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A Simple Expression Language E

4 Statics

Most programming languages exhibit a phase distinction between the static and dynamic
phases of processing. The static phase consists of parsing and type checking to ensure
that the program is well-formed; the dynamic phase consists of execution of well-formed
programs. A language is said to be safe exactly when well-formed programs are well-
behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing
judgments stating that an expression is well-formed of a certain type. Types mediate the
interaction between the constituent parts of a program by “predicting” some aspects of the
execution behavior of the parts so that we may ensure they fit together properly at run-time.
Type safety tells us that these predictions are correct; if not, the statics is considered to be
improperly defined, and the language is deemed unsafe for execution.

In this chapter, we present the statics of a simple expression language, E, as an illustration
of the method that we will employ throughout this book.

4.1 Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified
by a collection of operators and their arities. The abstract syntax provides a systematic,
unambiguous account of the hierarchical and binding structure of the language and is
considered the official presentation of the language. However, for the sake of clarity, it
is also useful to specify minimal concrete syntax conventions, without going through the
trouble to set up a fully precise grammar for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best
illustrated by example. The following chart summarizes the abstract and concrete syntax
of E.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] "s" literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition
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34 Statics

This chart defines two sorts, Typ, ranged over by τ , and Exp, ranged over by e. The chart
defines a set of operators and their arities. For example, it specifies that the operator let
has arity (Exp,Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and
binds a variable of sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that
are sensitive to the context in which they occur. For example, whether the expression
plus(x; num[n]) is sensible depends on whether the variable x is restricted to have type
num in the surrounding context of the expression. This example is, in fact, illustrative of
the general case, in that the only information required about the context of an expression is
the type of the variables within whose scope the expression lies. Consequently, the statics
of E consists of an inductive definition of generic hypothetical judgments of the form

!x | " " e : τ,

where !x is a finite set of variables, and " is a typing context consisting of hypotheses of the
form x : τ , one for each x ∈ !x. We rely on typographical conventions to determine the set
of variables, using the letters x and y to stand for them. We write x /∈ dom(") to say that
there is no assumption in " of the form x : τ for any type τ , in which case we say that the
variable x is fresh for ".

The rules defining the statics of E are as follows:

", x : τ " x : τ (4.1a)

" " str[s] : str (4.1b)

" " num[n] : num (4.1c)

" " e1 : num " " e2 : num
" " plus(e1; e2) : num (4.1d)

" " e1 : num " " e2 : num
" " times(e1; e2) : num (4.1e)

" " e1 : str " " e2 : str
" " cat(e1; e2) : str (4.1f)

" " e : str
" " len(e) : num (4.1g)

" " e1 : τ1 ", x : τ1 " e2 : τ2

" " let(e1; x.e2) : τ2
(4.1h)

In rule (4.1h), we tacitly assume that the variable x is not already declared in ". This
condition may always be met by choosing a suitable representative of the α-equivalence
class of the let expression.
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40 Dynamics

When applied to the definition of iterated transition, the principle of rule induction states
that to show that P (s, s ′) holds when s "−→∗ s ′, it is enough to show these two properties
of P :

1. P (s, s).
2. if s "−→ s ′ and P (s ′, s ′′), then P (s, s ′′).

The first requirement is to show that P is reflexive. The second is to show that P is closed
under head expansion, or closed under inverse evaluation. Using this principle, it is easy
to prove that "−→∗ is reflexive and transitive.

The n-times iterated transition judgment s "−→n s ′, where n ≥ 0, is inductively defined
by the following rules:

s "−→0 s (5.2a)

s "−→ s ′ s ′ "−→n s ′′

s "−→n+1 s ′′ (5.2b)

Theorem 5.1. For all states s and s ′, s "−→∗ s ′ iff s "−→k s ′ for some k ≥ 0.

Proof From left to right, by induction on the definition of multi-step transition. From right
to left, by mathematical induction on k ≥ 0.

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment e val, which states that e is a value,
is inductively defined by the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e "−→ e′ between states is inductively defined by the following
rules:

n1 + n2 = n

plus(num[n1]; num[n2]) "−→ num[n] (5.4a)

e1 "−→ e′
1

plus(e1; e2) "−→ plus(e′
1; e2)

(5.4b)

e1 val e2 "−→ e′
2

plus(e1; e2) "−→ plus(e1; e′
2)

(5.4c)
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s1 ˆ s2 = s str
cat(str[s1]; str[s2]) !−→ str[s] (5.4d)

e1 !−→ e′
1

cat(e1; e2) !−→ cat(e′
1; e2)

(5.4e)

e1 val e2 !−→ e′
2

cat(e1; e2) !−→ cat(e1; e′
2)

(5.4f)

[
e1 !−→ e′

1

let(e1; x.e2) !−→ let(e′
1; x.e2)

]
(5.4g)

[e1 val]
let(e1; x.e2) !−→ [e1/x]e2

(5.4h)

We have omitted rules for multiplication and computing the length of a string, which follow
a similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they
correspond to the primitive steps of evaluation. The remaining rules are search transitions
that determine the order of execution of instructions.

The bracketed rule (5.4g) and bracketed premise on rule (5.4h) are included for a by-value
interpretation of let and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name
interpretation binds it in unevaluated form. The by-value interpretation saves work if the
defined variable is used more than once but wastes work if it is not used at all. Conversely,
the by-name interpretation saves work if the defined variable is not used and wastes work
if it is used more than once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with
the number of steps in the sequence being its “width” and the derivation tree for each step
being its “height.” For example, consider the following evaluation sequence:

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
!−→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
!−→ plus(plus(num[3]; num[3]); num[4])
!−→ plus(num[6]; num[4])
!−→ num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4).
For example, the third transition in the preceding example is justified by the following
derivation:

plus(num[3]; num[3]) !−→ num[6] (5.4a)

plus(plus(num[3]; num[3]); num[4]) !−→ plus(num[6]; num[4]) (5.4b)

The other steps are similarly justified by composing rules.
The principle of rule induction for the structural dynamics of E states that to show

P(e !−→ e′) when e !−→ e′, it is enough to show that P is closed under rules (5.4). For
example, we may show by rule induction that the structural dynamics of E is determinate,

5!!�   2:6�:�� ������
 ����
����	�
	������
�."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  
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63 8.2 Higher-Order Functions

from expressions. A function name f is bound to an abstractor x.e specifying a pattern that
is instantiated when f is applied. To reduce function definitions to ordinary definitions, we
reify the abstractor into a form of expression, called a λ-abstraction, written lam{τ1}(x.e).
Applications generalize to ap(e1; e2), where e1 is an expression denoting a function, and
not just a function name. λ-abstraction and application are the introduction and elimination
forms for the function type arr(τ1; τ2), which classifies functions with domain τ1 and
range τ2.

The language EF enriches E with function types, as specified by the following
grammar:

Typ τ ::= arr(τ1; τ2) τ1 → τ2 function
Exp e ::= lam{τ }(x.e) λ (x : τ ) e abstraction

ap(e1; e2) e1(e2) application

In EF functions are first-class in that they are a form of expression that can be used like any
other. In particular, functions may be passed as arguments to, and returned as results from,
other functions. For this reason, first-class functions are said to be higher-order, rather than
first-order.

The statics of EF is given by extending rules (4.1) with the following rules:

#, x : τ1 " e : τ2

# " lam{τ1}(x.e) : arr(τ1; τ2) (8.4a)

# " e1 : arr(τ2; τ ) # " e2 : τ2

# " ap(e1; e2) : τ
(8.4b)

Lemma 8.2 (Inversion). Suppose that # " e : τ .

1. If e = lam{τ1}(x.e2), then τ = arr(τ1; τ2) and #, x : τ1 " e2 : τ2.
2. If e = ap(e1; e2), then there exists τ2 such that # " e1 : arr(τ2; τ ) and # " e2 : τ2.

Proof The proof proceeds by rule induction on the typing rules. Observe that for each rule,
exactly one case applies and that the premises of the rule provide the required result.

Lemma 8.3 (Substitution). If #, x : τ " e′ : τ ′, and # " e : τ , then # " [e/x]e′ : τ ′.

Proof By rule induction on the derivation of the first judgment.

The dynamics of EF extends that of E with the following rules:

lam{τ }(x.e) val
(8.5a)

e1 $−→ e′
1

ap(e1; e2) $−→ ap(e′
1; e2)

(8.5b)
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[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(8.5c)

[e2 val]
ap(lam{τ2}(x.e1); e2) !−→ [e2/x]e1

(8.5d)

The bracketed rule and premise are included for a call-by-value interpretation of function
application and excluded for a call-by-name interpretation.1

When functions are first class, there is no need for function declarations: sim-
ply replace the function declaration fun f (x1 : τ1) : τ2 = e2 in e by the definition
let λ (x : τ1) e2 be f in e, and replace second-class function application f (e) by the first-
class function application f (e). Because λ-abstractions are values, it makes no difference
whether the definition is evaluated by-value or by-name for this replacement to make sense.
However, using ordinary definitions, we may, for example, give a name to a partially applied
function, as in the following example:

let k be λ (x1 : num) λ (x2 : num) x1

in let kz be k(0) in kz(3) + kz(5).

Without first-class functions, we cannot even form the function k, which returns a function
as result when applied to its first argument.

Theorem 8.4 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof The proof is by induction on rules (8.5), which define the dynamics of the language.
Consider rule (8.5d),

ap(lam{τ2}(x.e1); e2) !−→ [e2/x]e1
.

Suppose that ap(lam{τ2}(x.e1); e2) : τ1. By Lemma 8.2, we have e2 : τ2 and x : τ2 % e1 : τ1,
so by Lemma 8.3, [e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 8.5 (Canonical Forms). If e : arr(τ1; τ2) and e val, then e = λ (x : τ1) e2 for some
variable x and expression e2 such that x : τ1 % e2 : τ2.

Proof By induction on the typing rules, using the assumption e val.

Theorem 8.6 (Progress). If e : τ , then either e val, or there exists e′ such that e !−→ e′.

Proof The proof is by induction on rules (8.4). Note that because we consider only closed
terms, there are no hypotheses on typing derivations.

Consider rule (8.4b) (under the by-name interpretation). By induction either e1 val or
e1 !−→ e′

1. In the latter case, we have ap(e1; e2) !−→ ap(e′
1; e2). In the former case, we
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let λ (x : τ1) e2 be f in e, and replace second-class function application f (e) by the first-
class function application f (e). Because λ-abstractions are values, it makes no difference
whether the definition is evaluated by-value or by-name for this replacement to make sense.
However, using ordinary definitions, we may, for example, give a name to a partially applied
function, as in the following example:

let k be λ (x1 : num) λ (x2 : num) x1

in let kz be k(0) in kz(3) + kz(5).

Without first-class functions, we cannot even form the function k, which returns a function
as result when applied to its first argument.

Theorem 8.4 (Preservation). If e : τ and e !−→ e′, then e′ : τ .

Proof The proof is by induction on rules (8.5), which define the dynamics of the language.
Consider rule (8.5d),

ap(lam{τ2}(x.e1); e2) !−→ [e2/x]e1
.

Suppose that ap(lam{τ2}(x.e1); e2) : τ1. By Lemma 8.2, we have e2 : τ2 and x : τ2 % e1 : τ1,
so by Lemma 8.3, [e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 8.5 (Canonical Forms). If e : arr(τ1; τ2) and e val, then e = λ (x : τ1) e2 for some
variable x and expression e2 such that x : τ1 % e2 : τ2.

Proof By induction on the typing rules, using the assumption e val.

Theorem 8.6 (Progress). If e : τ , then either e val, or there exists e′ such that e !−→ e′.

Proof The proof is by induction on rules (8.4). Note that because we consider only closed
terms, there are no hypotheses on typing derivations.

Consider rule (8.4b) (under the by-name interpretation). By induction either e1 val or
e1 !−→ e′

1. In the latter case, we have ap(e1; e2) !−→ ap(e′
1; e2). In the former case, we
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have by Lemma 8.5 that e1 = lam{τ2}(x.e) for some x and e. But then ap(e1; e2) !−→
[e2/x]e.

8.3 Evaluation Dynamics and Definitional Equality

An inductive definition of the evaluation judgment e ⇓ v for EF is given by the following
rules:

lam{τ }(x.e) ⇓ lam{τ }(x.e)
(8.6a)

e1 ⇓ lam{τ }(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(8.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 8.7. e ⇓ v iff e !−→∗ v and v val.

Proof In the forward direction, we proceed by rule induction on rules (8.6), following
along similar lines as the proof of Theorem 7.2.

In the reverse direction, we proceed by rule induction on rules (5.1). The proof relies on
an analog of Lemma 7.4, which states that evaluation is closed under converse execution,
which is proved by induction on rules (8.5).

Definitional equality for the call-by-name dynamics of EF is defined by extension of
rules (5.10).

" & ap(lam{τ }(x.e2); e1) ≡ [e1/x]e2 : τ2
(8.7a)

" & e1 ≡ e′
1 : τ2 → τ " & e2 ≡ e′

2 : τ2

" & ap(e1; e2) ≡ ap(e′
1; e′

2) : τ
(8.7b)

", x : τ1 & e2 ≡ e′
2 : τ2

" & lam{τ1}(x.e2) ≡ lam{τ1}(x.e′
2) : τ1 → τ2

(8.7c)

Definitional equality for call-by-value requires a bit more machinery. The main idea is
to restrict rule (8.7a) to require that the argument be a value. In addition, values must be
expanded to include variables, because in call-by-value, the argument variable of a function
stands for the value of its argument. The call-by-value definitional equality judgment takes
the form

" & e1 ≡ e2 : τ,

where " consists of paired hypotheses x : τ, x val stating, for each variable x in scope,
its type and that it is a value. We write " & e val to show that e is a value under these
hypotheses, so that x : τ, x val & x val.
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9 System T of Higher-Order Recursion

System T, well-known as Gödel’s T, is the combination of function types with the type of
natural numbers. In contrast to E, which equips the naturals with some arbitrarily chosen
arithmetic operations, the language T provides a general mechanism, called primitive
recursion, from which these primitives may be defined. Primitive recursion captures the
essential inductive character of the natural numbers, and hence may be seen as an intrinsic
termination proof for each program in the language. Consequently, we may only define total
functions in the language, those that always return a value for each argument. In essence,
every program in T “comes equipped” with a proof of its termination. Although this may
seem like a shield against infinite loops, it is also a weapon that can be used to show that
some programs cannot be written in T. To do so would demand a master termination proof
for every possible program in the language, something that we shall prove does not exist.

9.1 Statics

The syntax of T is given by the following grammar:

Typ τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
rec{e0; x.y.e1}(e) rec e {z ↪→ e0 | s(x) with y ↪→ e1}

recursion
lam{τ }(x.e) λ (x : τ ) e abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is applied n ≥ 0 times
to zero. The expression rec{e0; x.y.e1}(e) is called the recursor. It represents the e-fold
iteration of the transformation x.y.e1 starting from e0. The bound variable x represents
the predecessor and the bound variable y represents the result of the x-fold iteration. The
“with” clause in the concrete syntax for the recursor binds the variable y to the result of
the recursive call, as will become clear shortly.

Sometimes the iterator, iter{e0; y.e1}(e), is considered as an alternative to the recursor.
It has essentially the same meaning as the recursor, except that only the result of the recursive
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call is bound to y in e1, and no binding is made for the predecessor. Clearly, the iterator
is a special case of the recursor, because we can always ignore the predecessor binding.
Conversely, the recursor is definable from the iterator, provided that we have product types
(Chapter 10) at our disposal. To define the recursor from the iterator, we simultaneously
compute the predecessor while iterating the specified computation.

The statics of T is given by the following typing rules:

!, x : τ ! x : τ
(9.1a)

! ! z : nat
(9.1b)

! ! e : nat
! ! s(e) : nat (9.1c)

! ! e : nat ! ! e0 : τ !, x : nat, y : τ ! e1 : τ

! ! rec{e0; x.y.e1}(e) : τ
(9.1d)

!, x : τ1 ! e : τ2

! ! lam{τ1}(x.e) : arr(τ1; τ2) (9.1e)

! ! e1 : arr(τ2; τ ) ! ! e2 : τ2

! ! ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 9.1. If ! ! e : τ and !, x : τ ! e′ : τ ′, then ! ! [e/x]e′ : τ ′.

9.2 Dynamics

The closed values of T are defined by the following rules:

z val
(9.2a)

[e val]
s(e) val

(9.2b)

lam{τ }(x.e) val
(9.2c)

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded
for a lazy interpretation.

The transition rules for the dynamics of T are as follows:
[

e #−→ e′

s(e) #−→ s(e′)

]
(9.3a)

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



System T Dynamics

70 System T of Higher-Order Recursion

call is bound to y in e1, and no binding is made for the predecessor. Clearly, the iterator
is a special case of the recursor, because we can always ignore the predecessor binding.
Conversely, the recursor is definable from the iterator, provided that we have product types
(Chapter 10) at our disposal. To define the recursor from the iterator, we simultaneously
compute the predecessor while iterating the specified computation.

The statics of T is given by the following typing rules:

!, x : τ ! x : τ
(9.1a)

! ! z : nat
(9.1b)

! ! e : nat
! ! s(e) : nat (9.1c)

! ! e : nat ! ! e0 : τ !, x : nat, y : τ ! e1 : τ

! ! rec{e0; x.y.e1}(e) : τ
(9.1d)

!, x : τ1 ! e : τ2

! ! lam{τ1}(x.e) : arr(τ1; τ2) (9.1e)

! ! e1 : arr(τ2; τ ) ! ! e2 : τ2

! ! ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 9.1. If ! ! e : τ and !, x : τ ! e′ : τ ′, then ! ! [e/x]e′ : τ ′.

9.2 Dynamics

The closed values of T are defined by the following rules:

z val
(9.2a)

[e val]
s(e) val

(9.2b)

lam{τ }(x.e) val
(9.2c)

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded
for a lazy interpretation.

The transition rules for the dynamics of T are as follows:
[

e #−→ e′

s(e) #−→ s(e′)

]
(9.3a)

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



System T Dynamics

70 System T of Higher-Order Recursion

call is bound to y in e1, and no binding is made for the predecessor. Clearly, the iterator
is a special case of the recursor, because we can always ignore the predecessor binding.
Conversely, the recursor is definable from the iterator, provided that we have product types
(Chapter 10) at our disposal. To define the recursor from the iterator, we simultaneously
compute the predecessor while iterating the specified computation.

The statics of T is given by the following typing rules:

!, x : τ ! x : τ
(9.1a)

! ! z : nat
(9.1b)

! ! e : nat
! ! s(e) : nat (9.1c)

! ! e : nat ! ! e0 : τ !, x : nat, y : τ ! e1 : τ

! ! rec{e0; x.y.e1}(e) : τ
(9.1d)

!, x : τ1 ! e : τ2

! ! lam{τ1}(x.e) : arr(τ1; τ2) (9.1e)

! ! e1 : arr(τ2; τ ) ! ! e2 : τ2

! ! ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 9.1. If ! ! e : τ and !, x : τ ! e′ : τ ′, then ! ! [e/x]e′ : τ ′.

9.2 Dynamics

The closed values of T are defined by the following rules:

z val
(9.2a)

[e val]
s(e) val

(9.2b)

lam{τ }(x.e) val
(9.2c)

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded
for a lazy interpretation.

The transition rules for the dynamics of T are as follows:
[

e #−→ e′

s(e) #−→ s(e′)

]
(9.3a)

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

71 9.3 Definability

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(9.3b)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(9.3c)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (9.3d)

e !−→ e′

rec{e0; x.y.e1}(e) !−→ rec{e0; x.y.e1}(e′) (9.3e)

rec{e0; x.y.e1}(z) !−→ e0
(9.3f)

s(e) val
rec{e0; x.y.e1}(s(e)) !−→ [e, rec{e0; x.y.e1}(e)/x, y]e1

(9.3g)

The bracketed rules and premises are included for an eager successor and call-by-value
application, and omitted for a lazy successor and call-by-name application. Rules (9.3f) and
(9.3g) specify the behavior of the recursor on z and s(e). In the former case, the recursor
reduces to e0, and in the latter case, the variable x is bound to the predecessor e and y is
bound to the (unevaluated) recursion on e. If the value of y is not required in the rest of the
computation, the recursive call is not evaluated.

Lemma 9.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then e = s(e′) for some e′.
2. If τ = τ1 → τ2, then e = λ (x : τ1) e2 for some e2.

Theorem 9.3 (Safety). 1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or e !−→ e′ for some e′.

9.3 Definability

A mathematical function f : N → N on the natural numbers is definable in T iff there
exists an expression ef of type nat → nat such that for every n ∈ N,

ef (n) ≡ f (n) : nat. (9.4)

That is, the numeric function f : N → N is definable iff there is an expression ef of type
nat → nat such that, when applied to the numeral representing the argument n ∈ N, the
application is definitionally equal to the numeral corresponding to f (n) ∈ N.
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Definitional equality for T, written ! ! e ≡ e′ : τ , is the strongest congruence containing
these axioms:

!, x : τ1 ! e2 : τ2 ! ! e1 : τ1

! ! ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ2
(9.5a)

! ! e0 : τ !, x : τ ! e1 : τ

! ! rec{e0; x.y.e1}(z) ≡ e0 : τ
(9.5b)

! ! e0 : τ !, x : τ ! e1 : τ

! ! rec{e0; x.y.e1}(s(e)) ≡ [e, rec{e0; x.y.e1}(e)/x, y]e1 : τ
(9.5c)

For example, the doubling function, d(n) = 2 × n, is definable in T by the expression
ed : nat → nat given by

λ (x : nat) rec x {z ↪→ z | s(u) with v ↪→ s(s(v))}.

To check that this defines the doubling function, we proceed by induction on n ∈ N. For
the basis, it is easy to check that

ed (0) ≡ 0 : nat.

For the induction, assume that

ed (n) ≡ d(n) : nat.

Then calculate using the rules of definitional equality:

ed (n + 1) ≡ s(s(ed (n)))

≡ s(s(2 × n))

= 2 × (n + 1)

= d(n + 1).

As another example, consider the following function, called Ackermann’s function, de-
fined by the following equations:

A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n)).

The Ackermann function grows very quickly. For example, A(4, 2) ≈ 265,536, which is often
cited as being larger than the number of atoms in the universe! Yet we can show that the
Ackermann function is total by a lexicographic induction on the pair of arguments (m, n).
On each recursive call, either m decreases, or else m remains the same, and n decreases, so
inductively the recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat → nat that is defined
using the recursor, but without using any higher-order functions. Ackermann’s function is
defined so that it is not first-order primitive recursive but is higher-order primitive recursive.
The key to showing that it is definable in T is to note that A(m + 1, n) iterates n times
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! ! rec{e0; x.y.e1}(z) ≡ e0 : τ
(9.5b)
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73 9.4 Undefinability

the function A(m,−), starting with A(m, 1). As an auxiliary, let us define the higher-order
function

it : (nat → nat) → nat → nat → nat

to be the λ-abstraction

λ (f : nat → nat) λ (n : nat) rec n {z ↪→ id | s( ) with g ↪→ f ◦ g},

where id = λ (x : nat) x is the identity, and f ◦g = λ (x : nat) f (g(x)) is the composition
of f and g. It is easy to check that

it(f )(n)(m) ≡ f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m. We may then
define the Ackermann function

ea : nat → nat → nat

to be the expression

λ (m : nat) recm {z ↪→ s | s( ) with f ↪→ λ (n : nat) it(f )(n)(f (1))}.

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (9.6)

ea(m + 1)(0) ≡ ea(m)(1) (9.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (9.8)

That is, the Ackermann function is definable in T.

9.4 Undefinability

It is impossible to define an infinite loop in T.

Theorem 9.4. If e : τ , then there exists v val such that e ≡ v : τ .

Proof See Corollary 46.15.

Consequently, values of function type in T behave like mathematical functions: if e :
τ1 → τ2 and e1 : τ1, then e(e1) evaluates to a value of type τ2. Moreover, if e : nat, then
there exists a natural number n such that e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that there are functions
on the natural numbers that are not definable in T. We make use of a technique, called
Gödel-numbering, that assigns a unique natural number to each closed expression of T.
By assigning a unique number to each expression, we may manipulate expressions as data
values in T so that T is able to compute with its own programs.1

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



System T Definability
73 9.4 Undefinability

the function A(m,−), starting with A(m, 1). As an auxiliary, let us define the higher-order
function

it : (nat → nat) → nat → nat → nat

to be the λ-abstraction

λ (f : nat → nat) λ (n : nat) rec n {z ↪→ id | s( ) with g ↪→ f ◦ g},

where id = λ (x : nat) x is the identity, and f ◦g = λ (x : nat) f (g(x)) is the composition
of f and g. It is easy to check that

it(f )(n)(m) ≡ f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m. We may then
define the Ackermann function

ea : nat → nat → nat

to be the expression

λ (m : nat) recm {z ↪→ s | s( ) with f ↪→ λ (n : nat) it(f )(n)(f (1))}.

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (9.6)

ea(m + 1)(0) ≡ ea(m)(1) (9.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (9.8)

That is, the Ackermann function is definable in T.

9.4 Undefinability

It is impossible to define an infinite loop in T.

Theorem 9.4. If e : τ , then there exists v val such that e ≡ v : τ .

Proof See Corollary 46.15.

Consequently, values of function type in T behave like mathematical functions: if e :
τ1 → τ2 and e1 : τ1, then e(e1) evaluates to a value of type τ2. Moreover, if e : nat, then
there exists a natural number n such that e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that there are functions
on the natural numbers that are not definable in T. We make use of a technique, called
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The essence of Gödel-numbering is captured by the following simple construction on
abstract syntax trees. (The generalization to abstract binding trees is slightly more difficult,
the main complication being to ensure that all α-equivalent expressions are assigned the
same Gödel number.) Recall that a general ast a has the form o(a1, . . . , ak), where o is an
operator of arity k. Enumerate the operators so that every operator has an index i ∈ N, and
let m be the index of o in this enumeration. Define the Gödel number !a" of a to be the
number

2m 3n1 5n2 . . . p
nk

k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and n1, . . . , nk are
the Gödel numbers of a1, . . . , ak , respectively. This procedure assigns a natural number
to each ast. Conversely, given a natural number, n, we may apply the prime factorization
theorem to “parse” n as a unique abstract syntax tree. (If the factorization is not of the right
form, which can only be because the arity of the operator does not match the number of
factors, then n does not code any ast.)

Now, using this representation, we may define a (mathematical) function funiv : N →
N → N such that, for any e : nat → nat, funiv(!e")(m) = n iff e(m) ≡ n : nat.2

The determinacy of the dynamics, together with Theorem 9.4, ensure that funiv is a well-
defined function. It is called the universal function for T because it specifies the behavior
of any expression e of type nat → nat. Using the universal function, let us define an
auxiliary mathematical function, called the diagonal function δ : N → N, by the equation
δ(m) = funiv(m)(m). The δ function is chosen so that δ(!e") = n iff e(!e") ≡ n : nat.
(The motivation for its definition will become clear in a moment.)

The function funiv is not definable in T. Suppose that it were definable by the expression
euniv, then the diagonal function δ would be definable by the expression

eδ = λ (m : nat) euniv(m)(m).

But in that case we would have the equations

eδ(!e") ≡ euniv(!e")(!e")
≡ e(!e").

Now let e$ be the function expression

λ (x : nat) s(eδ(x)),

so that we may deduce

e$(!e$") ≡ s(eδ(!e$"))
≡ s(e$(!e$")).

But the termination theorem implies that there exists n such that e$(!e$") ≡ n, and hence
we have n ≡ s(n), which is impossible.

We say that a language L is universal if it is possible to write an interpreter for L in
L itself. It is intuitively clear that funiv is computable in the sense that we can define it in

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



System T Undefinability

74 System T of Higher-Order Recursion
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Nullary and Binary Products

10 Product Types

The binary product of two types consists of ordered pairs of values, one from each type in
the order specified. The associated elimination forms are projections, which select the first
and second component of a pair. The nullary product, or unit, type consists solely of the
unique “null tuple” of no values and has no associated elimination form. The product type
admits both a lazy and an eager dynamics. According to the lazy dynamics, a pair is a value
without regard to whether its components are values; they are not evaluated until (if ever)
they are accessed and used in another computation. According to the eager dynamics, a pair
is a value only if its components are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, 〈τi〉i∈I , indexed by a finite set of
indices I . The elements of the finite product type are I -indexed tuples whose ith component
is an element of the type τi , for each i ∈ I . The components are accessed by I -indexed
projection operations, generalizing the binary case. Special cases of the finite product
include n-tuples, indexed by sets of the form I = { 0, . . . , n − 1 }, and labeled tuples, or
records, indexed by finite sets of symbols. Similarly to binary products, finite products
admit both an eager and a lazy interpretation.

10.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Exp e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
pr[l](e) e · l left projection
pr[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract from the null
tuple.

The statics of product types is given by the following rules.

" & 〈〉 : unit
(10.1a)
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! ! e1 : τ1 ! ! e2 : τ2
! ! 〈e1, e2〉 : τ1 × τ2

(10.1b)

! ! e : τ1 × τ2
! ! e · l : τ1

(10.1c)

! ! e : τ1 × τ2
! ! e · r : τ2

(10.1d)

The dynamics of product types is defined by the following rules:

〈〉 val
(10.2a)

[e1 val] [e2 val]
〈e1, e2〉 val

(10.2b)

[
e1 %−→ e′

1

〈e1, e2〉 %−→ 〈e′
1, e2〉

]
(10.2c)

[
e1 val e2 %−→ e′

2

〈e1, e2〉 %−→ 〈e1, e
′
2〉

]
(10.2d)

e %−→ e′

e · l %−→ e′ · l (10.2e)

e %−→ e′

e · r %−→ e′ · r (10.2f)

[e1 val] [e2 val]
〈e1, e2〉 · l %−→ e1

(10.2g)

[e1 val] [e2 val]
〈e1, e2〉 · r %−→ e2

(10.2h)

The bracketed rules and premises are omitted for a lazy dynamics and included for an eager
dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof
proceeding along similar lines in each case.

Theorem 10.1 (Safety). 1. If e : τ and e %−→ e′, then e′ : τ .
2. If e : τ then either e val or there exists e′ such that e %−→ e′.

Proof Preservation is proved by induction on transition defined by rules (10.2). Progress
is proved by induction on typing defined by rules (10.1).
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10.2 Finite Products

The syntax of finite product types is given by the following grammar:

Typ τ ::= prod({i ↪→ τi}i∈I ) 〈τi〉i∈I product
Exp e ::= tpl({i ↪→ ei}i∈I ) 〈ei〉i∈I tuple

pr[i](e) e · i projection

The variable I stands for a finite index set over which products are formed. The type
prod({i ↪→ τi}i∈I ), or

∏
i∈I τi for short, is the type of I -tuples of expressions ei of type τi ,

one for each i ∈ I . An I -tuple has the form tpl({i ↪→ ei}i∈I ), or 〈ei〉i∈I for short, and for
each i ∈ I the ith projection from an I -tuple e is written pr[i](e), or e · i for short.

When I = { i1, . . . , in }, the I -tuple type may be written in the form

〈i1 ↪→ τ1, . . . , in ↪→ τn〉

where we make explicit the association of a type to each index i ∈ I . Similarly, we may
write

〈i1 ↪→ e1, . . . , in ↪→ en〉

for the I -tuple whose ith component is ei .
Finite products generalize empty and binary products by choosing I to be empty or the

two-element set { l, r }, respectively. In practice, I is often chosen to be a finite set of
symbols that serve as labels for the components of the tuple to enhance readability.

The statics of finite products is given by the following rules:

# % e1 : τ1 . . . # % en : τn

# % 〈i1 ↪→ e1, . . . , in ↪→ en〉 : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉
(10.3a)

# % e : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉 (1 ≤ k ≤ n)
# % e · ik : τk

(10.3b)

In rule (10.3b), the index ik ∈ I is a particular element of the index set I , whereas in
rule (10.3a), the indices i1, . . . , in range over the entire index set I .

The dynamics of finite products is given by the following rules:

[e1 val . . . en val]
〈i1 ↪→ e1, . . . , in ↪→ en〉 val

(10.4a)





{
e1 val . . . ej−1 val e′

1 = e1 . . . e′
j−1 = ej−1

ej )−→ e′
j e′

j+1 = ej+1 . . . e′
n = en

}

〈i1 ↪→ e1, . . . , in ↪→ en〉 )−→ 〈i1 ↪→ e′
1, . . . , in ↪→ e′

n〉



 (10.4b)

e )−→ e′

e · i )−→ e′ · i
(10.4c)

[〈i1 ↪→ e1, . . . , in ↪→ en〉 val]
〈i1 ↪→ e1, . . . , in ↪→ en〉 · ik )−→ ek

(10.4d)
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for the I -tuple whose ith component is ei .
Finite products generalize empty and binary products by choosing I to be empty or the

two-element set { l, r }, respectively. In practice, I is often chosen to be a finite set of
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In rule (10.3b), the index ik ∈ I is a particular element of the index set I , whereas in
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 (10.4b)

e )−→ e′

e · i )−→ e′ · i
(10.4c)

[〈i1 ↪→ e1, . . . , in ↪→ en〉 val]
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As formulated, rule (10.4b) specifies that the components of a tuple are evaluated in some
sequential order, without specifying the order in which the components are considered. It
is not hard, but a bit technically complicated, to impose an evaluation order by imposing a
total ordering on the index set and evaluating components according to this ordering.

Theorem 10.2 (Safety). If e : τ , then either e val or there exists e′ such that e′ : τ and
e "−→ e′.

Proof The safety theorem is decomposed into progress and preservation lemmas, which
are proved as in Section 10.1.

10.3 Primitive Mutual Recursion

Using products we may simplify the primitive recursion construct of T so that only the
recursive result on the predecessor, and not the predecessor itself, is passed to the successor
branch. Writing this as iter{e0; x.e1}(e), we may define rec{e0; x.y.e1}(e) to be e′ · r,
where e’ is the expression

iter{〈z, e0〉; x ′.〈s(x ′ · l), [x ′ · r/x]e1〉}(e).

The idea is to compute inductively both the number n and the result of the recursive call on
n, from which we can compute both n + 1 and the result of another recursion using e1. The
base case is computed directly as the pair of zero and e0. It is easy to check that the statics
and dynamics of the recursor are preserved by this definition.

We may also use product types to implement mutual primitive recursion, in which
we define two functions simultaneously by primitive recursion. For example, consider the
following recursion equations defining two mathematical functions on the natural numbers:

e(0) = 1

o(0) = 0

e(n + 1) = o(n)

o(n + 1) = e(n)

Intuitively, e(n) is non-zero if and only if n is even, and o(n) is non-zero if and only if n is
odd.

To define these functions in T enriched with products, we first define an auxiliary function
eeo of type

nat → (nat × nat)

that computes both results simultaneously by swapping back and forth on recursive calls:

λ (n : nat × nat) iter n {z ↪→ 〈1, 0〉 | s(b) ↪→ 〈b · r, b · l〉}.
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We may then define eev and eod as follows:

eev ! λ (n : nat) eeo(n) · l
eod ! λ (n : nat) eeo(n) · r.

10.4 Notes

Product types are the most basic form of structured data. All languages have some form of
product type but often in a form that is combined with other, separable, concepts. Common
manifestations of products include (1) functions with “multiple arguments” or “multiple
results”; (2) “objects” represented as tuples of mutually recursive functions; (3) “structures,”
which are tuples with mutable components. There are many papers on finite product types,
which include record types as a special case. Pierce (2002) provides a thorough account of
record types and their subtyping properties (for which, see Chapter 24). Allen et al. (2006)
analyze many of the key ideas in the framework of dependent type theory.

Exercises

10.1. A database schema may be thought of as a finite product type
∏

i∈I τ , in which the
columns, or attributes, are labeled by the indices I whose values are restricted to
atomic types, such as nat and str. A value of a schema type is called a tuple, or
instance, of that schema. A database may be thought of as a finite sequence of such
tuples, called the rows of the database. Give a representation of a database using
function, product, and natural numbers types, and define the project operation that
sends a database with columns I to a database with columns I ′ ⊆ I by restricting
each row to the specified columns.

10.2. Rather than choose between a lazy and an eager dynamics for products, we can
instead distinguish two forms of product type, called the positive and the negative.
The statics of the negative product is given by rules (10.1), and the dynamics is lazy.
The statics of the positive product, written τ1 ⊗ τ2, is given by the following rules:

# % e1 : τ1 # % e2 : τ2

# % fuse(e1; e2) : τ1 ⊗ τ2
(10.5a)

# % e0 : τ1 ⊗ τ2 # x1 : τ1 x2 : τ2 % e : τ

# % split(e0; x1, x2.e) : τ
(10.5b)

The dynamics of fuse, the introduction form for the positive pair, is eager, essentially
because the elimination form, split, extracts both components simultaneously.

Show that the negative product is definable in terms of the positive product using
the unit and function types to express the lazy semantics of negative pairing. Show
that the positive product is definable in terms of the negative product, provided that

5!!�   2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



Nullary and Binary Sums

11 Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an
interior node in a tree, or a choice in the outermost form of a piece of abstract syntax.
Importantly, the choice determines the structure of the value. For example, nodes have
children, but leaves do not, and so forth. These concepts are expressed by sum types,
specifically the binary sum, which offers a choice of two things, and the nullary sum, which
offers a choice of no things. Finite sums generalize nullary and binary sums to allow an
arbitrary number of cases indexed by a finite index set. As with products, sums come in
both eager and lazy variants, differing in how values of sum type are defined.

11.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Exp e ::= abort{τ }(e) abort(e) abort
in[l]{τ1; τ2}(e) l · e left injection
in[r]{τ1; τ2}(e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction
form. The elimination form, abort(e), aborts the computation in the event that e evaluates
to a value, which it cannot do. The elements of the binary sum type are labeled to show
whether they are drawn from the left or the right summand, either l · e or r · e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.
# " e : void

# " abort(e) : τ
(11.1a)

# " e : τ1
# " l · e : τ1 + τ2

(11.1b)

# " e : τ2
# " r · e : τ1 + τ2

(11.1c)

# " e : τ1 + τ2 #, x1 : τ1 " e1 : τ #, x2 : τ2 " e2 : τ

# " case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} : τ
(11.1d)
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For the sake of readability, in rules (11.1b) and (11.1c) we have written l ·e and r ·e in place
of the abstract syntax in[l]{τ1; τ2}(e) and in[r]{τ1; τ2}(e), which includes the types τ1 and
τ2 explicitly. In rule (11.1d), both branches of the case analysis must have the same type.
Because a type expresses a static “prediction” on the form of the value of an expression,
and because an expression of sum type could evaluate to either form at run-time, we must
insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

e !−→ e′

abort(e) !−→ abort(e′) (11.2a)

[e val]
l · e val

(11.2b)

[e val]
r · e val

(11.2c)

[
e !−→ e′

l · e !−→ l · e′

]
(11.2d)

[
e !−→ e′

r · e !−→ r · e′

]
(11.2e)

e !−→ e′

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} !−→ case e′ {l · x1 ↪→ e1 | r · x2 ↪→ e2}
(11.2f)

[e val]
case l · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} !−→ [e/x1]e1

(11.2g)

[e val]
case r · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} !−→ [e/x2]e2

(11.2h)

The bracketed premises and rules are included for an eager dynamics and excluded for a
lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

Theorem 11.1 (Safety). 1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or e !−→ e′ for some e′.

Proof The proof proceeds by induction on rules (11.2) for preservation, and by induction
on rules (11.1) for progress.

11.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so may we also
generalize nullary and binary sums to finite sums. The syntax for finite sums is given by
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the following grammar:

Typ τ ::= sum({i ↪→ τi}i∈I ) [τi]i∈I sum
Exp e ::= in[i]{#τ }(e) i · e injection

case(e; {i ↪→ xi.ei}i∈I ) case e {i · xi ↪→ ei}i∈I case analysis

The variable I stands for a finite index set over which sums are formed. The notation #τ
stands for a finite function {i ↪→ τi}i∈I for some index set I . The type sum({i ↪→ τi}i∈I ),
or

∑
i∈I τi for short, is the type of I -classified values of the form in[i]{I }(ei), or i · ei for

short, where i ∈ I and ei is an expression of type τi . An I -classified value is analyzed by
an I -way case analysis of the form case(e; {i ↪→ xi.ei}i∈I ).

When I = { i1, . . . , in }, the type of I -classified values may be written

[i1 ↪→ τ1, . . . , in ↪→ τn]

specifying the type associated with each class li ∈ I . Correspondingly, the I -way case
analysis has the form

case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en}.

Finite sums generalize empty and binary sums by choosing I to be empty or the two-
element set { l, r }, respectively. In practice I is often chosen to be a finite set of symbols
that serve as names for the classes so as to enhance readability.

The statics of finite sums is defined by the following rules:

# $ e : τk (1 ≤ k ≤ n)
# $ ik · e : [i1 ↪→ τ1, . . . , in ↪→ τn]

(11.3a)

# $ e : [i1 ↪→ τ1, . . . , in ↪→ τn] #, x1 : τ1 $ e1 : τ . . . #, xn : τn $ en : τ

# $ case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en} : τ
(11.3b)

These rules generalize the statics for nullary and binary sums given in Section 11.1.
The dynamics of finite sums is defined by the following rules:

[e val]
i · e val

(11.4a)

[
e &−→ e′

i · e &−→ i · e′

]
(11.4b)

e &−→ e′

case e {i · xi ↪→ ei}i∈I &−→ case e′ {i · xi ↪→ ei}i∈I
(11.4c)

i · e val
case i · e {i · xi ↪→ ei}i∈I &−→ [e/xi]ei

(11.4d)

These again generalize the dynamics of binary sums given in Section 11.1.

Theorem 11.2 (Safety). If e : τ , then either e val or there exists e′ : τ such that e &−→ e′.

Proof The proof is like that for the binary case, as described in Section 11.1.
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the following grammar:
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11.3 Applications of Sum Types

Sum types have many uses, several of which we outline here. More interesting examples
arise once we also have induction and recursive types, which are introduced in Parts VI and
Part VIII.

11.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often confused with one
another. The type unit has exactly one element, 〈〉, whereas the type void has no elements
at all. Consequently, if e : unit, then if e evaluates to a value, that value is 〈〉—in other
words, e has no interesting value. On the other hand, if e : void, then e must not yield a
value; if it were to have a value, it would have to be a value of type void, of which there
are none. Thus, what is called the void type in many languages is really the type unit
because it indicates that an expression has no interesting value, not that it has no value
at all!

11.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans, whose syntax
is given by the following grammar:

Typ τ ::= bool bool booleans
Exp e ::= true true truth

false false falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool.
The statics of Booleans is given by the following typing rules:

" # true : bool
(11.5a)

" # false : bool
(11.5b)

" # e : bool " # e1 : τ " # e2 : τ

" # if e then e1 else e2 : τ
(11.5c)

The dynamics is given by the following value and transition rules:

true val
(11.6a)

false val
(11.6b)
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if true then e1 else e2 !−→ e1
(11.6c)

if false then e1 else e2 !−→ e2
(11.6d)

e !−→ e′

if e then e1 else e2 !−→ if e′ then e1 else e2
(11.6e)

The type bool is definable in terms of binary sums and nullary products:

bool = unit + unit (11.7a)

true = l · 〈〉 (11.7b)

false = r · 〈〉 (11.7c)

if e then e1 else e2 = case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} (11.7d)

In Equation (11.7d), the variables x1 and x2 are chosen arbitrarily such that x1 /∈ e1 and
x2 /∈ e2. It is a simple matter to check that the readily-defined statics and dynamics of the
type bool are engendered by these definitions.

11.3.3 Enumerations

More generally, sum types can be used to define finite enumeration types, those whose
values are one of an explicitly given finite set, and whose elimination form is a case
analysis on the elements of that set. For example, the type suit, whose elements are ♣, ♦,
♥, and ♠, has as elimination form the case analysis

case e {♣ ↪→ e0 | ♦ ↪→ e1 | ♥ ↪→ e2 | ♠ ↪→ e3},

which distinguishes among the four suits. Such finite enumerations are easily representable
as sums. For example, we may define suit = [unit] ∈I , where I = {♣,♦,♥,♠ } and
the type family is constant over this set. The case analysis form for a labeled sum is almost
literally the desired case analysis for the given enumeration, the only difference being the
binding for the uninteresting value associated with each summand, which we may ignore.

Other examples of enumeration types abound. For example, most languages have a type
char of characters, which is a large enumeration type containing all possible Unicode (or
other such standard classification) characters. Each character is assigned a code (such as
UTF-8) used for interchange among programs. The type char is equipped with operations
such as chcode(n) that yield the char associated to the code n, and codech(c) that yield
the code of character c. Using the linear ordering on codes we may define a total ordering
of characters, called the collating sequence determined by that code.
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11.3.4 Options

Another use of sums is to define the option types, which have the following syntax:

Typ τ ::= opt(τ ) τ opt option
Exp e ::= null null nothing

just(e) just(e) something
ifnull{τ }{e1; x.e2}(e) which e {null ↪→ e1 | just(x) ↪→ e2}

null test

The type opt(τ ) represents the type of “optional” values of type τ . The introduction forms
are null, corresponding to “no value,” and just(e), corresponding to a specified value of
type τ . The elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following
equations:1

τ opt = unit + τ (11.8a)

null = l · 〈〉 (11.8b)

just(e) = r · e (11.8c)

which e {null ↪→ e1 | just(x2) ↪→ e2} = case e {l · ↪→ e1 | r · x2 ↪→ e2} (11.8d)

We leave it to the reader to check the statics and dynamics implied by these definitions.
The option type is the key to understanding a common misconception, the null pointer

fallacy. This fallacy arises from two related errors. The first error is to deem values of certain
types to be mysterious entities called pointers. This terminology arises from suppositions
about how these values might be represented at run-time, rather than on their semantic role
in the language. The second error compounds the first. A particular value of a pointer type
is distinguished as the null pointer, which, unlike the other elements of that type, does not
stand for a value of that type at all, but rather rejects all attempts to use it.

To help avoid such failures, such languages usually include a function, say null :
τ → bool, that yields true if its argument is null, and false otherwise. Such a test allows
the programmer to take steps to avoid using null as a value of the type it purports to inhabit.
Consequently, programs are riddled with conditionals of the form

if null(e) then . . . error . . . else . . . proceed . . . . (11.9)

Despite this, “null pointer” exceptions at run-time are rampant, in part because it is quite
easy to overlook the need for such a test, and in part because detection of a null pointer
leaves little recourse other than abortion of the program.

The underlying problem is the failure to distinguish the type τ from the type τ opt.
Rather than think of the elements of type τ as pointers, and thereby have to worry about
the null pointer, we instead distinguish between a genuine value of type τ and an optional
value of type τ . An optional value of type τ may or may not be present, but, if it is, the
underlying value is truly a value of type τ (and cannot be null). The elimination form for
the option type,

which e {null ↪→ eerror | just(x) ↪→ eok}, (11.10)
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