
CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Polymorphism and Abstract Types
March 27, 2025

System F of Polymorphic Types

16 System F of Polymorphic Types

The languages we have considered so far are all monomorphic in that every expression has a
unique type, given the types of its free variables, if it has a type at all. Yet it is often the case
that essentially the same behavior is required, albeit at several different types. For example,
in T there is a distinct identity function for each type τ , namely λ (x : τ) x, even though the
behavior is the same for each choice of τ . Similarly, there is a distinct composition operator
for each triple of types, namely

◦τ1,τ2,τ3 = λ (f : τ2 → τ3) λ (g : τ1 → τ2) λ (x : τ1) f (g(x)).

Each choice of the three types requires a different program, even though they all have the
same behavior when executed.

Obviously, it would be useful to capture the pattern once and for all, and to instantiate this
pattern each time we need it. The expression patterns codify generic (type-independent)
behaviors that are shared by all instances of the pattern. Such generic expressions are
polymorphic. In this chapter, we will study the language F, which was introduced by Girard
under the name System F and by Reynolds under the name polymorphic typed λ-calculus.
Although motivated by a simple practical problem (how to avoid writing redundant code),
the concept of polymorphism is central to an impressive variety of seemingly disparate
concepts, including the concept of data abstraction (the subject of Chapter 17), and the
definability of product, sum, inductive, and coinductive types considered in the preceding
chapters. (Only general recursive types extend the expressive power of the language.)

16.1 Polymorphic Abstraction

The language F is a variant of T in which we eliminate the type of natural numbers, but
add, in compensation, polymorphic types:1

Typ τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Exp e ::= x x

lam{τ }(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) #(t) e type abstraction
App{τ }(e) e[τ] type application

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

138 System F of Polymorphic Types

A type abstraction Lam(t.e) defines a generic, or polymorphic, function with type variable
t standing for an unspecified type within e. A type application, or instantiation App{τ }(e),
applies a polymorphic function to a specified type, which is plugged in for the type variable
to obtain the result. The universal type, all(t.τ), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,

" ! τ type,

and the typing judgment,

" # ! e : τ.

The hypotheses " have the form t type, where t is a variable of sort Typ, and the hypotheses
have the form x : τ , where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

", t type ! t type (16.1a)

" ! τ1 type " ! τ2 type
" ! arr(τ1; τ2) type

(16.1b)

", t type ! τ type
" ! all(t.τ) type

(16.1c)

The rules defining the typing judgment are as follows:

" #, x : τ ! x : τ (16.2a)

" ! τ1 type " #, x : τ1 ! e : τ2

" # ! lam{τ1}(x.e) : arr(τ1; τ2)
(16.2b)

" # ! e1 : arr(τ2; τ) " # ! e2 : τ2

" # ! ap(e1; e2) : τ
(16.2c)

", t type # ! e : τ

" # ! Lam(t.e) : all(t.τ)
(16.2d)

" # ! e : all(t.τ ′) " ! τ type

" # ! App{τ }(e) : [τ/t]τ ′ (16.2e)

Lemma 16.1 (Regularity). If " # ! e : τ , and if " ! τi type for each assumption xi : τi

in #, then " ! τ type.

Proof By induction on rules (16.2).

The statics admits the structural rules for a general hypothetical judgment. In particular,
we have the following critical substitution property for type formation and expression
typing.

Lemma 16.2 (Substitution). 1. If ", t type ! τ ′ type and " ! τ type, then " !
[τ/t]τ ′ type.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Statics

138 System F of Polymorphic Types

A type abstraction Lam(t.e) defines a generic, or polymorphic, function with type variable
t standing for an unspecified type within e. A type application, or instantiation App{τ }(e),
applies a polymorphic function to a specified type, which is plugged in for the type variable
to obtain the result. The universal type, all(t.τ), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,

" ! τ type,

and the typing judgment,

" # ! e : τ.

The hypotheses " have the form t type, where t is a variable of sort Typ, and the hypotheses
have the form x : τ , where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

", t type ! t type (16.1a)

" ! τ1 type " ! τ2 type
" ! arr(τ1; τ2) type

(16.1b)

", t type ! τ type
" ! all(t.τ) type

(16.1c)

The rules defining the typing judgment are as follows:

" #, x : τ ! x : τ (16.2a)

" ! τ1 type " #, x : τ1 ! e : τ2

" # ! lam{τ1}(x.e) : arr(τ1; τ2)
(16.2b)

" # ! e1 : arr(τ2; τ) " # ! e2 : τ2

" # ! ap(e1; e2) : τ
(16.2c)

", t type # ! e : τ

" # ! Lam(t.e) : all(t.τ)
(16.2d)

" # ! e : all(t.τ ′) " ! τ type

" # ! App{τ }(e) : [τ/t]τ ′ (16.2e)

Lemma 16.1 (Regularity). If " # ! e : τ , and if " ! τi type for each assumption xi : τi

in #, then " ! τ type.

Proof By induction on rules (16.2).

The statics admits the structural rules for a general hypothetical judgment. In particular,
we have the following critical substitution property for type formation and expression
typing.

Lemma 16.2 (Substitution). 1. If ", t type ! τ ′ type and " ! τ type, then " !
[τ/t]τ ′ type.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Statics

138 System F of Polymorphic Types

A type abstraction Lam(t.e) defines a generic, or polymorphic, function with type variable
t standing for an unspecified type within e. A type application, or instantiation App{τ }(e),
applies a polymorphic function to a specified type, which is plugged in for the type variable
to obtain the result. The universal type, all(t.τ), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,

" ! τ type,

and the typing judgment,

" # ! e : τ.

The hypotheses " have the form t type, where t is a variable of sort Typ, and the hypotheses
have the form x : τ , where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

", t type ! t type (16.1a)

" ! τ1 type " ! τ2 type
" ! arr(τ1; τ2) type

(16.1b)

", t type ! τ type
" ! all(t.τ) type

(16.1c)

The rules defining the typing judgment are as follows:

" #, x : τ ! x : τ (16.2a)

" ! τ1 type " #, x : τ1 ! e : τ2

" # ! lam{τ1}(x.e) : arr(τ1; τ2)
(16.2b)

" # ! e1 : arr(τ2; τ) " # ! e2 : τ2

" # ! ap(e1; e2) : τ
(16.2c)

", t type # ! e : τ

" # ! Lam(t.e) : all(t.τ)
(16.2d)

" # ! e : all(t.τ ′) " ! τ type

" # ! App{τ }(e) : [τ/t]τ ′ (16.2e)

Lemma 16.1 (Regularity). If " # ! e : τ , and if " ! τi type for each assumption xi : τi

in #, then " ! τ type.

Proof By induction on rules (16.2).

The statics admits the structural rules for a general hypothetical judgment. In particular,
we have the following critical substitution property for type formation and expression
typing.

Lemma 16.2 (Substitution). 1. If ", t type ! τ ′ type and " ! τ type, then " !
[τ/t]τ ′ type.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

139 16.1 Polymorphic Abstraction

2. If !, t type " ! e′ : τ ′ and ! ! τ type, then ! [τ/t]" ! [τ/t]e′ : [τ/t]τ ′.
3. If ! ", x : τ ! e′ : τ ′ and ! " ! e : τ , then ! " ! [e/x]e′ : τ ′.

The second part of the lemma requires substitution into the context " as well as into the
term and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity
function, I , is written

$(t) λ (x : t) x;

it has the polymorphic type

∀(t.t → t).

Instances of the polymorphic identity are written I [τ], where τ is some type, and have the
type τ → τ .

Similarly, the polymorphic composition function, C, is written

$(t1) $(t2) $(t3) λ (f : t2 → t3) λ (g : t1 → t2) λ (x : t1) f (g(x)).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3) → (t1 → t2) → (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written C[τ1][τ2][τ3]. Each
such instance has the type

(τ2 → τ3) → (τ1 → τ2) → (τ1 → τ3).

Dynamics

The dynamics of F is given as follows:

lam{τ }(x.e) val
(16.3a)

Lam(t.e) val
(16.3b)

[e2 val]
ap(lam{τ1}(x.e); e2) %−→ [e2/x]e (16.3c)

e1 %−→ e′
1

ap(e1; e2) %−→ ap(e′
1; e2)

(16.3d)

[
e1 val e2 %−→ e′

2

ap(e1; e2) %−→ ap(e1; e′
2)

]
(16.3e)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Examples

139 16.1 Polymorphic Abstraction

2. If !, t type " ! e′ : τ ′ and ! ! τ type, then ! [τ/t]" ! [τ/t]e′ : [τ/t]τ ′.
3. If ! ", x : τ ! e′ : τ ′ and ! " ! e : τ , then ! " ! [e/x]e′ : τ ′.

The second part of the lemma requires substitution into the context " as well as into the
term and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity
function, I , is written

$(t) λ (x : t) x;

it has the polymorphic type

∀(t.t → t).

Instances of the polymorphic identity are written I [τ], where τ is some type, and have the
type τ → τ .

Similarly, the polymorphic composition function, C, is written

$(t1) $(t2) $(t3) λ (f : t2 → t3) λ (g : t1 → t2) λ (x : t1) f (g(x)).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3) → (t1 → t2) → (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written C[τ1][τ2][τ3]. Each
such instance has the type

(τ2 → τ3) → (τ1 → τ2) → (τ1 → τ3).

Dynamics

The dynamics of F is given as follows:

lam{τ }(x.e) val
(16.3a)

Lam(t.e) val
(16.3b)

[e2 val]
ap(lam{τ1}(x.e); e2) %−→ [e2/x]e (16.3c)

e1 %−→ e′
1

ap(e1; e2) %−→ ap(e′
1; e2)

(16.3d)

[
e1 val e2 %−→ e′

2

ap(e1; e2) %−→ ap(e1; e′
2)

]
(16.3e)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Dynamics

139 16.1 Polymorphic Abstraction

2. If !, t type " ! e′ : τ ′ and ! ! τ type, then ! [τ/t]" ! [τ/t]e′ : [τ/t]τ ′.
3. If ! ", x : τ ! e′ : τ ′ and ! " ! e : τ , then ! " ! [e/x]e′ : τ ′.

The second part of the lemma requires substitution into the context " as well as into the
term and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity
function, I , is written

$(t) λ (x : t) x;

it has the polymorphic type

∀(t.t → t).

Instances of the polymorphic identity are written I [τ], where τ is some type, and have the
type τ → τ .

Similarly, the polymorphic composition function, C, is written

$(t1) $(t2) $(t3) λ (f : t2 → t3) λ (g : t1 → t2) λ (x : t1) f (g(x)).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3) → (t1 → t2) → (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written C[τ1][τ2][τ3]. Each
such instance has the type

(τ2 → τ3) → (τ1 → τ2) → (τ1 → τ3).

Dynamics

The dynamics of F is given as follows:

lam{τ }(x.e) val
(16.3a)

Lam(t.e) val
(16.3b)

[e2 val]
ap(lam{τ1}(x.e); e2) %−→ [e2/x]e (16.3c)

e1 %−→ e′
1

ap(e1; e2) %−→ ap(e′
1; e2)

(16.3d)

[
e1 val e2 %−→ e′

2

ap(e1; e2) %−→ ap(e1; e′
2)

]
(16.3e)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

140 System F of Polymorphic Types

App{τ }(Lam(t.e)) !−→ [τ/t]e
(16.3f)

e !−→ e′

App{τ }(e) !−→ App{τ }(e′) (16.3g)

The bracketed premises and rule are included for a call-by-value interpretation and omitted
for a call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam{τ1}(x.e2) with x : τ1 % e2 : τ2.
2. If τ = all(t.τ ′), then e = Lam(t.e′) with t type % e′ : τ ′.

Proof By rule induction on the statics.

Theorem 16.4 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on the statics.

16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and
sums definable in the language, but so are all (lazy) inductive and coinductive types.
Their definability is most naturally expressed using definitional equality, which is the least
congruence containing the following two axioms:

" #, x : τ1 % e2 : τ2 " # % e1 : τ1

" # % (λ (x : τ) e2)(e1) ≡ [e1/x]e2 : τ2
(16.4a)

", t type # % e : τ " % ρ type
" # % &(t) e[ρ] ≡ [ρ/t]e : [ρ/t]τ

(16.4b)

In addition, there are rules omitted here specifying that definitional equality is a congruence
relation (that is, an equivalence relation respected by all expression-forming operations).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Type Safety

140 System F of Polymorphic Types

App{τ }(Lam(t.e)) !−→ [τ/t]e
(16.3f)

e !−→ e′

App{τ }(e) !−→ App{τ }(e′) (16.3g)

The bracketed premises and rule are included for a call-by-value interpretation and omitted
for a call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam{τ1}(x.e2) with x : τ1 % e2 : τ2.
2. If τ = all(t.τ ′), then e = Lam(t.e′) with t type % e′ : τ ′.

Proof By rule induction on the statics.

Theorem 16.4 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on the statics.

16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and
sums definable in the language, but so are all (lazy) inductive and coinductive types.
Their definability is most naturally expressed using definitional equality, which is the least
congruence containing the following two axioms:

" #, x : τ1 % e2 : τ2 " # % e1 : τ1

" # % (λ (x : τ) e2)(e1) ≡ [e1/x]e2 : τ2
(16.4a)

", t type # % e : τ " % ρ type
" # % &(t) e[ρ] ≡ [ρ/t]e : [ρ/t]τ

(16.4b)

In addition, there are rules omitted here specifying that definitional equality is a congruence
relation (that is, an equivalence relation respected by all expression-forming operations).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F: Polymorphic Definability

140 System F of Polymorphic Types

App{τ }(Lam(t.e)) !−→ [τ/t]e
(16.3f)

e !−→ e′

App{τ }(e) !−→ App{τ }(e′) (16.3g)

The bracketed premises and rule are included for a call-by-value interpretation and omitted
for a call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam{τ1}(x.e2) with x : τ1 % e2 : τ2.
2. If τ = all(t.τ ′), then e = Lam(t.e′) with t type % e′ : τ ′.

Proof By rule induction on the statics.

Theorem 16.4 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on the statics.

16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and
sums definable in the language, but so are all (lazy) inductive and coinductive types.
Their definability is most naturally expressed using definitional equality, which is the least
congruence containing the following two axioms:

" #, x : τ1 % e2 : τ2 " # % e1 : τ1

" # % (λ (x : τ) e2)(e1) ≡ [e1/x]e2 : τ2
(16.4a)

", t type # % e : τ " % ρ type
" # % &(t) e[ρ] ≡ [ρ/t]e : [ρ/t]τ

(16.4b)

In addition, there are rules omitted here specifying that definitional equality is a congruence
relation (that is, an equivalence relation respected by all expression-forming operations).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Definability: Products
141 16.2 Polymorphic Definability

16.2.1 Products and Sums

The nullary product, or unit, type is definable in F as follows:

unit ! ∀(r.r → r)

〈〉 ! !(r) λ (x : r) x

The identity function plays the role of the null tuple, because it is the only closed value of
this type.

Binary products are definable in F by using encoding tricks similar to those described in
Chapter 21 for the untyped λ-calculus:

τ1 × τ2 ! ∀(r.(τ1 → τ2 → r) → r)

〈e1, e2〉 ! !(r) λ (x : τ1 → τ2 → r) x(e1)(e2)

e · l ! e[τ1](λ (x : τ1) λ (y : τ2) x)

e · r ! e[τ2](λ (x : τ1) λ (y : τ2) y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the
following definitional equalities are derivable in F from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and

〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in F:

void ! ∀(r.r)

abort{ρ}(e) ! e[ρ]

Binary sums are also definable in F:

τ1 + τ2 ! ∀(r.(τ1 → r) → (τ2 → r) → r)

l · e ! !(r) λ (x : τ1 → r) λ (y : τ2 → r) x(e)

r · e ! !(r) λ (x : τ1 → r) λ (y : τ2 → r) y(e)

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} !
e[ρ](λ (x1 : τ1) e1)(λ (x2 : τ2) e2)

provided that the types make sense. It is easy to check that the following equivalences are
derivable in F:

case l · d1 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d1/x1]e1 : ρ

and

case r · d2 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d2/x2]e2 : ρ .

Thus, the dynamic behavior specified in Chapter 11 is correctly implemented by these
definitions.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Definability: Sums

141 16.2 Polymorphic Definability

16.2.1 Products and Sums

The nullary product, or unit, type is definable in F as follows:

unit ! ∀(r.r → r)

〈〉 ! !(r) λ (x : r) x

The identity function plays the role of the null tuple, because it is the only closed value of
this type.

Binary products are definable in F by using encoding tricks similar to those described in
Chapter 21 for the untyped λ-calculus:

τ1 × τ2 ! ∀(r.(τ1 → τ2 → r) → r)

〈e1, e2〉 ! !(r) λ (x : τ1 → τ2 → r) x(e1)(e2)

e · l ! e[τ1](λ (x : τ1) λ (y : τ2) x)

e · r ! e[τ2](λ (x : τ1) λ (y : τ2) y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the
following definitional equalities are derivable in F from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and

〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in F:

void ! ∀(r.r)

abort{ρ}(e) ! e[ρ]

Binary sums are also definable in F:

τ1 + τ2 ! ∀(r.(τ1 → r) → (τ2 → r) → r)

l · e ! !(r) λ (x : τ1 → r) λ (y : τ2 → r) x(e)

r · e ! !(r) λ (x : τ1 → r) λ (y : τ2 → r) y(e)

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} !
e[ρ](λ (x1 : τ1) e1)(λ (x2 : τ2) e2)

provided that the types make sense. It is easy to check that the following equivalences are
derivable in F:

case l · d1 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d1/x1]e1 : ρ

and

case r · d2 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d2/x2]e2 : ρ .

Thus, the dynamic behavior specified in Chapter 11 is correctly implemented by these
definitions.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F Definability: Natural Numbers

142 System F of Polymorphic Types

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable
in F. The key is the iterator, whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ! e2 : τ

iter{e1; x.e2}(e0) : τ
.

Because the result type τ is arbitrary, this means that if we have an iterator, then we can
use it to define a function of type

nat → ∀(t.t → (t → t) → t).

This function, when applied to an argument n, yields a polymorphic function that, for any
result type, t , given the initial result for z and a transformation from the result for x into
the result for s(x), yields the result of iterating the transformation n times, starting with the
initial result.

Because the only operation we can perform on a natural number is to iterate up to it,
we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function
just described. Thus, we may define the type of natural numbers in F by the following
equations:

nat ! ∀(t.t → (t → t) → t)

z ! "(t) λ (z : t) λ (s : t → t) z

s(e) ! "(t) λ (z : t) λ (s : t → t) s(e[t](z)(s))

iter{e1; x.e2}(e0) ! e0[τ](e1)(λ (x : τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type given in
Chapter 9 are derivable in F under these definitions. The representations of the numerals in
F are called the polymorphic Church numerals.

The encodability of the natural numbers shows that F is at least as expressive as T.
But is it more expressive? Yes! It is possible to show that the evaluation function for T
is definable in F, even though it is not definable in T itself. However, the same diagonal
argument given in Chapter 9 applies here, showing that the evaluation function for F is not
definable in F. We may enrich F a bit more to define the evaluator for F, but as long as
all programs in the enriched language terminate, we will once again have an undefinable
function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior
of their elements. We may prove useful theorems about an expression knowing only its
type—that is, without ever looking at the code. For example, if i is any expression of type
∀(t.t → t), then it is the identity function. Informally, when i is applied to a type, τ , and

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

142 System F of Polymorphic Types

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable
in F. The key is the iterator, whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ! e2 : τ

iter{e1; x.e2}(e0) : τ
.

Because the result type τ is arbitrary, this means that if we have an iterator, then we can
use it to define a function of type

nat → ∀(t.t → (t → t) → t).

This function, when applied to an argument n, yields a polymorphic function that, for any
result type, t , given the initial result for z and a transformation from the result for x into
the result for s(x), yields the result of iterating the transformation n times, starting with the
initial result.

Because the only operation we can perform on a natural number is to iterate up to it,
we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function
just described. Thus, we may define the type of natural numbers in F by the following
equations:

nat ! ∀(t.t → (t → t) → t)

z ! "(t) λ (z : t) λ (s : t → t) z

s(e) ! "(t) λ (z : t) λ (s : t → t) s(e[t](z)(s))

iter{e1; x.e2}(e0) ! e0[τ](e1)(λ (x : τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type given in
Chapter 9 are derivable in F under these definitions. The representations of the numerals in
F are called the polymorphic Church numerals.

The encodability of the natural numbers shows that F is at least as expressive as T.
But is it more expressive? Yes! It is possible to show that the evaluation function for T
is definable in F, even though it is not definable in T itself. However, the same diagonal
argument given in Chapter 9 applies here, showing that the evaluation function for F is not
definable in F. We may enrich F a bit more to define the evaluator for F, but as long as
all programs in the enriched language terminate, we will once again have an undefinable
function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior
of their elements. We may prove useful theorems about an expression knowing only its
type—that is, without ever looking at the code. For example, if i is any expression of type
∀(t.t → t), then it is the identity function. Informally, when i is applied to a type, τ , and

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F: Parametricity Properties

142 System F of Polymorphic Types

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable
in F. The key is the iterator, whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ! e2 : τ

iter{e1; x.e2}(e0) : τ
.

Because the result type τ is arbitrary, this means that if we have an iterator, then we can
use it to define a function of type

nat → ∀(t.t → (t → t) → t).

This function, when applied to an argument n, yields a polymorphic function that, for any
result type, t , given the initial result for z and a transformation from the result for x into
the result for s(x), yields the result of iterating the transformation n times, starting with the
initial result.

Because the only operation we can perform on a natural number is to iterate up to it,
we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function
just described. Thus, we may define the type of natural numbers in F by the following
equations:

nat ! ∀(t.t → (t → t) → t)

z ! "(t) λ (z : t) λ (s : t → t) z

s(e) ! "(t) λ (z : t) λ (s : t → t) s(e[t](z)(s))

iter{e1; x.e2}(e0) ! e0[τ](e1)(λ (x : τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type given in
Chapter 9 are derivable in F under these definitions. The representations of the numerals in
F are called the polymorphic Church numerals.

The encodability of the natural numbers shows that F is at least as expressive as T.
But is it more expressive? Yes! It is possible to show that the evaluation function for T
is definable in F, even though it is not definable in T itself. However, the same diagonal
argument given in Chapter 9 applies here, showing that the evaluation function for F is not
definable in F. We may enrich F a bit more to define the evaluator for F, but as long as
all programs in the enriched language terminate, we will once again have an undefinable
function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior
of their elements. We may prove useful theorems about an expression knowing only its
type—that is, without ever looking at the code. For example, if i is any expression of type
∀(t.t → t), then it is the identity function. Informally, when i is applied to a type, τ , and

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

143 16.3 Parametricity Overview

an argument of type τ , it returns a value of type τ . But because τ is not specified until i

is called, the function has no choice but to return its argument, which is to say that it is
essentially the identity function. Similarly, if b is any expression of type ∀(t.t → t → t),
then b is equivalent to either "(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. Intuitively,
when b is applied to two arguments of a given type, the only value it can return is one of
the givens.

Properties of a program in F that can be proved knowing only its type are called para-
metricity properties. The facts about the functions i and b stated above are examples of
parametricity properties. Such properties are sometimes called “free theorems,” because
they come from typing “for free,” without any knowledge of the code itself. It bears repeat-
ing that in F we prove non-trivial behavioral properties of programs without ever examining
the program text. The key to this incredible fact is that we are able to prove a deep property,
called parametricity, about the language F, that then applies to every program written in F.
One may say that the type system “pre-verifies” programs with respect to a broad range of
useful properties, eliminating the need to prove those properties about every program sep-
arately. The parametricity theorem for F explains the remarkable experience that if a piece
of code type checks, then it “just works.” Parametricity narrows the space of well-typed
programs sufficiently that the opportunities for programmer error are reduced to almost
nothing.

So how does the parametricity theorem work? Without getting into too many technical
details (but see Chapter 48 for a full treatment), we can give a brief summary of the main
idea. Any function i : ∀(t.t → t) in F enjoys the following property:

For any type τ and any property P of the type τ , then if P holds of x : τ , then P holds of
i[τ](x).

To show that for any type τ , and any x of type τ , the expression i[τ](x) is equivalent to x,
it suffices to fix x0 : τ , and consider the property Px0 that holds of y : τ iff y is equivalent
to x0. Obviously, P holds of x0 itself, and hence by the above-displayed property of i, it
sends any argument satisfying Px0 to a result satisfying Px0 , which is to say that it sends x0

to x0. Because x0 is an arbitrary element of τ , it follows that i[τ] is the identity function,
λ (x : τ) x, on the type τ , and because τ is itself arbitrary, i is the polymorphic identity
function, "(t) λ (x : t) x.

A similar argument suffices to show that the function b, defined above, is either
"(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. By virtue of its type, the function b enjoys
the parametricity property

For any type τ and any property P of τ , if P holds of x : τ and of y : τ , then P holds of
b[τ](x)(y).

Choose an arbitrary type τ and two arbitrary elements x0 and y0 of type τ . Define Qx0,y0

to hold of z : τ iff either z is equivalent to x0 or z is equivalent to y0. Clearly Qx0,y0 holds
of both x0 and y0 themselves, so by the quoted parametricity property of b, it follows that
Qx0,y0 holds of b[τ](x0)(y0), which is to say that it is equivalent to either x0 or y0. Since
τ , x0, and y0 are arbitrary, it follows that b is equivalent to either "(t) λ (x : t) λ (y : t) x or
"(t) λ (x : t) λ (y : t) y.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Parametricity: properties of a program in system F can
be proved from only its types --- theorems for free

System F: Parametricity Properties

143 16.3 Parametricity Overview

an argument of type τ , it returns a value of type τ . But because τ is not specified until i

is called, the function has no choice but to return its argument, which is to say that it is
essentially the identity function. Similarly, if b is any expression of type ∀(t.t → t → t),
then b is equivalent to either "(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. Intuitively,
when b is applied to two arguments of a given type, the only value it can return is one of
the givens.

Properties of a program in F that can be proved knowing only its type are called para-
metricity properties. The facts about the functions i and b stated above are examples of
parametricity properties. Such properties are sometimes called “free theorems,” because
they come from typing “for free,” without any knowledge of the code itself. It bears repeat-
ing that in F we prove non-trivial behavioral properties of programs without ever examining
the program text. The key to this incredible fact is that we are able to prove a deep property,
called parametricity, about the language F, that then applies to every program written in F.
One may say that the type system “pre-verifies” programs with respect to a broad range of
useful properties, eliminating the need to prove those properties about every program sep-
arately. The parametricity theorem for F explains the remarkable experience that if a piece
of code type checks, then it “just works.” Parametricity narrows the space of well-typed
programs sufficiently that the opportunities for programmer error are reduced to almost
nothing.

So how does the parametricity theorem work? Without getting into too many technical
details (but see Chapter 48 for a full treatment), we can give a brief summary of the main
idea. Any function i : ∀(t.t → t) in F enjoys the following property:

For any type τ and any property P of the type τ , then if P holds of x : τ , then P holds of
i[τ](x).

To show that for any type τ , and any x of type τ , the expression i[τ](x) is equivalent to x,
it suffices to fix x0 : τ , and consider the property Px0 that holds of y : τ iff y is equivalent
to x0. Obviously, P holds of x0 itself, and hence by the above-displayed property of i, it
sends any argument satisfying Px0 to a result satisfying Px0 , which is to say that it sends x0

to x0. Because x0 is an arbitrary element of τ , it follows that i[τ] is the identity function,
λ (x : τ) x, on the type τ , and because τ is itself arbitrary, i is the polymorphic identity
function, "(t) λ (x : t) x.

A similar argument suffices to show that the function b, defined above, is either
"(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. By virtue of its type, the function b enjoys
the parametricity property

For any type τ and any property P of τ , if P holds of x : τ and of y : τ , then P holds of
b[τ](x)(y).

Choose an arbitrary type τ and two arbitrary elements x0 and y0 of type τ . Define Qx0,y0

to hold of z : τ iff either z is equivalent to x0 or z is equivalent to y0. Clearly Qx0,y0 holds
of both x0 and y0 themselves, so by the quoted parametricity property of b, it follows that
Qx0,y0 holds of b[τ](x0)(y0), which is to say that it is equivalent to either x0 or y0. Since
τ , x0, and y0 are arbitrary, it follows that b is equivalent to either "(t) λ (x : t) λ (y : t) x or
"(t) λ (x : t) λ (y : t) y.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System F: Parametricity Properties

143 16.3 Parametricity Overview

an argument of type τ , it returns a value of type τ . But because τ is not specified until i

is called, the function has no choice but to return its argument, which is to say that it is
essentially the identity function. Similarly, if b is any expression of type ∀(t.t → t → t),
then b is equivalent to either "(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. Intuitively,
when b is applied to two arguments of a given type, the only value it can return is one of
the givens.

Properties of a program in F that can be proved knowing only its type are called para-
metricity properties. The facts about the functions i and b stated above are examples of
parametricity properties. Such properties are sometimes called “free theorems,” because
they come from typing “for free,” without any knowledge of the code itself. It bears repeat-
ing that in F we prove non-trivial behavioral properties of programs without ever examining
the program text. The key to this incredible fact is that we are able to prove a deep property,
called parametricity, about the language F, that then applies to every program written in F.
One may say that the type system “pre-verifies” programs with respect to a broad range of
useful properties, eliminating the need to prove those properties about every program sep-
arately. The parametricity theorem for F explains the remarkable experience that if a piece
of code type checks, then it “just works.” Parametricity narrows the space of well-typed
programs sufficiently that the opportunities for programmer error are reduced to almost
nothing.

So how does the parametricity theorem work? Without getting into too many technical
details (but see Chapter 48 for a full treatment), we can give a brief summary of the main
idea. Any function i : ∀(t.t → t) in F enjoys the following property:

For any type τ and any property P of the type τ , then if P holds of x : τ , then P holds of
i[τ](x).

To show that for any type τ , and any x of type τ , the expression i[τ](x) is equivalent to x,
it suffices to fix x0 : τ , and consider the property Px0 that holds of y : τ iff y is equivalent
to x0. Obviously, P holds of x0 itself, and hence by the above-displayed property of i, it
sends any argument satisfying Px0 to a result satisfying Px0 , which is to say that it sends x0

to x0. Because x0 is an arbitrary element of τ , it follows that i[τ] is the identity function,
λ (x : τ) x, on the type τ , and because τ is itself arbitrary, i is the polymorphic identity
function, "(t) λ (x : t) x.

A similar argument suffices to show that the function b, defined above, is either
"(t) λ (x : t) λ (y : t) x or "(t) λ (x : t) λ (y : t) y. By virtue of its type, the function b enjoys
the parametricity property

For any type τ and any property P of τ , if P holds of x : τ and of y : τ , then P holds of
b[τ](x)(y).

Choose an arbitrary type τ and two arbitrary elements x0 and y0 of type τ . Define Qx0,y0

to hold of z : τ iff either z is equivalent to x0 or z is equivalent to y0. Clearly Qx0,y0 holds
of both x0 and y0 themselves, so by the quoted parametricity property of b, it follows that
Qx0,y0 holds of b[τ](x0)(y0), which is to say that it is equivalent to either x0 or y0. Since
τ , x0, and y0 are arbitrary, it follows that b is equivalent to either "(t) λ (x : t) λ (y : t) x or
"(t) λ (x : t) λ (y : t) y.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Data Abstraction

Data abstraction introduces an interface that serves as a
contract between the client and the implementor of an
abstract type.
• The interface specifies what the client may rely on for its own work, and,

what the implementor must provide to satisfy the contract.
• The interface isolates the client from the implementor so that each may

be developed in isolation from the other.

Representation Independence:
one implementation can be replaced by another without affecting the
behavior of the client, provided that the two implementations meet the
same interface and that each simulates the other with respect to the
operations of the interface.

Abstract Types

Data abstraction = System F + existential types.

• Interfaces are existential types that provide a collection of operations acting
on an unspecified, or abstract, type.

• Implementations are packages, the introduction form for existential types,
and clients are uses of the corresponding elimination form.

Existential types are closely connected with universal types

Representation independence is an application of the
parametricity properties of polymorphic functions.

System FE = F + Existential Types

17 Abstract Types

Data abstraction is perhaps the most important technique for structuring programs. The
main idea is to introduce an interface that serves as a contract between the client and
the implementor of an abstract type. The interface specifies what the client may rely on
for its own work, and, simultaneously, what the implementor must provide to satisfy the
contract. The interface serves to isolate the client from the implementor so that each may be
developed in isolation from the other. In particular, one implementation can be replaced by
another without affecting the behavior of the client, provided that the two implementations
meet the same interface and that each simulates the other with respect to the operations of
the interface. This property is called representation independence for an abstract type.

Data abstraction is formalized by extending the language F with existential types. Inter-
faces are existential types that provide a collection of operations acting on an unspecified,
or abstract, type. Implementations are packages, the introduction form for existential types,
and clients are uses of the corresponding elimination form. It is remarkable that the pro-
gramming concept of data abstraction is captured so naturally and directly by the logical
concept of existential type quantification. Existential types are closely connected with uni-
versal types, and hence are often treated together. The superficial reason is that both are
forms of type quantification, and hence both require the machinery of type variables. The
deeper reason is that existential types are definable from universals—surprisingly, data
abstraction is actually just a form of polymorphism! Consequently, representation indepen-
dence is an application of the parametricity properties of polymorphic functions discussed
in Chapter 16.

17.1 Existential Types

The syntax of FE extends F with the following constructs:

Typ τ ::= some(t.τ) ∃(t.τ) interface
Exp e ::= pack{t.τ }{ρ}(e) pack ρ with e as ∃(t.τ) implementation

open{t.τ }{ρ}(e1; t, x.e2) open e1 as t with x:τ in e2 client

The introduction form ∃(t.τ) is a package of the form pack ρ with e as ∃(t.τ), where ρ is
a type and e is an expression of type [ρ/t]τ . The type ρ is the representation type of the

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

147 17.1 Existential Types

package, and the expression e is the implementation of the package. The elimination form
is the expression open e1 as t with x:τ in e2, which opens the package e1 for use within
the client e2 by binding its representation type to t and its implementation to x for use
within e2. Crucially, the typing rules ensure that the client is type-correct independently
of the actual representation type used by the implementor, so that it can be varied without
affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable t and the
expression variable x are bound within the client. They may be renamed at will by α-
equivalence without affecting the meaning of the construct, provided, of course, that the
names do not conflict with any others in scope. In other words the type t is a “new” type,
one that is distinct from all other types, when it is introduced. This principle is sometimes
called generativity of abstract types: the use of an abstract type by a client “generates” a
“new” type within that client. This behavior relies on the identification covnention stated
in Chapter 1.

17.1.1 Statics

The statics of FE is given by these rules:

#, t type ! τ type
! some(t.τ) type

(17.1a)

! ρ type #, t type ! τ type # % ! e : [ρ/t]τ
% ! pack{t.τ }{ρ}(e) : some(t.τ) (17.1b)

% ! e1 : some(t.τ) #, t type %, x : τ ! e2 : τ2 # ! τ2 type
% ! open{t.τ }{τ2}(e1; t, x.e2) : τ2

(17.1c)

Rule (17.1c) is complex, so study it carefully! There are two important things to notice:

1. The type of the client, τ2, must not involve the abstract type t . This restriction prevents
the client from attempting to export a value of the abstract type outside of the scope of
its definition.

2. The body of the client, e2, is type checked without knowledge of the representation type,
t . The client is, in effect, polymorphic in the type variable t .

Lemma 17.1 (Regularity). Suppose that # % ! e : τ . If # ! τi type for each xi : τi in %,
then # ! τ type.

Proof By induction on rules (17.1), using substitution for expressions and types.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FE Dynamics

148 Abstract Types

17.1.2 Dynamics

The dynamics of FE is defined by the following rules (including the bracketed material for
an eager interpretation, and omitting it for a lazy interpretation):

[e val]
pack{t.τ }{ρ}(e) val

(17.2a)

[
e !−→ e′

pack{t.τ }{ρ}(e) !−→ pack{t.τ }{ρ}(e′)

]
(17.2b)

e1 !−→ e′
1

open{t.τ }{τ2}(e1; t, x.e2) !−→ open{t.τ }{τ2}(e′
1; t, x.e2)

(17.2c)

[e val]
open{t.τ }{τ2}(pack{t.τ }{ρ}(e); t, x.e2) !−→ [ρ, e/t, x]e2

(17.2d)

It is important to see that, according to these rules, there are no abstract types at run-
time! The representation type is propagated to the client by substitution when the package
is opened, thereby eliminating the abstraction boundary between the client and the im-
plementor. Thus, data abstraction is a compile-time discipline that leaves no traces of its
presence at execution time.

17.1.3 Safety

Safety of FE is stated and proved by decomposing it into progress and preservation.

Theorem 17.2 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on e !−→ e′, using substitution for both expression- and type
variables.

Lemma 17.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack{t.τ }{ρ}(e′) for
some type ρ and some e′ such that e′ : [ρ/t]τ .

Proof By rule induction on the statics, using the definition of closed values.

Theorem 17.4 (Progress). If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on e : τ , using the canonical forms lemma.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FE Type Safety

148 Abstract Types

17.1.2 Dynamics

The dynamics of FE is defined by the following rules (including the bracketed material for
an eager interpretation, and omitting it for a lazy interpretation):

[e val]
pack{t.τ }{ρ}(e) val

(17.2a)

[
e !−→ e′

pack{t.τ }{ρ}(e) !−→ pack{t.τ }{ρ}(e′)

]
(17.2b)

e1 !−→ e′
1

open{t.τ }{τ2}(e1; t, x.e2) !−→ open{t.τ }{τ2}(e′
1; t, x.e2)

(17.2c)

[e val]
open{t.τ }{τ2}(pack{t.τ }{ρ}(e); t, x.e2) !−→ [ρ, e/t, x]e2

(17.2d)

It is important to see that, according to these rules, there are no abstract types at run-
time! The representation type is propagated to the client by substitution when the package
is opened, thereby eliminating the abstraction boundary between the client and the im-
plementor. Thus, data abstraction is a compile-time discipline that leaves no traces of its
presence at execution time.

17.1.3 Safety

Safety of FE is stated and proved by decomposing it into progress and preservation.

Theorem 17.2 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on e !−→ e′, using substitution for both expression- and type
variables.

Lemma 17.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack{t.τ }{ρ}(e′) for
some type ρ and some e′ such that e′ : [ρ/t]τ .

Proof By rule induction on the statics, using the definition of closed values.

Theorem 17.4 (Progress). If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on e : τ , using the canonical forms lemma.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

147 17.1 Existential Types

package, and the expression e is the implementation of the package. The elimination form
is the expression open e1 as t with x:τ in e2, which opens the package e1 for use within
the client e2 by binding its representation type to t and its implementation to x for use
within e2. Crucially, the typing rules ensure that the client is type-correct independently
of the actual representation type used by the implementor, so that it can be varied without
affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable t and the
expression variable x are bound within the client. They may be renamed at will by α-
equivalence without affecting the meaning of the construct, provided, of course, that the
names do not conflict with any others in scope. In other words the type t is a “new” type,
one that is distinct from all other types, when it is introduced. This principle is sometimes
called generativity of abstract types: the use of an abstract type by a client “generates” a
“new” type within that client. This behavior relies on the identification covnention stated
in Chapter 1.

17.1.1 Statics

The statics of FE is given by these rules:

#, t type ! τ type
! some(t.τ) type

(17.1a)

! ρ type #, t type ! τ type # % ! e : [ρ/t]τ
% ! pack{t.τ }{ρ}(e) : some(t.τ) (17.1b)

% ! e1 : some(t.τ) #, t type %, x : τ ! e2 : τ2 # ! τ2 type
% ! open{t.τ }{τ2}(e1; t, x.e2) : τ2

(17.1c)

Rule (17.1c) is complex, so study it carefully! There are two important things to notice:

1. The type of the client, τ2, must not involve the abstract type t . This restriction prevents
the client from attempting to export a value of the abstract type outside of the scope of
its definition.

2. The body of the client, e2, is type checked without knowledge of the representation type,
t . The client is, in effect, polymorphic in the type variable t .

Lemma 17.1 (Regularity). Suppose that # % ! e : τ . If # ! τi type for each xi : τi in %,
then # ! τ type.

Proof By induction on rules (17.1), using substitution for expressions and types.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FE: Data Abstraction Example

149 17.2 Data Abstraction

17.2 Data Abstraction

To illustrate the use of FE, we consider an abstract type of queues of natural numbers
supporting three operations:

1. Forming the empty queue.
2. Inserting an element at the tail of the queue.
3. Removing the head of the queue, which is assumed non-empty.

This is clearly a bare-bones interface but suffices to illustrate the main ideas of data
abstraction. Queue elements are natural numbers, but nothing depends on this choice.

The crucial property of this description is that nowhere do we specify what queues
actually are, only what we can do with them. The behavior of a queue is expressed by the
existential type ∃(t.τ), which serves as the interface of the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉).

The representation type t of queues is abstract—all that is known about it is that it supports
the operations emp, ins, and rem, with the given types.

An implementation of queues consists of a package specifying the representation type,
together with the implementation of the associated operations in terms of that representation.
Internally to the implementation, the representation of queues is known and relied upon by
the operations. Here is a very simple implementation el in which queues are represented as
lists:

pack natlist with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where

ei : nat × natlist → natlist = λ (x : nat × natlist) . . . ,

and

er : natlist → nat × natlist = λ (x : natlist)

The elided body of ei conses the first component of x, the element, onto the second
component of x, the queue, and the elided body of er reverses its argument, and returns
the head element paired with the reversal of the tail. Both of these operations “know” that
queues are represented as values of type natlist and are programmed accordingly.

It is also possible to give another implementation ep of the same interface ∃(t.τ), but in
which queues are represented as pairs of lists, consisting of the “back half” of the queue
paired with the reversal of the “front half.” This two-part representation avoids the need for
reversals on each call and, as a result, achieves amortized constant-time behavior:

pack natlist × natlist with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case, ei has type

nat × (natlist × natlist) → (natlist × natlist),

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

149 17.2 Data Abstraction

17.2 Data Abstraction

To illustrate the use of FE, we consider an abstract type of queues of natural numbers
supporting three operations:

1. Forming the empty queue.
2. Inserting an element at the tail of the queue.
3. Removing the head of the queue, which is assumed non-empty.

This is clearly a bare-bones interface but suffices to illustrate the main ideas of data
abstraction. Queue elements are natural numbers, but nothing depends on this choice.

The crucial property of this description is that nowhere do we specify what queues
actually are, only what we can do with them. The behavior of a queue is expressed by the
existential type ∃(t.τ), which serves as the interface of the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉).

The representation type t of queues is abstract—all that is known about it is that it supports
the operations emp, ins, and rem, with the given types.

An implementation of queues consists of a package specifying the representation type,
together with the implementation of the associated operations in terms of that representation.
Internally to the implementation, the representation of queues is known and relied upon by
the operations. Here is a very simple implementation el in which queues are represented as
lists:

pack natlist with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where

ei : nat × natlist → natlist = λ (x : nat × natlist) . . . ,

and

er : natlist → nat × natlist = λ (x : natlist)

The elided body of ei conses the first component of x, the element, onto the second
component of x, the queue, and the elided body of er reverses its argument, and returns
the head element paired with the reversal of the tail. Both of these operations “know” that
queues are represented as values of type natlist and are programmed accordingly.

It is also possible to give another implementation ep of the same interface ∃(t.τ), but in
which queues are represented as pairs of lists, consisting of the “back half” of the queue
paired with the reversal of the “front half.” This two-part representation avoids the need for
reversals on each call and, as a result, achieves amortized constant-time behavior:

pack natlist × natlist with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case, ei has type

nat × (natlist × natlist) → (natlist × natlist),

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FE: Data Abstraction Example

149 17.2 Data Abstraction

17.2 Data Abstraction

To illustrate the use of FE, we consider an abstract type of queues of natural numbers
supporting three operations:

1. Forming the empty queue.
2. Inserting an element at the tail of the queue.
3. Removing the head of the queue, which is assumed non-empty.

This is clearly a bare-bones interface but suffices to illustrate the main ideas of data
abstraction. Queue elements are natural numbers, but nothing depends on this choice.

The crucial property of this description is that nowhere do we specify what queues
actually are, only what we can do with them. The behavior of a queue is expressed by the
existential type ∃(t.τ), which serves as the interface of the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉).

The representation type t of queues is abstract—all that is known about it is that it supports
the operations emp, ins, and rem, with the given types.

An implementation of queues consists of a package specifying the representation type,
together with the implementation of the associated operations in terms of that representation.
Internally to the implementation, the representation of queues is known and relied upon by
the operations. Here is a very simple implementation el in which queues are represented as
lists:

pack natlist with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where

ei : nat × natlist → natlist = λ (x : nat × natlist) . . . ,

and

er : natlist → nat × natlist = λ (x : natlist)

The elided body of ei conses the first component of x, the element, onto the second
component of x, the queue, and the elided body of er reverses its argument, and returns
the head element paired with the reversal of the tail. Both of these operations “know” that
queues are represented as values of type natlist and are programmed accordingly.

It is also possible to give another implementation ep of the same interface ∃(t.τ), but in
which queues are represented as pairs of lists, consisting of the “back half” of the queue
paired with the reversal of the “front half.” This two-part representation avoids the need for
reversals on each call and, as a result, achieves amortized constant-time behavior:

pack natlist × natlist with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case, ei has type

nat × (natlist × natlist) → (natlist × natlist),

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

(nat x natlist) opt

System FE: Data Abstraction Example

149 17.2 Data Abstraction

17.2 Data Abstraction

To illustrate the use of FE, we consider an abstract type of queues of natural numbers
supporting three operations:

1. Forming the empty queue.
2. Inserting an element at the tail of the queue.
3. Removing the head of the queue, which is assumed non-empty.

This is clearly a bare-bones interface but suffices to illustrate the main ideas of data
abstraction. Queue elements are natural numbers, but nothing depends on this choice.

The crucial property of this description is that nowhere do we specify what queues
actually are, only what we can do with them. The behavior of a queue is expressed by the
existential type ∃(t.τ), which serves as the interface of the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉).

The representation type t of queues is abstract—all that is known about it is that it supports
the operations emp, ins, and rem, with the given types.

An implementation of queues consists of a package specifying the representation type,
together with the implementation of the associated operations in terms of that representation.
Internally to the implementation, the representation of queues is known and relied upon by
the operations. Here is a very simple implementation el in which queues are represented as
lists:

pack natlist with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where

ei : nat × natlist → natlist = λ (x : nat × natlist) . . . ,

and

er : natlist → nat × natlist = λ (x : natlist)

The elided body of ei conses the first component of x, the element, onto the second
component of x, the queue, and the elided body of er reverses its argument, and returns
the head element paired with the reversal of the tail. Both of these operations “know” that
queues are represented as values of type natlist and are programmed accordingly.

It is also possible to give another implementation ep of the same interface ∃(t.τ), but in
which queues are represented as pairs of lists, consisting of the “back half” of the queue
paired with the reversal of the “front half.” This two-part representation avoids the need for
reversals on each call and, as a result, achieves amortized constant-time behavior:

pack natlist × natlist with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case, ei has type

nat × (natlist × natlist) → (natlist × natlist),

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

150 Abstract Types

and er has type

(natlist × natlist) → nat × (natlist × natlist).

These operations “know” that queues are represented as values of type natlist×natlist
and are implemented accordingly.

The important point is that the same client type checks regardless of which implemen-
tation of queues we choose, because the representation type is hidden, or held abstract,
from the client during type checking. Consequently, it cannot rely on whether it is natlist
or natlist × natlist or some other type. That is, the client is independent of the
representation of the abstract type.

17.3 Definability of Existential Types

The language FE is not a proper extension of F, because existential types (under a lazy
dynamics) are definable in terms of universal types. Why should this be possible? Note
that the client of an abstract type is polymorphic in the representation type. The typing rule
for

open e1 as t with x:τ in e2 : τ2,

where e1 : ∃(t.τ), specifies that e2 : τ2 under the assumptions t type and x : τ . In essence,
the client is a polymorphic function of type

∀(t.τ → τ2),

where t may occur in τ (the type of the operations), but not in τ2 (the type of the result).
This suggests the following encoding of existential types:

∃(t.τ) ! ∀(u.∀(t.τ → u) → u)

pack ρ with e as ∃(t.τ) ! #(u) λ (x : ∀(t.τ → u)) x[ρ](e)

open e1 as t with x:τ in e2 ! e1[τ2](#(t) λ (x : τ) e2)

An existential is encoded as a polymorphic function taking the overall result type u as
argument, followed by a polymorphic function representing the client with result type u,
and yielding a value of type u as overall result. Consequently, the open construct simply
packages the client as such a polymorphic function, instantiates the existential at the result
type, τ2, and applies it to the polymorphic client. (The translation therefore depends on
knowing the overall result type τ2 of the open construct.) Finally, a package consisting
of a representation type ρ and an implementation e is a polymorphic function that, when
given the result type u and the client x, instantiates x with ρ and passes to it the imple-
mentation e.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

(nat x (natlist x natlist)) opt

System FE Definable in System F

150 Abstract Types

and er has type

(natlist × natlist) → nat × (natlist × natlist).

These operations “know” that queues are represented as values of type natlist×natlist
and are implemented accordingly.

The important point is that the same client type checks regardless of which implemen-
tation of queues we choose, because the representation type is hidden, or held abstract,
from the client during type checking. Consequently, it cannot rely on whether it is natlist
or natlist × natlist or some other type. That is, the client is independent of the
representation of the abstract type.

17.3 Definability of Existential Types

The language FE is not a proper extension of F, because existential types (under a lazy
dynamics) are definable in terms of universal types. Why should this be possible? Note
that the client of an abstract type is polymorphic in the representation type. The typing rule
for

open e1 as t with x:τ in e2 : τ2,

where e1 : ∃(t.τ), specifies that e2 : τ2 under the assumptions t type and x : τ . In essence,
the client is a polymorphic function of type

∀(t.τ → τ2),

where t may occur in τ (the type of the operations), but not in τ2 (the type of the result).
This suggests the following encoding of existential types:

∃(t.τ) ! ∀(u.∀(t.τ → u) → u)

pack ρ with e as ∃(t.τ) ! #(u) λ (x : ∀(t.τ → u)) x[ρ](e)

open e1 as t with x:τ in e2 ! e1[τ2](#(t) λ (x : τ) e2)

An existential is encoded as a polymorphic function taking the overall result type u as
argument, followed by a polymorphic function representing the client with result type u,
and yielding a value of type u as overall result. Consequently, the open construct simply
packages the client as such a polymorphic function, instantiates the existential at the result
type, τ2, and applies it to the polymorphic client. (The translation therefore depends on
knowing the overall result type τ2 of the open construct.) Finally, a package consisting
of a representation type ρ and an implementation e is a polymorphic function that, when
given the result type u and the client x, instantiates x with ρ and passes to it the imple-
mentation e.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Representation Independence
An important consequence of parametricity is that it ensures that clients are
insensitive to the representations of abstract types

Bisimilarity relates two implementations of an abstract type such that the behavior of
a client is unaffected by swapping one implementation by another that is bisimilar to
it.

if R is a bisimulation relation between any two implementations of the abstract type,
then the client behaves identically on them.

A client c of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not occur free in
τ2 (but may, of course, occur in τ).

The fact that t does not occur in the result type ensures:
• the behavior of the client is independent of the choice of relation between the

implementations, provided that this relation R is preserved by the operations that
implement it.

Representation Independence

151 17.4 Representation Independence

17.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are insensitive to the
representations of abstract types. More precisely, there is a criterion, bisimilarity, for relating
two implementations of an abstract type such that the behavior of a client is unaffected
by swapping one implementation by another that is bisimilar to it. This principle leads to
a simple method for proving the correctness of candidate implementation of an abstract
type, which is to show that it is bisimilar to an obviously correct reference implementation
of it. Because the candidate and the reference implementations are bisimilar, no client
may distinguish them from one another, and hence if the client behaves properly with the
reference implementation, then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful to examine the
definition of existential types in terms of universals given in Section 17.3. It is immediately
clear that the client of an abstract type is polymorphic in the representation of the abstract
type. A client c of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not occur
free in τ2 (but may, of course, occur in τ). Applying the parametricity property described
informally in Chapter 16 (and developed rigorously in Chapter 48), this says that if R is a
bisimulation relation between any two implementations of the abstract type, then the client
behaves identically on them. The fact that t does not occur in the result type ensures that the
behavior of the client is independent of the choice of relation between the implementations,
provided that this relation is preserved by the operations that implement it.

Explaining what is a bisimulation is best done by example. Consider the existential type
∃(t.τ), where τ is the labeled tuple type

〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉.

This specifies an abstract type of queues. The operations emp, ins, and rem specify,
respectively, the empty queue, an insert operation, and a remove operation. For the sake
of simplicity, the element type is the type of natural numbers. The result of removal is an
optional pair, according to whether the queue is empty or not.

Theorem 48.12 ensures that if ρ and ρ ′ are any two closed types, and if R is a relation
between expressions of these two types, then if the implementations e : [ρ/x]τ and
e′ : [ρ ′/x]τ respect R, then c[ρ]e behaves the same as c[ρ ′]e′. It remains to define when
two implementations respect the relation R. Let

e ! 〈emp ↪→ em, ins ↪→ ei, rem ↪→ er〉

and

e′ ! 〈emp ↪→ e′
m, ins ↪→ e′

i, rem ↪→ e′
r〉.

For these implementations to respect R means that the following three conditions hold:

1. The empty queues are related: R(em, e′
m).

2. Inserting the same element on each of two related queues yields related queues: if d : τ

and R(q, q ′), then R(ei(d)(q), e′
i(d)(q ′)).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

151 17.4 Representation Independence

17.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are insensitive to the
representations of abstract types. More precisely, there is a criterion, bisimilarity, for relating
two implementations of an abstract type such that the behavior of a client is unaffected
by swapping one implementation by another that is bisimilar to it. This principle leads to
a simple method for proving the correctness of candidate implementation of an abstract
type, which is to show that it is bisimilar to an obviously correct reference implementation
of it. Because the candidate and the reference implementations are bisimilar, no client
may distinguish them from one another, and hence if the client behaves properly with the
reference implementation, then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful to examine the
definition of existential types in terms of universals given in Section 17.3. It is immediately
clear that the client of an abstract type is polymorphic in the representation of the abstract
type. A client c of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not occur
free in τ2 (but may, of course, occur in τ). Applying the parametricity property described
informally in Chapter 16 (and developed rigorously in Chapter 48), this says that if R is a
bisimulation relation between any two implementations of the abstract type, then the client
behaves identically on them. The fact that t does not occur in the result type ensures that the
behavior of the client is independent of the choice of relation between the implementations,
provided that this relation is preserved by the operations that implement it.

Explaining what is a bisimulation is best done by example. Consider the existential type
∃(t.τ), where τ is the labeled tuple type

〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉.

This specifies an abstract type of queues. The operations emp, ins, and rem specify,
respectively, the empty queue, an insert operation, and a remove operation. For the sake
of simplicity, the element type is the type of natural numbers. The result of removal is an
optional pair, according to whether the queue is empty or not.

Theorem 48.12 ensures that if ρ and ρ ′ are any two closed types, and if R is a relation
between expressions of these two types, then if the implementations e : [ρ/x]τ and
e′ : [ρ ′/x]τ respect R, then c[ρ]e behaves the same as c[ρ ′]e′. It remains to define when
two implementations respect the relation R. Let

e ! 〈emp ↪→ em, ins ↪→ ei, rem ↪→ er〉

and

e′ ! 〈emp ↪→ e′
m, ins ↪→ e′

i, rem ↪→ e′
r〉.

For these implementations to respect R means that the following three conditions hold:

1. The empty queues are related: R(em, e′
m).

2. Inserting the same element on each of two related queues yields related queues: if d : τ

and R(q, q ′), then R(ei(d)(q), e′
i(d)(q ′)).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Representation Independence

151 17.4 Representation Independence

17.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are insensitive to the
representations of abstract types. More precisely, there is a criterion, bisimilarity, for relating
two implementations of an abstract type such that the behavior of a client is unaffected
by swapping one implementation by another that is bisimilar to it. This principle leads to
a simple method for proving the correctness of candidate implementation of an abstract
type, which is to show that it is bisimilar to an obviously correct reference implementation
of it. Because the candidate and the reference implementations are bisimilar, no client
may distinguish them from one another, and hence if the client behaves properly with the
reference implementation, then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful to examine the
definition of existential types in terms of universals given in Section 17.3. It is immediately
clear that the client of an abstract type is polymorphic in the representation of the abstract
type. A client c of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not occur
free in τ2 (but may, of course, occur in τ). Applying the parametricity property described
informally in Chapter 16 (and developed rigorously in Chapter 48), this says that if R is a
bisimulation relation between any two implementations of the abstract type, then the client
behaves identically on them. The fact that t does not occur in the result type ensures that the
behavior of the client is independent of the choice of relation between the implementations,
provided that this relation is preserved by the operations that implement it.

Explaining what is a bisimulation is best done by example. Consider the existential type
∃(t.τ), where τ is the labeled tuple type

〈emp ↪→ t, ins ↪→ nat × t → t, rem ↪→ t → (nat × t) opt〉.

This specifies an abstract type of queues. The operations emp, ins, and rem specify,
respectively, the empty queue, an insert operation, and a remove operation. For the sake
of simplicity, the element type is the type of natural numbers. The result of removal is an
optional pair, according to whether the queue is empty or not.

Theorem 48.12 ensures that if ρ and ρ ′ are any two closed types, and if R is a relation
between expressions of these two types, then if the implementations e : [ρ/x]τ and
e′ : [ρ ′/x]τ respect R, then c[ρ]e behaves the same as c[ρ ′]e′. It remains to define when
two implementations respect the relation R. Let

e ! 〈emp ↪→ em, ins ↪→ ei, rem ↪→ er〉

and

e′ ! 〈emp ↪→ e′
m, ins ↪→ e′

i, rem ↪→ e′
r〉.

For these implementations to respect R means that the following three conditions hold:

1. The empty queues are related: R(em, e′
m).

2. Inserting the same element on each of two related queues yields related queues: if d : τ

and R(q, q ′), then R(ei(d)(q), e′
i(d)(q ′)).

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

152 Abstract Types

3. If two queues are related, then either they are both empty, or their front elements are the
same and their back elements are related: if R(q, q ′), then either
(a) er(q) ∼= null ∼= e′

r(q ′), or
(b) er(q) ∼= just(〈d, r〉) and e′

r(q ′) ∼= just(〈d ′, r ′〉), with d ∼= d ′ and R(r, r ′).

If such a relation R exists, then the implementations e and e′ are bisimilar. The terminology
stems from the requirement that the operations of the abstract type preserve the relation: if
it holds before an operation is performed, then it must also hold afterwards, and the relation
must hold for the initial state of the queue. Thus, each implementation simulates the other
up to the relationship specified by R.

To see how this works in practice, let us consider informally two implementations of the
abstract type of queues defined earlier. For the reference implementation, we choose ρ to
be the type natlist, and define the empty queue to be the empty list, define insert to add
the given element to the head of the list, and define remove to remove the last element of
the list. The code is as follows:

t ! natlist

emp ! nil

ins ! λ (x : nat) λ (q : t) cons(x; q)

rem ! λ (q : t) case rev(q) {nil ↪→ null | cons(f ; qr) ↪→ just(〈f, rev(qr)〉)}.

Removing an element takes time linear in the length of the list, because of the reversal.
For the candidate implementation, we choose ρ ′ to be the type natlist × natlist of

pairs of lists 〈b, f 〉 in which b is the “back half” of the queue, and f is the reversal of the
“front half” of the queue. For this representation, we define the empty queue to be a pair
of empty lists, define insert to extend the back with that element at the head, and define
remove based on whether the front is empty. If it is non-empty, the head element is removed
from it and returned along with the pair consisting of the back and the tail of the front. If
it is empty, and the back is not, then we reverse the back, remove the head element, and
return the pair consisting of the empty list and the tail of the now-reversed back. The code
is as follows:

t ! natlist × natlist

emp ! 〈nil, nil〉
ins ! λ (x : nat) λ (〈bs, f s〉 : t) 〈cons(x; bs), f s〉
rem ! λ (〈bs, f s〉 : t) case f s {nil ↪→ e | cons(f ; f s ′) ↪→ 〈bs, f s ′〉}, where

e ! case rev(bs) {nil ↪→ null | cons(b; bs ′) ↪→ just(〈b, 〈nil, bs ′〉〉)}.

The cost of the occasional reversal is amortized across the sequence of inserts and removes
to show that each operation in a sequence costs unit time overall.

To show that the candidate implementation is correct, we show that it is bisimilar to the
reference implementation. To do so, we specify a relation R between the types natlist
and natlist × natlist such that the two implementations satisfy the three simulation
conditions given earlier. The required relation states that R(l, 〈b, f 〉) iff the list l is the list

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Representation Independence

152 Abstract Types

3. If two queues are related, then either they are both empty, or their front elements are the
same and their back elements are related: if R(q, q ′), then either
(a) er(q) ∼= null ∼= e′

r(q ′), or
(b) er(q) ∼= just(〈d, r〉) and e′

r(q ′) ∼= just(〈d ′, r ′〉), with d ∼= d ′ and R(r, r ′).

If such a relation R exists, then the implementations e and e′ are bisimilar. The terminology
stems from the requirement that the operations of the abstract type preserve the relation: if
it holds before an operation is performed, then it must also hold afterwards, and the relation
must hold for the initial state of the queue. Thus, each implementation simulates the other
up to the relationship specified by R.

To see how this works in practice, let us consider informally two implementations of the
abstract type of queues defined earlier. For the reference implementation, we choose ρ to
be the type natlist, and define the empty queue to be the empty list, define insert to add
the given element to the head of the list, and define remove to remove the last element of
the list. The code is as follows:

t ! natlist

emp ! nil

ins ! λ (x : nat) λ (q : t) cons(x; q)

rem ! λ (q : t) case rev(q) {nil ↪→ null | cons(f ; qr) ↪→ just(〈f, rev(qr)〉)}.

Removing an element takes time linear in the length of the list, because of the reversal.
For the candidate implementation, we choose ρ ′ to be the type natlist × natlist of

pairs of lists 〈b, f 〉 in which b is the “back half” of the queue, and f is the reversal of the
“front half” of the queue. For this representation, we define the empty queue to be a pair
of empty lists, define insert to extend the back with that element at the head, and define
remove based on whether the front is empty. If it is non-empty, the head element is removed
from it and returned along with the pair consisting of the back and the tail of the front. If
it is empty, and the back is not, then we reverse the back, remove the head element, and
return the pair consisting of the empty list and the tail of the now-reversed back. The code
is as follows:

t ! natlist × natlist

emp ! 〈nil, nil〉
ins ! λ (x : nat) λ (〈bs, f s〉 : t) 〈cons(x; bs), f s〉
rem ! λ (〈bs, f s〉 : t) case f s {nil ↪→ e | cons(f ; f s ′) ↪→ 〈bs, f s ′〉}, where

e ! case rev(bs) {nil ↪→ null | cons(b; bs ′) ↪→ just(〈b, 〈nil, bs ′〉〉)}.

The cost of the occasional reversal is amortized across the sequence of inserts and removes
to show that each operation in a sequence costs unit time overall.

To show that the candidate implementation is correct, we show that it is bisimilar to the
reference implementation. To do so, we specify a relation R between the types natlist
and natlist × natlist such that the two implementations satisfy the three simulation
conditions given earlier. The required relation states that R(l, 〈b, f 〉) iff the list l is the list

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Representation Independence

152 Abstract Types

3. If two queues are related, then either they are both empty, or their front elements are the
same and their back elements are related: if R(q, q ′), then either
(a) er(q) ∼= null ∼= e′

r(q ′), or
(b) er(q) ∼= just(〈d, r〉) and e′

r(q ′) ∼= just(〈d ′, r ′〉), with d ∼= d ′ and R(r, r ′).

If such a relation R exists, then the implementations e and e′ are bisimilar. The terminology
stems from the requirement that the operations of the abstract type preserve the relation: if
it holds before an operation is performed, then it must also hold afterwards, and the relation
must hold for the initial state of the queue. Thus, each implementation simulates the other
up to the relationship specified by R.

To see how this works in practice, let us consider informally two implementations of the
abstract type of queues defined earlier. For the reference implementation, we choose ρ to
be the type natlist, and define the empty queue to be the empty list, define insert to add
the given element to the head of the list, and define remove to remove the last element of
the list. The code is as follows:

t ! natlist

emp ! nil

ins ! λ (x : nat) λ (q : t) cons(x; q)

rem ! λ (q : t) case rev(q) {nil ↪→ null | cons(f ; qr) ↪→ just(〈f, rev(qr)〉)}.

Removing an element takes time linear in the length of the list, because of the reversal.
For the candidate implementation, we choose ρ ′ to be the type natlist × natlist of

pairs of lists 〈b, f 〉 in which b is the “back half” of the queue, and f is the reversal of the
“front half” of the queue. For this representation, we define the empty queue to be a pair
of empty lists, define insert to extend the back with that element at the head, and define
remove based on whether the front is empty. If it is non-empty, the head element is removed
from it and returned along with the pair consisting of the back and the tail of the front. If
it is empty, and the back is not, then we reverse the back, remove the head element, and
return the pair consisting of the empty list and the tail of the now-reversed back. The code
is as follows:

t ! natlist × natlist

emp ! 〈nil, nil〉
ins ! λ (x : nat) λ (〈bs, f s〉 : t) 〈cons(x; bs), f s〉
rem ! λ (〈bs, f s〉 : t) case f s {nil ↪→ e | cons(f ; f s ′) ↪→ 〈bs, f s ′〉}, where

e ! case rev(bs) {nil ↪→ null | cons(b; bs ′) ↪→ just(〈b, 〈nil, bs ′〉〉)}.

The cost of the occasional reversal is amortized across the sequence of inserts and removes
to show that each operation in a sequence costs unit time overall.

To show that the candidate implementation is correct, we show that it is bisimilar to the
reference implementation. To do so, we specify a relation R between the types natlist
and natlist × natlist such that the two implementations satisfy the three simulation
conditions given earlier. The required relation states that R(l, 〈b, f 〉) iff the list l is the list

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Representation Independence

To show these two implementations are bisimilar, we specify a
relation R between the types natlist and natlist × natlist such
that the two implementations satisfy the three simulation
conditions given earlier.

R(l, ⟨b, f ⟩) iff l = app(b)(rev(f))

where app is the list append function.

Higher Kinds

18 Higher Kinds

The concept of type quantification naturally leads to the consideration of quantification
over type constructors, such as list, which are functions mapping types to types. For
example, the abstract type of queues of natural numbers considered in Section 17.4 could
be generalized to an abstract type constructor of queues that does not fix the element type.
In the notation that we shall develop in this chapter, such an abstraction is expressed by the
existential type ∃ q :: T → T.σ , where σ is the labeled tuple type

〈emp ↪→ ∀ t :: T.t, ins ↪→ ∀ t :: T.t × q[t] → q[t], rem ↪→ ∀ t :: T.q[t] → (t × q[t]) opt〉.

The existential type quantifies over the kind T → T of type constructors, which map types
to types. The operations are polymorphic, or generic, in the type of the elements of the
queue. Their types involve instances of the abstract queue constructor q[t] representing the
abstract type of queues whose elements are of type t . The client instantiates the polymorphic
quantifier to specify the element type; the implementations are parametric in this choice (in
that their behavior is the same in any case). A package of the existential type given above
consists of a representation type constructor and an implementation of the operations in
terms of this choice. Possible representations include the constructor λ (u :: T) u list and
the constructor λ (u :: T) u list × u list, both of which have kind T → T. It is easy to
check that the implementations of the queue operations given in Section 17.4 carry over to
the more general case, almost without change, because they do not rely on the type of the
elements of the queue.

The language Fω enriches the language F with universal and existential quantification
over kinds, such as T → T, used in the queues example. The extension accounts for
definitional equality of constructors. For example, an implementation of the existential
given in the preceding paragraph have to give implementations for the operations in terms
of the choice of representation for q. If, say, q is the constructor λ (u :: T) u list, then
the ins operation takes a type argument specifying the element type t and a queue of
type (λ (u :: T) u list)[t], which should simplify to t list by substitution of t for u in
the body of the λ-abstraction. Definitional equality of constructors defines the permissible
rules of simplification and thereby defines when two types are equal. Equal types should
be interchangeable as classifiers, meaning that if e is of type τ and τ is definitionally equal
to τ ′, then e should also have type τ ′. In the queues example, any expression of type t list
should also be of the unsimplified type to which it is definitionally equal.

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Language Fomega (or Fw)

155 18.1 Constructors and Kinds

18.1 Constructors and Kinds

The syntax of kinds of Fω is given by the following grammar:

Kind κ ::= Type T types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1 → κ2 function

The kinds consist of the kind of types T and the unit kind Unit and are closed under
formation of product and function kinds.

The syntax of constructors of Fω is defined by this grammar:

Con c ::= u u variable
arr → function constructor
all{κ} ∀κ universal quantifier
some{κ} ∃κ existential quantifier
proj[l](c) c · l first projection
proj[r](c) c · r second projection
app(c1; c2) c1[c2] application
unit 〈〉 null tuple
pair(c1; c2) 〈c1,c2〉 pair
lam(u.c) λ (u) c abstraction

The syntax of constructors follows the syntax of kinds in that there are introduction and
elimination forms for all kinds. The constants →, ∀κ , and ∃κ are the introduction forms
for the kind T; there are no elimination forms, because types are only used to classify
expressions. We use the meta-variable τ for constructors of kind T, and write τ1 → τ2 for
the application →[τ1][τ2], ∀ u :: κ.τ for ∀κ [λ (u :: κ) τ], and similarly for the existential
quantifier.

The statics of constructors and kinds of Fω is specified by the judgment

% ' c :: κ

which states that the constructor c is well-formed with kind κ . The hypotheses % consist
of a finite set of assumptions

u1 :: κ1, . . . , un :: κn,

where n ≥ 0, specifying the kinds of the active constructor variables.
The statics of constructors is defined by the following rules:

%, u :: κ ' u :: κ (18.1a)

% ' → :: T → T → T (18.1b)

% ' ∀κ :: (κ → T) → T (18.1c)

% ' ∃κ :: (κ → T) → T (18.1d)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

155 18.1 Constructors and Kinds

18.1 Constructors and Kinds

The syntax of kinds of Fω is given by the following grammar:

Kind κ ::= Type T types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1 → κ2 function

The kinds consist of the kind of types T and the unit kind Unit and are closed under
formation of product and function kinds.

The syntax of constructors of Fω is defined by this grammar:

Con c ::= u u variable
arr → function constructor
all{κ} ∀κ universal quantifier
some{κ} ∃κ existential quantifier
proj[l](c) c · l first projection
proj[r](c) c · r second projection
app(c1; c2) c1[c2] application
unit 〈〉 null tuple
pair(c1; c2) 〈c1,c2〉 pair
lam(u.c) λ (u) c abstraction

The syntax of constructors follows the syntax of kinds in that there are introduction and
elimination forms for all kinds. The constants →, ∀κ , and ∃κ are the introduction forms
for the kind T; there are no elimination forms, because types are only used to classify
expressions. We use the meta-variable τ for constructors of kind T, and write τ1 → τ2 for
the application →[τ1][τ2], ∀ u :: κ.τ for ∀κ [λ (u :: κ) τ], and similarly for the existential
quantifier.

The statics of constructors and kinds of Fω is specified by the judgment

% ' c :: κ

which states that the constructor c is well-formed with kind κ . The hypotheses % consist
of a finite set of assumptions

u1 :: κ1, . . . , un :: κn,

where n ≥ 0, specifying the kinds of the active constructor variables.
The statics of constructors is defined by the following rules:

%, u :: κ ' u :: κ (18.1a)

% ' → :: T → T → T (18.1b)

% ' ∀κ :: (κ → T) → T (18.1c)

% ' ∃κ :: (κ → T) → T (18.1d)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Constructors & Kinds

155 18.1 Constructors and Kinds

18.1 Constructors and Kinds

The syntax of kinds of Fω is given by the following grammar:

Kind κ ::= Type T types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1 → κ2 function

The kinds consist of the kind of types T and the unit kind Unit and are closed under
formation of product and function kinds.

The syntax of constructors of Fω is defined by this grammar:

Con c ::= u u variable
arr → function constructor
all{κ} ∀κ universal quantifier
some{κ} ∃κ existential quantifier
proj[l](c) c · l first projection
proj[r](c) c · r second projection
app(c1; c2) c1[c2] application
unit 〈〉 null tuple
pair(c1; c2) 〈c1,c2〉 pair
lam(u.c) λ (u) c abstraction

The syntax of constructors follows the syntax of kinds in that there are introduction and
elimination forms for all kinds. The constants →, ∀κ , and ∃κ are the introduction forms
for the kind T; there are no elimination forms, because types are only used to classify
expressions. We use the meta-variable τ for constructors of kind T, and write τ1 → τ2 for
the application →[τ1][τ2], ∀ u :: κ.τ for ∀κ [λ (u :: κ) τ], and similarly for the existential
quantifier.

The statics of constructors and kinds of Fω is specified by the judgment

% ' c :: κ

which states that the constructor c is well-formed with kind κ . The hypotheses % consist
of a finite set of assumptions

u1 :: κ1, . . . , un :: κn,

where n ≥ 0, specifying the kinds of the active constructor variables.
The statics of constructors is defined by the following rules:

%, u :: κ ' u :: κ (18.1a)

% ' → :: T → T → T (18.1b)

% ' ∀κ :: (κ → T) → T (18.1c)

% ' ∃κ :: (κ → T) → T (18.1d)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Constructors & Kinds
156 Higher Kinds

! ! c :: κ1 × κ2
! ! c · l :: κ1

(18.1e)

! ! c :: κ1 × κ2
! ! c · r :: κ2

(18.1f)

! ! c1 :: κ2 → κ ! ! c2 :: κ2

! ! c1[c2] :: κ
(18.1g)

! ! 〈〉 :: 1 (18.1h)

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 :: κ1 × κ2

(18.1i)

!, u :: κ1 ! c2 :: κ2

! ! λ (u) c2 :: κ1 → κ2
(18.1j)

The kinds of the three constants specify that they can be used to build constructors of kind
T, the kind of types, which, as usual, classify expressions.

18.2 Constructor Equality

The rules of definitional equality for Fω define when two constructors, in particular two
types, are interchangeable by differing only by simplifications that can be performed to
obtain one from the other. The judgment

! ! c1 ≡ c2 :: κ

states that c1 and c2 are definitionally equal constructors of kind κ . When κ is the kind T,
the constructors c1 and c2 are definitionally equal types.

Definitional equality of constructors is defined by these rules:

! ! c :: κ
! ! c ≡ c :: κ

(18.2a)

! ! c ≡ c′ :: κ
! ! c′ ≡ c :: κ

(18.2b)

! ! c ≡ c′ :: κ ! ! c′ ≡ c′′ :: κ
! ! c ≡ c′′ :: κ

(18.2c)

! ! c ≡ c′ :: κ1 × κ2

! ! c · l ≡ c′ · l :: κ1
(18.2d)

! ! c ≡ c′ :: κ1 × κ2

! ! c · r ≡ c′ · r :: κ2
(18.2e)

! ! c1 ≡ c′
1 :: κ1 ! ! c2 ≡ c′

2 :: κ2

! ! 〈c1,c2〉 ≡ 〈c′
1,c

′
2〉 :: κ1 × κ2

(18.2f)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Constructor Equality

156 Higher Kinds

! ! c :: κ1 × κ2
! ! c · l :: κ1

(18.1e)

! ! c :: κ1 × κ2
! ! c · r :: κ2

(18.1f)

! ! c1 :: κ2 → κ ! ! c2 :: κ2

! ! c1[c2] :: κ
(18.1g)

! ! 〈〉 :: 1 (18.1h)

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 :: κ1 × κ2

(18.1i)

!, u :: κ1 ! c2 :: κ2

! ! λ (u) c2 :: κ1 → κ2
(18.1j)

The kinds of the three constants specify that they can be used to build constructors of kind
T, the kind of types, which, as usual, classify expressions.

18.2 Constructor Equality

The rules of definitional equality for Fω define when two constructors, in particular two
types, are interchangeable by differing only by simplifications that can be performed to
obtain one from the other. The judgment

! ! c1 ≡ c2 :: κ

states that c1 and c2 are definitionally equal constructors of kind κ . When κ is the kind T,
the constructors c1 and c2 are definitionally equal types.

Definitional equality of constructors is defined by these rules:

! ! c :: κ
! ! c ≡ c :: κ

(18.2a)

! ! c ≡ c′ :: κ
! ! c′ ≡ c :: κ

(18.2b)

! ! c ≡ c′ :: κ ! ! c′ ≡ c′′ :: κ
! ! c ≡ c′′ :: κ

(18.2c)

! ! c ≡ c′ :: κ1 × κ2

! ! c · l ≡ c′ · l :: κ1
(18.2d)

! ! c ≡ c′ :: κ1 × κ2

! ! c · r ≡ c′ · r :: κ2
(18.2e)

! ! c1 ≡ c′
1 :: κ1 ! ! c2 ≡ c′

2 :: κ2

! ! 〈c1,c2〉 ≡ 〈c′
1,c

′
2〉 :: κ1 × κ2

(18.2f)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Constructor Equality157 18.3 Expressions and Types

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · l ≡ c1 :: κ1

(18.2g)

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · r ≡ c2 :: κ2

(18.2h)

! ! c1 ≡ c′
1 :: κ2 → κ ! ! c2 ≡ c′

2 :: κ2

! ! c1[c2] ≡ c′
1[c′

2] :: κ
(18.2i)

!, u :: κ ! c2 ≡ c′
2 :: κ2

! ! λ (u :: κ) c2 ≡ λ (u :: κ) c′
2 :: κ → κ2

(18.2j)

!, u :: κ1 ! c2 :: κ2 ! ! c1 :: κ1

! ! (λ (u :: κ) c2)[c1] ≡ [c1/u]c2 :: κ2
(18.2k)

In short, definitional equality of constructors is the strongest congruence containing the
rules (18.2g), (18.2h), and (18.2k).

18.3 Expressions and Types

The statics of expressions of Fω is defined using two judgment forms:

! ! τ type type formation
! & ! e : τ expression formation

Here, as before, & is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

such that ! ! τi type for each 1 ≤ i ≤ k.
The types of Fω are the constructors of kind T:

! ! τ :: T
! ! τ type

. (18.3)

This being the only rule for introducing types, the only types are the constructors of kind T.
Definitionally equal types classify the same expressions:

! & ! e : τ1 ! ! τ1 ≡ τ2 :: T
& ! e : τ2

. (18.4)

This rule ensures that in situations such as that described in the introduction to this chapter,
typing is influenced by simplification of types.

The language Fω extends F to permit universal quantification over arbitrary kinds; the
language FEω extends Fω with existential quantification over arbitrary kinds. The statics
of the quantifiers in FEω is defined by the following rules:

!, u :: κ & ! e : τ

! & ! '(u :: κ) e : ∀ u :: κ.τ
(18.5a)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Expressions & Types

157 18.3 Expressions and Types

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · l ≡ c1 :: κ1

(18.2g)

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · r ≡ c2 :: κ2

(18.2h)

! ! c1 ≡ c′
1 :: κ2 → κ ! ! c2 ≡ c′

2 :: κ2

! ! c1[c2] ≡ c′
1[c′

2] :: κ
(18.2i)

!, u :: κ ! c2 ≡ c′
2 :: κ2

! ! λ (u :: κ) c2 ≡ λ (u :: κ) c′
2 :: κ → κ2

(18.2j)

!, u :: κ1 ! c2 :: κ2 ! ! c1 :: κ1

! ! (λ (u :: κ) c2)[c1] ≡ [c1/u]c2 :: κ2
(18.2k)

In short, definitional equality of constructors is the strongest congruence containing the
rules (18.2g), (18.2h), and (18.2k).

18.3 Expressions and Types

The statics of expressions of Fω is defined using two judgment forms:

! ! τ type type formation
! & ! e : τ expression formation

Here, as before, & is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

such that ! ! τi type for each 1 ≤ i ≤ k.
The types of Fω are the constructors of kind T:

! ! τ :: T
! ! τ type

. (18.3)

This being the only rule for introducing types, the only types are the constructors of kind T.
Definitionally equal types classify the same expressions:

! & ! e : τ1 ! ! τ1 ≡ τ2 :: T
& ! e : τ2

. (18.4)

This rule ensures that in situations such as that described in the introduction to this chapter,
typing is influenced by simplification of types.

The language Fω extends F to permit universal quantification over arbitrary kinds; the
language FEω extends Fω with existential quantification over arbitrary kinds. The statics
of the quantifiers in FEω is defined by the following rules:

!, u :: κ & ! e : τ

! & ! '(u :: κ) e : ∀ u :: κ.τ
(18.5a)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Fw Statics: Expressions & Types

157 18.3 Expressions and Types

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · l ≡ c1 :: κ1

(18.2g)

! ! c1 :: κ1 ! ! c2 :: κ2
! ! 〈c1,c2〉 · r ≡ c2 :: κ2

(18.2h)

! ! c1 ≡ c′
1 :: κ2 → κ ! ! c2 ≡ c′

2 :: κ2

! ! c1[c2] ≡ c′
1[c′

2] :: κ
(18.2i)

!, u :: κ ! c2 ≡ c′
2 :: κ2

! ! λ (u :: κ) c2 ≡ λ (u :: κ) c′
2 :: κ → κ2

(18.2j)

!, u :: κ1 ! c2 :: κ2 ! ! c1 :: κ1

! ! (λ (u :: κ) c2)[c1] ≡ [c1/u]c2 :: κ2
(18.2k)

In short, definitional equality of constructors is the strongest congruence containing the
rules (18.2g), (18.2h), and (18.2k).

18.3 Expressions and Types

The statics of expressions of Fω is defined using two judgment forms:

! ! τ type type formation
! & ! e : τ expression formation

Here, as before, & is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

such that ! ! τi type for each 1 ≤ i ≤ k.
The types of Fω are the constructors of kind T:

! ! τ :: T
! ! τ type

. (18.3)

This being the only rule for introducing types, the only types are the constructors of kind T.
Definitionally equal types classify the same expressions:

! & ! e : τ1 ! ! τ1 ≡ τ2 :: T
& ! e : τ2

. (18.4)

This rule ensures that in situations such as that described in the introduction to this chapter,
typing is influenced by simplification of types.

The language Fω extends F to permit universal quantification over arbitrary kinds; the
language FEω extends Fω with existential quantification over arbitrary kinds. The statics
of the quantifiers in FEω is defined by the following rules:

!, u :: κ & ! e : τ

! & ! '(u :: κ) e : ∀ u :: κ.τ
(18.5a)

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

158 Higher Kinds

! " ! e : ∀ u :: κ.τ ! ! c :: κ

! " ! e[c] : [c/u]τ (18.5b)

! ! c :: κ !, u :: κ ! τ type ! " ! e : [c/u]τ
! " ! pack c with e as ∃ u :: κ.τ : ∃ u :: κ.τ

(18.5c)

! " ! e1 : ∃ u :: κ.τ !, u :: κ ", x : τ ! e2 : τ2 ! ! τ2 type
! " ! open e1 as u :: κ with x : τ in e2 : τ2

(18.5d)

The dynamics of FEω is the subject of Exercise 18.2.

18.4 Notes

The language Fω given here is standard, apart from details of notation. The rule of invariance
of typing under definitional equality of types demands that a type checking algorithm
must include as a subroutine an algorithm for checking definitional equality. Numerous
methods for checking such equivalences are given in the literature, all of which proceed by
various means to simplify both sides of an equation, and check whether the results are the
same. Another approach, pioneered by Watkins et al. (2008) in another setting, is to avoid
definitional equality by maintaining constructors in simplified form. The discussion in the
introduction shows that substitution of a simplified constructor into a simplified constructor
is not necessarily simplified. The burden is then shifted to defining a form of simplifying
substitution whose result is always in simplified form.

Exercises

18.1. Adapt the two implementations of queues given in Chapter 17 to match the signature
of queue constructors given in the introduction,

∃ q :: T → T.〈emp ↪→ ∀ t :: T.t, ins ↪→ ∀ t :: T.t × q[t] → q[t],

rem ↪→ ∀ t :: T.q[t] → (t × q[t]) opt〉.

Consider the role played by definitional equality in ensuring that both implementa-
tions have this type.

18.2. Give an equational dynamics for FEω. What role does definitional equality of con-
structors play in it? Formulate a transition dynamics for FEω extended with a type of
observable results, say, nat. What role does definitional equality play in the transition
dynamics?

5!!� 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

