.e1; e2) } $−→ ν " { [e/x]e1 } (33.2c)

e′ val" (a '= a′)
ν " { isin[a](in[a′](e′); x.e1; e2) } $−→ ν " { e2 }

(33.2d)

ν " { e } $−→ ν "′ { e′ }
ν " { isin[a](e; x.e1; e2) } $−→ ν "′ { isin[a](e′; x.e1; e2) } (33.2e)

Throughout, if the states involved are well-formed, then there will be a declaration a ∼ τ

for some type τ in ".
The dynamics of the elimination form for the type clsfd relies on disequality of names

(specifically, rule (33.2d)). Because disequality is not preserved under substitution, it is not
sensible to consider any language construct whose dynamics relies on such a substitution.
To see what goes wrong, consider the expression

match b · 〈〉 as a · ↪→ true ow ↪→ match b · 〈〉 as b · ↪→ false ow ↪→ true.

This expression evaluates to false, because the outer conditional is on the class a, which
is a priori different from b. However, if we substitute b for a in this expression, we obtain

match b · 〈〉 as b · ↪→ true ow ↪→ match b · 〈〉 as b · ↪→ false ow ↪→ true,

which evaluate to true, because now the outer conditional governs the evaluation.
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33.1.3 Safety

Theorem 33.1 (Safety).

1. If !! e : τ and ν ! { e } "−→ ν !′ { e′ }, then !′ ⊇ ! and !!′ e′ : τ .
2. If !! e : τ , then either e val! or ν ! { e } "−→ ν !′ { e′ } for some e′ and !′.

Proof Similar to the safety proofs given in Chapters 11 and 31.

33.2 Class References

The type cls(τ ) has as values references to classes.

Typ τ ::= cls(τ ) τ cls class reference
Exp e ::= cls[a] & a reference

mk(e1; e2) mk(e1; e2) instance
isof(e0; e1; x.e2; e3) isof(e0; e1; x.e2; e3) dispatch

The statics of these constructs is given by the following rules:

$ !!,a∼τ cls[a] : cls(τ )
(33.3a)

$ !! e1 : cls(τ ) $ !! e2 : τ

$ !! mk(e1; e2) : clsfd
(33.3b)

$ !! e0 : cls(τ ) $ !! e1 : clsfd $, x : τ !! e2 : τ ′ $ !! e3 : τ ′

$ !! isof(e0; e1; x.e2; e3) : τ ′ (33.3c)

The corresponding dynamics is given by these rules:

ν ! { e1 } "−→ ν !′ { e′
1 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e′
1; e2) }

(33.4a)

e1 val! ν ! { e2 } "−→ ν !′ { e′
2 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e1; e′
2) }

(33.4b)

e val!
ν ! { mk(cls[a]; e) } "−→ ν ! { in[a](e) } (33.4c)

ν ! { e0 } "−→ ν !′ { e′
0 }

ν ! { isof(e0; e1; x.e2; e3) } "−→ ν !′ { isof(e′
0; e1; x.e2; e3) }

(33.4d)

ν ! { isof(cls[a]; e1; x.e2; e3) } "−→ ν ! { isin[a](e1; x.e2; e3) }
(33.4e)
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33.1.3 Safety

Theorem 33.1 (Safety).

1. If !! e : τ and ν ! { e } "−→ ν !′ { e′ }, then !′ ⊇ ! and !!′ e′ : τ .
2. If !! e : τ , then either e val! or ν ! { e } "−→ ν !′ { e′ } for some e′ and !′.

Proof Similar to the safety proofs given in Chapters 11 and 31.

33.2 Class References

The type cls(τ ) has as values references to classes.

Typ τ ::= cls(τ ) τ cls class reference
Exp e ::= cls[a] & a reference

mk(e1; e2) mk(e1; e2) instance
isof(e0; e1; x.e2; e3) isof(e0; e1; x.e2; e3) dispatch

The statics of these constructs is given by the following rules:

$ !!,a∼τ cls[a] : cls(τ )
(33.3a)

$ !! e1 : cls(τ ) $ !! e2 : τ

$ !! mk(e1; e2) : clsfd
(33.3b)

$ !! e0 : cls(τ ) $ !! e1 : clsfd $, x : τ !! e2 : τ ′ $ !! e3 : τ ′

$ !! isof(e0; e1; x.e2; e3) : τ ′ (33.3c)

The corresponding dynamics is given by these rules:

ν ! { e1 } "−→ ν !′ { e′
1 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e′
1; e2) }

(33.4a)

e1 val! ν ! { e2 } "−→ ν !′ { e′
2 }

ν ! { mk(e1; e2) } "−→ ν !′ { mk(e1; e′
2) }

(33.4b)

e val!
ν ! { mk(cls[a]; e) } "−→ ν ! { in[a](e) } (33.4c)

ν ! { e0 } "−→ ν !′ { e′
0 }

ν ! { isof(e0; e1; x.e2; e3) } "−→ ν !′ { isof(e′
0; e1; x.e2; e3) }

(33.4d)

ν ! { isof(cls[a]; e1; x.e2; e3) } "−→ ν ! { isin[a](e1; x.e2; e3) }
(33.4e)
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values in a program. A value of type clsfd may only be constructed by sealing it 
with some class a and may only be deconstructed by a case analysis that includes 
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confidentiality guarantee among parties in a computation 

295 33.4 Applications of Dynamic Classification

We may then check that the statics and dynamics given in Section 33.1 are derivable under
these definitions.

33.4 Applications of Dynamic Classification

Dynamic classification has a number of interesting applications in programming. The most
obvious is to generalize dynamic dispatch (Chapter 26) to support computation over a
dynamically extensible type of heterogeneous values. Introducing a new class requires
introducing a new row in the dispatch matrix defining the behavior of the methods on the
newly defined class. To allow for this, the rows of the matrix must be indexed by class
references, rather than by classes, so that it is accessible without knowing statically the
class.

Another application is to use dynamic classification as a form of “perfect encryption”
that ensures that classified values can neither be constructed nor deconstructed without
knowing the class in question. Abstract encryption of this form can be used to ensure
privacy of communication among the parties in a computation. One example of such a
scenario is in channel-based communication, as will be considered in Chapter 40. Another,
less obvious, application is to ensure that an exception value may only be received by the
intended handler, and no other.

33.4.1 Classifying Secrets

Dynamic classification can be used to enforce confidentiality and integrity of data values
in a program. A value of type clsfd may only be constructed by sealing it with some
class a and may only be deconstructed by a case analysis that includes a branch for a.
By controlling which parties in a multi-party interaction have access to the classifier a we
may control how classified values are created (ensuring their integrity) and how they are
inspected (ensuring their confidentiality). Any party that lacks access to a cannot decipher
a value classified by a, nor may it create a classified value with this class. Because classes
are dynamically generated symbols, they offer an absolute confidentiality guarantee among
parties in a computation.1

Consider the following simple protocol for controlling the integrity and confidentiality
of data in a program. A fresh symbol a is introduced, and we return a pair of functions of
type

(τ ⇀ clsfd) × (clsfd ⇀ τ opt),

called the constructor and destructor functions for that class, which is accomplished by
writing

new a ∼ τ in
〈 λ (x : τ ) a · x,

λ (x : clsfd) match x as a · y ↪→ just(y) ow ↪→ null 〉.
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40 Concurrent Algol

In this chapter, we integrate concurrency into the framework of Modernized Algol described
in Chapter 34. The resulting language, called Concurrent Algol, or CA, illustrates the
integration of the mechanisms of the process calculus described in Chapter 39 into a
practical programming language. To avoid distracting complications, we drop assignables
from Modernized Algol entirely. (There is no loss of generality, however, because free
assignables are definable in Concurrent Algol using processes as cells.)

The process calculus described in Chapter 39 is intended as a self-standing model of
concurrent computation. When viewed in the context of a programming language, however,
it is possible to streamline the machinery to take full advantage of types that are in any
case required for other purposes. In particular the concept of a channel, which features
prominently in Chapter 39, is identified with the concept of a dynamic class as described
in Chapter 33. More precisely, we take broadcast communication of dynamically classified
values as the basic synchronization mechanism of the language. Being dynamically classi-
fied, messages consist of a payload tagged with a class, or channel. The type of the channel
determines the type of the payload. Importantly, only those processes that have access to
the channel may decode the message; all others must treat it as inscrutable data that can
be passed around but not examined. In this way, we can model not only the mechanisms
described in Chapter 39 but also formulate an abstract account of encryption and decryption
in a network using the methods described in Chapter 39.

Concurrent Algol features a modal separation between commands and expressions like
in Modernized Algol. It is also possible to combine these two levels (so as to allow benign
concurrency effects), but we do not develop this approach in detail here.

40.1 Concurrent Algol

The syntax of CA is obtained by removing assignables from MA, and adding a syntactic
level of processes to represent the global state of a program:

Typ τ ::= cmd(τ ) τ cmd commands
Exp e ::= cmd(m) cmdm command
Cmd m ::= ret e ret e return

bnd(e; x.m) bnd x ← e ; m sequence
Proc p ::= stop 1 idle

run(m) run(m) atomic
conc(p1; p2) p1 ⊗ p2 concurrent
new[τ ](a.p) ν a ∼ τ .p new channel
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The process run(m) is an atomic process executing the command m. The other forms of
process are adapted from Chapter 39. If ! has the form a1 ∼ τ1, . . . , an ∼ τn, then we
sometimes write ν !{p} for the iterated form ν a1 ∼ τ1.. . . ν an ∼ τn.p.

The statics of CA is given by these judgments:

$ "! e : τ expression typing
$ "! m ∼·· τ command typing
$ "! p proc process formation
$ "! α action action formation

The expression and command typing judgments are essentially those of MA, augmented
with the constructs described below.

Process formation is defined by the following rules:

"! 1 proc
(40.1a)

"! m ∼·· τ

"! run(m) proc
(40.1b)

"! p1 proc "! p2 proc
"! p1 ⊗ p2 proc

(40.1c)

"!,a∼τ p proc

"! ν a ∼ τ .p proc
(40.1d)

Processes are identified up to structural congruence, as described in Chapter 39.
Action formation is defined by the following rules:

"! ε action
(40.2a)

"! e : clsfd e val!
"! e ! action

(40.2b)

"! e : clsfd e val!
"! e ? action

(40.2c)

Messages are values of the type clsfd defined in Chapter 33.
The dynamics of CA is defined by transitions between processes, which represent the

state of the computation. More precisely, the judgment p
α$−→
!

p′ states that the process p

evolves in one step to the process p′ while undertaking action α.

m
α=⇒
!

ν !′ { m′ ⊗ p }

run(m) α$−→
!

ν !′{run(m′) ⊗ p}
(40.3a)

e val!

run(ret e)
ε$−→
!

1 (40.3b)
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p1
α!−→
"

p′
1

p1 ⊗ p2
α!−→
"

p′
1 ⊗ p2

(40.3c)

p1
α!−→
"

p′
1 p2

α!−→
"

p′
2

p1 ⊗ p2
ε!−→
"

p′
1 ⊗ p′

2

(40.3d)

p
α!−−−→

",a∼τ
p′ '" α action

ν a ∼ τ .p
α!−→
"

ν a ∼ τ .p′
(40.3e)

Rule (40.3a) states that a step of execution of the atomic process run(m) consists of a
step of execution of the command m, which may allocate some set "′ of symbols or
create a concurrent process p. This rule implements scope extrusion for classes (channels)
by expanding the scope of the channel declaration to the context in which the command
m occurs. Rule (40.3b) states that a completed command evolves to the inert (stopped)
process; processes are executed solely for their effect, and not for their value.

Executing a command in CA may, in addition to evolving to another command, allocate
a new channel or may spawn a new process. More precisely, the judgment1

m
α=⇒
"

ν "′ { m′ ⊗ p′ }

states that the command m transitions to the command m′ while creating new channels "′

and new processes p′. The action α specifies the interactions of which m is capable when
executed. As a notational convenience, we drop mention of the new channels or processes
when either are trivial.

The following rules define the execution of the basic forms of command inherited from
MA:

e !−→
"

e′

ret e
ε=⇒
"

ret e′ (40.4a)

m1
α=⇒
"

ν "′ { m′
1 ⊗ p′ }

bnd x ← cmdm1 ; m2
α=⇒
"

ν "′{bnd x ← cmdm′
1 ; m2 ⊗ p′}

(40.4b)

e val"

bnd x ← cmd (ret e) ; m2
ε=⇒
"

[e/x]m2
(40.4c)

e1 !−→
"

e′
1

bnd x ← e1 ; m2
ε=⇒
"

bnd x ← e′
1 ; m2

(40.4d)

These rules are supplemented by rules governing communication and synchronization
among processes in the next two sections.
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and new processes p′. The action α specifies the interactions of which m is capable when
executed. As a notational convenience, we drop mention of the new channels or processes
when either are trivial.

The following rules define the execution of the basic forms of command inherited from
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ret e
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α=⇒
"

ν "′ { m′
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m occurs. Rule (40.3b) states that a completed command evolves to the inert (stopped)
process; processes are executed solely for their effect, and not for their value.
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states that the command m transitions to the command m′ while creating new channels "′

and new processes p′. The action α specifies the interactions of which m is capable when
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40.2 Broadcast Communication

In this section, we consider a very general form of process synchronization called broadcast.
Processes emit and accept messages of type clsfd, the type of dynamically classified
values considered in Chapter 33. A message consists of a channel, which is its class, and a
payload, which is a value of the type associated with the channel (class). Recipients may
pattern match against a message to determine whether it is of a given class, and, if so,
recover the associated payload. No process that lacks access to the class of a message may
recover the payload of that message. (See Section 33.4.1 for a discussion of how to enforce
confidentiality and integrity restrictions using dynamic classification.)

The syntax of the commands pertinent to broadcast communication is given by the
following grammar:

Cmd m ::= spawn(e) spawn(e) spawn
emit(e) emit(e) emit message
acc acc accept message
newch{τ } newch new channel

The command spawn(e) spawns a process that executes the encapsulated command given
by e. The commands emit(e) and acc emit and accept messages, which are classified
values whose class is the channel on which the message is sent. The command newch[τ ]
returns a reference to a fresh class carrying values of type τ .

The statics of broadcast communication is given by the following rules:

" !# e : cmd(unit)
" !# spawn(e) ∼·· unit

(40.5a)

" !# e : clsfd
" !# emit(e) ∼·· unit

(40.5b)

" !# acc ∼·· clsfd
(40.5c)

" !# newch{τ } ∼·· cls(τ )
(40.5d)

Execution of these commands is defined as follows:

spawn(cmd(m)) ε=⇒
#

ret 〈〉 ⊗ run(m)
(40.6a)

e '−→
#

e′

spawn(e) ε=⇒
#

spawn(e′)
(40.6b)
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e val!

emit(e) e !=⇒
!

ret 〈〉 (40.6c)

e $−→
!

e′

emit(e) ε=⇒
!

emit(e′)
(40.6d)

e val!

acc
e ?=⇒
!

ret e
(40.6e)

newch{τ } ε=⇒
!

ν a ∼ τ { ret (& a) }
(40.6f)

Rule (40.6c) specifies that emit(e) has the effect of emitting the message e. Correspond-
ingly, rule (40.6e) specifies that acc may accept (any) message that is being sent.

As usual, the preservation theorem for CA ensures that well-typed programs remain
well-typed during execution. The proof of preservation requires a lemma about command
execution.

Lemma 40.1. If m
α=⇒
!

ν !′ { m′ ⊗ p′ }, *! m ∼·· τ , then *! α action, *! !′ m′ ∼·· τ , and

*! !′ p′ proc.

Proof By induction on rules (40.4).

With this in hand, the proof of preservation goes along familiar lines.

Theorem 40.2 (Preservation). If *! p proc and p $−→
!

p′, then *! p′ proc.

Proof By induction on transition, appealing to Lemma 40.1 for the crucial steps.

Typing does not, however, guarantee progress with respect to unlabeled transition, for the
simple reason that there may be no other process with which to communicate. By extending
progress to labeled transitions, we may state that this is the only way for process execution
to get stuck. But some care must be taken to account for allocating new channels.

Theorem 40.3 (Progress). If *! p proc, then either p ≡ 1, or p ≡ ν !′{p′} such that
p′ α$−−→

! !′
p′′ for some *! !′ p′′ and some *! !′ α action.

Proof By induction on rules (40.1) and (40.5).

The progress theorem says that no process can get stuck for any reason other than the
inability to communicate with another process. For example, a process that receives on a
channel for which there is no sender is “stuck,” but this does not violate Theorem 40.3.
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e val!

emit(e) e !=⇒
!

ret 〈〉 (40.6c)

e $−→
!

e′

emit(e) ε=⇒
!

emit(e′)
(40.6d)

e val!

acc
e ?=⇒
!

ret e
(40.6e)

newch{τ } ε=⇒
!

ν a ∼ τ { ret (& a) }
(40.6f)
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α=⇒
!
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*! !′ p′ proc.
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!
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40.3 Selective Communication

Broadcast communication provides no means of restricting acceptance to messages of a
particular class (that is, of messages on a particular channel). Using broadcast communica-
tion, we may restrict attention to a particular channel a of type τ by running the following
command:

fix loop : τ cmd is {x ← acc ; match x as a · y ↪→ ret y ow ↪→ emit(x) ; do loop}

This command is always capable of receiving a broadcast message. When one arrives, it
is examined to see whether it is classified by a. If so, the underlying classified value is
returned; otherwise, the message is re-broadcast so that another process may consider it.
Polling consists of repeatedly executing the above command until a message of channel a

is successfully accepted, if ever it is.
Polling is evidently impractical in most situations. An alternative is to change the lan-

guage to allow for selective communication. Rather than accept any broadcast message,
we may confine attention to messages sent only on certain channels. The type event(τ ) of
events consists of a finite choice of accepts, all of whose payloads are of type τ .

Typ τ ::= event(τ ) τ event events
Exp e ::= rcv[a] ? a selective read

never{τ } never null
or(e1; e2) e1 or e2 choice
wrap(e1; x.e2) e1 as x in e2 post-composition

Cmd m ::= sync(e) sync(e) synchronize

Events in CA are similar to those of the asynchronous process calculus described in Chap-
ter 39. The chief difference is that post-composition is considered as a general operation
on events, instead of one tied to the receive event itself.

The statics of event expressions is given by the following rules:

# # a ∼ τ
$ ## rcv[a] : event(τ ) (40.7a)

$ ## never{τ } : event(τ )
(40.7b)

$ ## e1 : event(τ ) $ ## e2 : event(τ )
$ ## or(e1; e2) : event(τ )

(40.7c)

$ ## e1 : event(τ1) $, x : τ1 ## e2 : τ2

$ ## wrap(e1; x.e2) : event(τ2) (40.7d)
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The corresponding dynamics is defined by these rules:

! ! a ∼ τ
rcv[a] val!

(40.8a)

never{τ } val!
(40.8b)

e1 val! e2 val!
or(e1; e2) val!

(40.8c)

e1 #−→
!

e′
1

or(e1; e2) #−→
!

or(e′
1; e2)

(40.8d)

e1 val! e2 #−→
!

e′
2

or(e1; e2) #−→
!

or(e1; e′
2)

(40.8e)

e1 #−→
!

e′
1

wrap(e1; x.e2) #−→
!

wrap(e′
1; x.e′

2)
(40.8f)

e1 val!
wrap(e1; x.e2) val!

(40.8g)

Event values are identified up to structural congruence as described in Chapter 39.
The statics of the synchronization command is given by the following rule:

# !! e : event(τ )
# !! sync(e) ∼·· τ

(40.9a)

The type of the event determines the type of value returned by the synchronization
command.

Execution of a synchronization command depends on the event.

e #−→
!

e′

sync(e) ε=⇒
!

sync(e′)
(40.10a)

e val! !! e : τ ! ! a ∼ τ

sync(rcv[a]) a·e ?==⇒
!

ret(e) (40.10b)

sync(e1) α=⇒
!

m1

sync(or(e1; e2)) α=⇒
!

m1

(40.10c)
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sync(e2) α=⇒
"

m2

sync(or(e1; e2)) α=⇒
"

m2

(40.10d)

sync(e1) α=⇒
"

m1

sync(wrap(e1; x.e2)) α=⇒
"

bnd(cmd(m1); x.ret(e2))
(40.10e)

Rule (40.10b) states that an acceptance on a channel a may synchronize only with messages
classified by a. When combined with structural congruence, rules (40.10c) and (40.10d)
state that either event between two choices may engender an action. Rule (40.10e) yields
the command that performs the command m1 resulting from the action α taken by the event
e1, then returns e2 with x bound to the return value of m1.

Selective communication and dynamic events can be used together to implement a
communication protocol in which a channel reference is passed on a channel in order to
establish a communication path with the recipient. Let a be a channel carrying values of
type cls(τ ), and let b be a channel carrying values of type τ , so that & b can be passed as
a message along channel a. A process that wishes to accept a channel reference on a and
then accept on that channel has the form

{x ← sync(? a) ; y ← sync(?? x) ; . . .}.

The event ? a specifies a selective receipt on channel a. Once the value x is accepted, the
event ?? x specifies a selective receipt on the channel referenced by x. So, if & b is sent
along a, then the event ?? & b evaluates to ? b, which accepts selectively on channel b, even
though the receiving process may have no direct access to the channel b itself.

40.4 Free Assignables as Processes

Scope-free assignables are definable in CA by associating to each assignable a server
process that sets and gets the contents of the assignable. To each assignable a of type τ is
associated a server that selectively accepts a message on channel a with one of two forms:

1. get · (& b), where b is a channel of type τ . This message requests that the contents of a

be sent on channel b.
2. set · (〈e, & b〉), where e is a value of type τ , and b is a channel of type τ . This message

requests that the contents of a be set to e, and that the new contents be transmitted on
channel b.

In other words, a is a channel of type τsrvr given by

[get ↪→ τ cls, set ↪→ τ × τ cls].

The server selectively accepts on channel a, then dispatches on the class of the message to
satisfy the request.
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