
Chapter 10

Function Definitions and
Values

In the language L{num str} we may perform calculations such as the dou-
bling of a given expression, but we cannot express doubling as a concept
in itself. To capture the general pattern of doubling, we abstract away from
the particular number being doubled using a variable to stand for a fixed,
but unspecified, number, to express the doubling of an arbitrary number.
Any particular instance of doubling may then be obtained by substituting a
numeric expression for that variable. In general an expression may involve
many distinct variables, necessitating that we specify which of several pos-
sible variables is varying in a particular context, giving rise to a function of
that variable.

In this chapter we will consider two extensions of L{num str} with
functions. The first, and perhaps most obvious, extension is by adding func-
tion definitions to the language. A function is defined by binding a name to
an abt with a bound variable that serves as the argument of that function. A
function is applied by substituting a particular expression (of suitable type)
for the bound variable, obtaining an expression.

The domain and range of defined functions are limited to the types nat
and str, since these are the only types of expression. Such functions are
called first-order functions, in contrast to higher-order functions, which permit
functions as arguments and results of other functions. Since the domain
and range of a function are types, this requires that we introduce function
types whose elements are functions. Consequently, we may form functions
of higher type, those whose domain and range may themselves be function
types.

90 10.1 First-Order Functions

Historically the introduction of higher-order functions was responsible
for a mistake in language design that subsequently was re-characterized as
a feature, called dynamic binding. Dynamic binding arises from getting the
definition of substitution wrong by failing to avoid capture. This makes the
names of bound variables important, in violation of the fundamental prin-
ciple of binding stating that the names of bound variables are unimportant.

10.1 First-Order Functions

The language L{num str fun} is the extension of L{num str} with function
definitions and function applications as described by the following gram-
mar:

Expr e ::= call[f](e) f(e) call
fun[τ1; τ2](x1.e2; f.e) fun f(x1:τ1):τ2 = e2 in e definition

The expression fun[τ1; τ2](x1.e2; f.e) binds the function name f within
e to the pattern x1.e2, which has parameter x1 and definition e2. The do-
main and range of the function are, respectively, the types τ1 and τ2. The
expression call[f](e) instantiates the binding of f with the argument e.

The statics of L{num str fun} defines two forms of judgement:

1. Expression typing, e : τ, stating that e has type τ;

2. Function typing, f(τ1) : τ2, stating that f is a function with argument
type τ1 and result type τ2.

The judgment f(τ1) : τ2 is called the function header of f ; it specifies the
domain type and the range type of a function.

The statics of L{num str fun} is defined by the following rules:

Γ, x1 : τ1 ` e2 : τ2 Γ, f(τ1) : τ2 ` e : τ

Γ ` fun[τ1; τ2](x1.e2; f.e) : τ
(10.1a)

Γ ` f(τ1) : τ2 Γ ` e : τ1

Γ ` call[f](e) : τ2
(10.1b)

Function substitution, written [[x.e/ f]]e′, is defined by induction on the
structure of e′ much like the definition of ordinary substitution. However,
a function name, f , is not a form of expression, but rather can only occur in

VERSION 1.16 DRAFT REVISED 08.27.2011

10.2 Higher-Order Functions 91

a call of the form call[f](e). Function substitution for such expressions is
defined by the following rule:

[[x.e/ f]]call[f](e′) = let([[x.e/ f]]e′; x.e)
(10.2)

At call sites to f with argument e′, function substitution yields a let expres-
sion that binds x to the result of expanding any further calls to f within e′.

Lemma 10.1. If Γ, f(τ1) : τ2 ` e : τ and Γ, x1 : τ2 ` e2 : τ2, then Γ `
[[x1.e2/ f]]e : τ.

Proof. By induction on the structure of e′.

The dynamics of L{num str fun} is defined using function substitution:

fun[τ1; τ2](x1.e2; f.e) 7→ [[x1.e2/ f]]e
(10.3)

Since function substitution replaces all calls to f by appropriate let expres-
sions, there is no need to give a rule for function calls.

The safety of L{num str fun} may be obtained as an immediate corol-
lary of the safety theorem for higher-order functions, which we discuss
next.

10.2 Higher-Order Functions

The syntactic and semantic similarity between variable definitions and func-
tion definitions in L{num str fun} is striking. This suggests that it may be
possible to consolidate the two concepts into a single definition mechanism.
The gap that must be bridged is the segregation of functions from expres-
sions. A function name f is bound to an abstractor x.e specifying a pattern
that is instantiated when f is applied. To consolidate function definitions
with expression definitions it is sufficient to reify the abstractor into a form
of expression, called a λ-abstraction, written lam[τ1](x.e). Correspond-
ingly, we must generalize application to have the form ap(e1; e2), where e1
is any expression, and not just a function name. These are, respectively, the
introduction and elimination forms for the function type, arr(τ1; τ2), whose
elements are functions with domain τ1 and range τ2.

REVISED 08.27.2011 DRAFT VERSION 1.16

92 10.2 Higher-Order Functions

The languageL{num str→} is the enrichment ofL{num str}with func-
tion types, as specified by the following grammar:

Type τ ::= arr(τ1; τ2) τ1 → τ2 function
Expr e ::= lam[τ](x.e) λ (x:τ. e) abstraction

ap(e1; e2) e1(e2) application

Functions are now “first class” in the sense that a function is an expression
of function type.

The statics of L{num str→} is given by extending Rules (6.1) with the
following rules:

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(10.4a)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(10.4b)

Lemma 10.2 (Inversion). Suppose that Γ ` e : τ.

1. If e = lam[τ1](x.e), then τ = arr(τ1; τ2) and Γ, x : τ1 ` e : τ2.

2. If e = ap(e1; e2), then there exists τ2 such that Γ ` e1 : arr(τ2; τ) and
Γ ` e2 : τ2.

Proof. The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the rule
in question provide the required result.

Lemma 10.3 (Substitution). If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ `
[e/x]e′ : τ′.

Proof. By rule induction on the derivation of the first judgement.

The dynamics of L{num str→} extends that of L{num str} with the
following additional rules:

lam[τ](x.e) val
(10.5a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(10.5b)

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
(10.5c)

These rules specify a call-by-name discipline for function application. It is
a good exercise to formulate a call-by-value discipline as well.

VERSION 1.16 DRAFT REVISED 08.27.2011

10.3 Evaluation Dynamics and Definitional . . . 93

Theorem 10.4 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. The proof is by induction on rules (10.5), which define the dynamics
of the language.

Consider rule (10.5c),

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
.

Suppose that ap(lam[τ2](x.e1); e2) : τ1. By Lemma 10.2 on the facing page
e2 : τ2 and x : τ2 ` e1 : τ1, so by Lemma 10.3 on the preceding page
[e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 10.5 (Canonical Forms). If e val and e : arr(τ1; τ2), then e = lam[τ1](x.e2)

for some x and e2 such that x : τ1 ` e2 : τ2.

Proof. By induction on the typing rules, using the assumption e val.

Theorem 10.6 (Progress). If e : τ, then either e is a value, or there exists e′ such
that e 7→ e′.

Proof. The proof is by induction on rules (10.4). Note that since we consider
only closed terms, there are no hypotheses on typing derivations.

Consider rule (10.4b). By induction either e1 val or e1 7→ e′1. In the
latter case we have ap(e1; e2) 7→ ap(e′1; e2). In the former case, we have by
Lemma 10.5 that e1 = lam[τ2](x.e) for some x and e. But then ap(e1; e2) 7→
[e2/x]e.

10.3 Evaluation Dynamics and Definitional Equivalence

An inductive definition of the evaluation judgement e ⇓ v forL{num str→}
is given by the following rules:

lam[τ](x.e) ⇓ lam[τ](x.e)
(10.6a)

e1 ⇓ lam[τ](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(10.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 10.7. e ⇓ v iff e 7→∗ v and v val.

REVISED 08.27.2011 DRAFT VERSION 1.16

94 10.3 Evaluation Dynamics and Definitional . . .

Proof. In the forward direction we proceed by rule induction on Rules (10.6).
The proof makes use of a pasting lemma stating that, for example, if e1 7→∗ e′1,
then ap(e1; e2) 7→∗ ap(e′1; e2), and similarly for the other constructs of the
language.

In the reverse direction we proceed by rule induction on Rules (7.1).
The proof relies on a converse evaluation lemma, which states that if e 7→ e′

and e′ ⇓ v, then e ⇓ v. This is proved by rule induction on Rules (10.5).

Definitional equivalence for the call-by-name dynamics ofL{num str→}
is defined by a straightforward extension to Rules (7.11).

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ2
(10.7a)

Γ ` e1 ≡ e′1 : τ2 → τ Γ ` e2 ≡ e′2 : τ2

Γ ` ap(e1; e2) ≡ ap(e′1; e′2) : τ
(10.7b)

Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` lam[τ1](x.e2) ≡ lam[τ1](x.e′2) : τ1 → τ2
(10.7c)

Definitional equivalence for call-by-value requires a small bit of addi-
tional machinery. The main idea is to restrict Rule (10.7a) to require that the
argument be a value. However, to be fully expressive, we must also widen
the concept of a value to include all variables that are in scope, so that
Rule (10.7a) would apply even when the argument is a variable. The justi-
fication for this is that in call-by-value, the parameter of a function stands
for the value of its argument, and not for the argument itself. The call-by-
value definitional equivalence judgement has the form

Ξ Γ ` e1 ≡ e2 : τ,

where Ξ is the finite set of hypotheses x1 val, . . . , xk val governing the vari-
ables in scope at that point. We write Ξ ` e val to indicate that e is a value
under these hypotheses, so that, for example, Ξ, x val ` x val.

The rule of definitional equivalence for call-by-value are similar to those
for call-by-name, modified to take account of the scopes of value variables.
Two illustrative rules are as follows:

Ξ, x val Γ, x : τ1 ` e2 ≡ e′2 : τ2

Ξ Γ ` lam[τ1](x.e2) ≡ lam[τ1](x.e′2) : τ1 → τ2
(10.8a)

Ξ ` e1 val

Ξ Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ
. (10.8b)

VERSION 1.16 DRAFT REVISED 08.27.2011

10.4 Dynamic Scope 95

10.4 Dynamic Scope

The dynamics of function application given by Rules (10.5) is defined only
for expressions without free variables. When a function is called, the argu-
ment is substituted for the function parameter, ensuring that the result re-
mains closed. Moreover, since substitution of closed expressions can never
incur capture, the scopes of variables are not disturbed by the dynamics,
ensuring that the principles of binding and scope described in Chapter 1
are respected. This treatment of variables is called static scoping, or static
binding, to contrast it with an alternative approach that we now describe.

Another approach, called dynamic scoping, or dynamic binding, is some-
times advocated as an alternative to static binding. Evaluation is defined
for expressions that may contain free variables. Evaluation of a variable
is undefined; it is an error to ask for the value of an unbound variable.
Function call is defined similarly to dynamic binding, except that when a
function is called, the argument replaces the parameter in the body, possibly
incurring, rather than avoiding, capture of free variables in the argument.
(As we will explain shortly, this behavior is considered to be a feature, not
a bug!)

The difference between replacement and substitution may be illustrated
by example. Let e be the expression λ (x:str. y + |x|) in which the vari-
able y occurs free, and let e′ be the expression λ (y:str. f(y)) with free
variable f . If we substitute e for f in e′ we obtain an expression of the form

λ (y′:str. λ (x:str. y + |x|)(y′)),

where the bound variable, y, in e has been renamed to some fresh variable
y′ so as to avoid capture. If we instead replace f by e in e′ we obtain

λ (y:str. λ (x:str. y + |x|)(y))

in which y is no longer free: it has been captured during replacement.
The implications of this seemingly small change to the dynamics of

L{→} are far-reaching. The most obvious implication is that the language
is not type safe. In the above example we have that y : nat ` e : str→ nat,
and that f : str→ nat ` e′ : str→ nat. It follows that y : nat ` [e/ f]e′ :
str→ nat, but it is easy to see that the result of replacing f by e in e′ is
ill-typed, regardless of what assumption we make about y. The difficulty,
of course, is that the bound occurrence of y in e′ has type str, whereas the
free occurrence in e must have type nat in order for e to be well-formed.

One way around this difficulty is to ignore types altogether, and rely
on run-time checks to ensure that bad things do not happen, despite the

REVISED 08.27.2011 DRAFT VERSION 1.16

96 10.5 Notes

evident failure of safety. (See Chapter 20 for a full exploration of this ap-
proach.) But even if we ignore worries about safety, we are still left with
the serious problem that the names of bound variables matter, and cannot
be altered without changing the meaning of a program. So, for example,
to use expression e′, one must bear in mind that the parameter, f , occurs
within the scope of a binder for y, a fact that is not revealed by the type of
e′ (and certainly not if one disregards types entirely!) If we change e′ so that
it binds a different variable, say z, then we must correspondingly change
e to ensure that it refers to z, and not y, in order to preserve the overall
behavior of the system of two expressions. This means that e and e′ must
be developed in tandem, violating a basic principle of modular decompo-
sition. (For more on dynamic scope, please see Chapter 35.)

10.5 Notes

Nearly all programming languages provide some form of function defini-
tion mechanism of the kind illustrated here. The main point of the present
account is to demonstrate that a more natural, and more powerful, ap-
proach is to separate the generic concept of a definition from the specific
concept of a function. Function types codify the general notion in a system-
atic manner that encompasses function definitions as a special case, and
moreover, admits passing functions as arguments and returning them as
results without special provision. The essential contribution of Church’s
λ-calculus [20] was to take the notion of function as primary, and indeed
to point out that nothing more is needed to obtain a fully expressive pro-
gramming language. The defining feature of functional programming lan-
guages is precisely that functions are first-class values that can be handled
without special provision or restriction. This, too, is a central feature of
object-oriented languages: objects consist of methods acting on private data,
and are nothing more than functions combined with storage effects.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 11

Gödel’s System T

The language L{nat→}, better known as Gödel’s System T, is the combi-
nation of function types with the type of natural numbers. In contrast
to L{num str}, which equips the naturals with some arbitrarily chosen
arithmetic primitives, the language L{nat→} provides a general mech-
anism, called primitive recursion, from which these primitives may be de-
fined. Primitive recursion captures the essential inductive character of the
natural numbers, and hence may be seen as an intrinsic termination proof
for each program in the language. Consequently, we may only define total
functions in the language, those that always return a value for each argu-
ment. In essence every program in L{nat→} “comes equipped” with a
proof of its termination. While this may seem like a shield against infinite
loops, it is also a weapon that can be used to show that some programs can-
not be written in L{nat→}. To do so would require a master termination
proof for every possible program in the language, something that we shall
prove does not exist.

98 11.1 Statics

11.1 Statics

The syntax of L{nat→} is given by the following grammar:

Type τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Expr e ::= x x variable
z z zero
s(e) s(e) successor
natrec(e; e0; x.y.e1) natrec e {z⇒ e0 | s(x) with y⇒ e1}

recursion
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is applied
n ≥ 0 times to zero. The expression natrec(e; e0; x.y.e1) is called primi-
tive recursion. It represents the e-fold iteration of the transformation x.y.e1
starting from e0. The bound variable x represents the predecessor and the
bound variable y represents the result of the x-fold iteration. The “with”
clause in the concrete syntax for the recursor binds the variable y to the
result of the recursive call, as will become apparent shortly.

Sometimes iteration, written natiter(e; e0; y.e1), is considered as an al-
ternative to primitive recursion. It has essentially the same meaning as
primitive recursion, except that only the result of the recursive call is bound
to y in e1, and no binding is made for the predecessor. Clearly iteration is
a special case of primitive recursion, since we can always ignore the pre-
decessor binding. Conversely, primitive recursion is definable from itera-
tion, provided that we have product types (Chapter 13) at our disposal. To
define primitive recursion from iteration we simultaneously compute the
predecessor while iterating the specified computation.

The statics of L{nat→} is given by the following typing rules:

Γ, x : nat ` x : nat (11.1a)

Γ ` z : nat (11.1b)

Γ ` e : nat
Γ ` s(e) : nat

(11.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` natrec(e; e0; x.y.e1) : τ
(11.1d)

Γ, x : σ ` e : τ

Γ ` lam[σ](x.e) : arr(σ; τ)
(11.1e)

VERSION 1.16 DRAFT REVISED 08.27.2011

11.2 Dynamics 99

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(11.1f)

As usual, admissibility of the structural rule of substitution is crucially
important.

Lemma 11.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

11.2 Dynamics

The dynamics of L{nat→} adopts a call-by-name interpretation of func-
tion application, and requires that the successor operation evaluate its ar-
gument (so that values of type nat are numerals).

The closed values of L{nat→} are determined by the following rules:

z val (11.2a)

e val
s(e) val

(11.2b)

lam[τ](x.e) val (11.2c)

The dynamics of L{nat→} is given by the following rules:

e 7→ e′

s(e) 7→ s(e′)
(11.3a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(11.3b)

ap(lam[τ](x.e); e2) 7→ [e2/x]e
(11.3c)

e 7→ e′

natrec(e; e0; x.y.e1) 7→ natrec(e′; e0; x.y.e1)
(11.3d)

natrec(z; e0; x.y.e1) 7→ e0
(11.3e)

s(e) val

natrec(s(e); e0; x.y.e1) 7→ [e, natrec(e; e0; x.y.e1)/x, y]e1
(11.3f)

Rules (11.3e) and (11.3f) specify the behavior of the recursor on z and s(e).
In the former case the recursor evaluates e0, and in the latter case the vari-
able x is bound to the predecessor, e, and y is bound to the (unevaluated)
recursion on e. If the value of y is not required in the rest of the computa-
tion, the recursive call will not be evaluated.

REVISED 08.27.2011 DRAFT VERSION 1.16

100 11.3 Definability

Lemma 11.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then e = s(s(. . . z)) for some number n ≥ 0 occurrences of
the successor starting with zero.

2. If τ = τ1 → τ2, then e = λ (x:τ1. e2) for some e2.

Theorem 11.3 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′

11.3 Definability

A mathematical function f : N→ N on the natural numbers is definable in
L{nat→} iff there exists an expression e f of type nat → nat such that for
every n ∈N,

e f(n) ≡ f (n) : nat. (11.4)

That is, the numeric function f : N→ N is definable iff there is an expres-
sion e f of type nat → nat such that, when applied to the numeral repre-
senting the argument n ∈ N, is definitionally equivalent to the numeral
corresponding to f (n) ∈N.

Definitional equivalence for L{nat→}, written Γ ` e ≡ e′ : τ, is the
strongest congruence containing these axioms:

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ
(11.5a)

Γ ` natrec(z; e0; x.y.e1) ≡ e0 : τ
(11.5b)

Γ ` natrec(s(e); e0; x.y.e1) ≡ [e, natrec(e; e0; x.y.e1)/x, y]e1 : τ
(11.5c)

For example, the doubling function, d(n) = 2×n, is definable inL{nat→}
by the expression ed : nat→ nat given by

λ (x:nat. natrec x {z⇒ z | s(u) with v⇒ s(s(v))}).

To check that this defines the doubling function, we proceed by induction
on n ∈N. For the basis, it is easy to check that

ed(0) ≡ 0 : nat.

VERSION 1.16 DRAFT REVISED 08.27.2011

11.3 Definability 101

For the induction, assume that

ed(n) ≡ d(n) : nat.

Then calculate using the rules of definitional equivalence:

ed(n + 1) ≡ s(s(ed(n)))

≡ s(s(2× n))

= 2× (n + 1)

= d(n + 1).

As another example, consider the following function, called Ackermann’s
function, defined by the following equations:

A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m, A(m + 1, n)).

This function grows very quickly. For example, A(4, 2) ≈ 265,536, which is
often cited as being much larger than the number of atoms in the universe!
Yet we can show that the Ackermann function is total by a lexicographic
induction on the pair of argument (m, n). On each recursive call, either m
decreases, or else m remains the same, and n decreases, so inductively the
recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat → nat

that is defined using primitive recursion, but without using any higher or-
der functions. Ackermann’s function is defined so that it is not first-order
primitive recursive, but is higher-order primitive recursive. The key is to
showing that it is definable in L{nat→} is to observe that A(m + 1, n) iter-
ates the function A(m,−) for n times, starting with A(m, 1). As an auxiliary,
let us define the higher-order function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ (f:nat→ nat. λ (n:nat. natrec n {z⇒ id | s() with g⇒ f ◦ g})),

where id = λ (x:nat. x) is the identity, and f ◦ g = λ (x:nat. f(g(x))) is
the composition of f and g. It is easy to check that

it(f)(n)(m) ≡ f (n)(m) : nat,

REVISED 08.27.2011 DRAFT VERSION 1.16

102 11.4 Undefinability

where the latter expression is the n-fold composition of f starting with m.
We may then define the Ackermann function

ea : nat→ nat→ nat

to be the expression

λ (m:nat. natrecm {z⇒ succ | s() with f ⇒ λ (n:nat. it(f)(n)(f(1)))}).

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (11.6)

ea(m + 1)(0) ≡ ea(m)(1) (11.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (11.8)

That is, the Ackermann function is definable in L{nat→}.

11.4 Undefinability

It is impossible to define an infinite loop in L{nat→}.

Theorem 11.4. If e : τ, then there exists v val such that e ≡ v : τ.

Proof. See Corollary 49.11 on page 493.

Consequently, values of function type in L{nat→} behave like mathe-
matical functions: if f : σ→ τ and e : σ, then f(e) evaluates to a value of
type τ. Moreover, if e : nat, then there exists a natural number n such that
e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that
there are functions on the natural numbers that are not definable in the
L{nat→}. We make use of a technique, called Gödel-numbering, that as-
signs a unique natural number to each closed expression ofL{nat→}. This
allows us to manipulate expressions as data values inL{nat→}, and hence
permits L{nat→} to compute with its own programs.1

The essence of Gödel-numbering is captured by the following simple
construction on abstract syntax trees. (The generalization to abstract bind-
ing trees is slightly more difficult, the main complication being to ensure

1The same technique lies at the heart of the proof of Gödel’s celebrated incompleteness
theorem. The undefinability of certain functions on the natural numbers within L{nat→}
may be seen as a form of incompleteness similar to that considered by Gödel.

VERSION 1.16 DRAFT REVISED 08.27.2011

11.4 Undefinability 103

that α-equivalent expressions are assigned the same Gödel number.) Recall
that a general ast, a, has the form o(a1, . . . , ak), where o is an operator of
arity k. Fix an enumeration of the operators so that every operator has an
index i ∈ N, and let m be the index of o in this enumeration. Define the
Gödel number paq of a to be the number

2m 3n1 5n2 . . . pnk
k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and
n1, . . . , nk are the Gödel numbers of a1, . . . , ak, respectively. This obviously
assigns a natural number to each ast. Conversely, given a natural number,
n, we may apply the prime factorization theorem to “parse” n as a unique
abstract syntax tree. (If the factorization is not of the appropriate form,
which can only be because the arity of the operator does not match the
number of factors, then n does not code any ast.)

Now, using this representation, we may define a (mathematical) func-
tion funiv : N → N → N such that, for any e : nat→ nat, funiv(peq)(m) =
n iff e(m) ≡ n : nat.2 The determinacy of the dynamics, together with The-
orem 11.4 on the facing page, ensure that funiv is a well-defined function. It
is called the universal function for L{nat→} because it specifies the behav-
ior of any expression e of type nat→ nat. Using the universal function, let
us define an auxiliary mathematical function, called the diagonal function,
d : N → N, by the equation d(m) = funiv(m)(m). This function is chosen
so that d(peq) = n iff e(peq) ≡ n : nat. (The motivation for this definition
will be apparent in a moment.)

The function d is not definable in L{nat→}. Suppose that d were de-
fined by the expression ed, so that we have

ed(peq) ≡ e(peq) : nat.

Let eD be the expression

λ (x:nat. s(ed(x)))

of type nat→ nat. We then have

eD(peDq) ≡ s(ed(peDq))

≡ s(eD(peDq)).

2The value of funiv(k)(m) may be chosen arbitrarily to be zero when k is not the code of
any expression e.

REVISED 08.27.2011 DRAFT VERSION 1.16

104 11.5 Notes

But the termination theorem implies that there exists n such that eD(peDq) ≡
n, and hence we have n ≡ s(n), which is impossible.

The function funiv is computable (that is, one can write an interpreter for
L{nat→}), but it is not programmable inL{nat→} itself. In general a lan-
guage L is universal if we can write an interpreter for L in the language L
itself. The foregoing argument shows that L{nat→} is not universal. Con-
sequently, there are computable numeric functions, such as the diagonal
function, that cannot be programmed in L{nat→}. Consequently, the uni-
versal function for L{nat→} cannot be programmed in the language. In
other words, one cannot write an interpreter for L{nat→} in the language
itself!

11.5 Notes

L{nat→} was introduced by Gödel in his study of proofs of proving the
consistency of arithmetic [32]. In this paper Gödel showed how to “com-
pile” proofs in arithmetic into well-typed terms of the language L{nat→},
and thereby that consistency of arithmetic is equivalent to the termination
(more precisely, normalization) of programs in L{nat→}. This was per-
haps the first programming language whose design was directly influenced
by consideration of verification (of termination) of its programs.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 12

Plotkin’s PCF

The language L{nat⇀}, also known as Plotkin’s PCF, integrates functions
and natural numbers using general recursion, a means of defining self-referential
expressions. In contrast to L{nat→} expressions in L{nat⇀} may not
terminate when evaluated; consequently, functions are partial (may be un-
defined for some arguments), rather than total (which explains the “partial
arrow” notation for function types). Compared to L{nat→}, the language
L{nat⇀} moves the termination proof from the expression itself to the
mind of the programmer. The type system no longer ensures termination,
which permits a wider range of functions to be defined in the system, but
at the cost of admitting infinite loops when the termination proof is either
incorrect or absent.

The crucial concept embodied in L{nat⇀} is the fixed point characteri-
zation of recursive definitions. In ordinary mathematical practice one may
define a function f by recursion equations such as these:

f (0) = 1
f (n + 1) = (n + 1)× f (n)

These may be viewed as simultaneous equations in the variable, f , ranging
over functions on the natural numbers. The function we seek is a solution to
these equations—a function f : N→ N such that the above conditions are
satisfied. We must, of course, show that these equations have a unique so-
lution, which is easily shown by mathematical induction on the argument
to f .

The solution to such a system of equations may be characterized as
the fixed point of an associated functional (operator mapping functions to

106

functions). To see this, let us re-write these equations in another form:

f (n) =

{
1 if n = 0
n× f (n′) if n = n′ + 1

Re-writing yet again, we seek f such that

f : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Now define the functional F by the equation F(f) = f ′, where

f ′ : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Note well that the condition on f ′ is expressed in terms of the argument, f ,
to the functional F, and not in terms of f ′ itself! The function f we seek is
then a fixed point of F, which is a function f : N→N such that f = F(f). In
other words f is defined to the fix(F), where fix is an operator on functionals
yielding a fixed point of F.

Why does an operator such as F have a fixed point? Informally, a fixed
point may be obtained as the limit of series of approximations to the desired
solution obtained by iterating the functional F. This is where partial func-
tions come into the picture. Let us say that a partial function, φ on the nat-
ural numbers, is an approximation to a total function, f , if φ(m) = n implies
that f (m) = n. Let ⊥: N ⇀ N be the totally undefined partial function—
⊥ (n) is undefined for every n ∈N. Intuitively, this is the “worst” approx-
imation to the desired solution, f , of the recursion equations given above.
Given any approximation, φ, of f , we may “improve” it by considering
φ′ = F(φ). Intuitively, φ′ is defined on 0 and on m + 1 for every m ≥ 0 on
which φ is defined. Continuing in this manner, φ′′ = F(φ′) = F(F(φ)) is
an improvement on φ′, and hence a further improvement on φ. If we start
with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F(i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈N,
and hence is the function f itself. Turning this around, if the limit exists, it
must be the solution we seek.

This fixed point characterization of recursion equations is taken as a
primitive concept in L{nat⇀}—we may obtain the least fixed point of any

VERSION 1.16 DRAFT REVISED 08.27.2011

12.1 Statics 107

functional definable in the language. Using this we may solve any set of
recursion equations we like, with the proviso that there is no guarantee
that the solution is a total function. Rather, it is guaranteed to be a partial
function that may be undefined on some, all, or no inputs. This is the price
we pay for expressive power—we may solve all systems of equations, but
the solution may not be as well-behaved as we might like. It is our task as
programmers to ensure that the functions defined by recursion are total—
all of our loops terminate.

12.1 Statics

The abstract binding syntax of L{nat⇀} is given by the following gram-
mar:

Type τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Expr e ::= x x variable
z z zero
s(e) s(e) successor
ifz(e; e0; x.e1) ifz e {z⇒ e0 | s(x)⇒ e1} zero test
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application
fix[τ](x.e) fix x:τ is e recursion

The expression fix[τ](x.e) is called general recursion; it is discussed in
more detail below. The expression ifz(e; e0; x.e1) branches according to
whether e evaluates to z or not, binding the predecessor to x in the case
that it is not.

The statics of L{nat⇀} is inductively defined by the following rules:

Γ, x : τ ` x : τ (12.1a)

Γ ` z : nat (12.1b)

Γ ` e : nat
Γ ` s(e) : nat

(12.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz(e; e0; x.e1) : τ
(12.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : parr(τ1; τ2)
(12.1e)

REVISED 08.27.2011 DRAFT VERSION 1.16

108 12.2 Dynamics

Γ ` e1 : parr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(12.1f)

Γ, x : τ ` e : τ

Γ ` fix[τ](x.e) : τ
(12.1g)

Rule (12.1g) reflects the self-referential nature of general recursion. To show
that fix[τ](x.e) has type τ, we assume that it is the case by assigning that
type to the variable, x, which stands for the recursive expression itself, and
checking that the body, e, has type τ under this very assumption.

The structural rules, including in particular substitution, are admissible
for the static semantics.

Lemma 12.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

12.2 Dynamics

The dynamic semantics of L{nat⇀} is defined by the judgements e val,
specifying the closed values, and e 7→ e′, specifying the steps of evaluation.
We will consider a call-by-name dynamics for function application, and
require that the successor evaluate its argument.

The judgement e val is defined by the following rules:

z val (12.2a)

{e val}
s(e) val

(12.2b)

lam[τ](x.e) val (12.2c)

The bracketed premise on Rule (12.2b) is to be included for the eager inter-
pretation of the sucessor operation, and omitted for the lazy interpretation.
(See Section 12.4 on page 112 for more on this choice, which is further elab-
orated in Chapter 39).

The transition judgement e 7→ e′ is defined by the following rules:{
e 7→ e′

s(e) 7→ s(e′)

}
(12.3a)

e 7→ e′

ifz(e; e0; x.e1) 7→ ifz(e′; e0; x.e1)
(12.3b)

ifz(z; e0; x.e1) 7→ e0 (12.3c)

VERSION 1.16 DRAFT REVISED 08.27.2011

12.2 Dynamics 109

s(e) val

ifz(s(e); e0; x.e1) 7→ [e/x]e1
(12.3d)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(12.3e)

ap(lam[τ](x.e); e2) 7→ [e2/x]e (12.3f)

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e (12.3g)

The bracketed Rule (12.3a) is to be included for an eager interpretation
of the successor, and omitted otherwise. Rule (12.3g) implements self-
reference by substituting the recursive expression itself for the variable x
in its body. This is called unwinding the recursion.

Theorem 12.2 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The proof of preservation is by induction on the derivation of the
transition judgement. Consider Rule (12.3g). Suppose that fix[τ](x.e) :
τ. By inversion and substitution we have [fix[τ](x.e)/x]e : τ, from
which the result follows directly by transitivity of the hypothetical judge-
ment. The proof of progress proceeds by induction on the derivation of the
typing judgement. For example, for Rule (12.1g) the result follows imme-
diately since we may make progress by unwinding the recursion.

Definitional equivalence for L{nat⇀}, written Γ ` e1 ≡ e2 : τ, is de-
fined to be the strongest congruence containing the following axioms:

Γ ` ifz(z; e0; x.e1) ≡ e0 : τ (12.4a)

Γ ` ifz(s(e); e0; x.e1) ≡ [e/x]e1 : τ (12.4b)

Γ ` fix[τ](x.e) ≡ [fix[τ](x.e)/x]e : τ (12.4c)

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ (12.4d)

These rules are sufficient to calculate the value of any closed expression of
type nat: if e : nat, then e ≡ n : nat iff e 7→∗ n.

REVISED 08.27.2011 DRAFT VERSION 1.16

110 12.3 Definability

12.3 Definability

General recursion is a very flexible programming technique that permits a
wide variety of functions to be defined within L{nat⇀}. The drawback
is that, in contrast to primitive recursion, the termination of a recursively
defined function is not intrinsic to the program itself, but rather must be
proved extrinsically by the programmer. The benefit is a much greater free-
dom in writing programs.

General recursive functions are definable from general recursion and
non-recursive functions. Let us write fun x(y:τ1):τ2 is e for a recursive
function within whose body, e : τ2, are bound two variables, y : τ1 stand-
ing for the argument and x : τ1 → τ2 standing for the function itself. The
dynamic semantics of this construct is given by the axiom

fun x(y:τ1):τ2 is e(e1) 7→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function
itself for x and the argument for y in its body.

Recursive functions may be defined in L{nat⇀} using a combination
of recursion and functions, writing

fix x:τ1 ⇀ τ2 isλ (y:τ1. e)

for fun x(y:τ1):τ2 is e. It is a good exercise to check that the static and
dynamic semantics of recursive functions are derivable from this definition.

The primitive recursion construct of L{nat→} is defined in L{nat⇀}
using recursive functions by taking the expression

natrec e {z⇒ e0 | s(x) with y⇒ e1}

to stand for the application, e′(e), where e′ is the general recursive function

fun f(u:nat):τ is ifz u {z⇒ e0 | s(x)⇒ [f(x)/y]e1}.

The static and dynamic semantics of primitive recursion are derivable in
L{nat⇀} using this expansion.

In general, functions definable in L{nat⇀} are partial in that they may
be undefined for some arguments. A partial (mathematical) function, φ :
N ⇀ N, is definable in L{nat⇀} iff there is an expression eφ : nat⇀ nat

such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example, if φ is the totally
undefined function, then eφ is any function that loops without returning
whenever it is called.

VERSION 1.16 DRAFT REVISED 08.27.2011

12.3 Definability 111

It is informative to classify those partial functions φ that are definable
in L{nat⇀}. These are the so-called partial recursive functions, which are
defined to be the primitive recursive functions augmented by the minimiza-
tion operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no
such m exists, then ψ(n) is undefined.

Theorem 12.3. A partial function φ on the natural numbers is definable inL{nat⇀}
iff it is partial recursive.

Proof sketch. Minimization is readily definable in L{nat⇀}, so it is at least
as powerful as the set of partial recursive functions. Conversely, we may,
with considerable tedium, define an evaluator for expressions ofL{nat⇀}
as a partial recursive function, using Gödel-numbering to represent expres-
sions as numbers. Consequently, L{nat⇀} does not exceed the power of
the set of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with
the set of effectively computable functions on the natural numbers—those
that can be carried out by a program written in any programming language
currently available or that will ever be available.1 Therefore L{nat⇀} is
as powerful as any other programming language with respect to the set of
definable functions on the natural numbers.

The universal function, φuniv, for L{nat⇀} is the partial function on
the natural numbers defined by

φuniv(peq)(m) = n iff e(m) ≡ n : nat.

In contrast to L{nat→}, the universal function φuniv for L{nat⇀} is par-
tial (may be undefined for some inputs). It is, in essence, an interpreter
that, given the code peq of a closed expression of type nat⇀ nat, simulates
the dynamic semantics to calculate the result, if any, of applying it to the m,
obtaining n. Since this process may not terminate, the universal function is
not defined for all inputs.

By Church’s Law the universal function is definable in L{nat⇀}. In
contrast, we proved in Chapter 11 that the analogous function is not defin-
able in L{nat→} using the technique of diagonalization. It is instructive
to examine why that argument does not apply in the present setting. As in
Section 11.4 on page 102, we may derive the equivalence

eD(peDq) ≡ s(eD(peDq))

1See Chapter 19 for further discussion of Church’s Law.

REVISED 08.27.2011 DRAFT VERSION 1.16

112 12.4 Co-Natural Numbers

for L{nat⇀}. The difference, however, is that this equation is not incon-
sistent! Rather than being contradictory, it is merely a proof that the expres-
sion eD(peDq) does not terminate when evaluated, for if it did, the result
would be a number equal to its own successor, which is impossible.

12.4 Co-Natural Numbers

The dynamics of the successor operation on natural numbers may be taken
to be either eager or lazy, according to whether the predecessor of a suc-
cessor is required to be a value. The eager interpretation represents the
standard natural numbers in the sense that if e : nat and e val, then e eval-
uates to a numeral. The lazy interpretation, however, admits non-standard
“natural numbers,” such as

ω = fix x:nat is s(x).

The “number” ω evaluates to s(ω). This “number” may be thought of as
an infinite stack of successors, since whenever we peel off the outermost
successor we obtain the same “number” back again. The “number” ω is
therefore larger than any other natural number in the sense that one may
reach zero by repeatedly taking the predecessor of a natural number, but
any number of predecessors on ω leads back to ω itself.

As the scare quotes indicate, it is stretching the terminology to refer to
ω as a natural number. Instead one should distinguish a new type, called
conat, of lazy natural numbers, of which ω is an element. The prefix “co-”
indicates that the co-natural numbers are “dual” to the natural numbers in
the following sense. The natural numbers are inductively defined as the
least type such that if e ≡ z : nat or e ≡ s(e′) : nat for some e′ : nat, then
e : nat. Dually, the co-natural numbers may be regarded as the largest type
such that if e : conat, then either e ≡ z : conat, or e ≡ s(e′) : nat for some
e′ : conat. The difference is that ω : conat, because ω is definitionally
equivalent to its own successor, whereas it is not the case that ω : nat,
according to these definitions.

The duality between the natural numbers and the co-natural numbers
is developed further in Chapter 17, wherein we consider the concepts of
inductive and co-inductive types. Eagerness and laziness in general is dis-
cussed further in Chapter 39.

VERSION 1.16 DRAFT REVISED 08.27.2011

12.5 Notes 113

12.5 Notes

The language L{nat⇀} is inspired by Plotkin’s PCF [76]. Plotkin’s orig-
inal motivation was to analyze the relationship between denotational and
operational semantics, but many subsequent studies have used PCF as a
jumping off point for discussing numerous issues in language design.

REVISED 08.27.2011 DRAFT VERSION 1.16

114 12.5 Notes

VERSION 1.16 DRAFT REVISED 08.27.2011

