
Chapter 22

Girard’s System F

The languages we have considered so far are all monomorphic in that every
expression has a unique type, given the types of its free variables, if it has
a type at all. Yet it is often the case that essentially the same behavior is re-
quired, albeit at several different types. For example, in L{nat→} there is
a distinct identity function for each type τ, namely λ (x:τ. x), even though
the behavior is the same for each choice of τ. Similarly, there is a distinct
composition operator for each triple of types, namely

◦τ1,τ2,τ3 = λ (f:τ2 → τ3. λ (g:τ1 → τ2. λ (x:τ1. f(g(x))))).

Each choice of the three types requires a different program, even though
they all exhibit the same behavior when executed.

Obviously it would be useful to capture the general pattern once and
for all, and to instantiate this pattern each time we need it. The expression
patterns codify generic (type-independent) behaviors that are shared by all
instances of the pattern. Such generic expressions are said to be polymor-
phic. In this chapter we will study a language introduced by Girard under
the name System F and by Reynolds under the name polymorphic typed λ-
calculus. Although motivated by a simple practical problem (how to avoid
writing redundant code), the concept of polymorphism is central to an im-
pressive variety of seemingly disparate concepts, including the concept of
data abstraction (the subject of Chapter 23), and the definability of product,
sum, inductive, and coinductive types considered in the preceding chap-
ters. (Only general recursive types extend the expressive power of the lan-
guage.)

198 22.1 System F

22.1 System F

System F, or the polymorphic λ-calculus, or L{→∀}, is a minimal functional
language that illustrates the core concepts of polymorphic typing, and per-
mits us to examine its surprising expressive power in isolation from other
language features. The syntax of System F is given by the following gram-
mar:

Type τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Expr e ::= x x
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) Λ(t.e) type abstraction
App[τ](e) e[τ] type application

A type abstraction, Lam(t.e), defines a generic, or polymorphic, function with
type parameter t standing for an unspecified type within e. A type application,
or instantiation, App[τ](e), applies a polymorphic function to a specified
type, which is then plugged in for the type parameter to obtain the result.
Polymorphic functions are classified by the universal type, all(t.τ), that
determines the type, τ, of the result as a function of the argument, t.

The statics of L{→∀} consists of two judgement forms, the type forma-
tion judgement,

~t | ∆ ` τ type,

and the typing judgement,

~t ~x | ∆ Γ ` e : τ.

These are generic judgements over type variables ~t and expression variables
~x. They are also hypothetical in a set ∆ of type assumptions of the form
t type, where t ∈ T , and typing assumptions of the form x : τ, where x ∈ T
and ∆ ` τ type. As usual we drop explicit mention of the parameter sets,
relying on typographical conventions to determine them.

The rules defining the type formation judgement are as follows:

∆, t type ` t type (22.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(22.1b)

VERSION 1.16 DRAFT REVISED 08.27.2011

22.1 System F 199

∆, t type ` τ type

∆ ` all(t.τ) type
(22.1c)

The rules defining the typing judgement are as follows:

∆ Γ, x : τ ` x : τ (22.2a)

∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2

∆ Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(22.2b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(22.2c)

∆, t type Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(22.2d)

∆ Γ ` e : all(t.τ′) ∆ ` τ type

∆ Γ ` App[τ](e) : [τ/t]τ′
(22.2e)

Lemma 22.1 (Regularity). If ∆ Γ ` e : τ, and if ∆ ` τi type for each assumption
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (22.2).

The statics admits the structural rules for a general hypothetical judge-
ment. In particular, we have the following critical substitution property for
type formation and expression typing.

Lemma 22.2 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then
∆ ` [τ/t]τ′ type.

2. If ∆, t type Γ ` e′ : τ′ and ∆ ` τ type, then ∆ [τ/t]Γ ` [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ ` e′ : τ′ and ∆ Γ ` e : τ, then ∆ Γ ` [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context, Γ,
as well as into the term and its type, because the type variable t may occur
freely in any of these positions.

Returning to the motivating examples from the introduction, the poly-
morphic identity function, I, is written

Λ(t.λ (x:t. x));

it has the polymorphic type

∀(t.t→ t).

REVISED 08.27.2011 DRAFT VERSION 1.16

200 22.1 System F

Instances of the polymorphic identity are written I[τ], where τ is some
type, and have the type τ → τ.

Similarly, the polymorphic composition function, C, is written

Λ(t1.Λ(t2.Λ(t3.λ (f:t2 → t3. λ (g:t1 → t2. λ (x:t1. f(g(x)))))))).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, writing
C[τ1][τ2][τ3]. Each such instance has the type

(τ2 → τ3)→ (τ1 → τ2)→ (τ1 → τ3).

Dynamics

The dynamics of L{→∀} is given as follows:

lam[τ](x.e) val (22.3a)

Lam(t.e) val (22.3b)

ap(lam[τ1](x.e); e2) 7→ [e2/x]e (22.3c)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(22.3d)

App[τ](Lam(t.e)) 7→ [τ/t]e (22.3e)

e 7→ e′

App[τ](e) 7→ App[τ](e′)
(22.3f)

Rule (22.3d) endows L{→∀}with a call-by-name interpretation of applica-
tion. One could easily define a call-by-value variant as well.

It is a simple matter to prove safety forL{→∀}, using familiar methods.

Lemma 22.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam[τ1](x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Proof. By rule induction on the statics.

Theorem 22.4 (Preservation). If e : σ and e 7→ e′, then e′ : σ.

VERSION 1.16 DRAFT REVISED 08.27.2011

22.2 Polymorphic Definability 201

Proof. By rule induction on the dynamics.

Theorem 22.5 (Progress). If e : σ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on the statics.

22.2 Polymorphic Definability

The language L{→∀} is astonishingly expressive. Not only are all finite
products and sums definable in the language, but so are all inductive and
coinductive types! This is most naturally expressed using definitional equiv-
alence, which is defined to be the least congruence containing the following
two axioms:

∆ Γ, x : τ1 ` e : τ2 ∆ Γ ` e1 : τ1

∆ Γ ` λ (x:τ. e2)(e1) ≡ [e1/x]e2 : τ2
(22.4a)

∆, t type Γ ` e : τ ∆ ` σ type

∆ Γ ` Λ(t.e)[σ] ≡ [σ/t]e : [σ/t]τ
(22.4b)

In addition there are rules omitted here specifying that definitional equiv-
alence is reflexive, symmetric, and transitive, and that it is compatible with
both forms of application and abstraction.

22.2.1 Products and Sums

The nullary product, or unit, type is definable in L{→∀} as follows:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ (x:r. x))

The identity function plays the role of the null tuple, since it is the only
closed value of this type.

Binary products are definable in L{→∀} by using encoding tricks sim-
ilar to those described in Chapter 19 for the untyped λ-calculus:

τ1 × τ2 = ∀(r.(τ1 → τ2 → r)→ r)
〈e1, e2〉 = Λ(r.λ (x:τ1 → τ2 → r. x(e1)(e2)))

e · l = e[τ1](λ (x:τ1. λ (y:τ2. x)))
e · r = e[τ2](λ (x:τ1. λ (y:τ2. y)))

REVISED 08.27.2011 DRAFT VERSION 1.16

202 22.2 Polymorphic Definability

The statics given in Chapter 13 is derivable according to these definitions.
Moreover, the following definitional equivalences are derivable in L{→∀}
from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and
〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in L{→∀}:

void = ∀(r.r)
abort[ρ](e) = e[ρ]

There is no definitional equivalence to be checked, there being no introduc-
tory rule for the void type.

Binary sums are also definable in L{→∀}:

τ1 + τ2 = ∀(r.(τ1 → r)→ (τ2 → r)→ r)
l · e = Λ(r.λ (x:τ1 → r. λ (y:τ2 → r. x(e))))
r · e = Λ(r.λ (x:τ1 → r. λ (y:τ2 → r. y(e))))

case e {l · x1⇒ e1 | r · x2⇒ e2} =
e[ρ](λ (x1:τ1. e1))(λ (x2:τ2. e2))

provided that the types make sense. It is easy to check that the following
equivalences are derivable in L{→∀}:

case l · d1 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d1/x1]e1 : ρ

and
case r · d2 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d2/x2]e2 : ρ.

Thus the dynamic behavior specified in Chapter 14 is correctly implemented
by these definitions.

22.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation)
are also definable in L{→∀}. The key is the representation of the iterator,
whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ` e2 : τ

natiter(e0; e1; x.e2) : τ
.

VERSION 1.16 DRAFT REVISED 08.27.2011

22.3 Parametricity Overview 203

Since the result type τ is arbitrary, this means that if we have an iterator,
then it can be used to define a function of type

nat→ ∀(t.t→ (t→ t)→ t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, if given the initial result for z, and if given
a function transforming the result for x into the result for s(x), then it re-
turns the result of iterating the transformer n times starting with the initial
result.

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that we may define the type of natural numbers in L{→∀} by the following
equations:

nat = ∀(t.t→ (t→ t)→ t)
z = Λ(t.λ (z:t. λ (s:t→ t. z)))

s(e) = Λ(t.λ (z:t. λ (s:t→ t. s(e[t](z)(s)))))
natiter(e0; e1; x.e2) = e0[τ](e1)(λ (x:τ. e2))

It is a straightforward exercise to check that the static and dynamics given
in Chapter 11 is derivable in L{→∀} under these definitions.

This shows that L{→∀} is at least as expressive as L{nat→}. But is it
more expressive? Yes! It is possible to show that the evaluation function
for L{nat→} is definable in L{→∀}, even though it is not definable in
L{nat→} itself. However, the same diagonal argument given in Chap-
ter 11 applies here, showing that the evaluation function for L{→∀} is not
definable in L{→∀}. We may enrich L{→∀} a bit more to define the eval-
uator for L{→∀}, but as long as all programs in the enriched language
terminate, we will once again have an undefinable function, the evaluation
function for that extension.

22.3 Parametricity Overview

A remarkable property of L{→∀} is that polymorphic types severely con-
strain the behavior of their elements. One may prove useful theorems about
an expression knowing only its type—that is, without ever looking at the
code! For example, if i is any expression of type ∀(t.t→ t), then it must
be the identity function. Informally, when i is applied to a type, τ, and

REVISED 08.27.2011 DRAFT VERSION 1.16

204 22.4 Restricted Forms of Polymorphism

an argument of type τ, it must return a value of type τ. But since τ is
not specified until i is called, the function has no choice but to return its
argument, which is to say that it is essentially the identity function. Sim-
ilarly, if b is any expression of type ∀(t.t→ t→ t), then b must be either
Λ(t.λ (x:t. λ (y:t. x))) or Λ(t.λ (x:t. λ (y:t. y))). For when b is applied
to two arguments of some type, its only choice to return a value of that type
is to return one of the two.

What is remarkable is that these properties of i and b have been de-
rived without knowing anything about the expressions themselves, but only their
types! The theory of parametricity implies that we are able to derive the-
orems about the behavior of a program knowing only its type. Such the-
orems are sometimes called free theorems because they come “for free” as
a consequence of typing, and require no program analysis or verification
to derive (beyond the once-and-for-all proof of Theorem 51.8 on page 515).
Free theorems such as those illustrated above underly the experience that in
a polymorphic language, well-typed programs tend to behave as expected
no further debugging or analysis required. Parametricity so constrains the
behavior of a program that it is relatively easy to ensure that the code works
just by checking its type. Free theorems also underly the principle of rep-
resentation independence for abstract types, which is discussed further in
Chapter 23.

22.4 Restricted Forms of Polymorphism

In this section we briefly examine some restricted forms of polymorphism
with less than the full expressive power of L{→∀}. These are obtained in
one of two ways:

1. Restricting type quantification to unquantified types.

2. Restricting the occurrence of quantifiers within types.

22.4.1 Predicative Fragment

The remarkable expressive power of the language L{→∀} may be traced
to the ability to instantiate a polymorphic type with another polymorphic
type. For example, if we let τ be the type ∀(t.t→ t), and, assuming that
e : τ, we may apply e to its own type, obtaining the expression e[τ] of type
τ → τ. Written out in full, this is the type

∀(t.t→ t)→ ∀(t.t→ t),

VERSION 1.16 DRAFT REVISED 08.27.2011

22.4 Restricted Forms of Polymorphism 205

which is larger (both textually, and when measured by the number of oc-
currences of quantified types) than the type of e itself. In fact, this type is
large enough that we can go ahead and apply e[τ] to e again, obtaining the
expression e[τ](e), which is again of type τ — the very type of e!

This property of L{→∀} is called impredicativity1; the language L{→∀}
is said to permit impredicative (type) quantification. The distinguishing char-
acteristic of impredicative polymorphism is that it involves a kind of cir-
cularity in that the meaning of a quantified type is given in terms of its
instances, including the quantified type itself. This quasi-circularity is re-
sponsible for the surprising expressive power of L{→∀}, and is corre-
spondingly the prime source of complexity when reasoning about it (for
example, in the proof that all expressions of L{→∀} terminate).

Contrast this with L{→}, in which the type of an application of a func-
tion is evidently smaller than the type of the function itself. For if e :
τ1 → τ2, and e1 : τ1, then we have e(e1) : τ2, a smaller type than the type of
e. This situation extends to polymorphism, provided that we impose the re-
striction that a quantified type can only be instantiated by an un-quantified
type. For in that case passage from ∀(t.τ) to [σ/t]τ decreases the num-
ber of quantifiers (even if the size of the type expression viewed as a tree
grows). For example, the type ∀(t.t→ t) may be instantiated with the
type u → u to obtain the type (u→ u) → (u→ u). This type has more
symbols in it than τ, but is smaller in that it has fewer quantifiers. The re-
striction to quantification only over unquantified types is called predicative2

polymorphism. The predicative fragment is significantly less expressive than
the full impredicative language. In particular, the natural numbers are no
longer definable in it.

22.4.2 Prenex Fragment

A rather more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to occur
within the arguments to any other type constructors. This restriction, called
prenex quantification, is often imposed for the sake of type inference, which
permits type annotations to be omitted entirely in the knowledge that they
can be recovered from the way the expression is used. We will not discuss
type inference here, but we will give a formulation of the prenex fragment

1pronounced im-PRED-ic-a-tiv-it-y
2pronounced PRED-i-ca-tive

REVISED 08.27.2011 DRAFT VERSION 1.16

206 22.4 Restricted Forms of Polymorphism

of L{→∀}, because it plays an important role in the design of practical
polymorphic languages.

The prenex fragment of L{→∀} is designated L1{→∀}, for reasons that
will become clear in the next subsection. It is defined by stratifying types
into two sorts, the monotypes (or rank-0 types) and the polytypes (or rank-1
types). The monotypes are those that do not involve any quantification,
and may be used to instantiate the polymorphic quantifier. The polytypes
include the monotypes, but also permit quantification over monotypes.
These classifications are expressed by the judgements ∆ ` τ mono and
∆ ` τ poly, where ∆ is a finite set of hypotheses of the form t mono, where t
is a type variable not otherwise declared in ∆. The rules for deriving these
judgements are as follows:

∆, t mono ` t mono (22.5a)

∆ ` τ1 mono ∆ ` τ2 mono

∆ ` arr(τ1; τ2) mono
(22.5b)

∆ ` τ mono
∆ ` τ poly

(22.5c)

∆, t mono ` τ poly

∆ ` all(t.τ) poly
(22.5d)

Base types, such as nat (as a primitive), or other type constructors, such as
sums and products, would be added to the language as monotypes.

The statics of L1{→∀} is given by rules for deriving hypothetical judge-
ments of the form ∆ Γ ` e : σ, where ∆ consists of hypotheses of the form
t mono, and Γ consists of hypotheses of the form x : σ, where ∆ ` σ poly.
The rules defining this judgement are as follows:

∆ Γ, x : τ ` x : τ (22.6a)

∆ ` τ1 mono ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2)
(22.6b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(22.6c)

∆, t mono Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(22.6d)

∆ ` τ mono ∆ Γ ` e : all(t.τ′)
∆ Γ ` App[τ](e) : [τ/t]τ′

(22.6e)

VERSION 1.16 DRAFT REVISED 08.27.2011

22.4 Restricted Forms of Polymorphism 207

We tacitly exploit the inclusion of monotypes as polytypes so that all typing
judgements have the form e : σ for some expression e and polytype σ.

The restriction on the domain of a λ-abstraction to be a monotype means
that a fully general let construct is no longer definable—there is no means
of binding an expression of polymorphic type to a variable. For this reason
it is usual to augment L{→∀p}with a primitive let construct whose statics
is as follows:

∆ ` τ1 poly ∆ Γ ` e1 : τ1 ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` let[τ1](e1; x.e2) : τ2
. (22.7)

For example, the expression

let I:∀(t.t→ t) beΛ(t.λ (x:t. x)) in I[τ → τ](I[τ])

has type τ → τ for any polytype τ.

22.4.3 Rank-Restricted Fragments

The binary distinction between monomorphic and polymorphic types in
L1{→∀} may be generalized to form a hierarchy of languages in which
the occurrences of polymorphic types are restricted in relation to function
types. The key feature of the prenex fragment is that quantified types are
not permitted to occur in the domain of a function type. The prenex frag-
ment also prohibits polymorphic types from the range of a function type,
but it would be harmless to admit it, there being no significant difference
between the type σ → ∀(t.τ) and the type ∀(t.σ→ τ) (where t /∈ σ).
This motivates the definition of a hierarchy of fragments of L{→∀} that
subsumes the prenex fragment as a special case.

We will define a judgement of the form τ type [k], where k ≥ 0, to mean
that τ is a type of rank k. Informally, types of rank 0 have no quantification,
and types of rank k + 1 may involve quantification, but the domains of
function types are restricted to be of rank k. Thus, in the terminology of
Section 22.4.2 on page 205, a monotype is a type of rank 0 and a polytype
is a type of rank 1.

The definition of the types of rank k is defined simultaneously for all
k by the following rules. These rules involve hypothetical judgements of
the form ∆ ` τ type [k], where ∆ is a finite set of hypotheses of the form
ti type [ki] for some pairwise distinct set of type variables ti. The rules defin-
ing these judgements are as follows:

∆, t type [k] ` t type [k] (22.8a)

REVISED 08.27.2011 DRAFT VERSION 1.16

208 22.5 Notes

∆ ` τ1 type [0] ∆ ` τ2 type [0]
∆ ` arr(τ1; τ2) type [0]

(22.8b)

∆ ` τ1 type [k] ∆ ` τ2 type [k + 1]
∆ ` arr(τ1; τ2) type [k + 1]

(22.8c)

∆ ` τ type [k]
∆ ` τ type [k + 1]

(22.8d)

∆, t type [k] ` τ type [k + 1]
∆ ` all(t.τ) type [k + 1]

(22.8e)

With these restrictions in mind, it is a good exercise to define the statics
of Lk{→∀}, the restriction of L{→∀} to types of rank k (or less). It is most
convenient to consider judgements of the form e : τ [k] specifying simul-
taneously that e : τ and τ type [k]. For example, the rank-limited rules for
λ-abstractions is phrased as follows:

∆ ` τ1 type [0] ∆ Γ, x : τ1 [0] ` e2 : τ2 [0]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [0]

(22.9a)

∆ ` τ1 type [k] ∆ Γ, x : τ1 [k] ` e2 : τ2 [k + 1]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [k + 1]

(22.9b)

The remaining rules follow a similar pattern.
The rank-limited languagesLk{→∀} clarifies the requirement for a prim-

itive let construct in L1{→∀}. The prenex fragment of L{→∀} corre-
sponds to the rank-one fragment L1{→∀}. The let construct for rank-
one types is definable in L2{→∀} from λ-abstraction and application. This
definition only makes sense at rank two, since it abstracts over a rank-one
polymorphic type.

22.5 Notes

System F was introduced by Girard [30] in the context of proof theory and
Reynolds [80] in the context of programming languages. The concept of
parametric polymorphism was originally isolated by Strachey, but was not
fully developed until the work of Reynolds [79]. One may see the original
ML type system [58] as the restriction of System F to rank 1. Extensions
to higher ranks give greater expressive power, but at the expense of more
difficult type checking and inference problems.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 23

Abstract Types

Data abstraction is perhaps the most important technique for structuring
programs. The main idea is to introduce an interface that serves as a contract
between the client and the implementor of an abstract type. The interface
specifies what the client may rely on for its own work, and, simultaneously,
what the implementor must provide to satisfy the contract. The interface
serves to isolate the client from the implementor so that each may be devel-
oped in isolation from the other. In particular one implementation may be
replaced by another without affecting the behavior of the client, provided
that the two implementations meet the same interface and are, in a sense
to be made precise below, suitably related to one another. (Roughly, each
simulates the other with respect to the operations in the interface.) This
property is called representation independence for an abstract type.

Data abstraction may be formalized by extending the language L{→∀}
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction
is modelled so naturally and directly by the logical concept of existential
type quantification. Existential types are closely connected with universal
types, and hence are often treated together. The superficial reason is that
both are forms of type quantification, and hence both require the machin-
ery of type variables. The deeper reason is that existentials are definable
from universals — surprisingly, data abstraction is actually just a form of
polymorphism! One consequence of this observation is that representation
independence is just a use of the parametricity properties of polymorphic

210 23.1 Existential Types

functions discussed in Chapter 22.

23.1 Existential Types

The syntax of L{→∀∃} is the extension of L{→∀} with the following con-
structs:

Type τ ::= some(t.τ) ∃(t.τ) interface
Expr e ::= pack[t.τ][ρ](e) pack ρ with e as ∃(t.τ) implementation

open[t.τ][ρ](e1; t, x.e2) open e1 as t with x:τ in e2 client

The introductory form for the existential type σ = ∃(t.τ) is a package of
the form pack ρ with e as ∃(t.τ), where ρ is a type and e is an expression of
type [ρ/t]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x:τ in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable,
t, and the expression variable, x, are bound within the client. They may be
renamed at will by α-equivalence without affecting the meaning of the con-
struct, provided, of course, that the names are chosen so as not to conflict
with any others that may be in scope. In other words the type, t, may be
thought of as a “new” type, one that is distinct from all other types, when
it is introduced. This is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that
client. This behavior is simply a consequence of identifying terms up to
α-equivalence, and is not particularly tied to data abstraction.

23.1.1 Statics

The statics of existential types is specified by rules defining when an exis-
tential is well-formed, and by giving typing rules for the associated intro-
ductory and eliminatory forms.

∆, t type ` τ type

∆ ` some(t.τ) type
(23.1a)

VERSION 1.16 DRAFT REVISED 08.27.2011

23.1 Existential Types 211

∆ ` ρ type ∆, t type ` τ type ∆ Γ ` e : [ρ/t]τ
∆ Γ ` pack[t.τ][ρ](e) : some(t.τ)

(23.1b)

∆ Γ ` e1 : some(t.τ) ∆, t type Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[t.τ][τ2](e1; t, x.e2) : τ2
(23.1c)

Rule (23.1c) is complex, so study it carefully! There are two important
things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This
restriction prevents the client from attempting to export a value of the
abstract type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in the type
variable t.

Lemma 23.1 (Regularity). Suppose that ∆ Γ ` e : τ. If ∆ ` τi type for each
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (23.1).

23.1.2 Dynamics

The (eager or lazy) dynamics of existential types is specified as follows:

{e val}
pack[t.τ][ρ](e) val

(23.2a)

{
e 7→ e′

pack[t.τ][ρ](e) 7→ pack[t.τ][ρ](e′)

}
(23.2b)

e1 7→ e′1
open[t.τ][τ2](e1; t, x.e2) 7→ open[t.τ][τ2](e′1; t, x.e2)

(23.2c)

{e val}
open[t.τ][τ2](pack[t.τ][ρ](e); t, x.e2) 7→ [ρ, e/t, x]e2

(23.2d)

It is important to observe that, according to these rules, there are no abstract
types at run time! The representation type is propagated to the client by sub-
stitution when the package is opened, thereby eliminating the abstraction
boundary between the client and the implementor. Thus, data abstraction
is a compile-time discipline that leaves no traces of its presence at execution
time.

REVISED 08.27.2011 DRAFT VERSION 1.16

212 23.2 Data Abstraction Via Existentials

23.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for L{→∀} to the new constructs.

Theorem 23.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on e 7→ e′, making use of substitution for both
expression- and type variables.

Lemma 23.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack[t.τ][ρ](e′)
for some type ρ and some e′ such that e′ : [ρ/t]τ.

Proof. By rule induction on the statics, making use of the definition of closed
values.

Theorem 23.4 (Progress). If e : τ then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on e : τ, making use of the canonical forms lemma.

23.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an ab-
stract type of queues of natural numbers supporting three operations:

1. Formation of the empty queue.

2. Inserting an element at the tail of the queue.

3. Remove the head of the queue, which is assumed to be non-empty.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type,
τ, of our choosing; we will not be specific about this choice, since nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, ∃(t.τ), which serves as the interface of
the queue abstraction:

∃(t.〈emp : t, ins : nat× t→ t, rem : t→ nat× t〉).

VERSION 1.16 DRAFT REVISED 08.27.2011

23.2 Data Abstraction Via Existentials 213

The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,
the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el , in which queues are represented
as lists:

pack list with 〈emp = nil, ins = ei, rem = er〉 as ∃(t.τ),

where
ei : nat× list→ list = λ (x:nat× list. e′i),

and
er : list→ nat× list = λ (x:list. e′r).

Here the expression e′i conses the first component of x, the element, onto the
second component of x, the queue. Correspondingly, the expression e′r re-
verses its argument, and returns the head element paired with the reversal
of the tail. These operations “know” that queues are represented as values
of type list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, ∃(t.τ), but in which queues are represented as pairs of lists, consist-
ing of the “back half” of the queue paired with the reversal of the “front
half”. This representation avoids the need for reversals on each call, and,
as a result, achieves amortized constant-time behavior:

pack list× list with 〈emp = 〈nil, nil〉, ins = ei, rem = er〉 as ∃(t.τ).

In this case ei has type

nat× (list× list)→ (list× list),

and er has type

(list× list)→ nat× (list× list).

These operations “know” that queues are represented as values of type
list× list, and are implemented accordingly.

The important point is that the same client type checks regardless of
which implementation of queues we choose. This is because the represen-
tation type is hidden, or held abstract, from the client during type checking.

REVISED 08.27.2011 DRAFT VERSION 1.16

214 23.3 Definability of Existentials

Consequently, it cannot rely on whether it is list or list× list or some
other type. That is, the client is independent of the representation of the
abstract type.

23.3 Definability of Existentials

It turns out that it is not necessary to extend L{→∀} with existential types
to model data abstraction, because they are already definable using only
universal types! Before giving the details, let us consider why this should
be possible. The key is to observe that the client of an abstract type is poly-
morphic in the representation type. The typing rule for

open e1 as t with x:σ in e2 : τ,

where e1 : ∃(t.σ), specifies that e2 : τ under the assumptions t type and
x : σ. In essence, the client is a polymorphic function of type

∀(t.σ→ τ),

where t may occur in σ (the type of the operations), but not in τ (the type
of the result).

This suggests the following encoding of existential types:

∃(t.σ) = ∀(u.∀(t.σ→ u)→ u)
pack ρ with e as ∃(t.σ) = Λ(u.λ (x:∀(t.σ→ u). x[ρ](e)))

open e1 as t with x:σ in e2 = e1[τ](Λ(t.λ (x:σ. e2)))

An existential is encoded as a polymorphic function taking the overall re-
sult type, u, as argument, followed by a polymorphic function representing
the client with result type u, and yielding a value of type u as overall re-
sult. Consequently, the open construct simply packages the client as such a
polymorphic function, instantiates the existential at the result type, τ, and
applies it to the polymorphic client. (The translation therefore depends
on knowing the overall result type, τ, of the open construct.) Finally, a
package consisting of a representation type ρ and an implementation e is a
polymorphic function that, when given the result type, t, and the client, x,
instantiates x with ρ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the statics and dynamics of existential types.

VERSION 1.16 DRAFT REVISED 08.27.2011

23.4 Representation Independence 215

23.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are
insensitive to the representations of abstract types. More precisely, there is
a criterion, called bisimilarity, for relating two implementations of an ab-
stract type such that the behavior of a client is unaffected by swapping one
implementation by another that is bisimilar to it. This leads to a simple
methodology for proving the correctness of candidate implementation of an
abstract type, which is to show that it is bisimilar to an obviously correct
reference implementation of it. Since the candidate and the reference imple-
mentations are bisimilar, no client may distinguish them from one another,
and hence if the client behaves properly with the reference implementation,
then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is help-
ful to examine the definition of existentials in terms of universals given in
Section 23.3 on the preceding page. It is an immediate consequence of the
definition that the client of an abstract type is polymorphic in the repre-
sentation of the abstract type. A client, c, of an abstract type ∃(t.σ) has
type ∀(t.σ→ τ), where t does not occur free in τ (but may, of course,
occur in σ). Applying the parametricity property described informally in
Chapter 22 (and developed rigorously in Chapter 51), this says that if R is
a bisimulation relation between any two implementations of the abstract
type, then the client behaves identically on both of them. The fact that t
does not occur in the result type ensures that the behavior of the client is
independent of the choice of relation between the implementations, pro-
vided that this relation is preserved by the operation that implement it.

To see what this means requires that we specify what is meant by a
bisimulation. This is best done by example. So suppose that σ is the type

〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉.

Theorem 51.8 on page 515 ensures that if ρ and ρ′ are any two closed types,
R is a relation between expressions of these two types, then if any the im-
plementations e : [ρ/x]σ and e′ : [ρ′/x]σ respect R, then c[ρ]e behaves the
same as c[ρ′]e′. It remains to define when two implementations respect the
relation R. Let

e = 〈emp = em, ins = ei, rem = er〉

and
e′ = 〈emp = e′m, ins = e′i , rem = e′r〉.

REVISED 08.27.2011 DRAFT VERSION 1.16

216 23.4 Representation Independence

For these implementations to respect R means that the following three con-
ditions hold:

1. The empty queues are related: R(em, e′m).

2. Inserting the same element on each of two related queues yields re-
lated queues: if d : τ and R(q, q′), then R(ei(d)(q), e′i(d)(q′)).

3. If two queues are related, their front elements are the same and their
back elements are related: if R(q, q′), er(q) ∼= 〈d, r〉, e′r(q′) ∼= 〈d′, r′〉,
then d is d′ and R(r, r′).

If such a relation R exists, then the implementations e and e′ are said to be
bisimilar. The terminology stems from the requirement that the operations
of the abstract type preserve the relation: if it holds before an operation is
performed, then it must also hold afterwards, and the relation must hold
for the initial state of the queue. Thus each implementation simulates the
other up to the relationship specified by R.

To see how this works in practice, let us consider informally two im-
plementations of the abstract type of queues specified above. For the ref-
erence implementation we choose ρ to be the type list, and define the
empty queue to be the empty list, insert to add the specified element to
the front of the list, and remove to remove the last element of the list. (A
remove therefore takes time linear in the length of the list.) For the candi-
date implementation we choose ρ′ to be the type list× list consisting of
two lists, 〈b, f 〉, where b represents the “back” of the queue, and f repre-
sents the “front” of the queue represented in reverse order of insertion. The
empty queue consists of two empty lists. To insert d onto 〈b, f 〉, we simply
return 〈cons(d; b), f 〉, placing it on the “back” of the queue as expected.
To remove an element from 〈b, f 〉 breaks into two cases. If the front, f ,
of the queue is non-empty, say cons(d; f ′), then return 〈d, 〈b, f ′〉〉 consist-
ing of the front element and the queue with that element removed. If, on
the other hand, f is empty, then we must move elements from the “back”
to the “front” by reversing b and re-performing the remove operation on
〈nil, rev(b)〉, where rev is the obvious list reversal function.

To show that the candidate implementation is correct, we show that it
is bisimilar to the reference implementation. This reduces to specifying a
relation, R, between the types list and list × list such that the three
simulation conditions given above are satisfied by the two implementa-
tions just described. The relation in question states that R(l, 〈b, f 〉) iff the
list l is the list app(b)(rev(f)), where app is the evident append function

VERSION 1.16 DRAFT REVISED 08.27.2011

23.5 Notes 217

on lists. That is, thinking of l as the reference representation of the queue,
the candidate must maintain that the elements of b followed by the ele-
ments of f in reverse order form precisely the list l. It is easy to check that
the implementations just described preserve this relation. Having done so,
we are assured that the client, c, behaves the same regardless of whether
we use the reference or the candidate. Since the reference implementation
is obviously correct (albeit inefficient), the candidate must also be correct
in that the behavior of any client is unaffected by using it instead of the
reference.

23.5 Notes

The connection between abstract types in programming languages and ex-
istential types in logic was made by Mitchell and Plotkin [64], although
some of the ideas were already present in Reynolds work [80]. The account
of representation independence given here is derived from Mitchell [62].

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 24

Constructors and Kinds

The types nat → nat and nat list may be thought of as being built from
other types by the application of a type constructor, or type operator. These
two examples differ from each other in that the function space type con-
structor takes two arguments, whereas the list type constructor takes only
one. We may, for the sake of uniformity, think of types such as nat as be-
ing built by a type constructor of no arguments. More subtly, we may even
think of the types ∀(t.τ) and ∃(t.τ) as being built up in the same way by
regarding the quantifiers as higher-order type operators.

These seemingly disparate cases may be treated uniformly by enrich-
ing the syntactic structure of a language with a new layer of constructors.
To ensure that constructors are used properly (for example, that the list
constructor is given only one argument, and that the function constructor
is given two), we classify constructors by kinds. Constructors of a distin-
guished kind, T, are types, which may be used to classify expressions. To
allow for multi-argument and higher-order constructors, we will also con-
sider finite product and function kinds. (Later we shall consider even richer
kinds.)

The distinction between constructors and kinds on one hand and types
and expressions on the other reflects a fundamental separation between
the static and dynamic phase of processing of a programming language,
called the phase distinction. The static phase implements the statics and the
dynamic phase implements the dynamics. Constructors may be seen as a
form of static data that is manipulated during the static phase of process-
ing. Expressions are a form of dynamic data that is manipulated at run-time.
Since the dynamic phase follows the static phase (we only execute well-
typed programs), we may also manipulate constructors at run-time.

220 24.1 Statics

Adding constructors and kinds to a language introduces more techni-
cal complications than might at first be apparent. The main difficulty is that
as soon as we enrich the kind structure beyond the distinguished kind of
types, it becomes essential to simplify constructors to determine whether
they are equivalent. For example, if we admit product kinds, then a pair of
constructors is a constructor of product kind, and projections from a con-
structor of product kind are also constructors. But what if we form the first
projection from the pair consisiting of the constructors nat and str? This
should be equivalent to nat, since the elimination form if post-inverse to
the introduction form. Consequently, any expression (say, a variable) of the
one type should also be an expression of the other. That is, typing should
respect definitional equivalence of constructors.

There are two main ways to deal with this. One is to introduce a concept
of definitional equivalence for constructors, and to demand that the typing
judgement for expressions respect definitional equivalence of constructors
of kind T. This means, however, that we must show that definitional equiv-
alence is decidable if we are to build a complete implementation of the
language. The other is to prohibit formation of awkward constructors such
as the projection from a pair so that there is never any issue of when two
constructors are equivalent (only when they are identical). But this com-
plicates the definition of substitution, since a projection from a constructor
variable is well-formed, until you substitute a pair for the variable. Both
approaches have their benefits, but the second is simplest, and is adopted
here.

24.1 Statics

The syntax of kinds is given by the following grammar:

Kind κ ::= Type T types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1→ κ2 function

The kinds consist of the kind of types, T, the unit kind, Unit, and are closed
under formation of product and function kinds.

The syntax of constructors is divided into two syntactic sorts, the neutral

VERSION 1.16 DRAFT REVISED 08.27.2011

24.1 Statics 221

and the canonical, according to the following grammar:

Neut a ::= u u variable
proj[l](a) a · l first projection
proj[r](a) a · r second projection
app(a1; c2) a1[c2] application

Canon c ::= atom(a) â atomic
unit 〈〉 null tuple
pair(c1; c2) 〈c1,c2〉 pair
lam(u.c) λ u.c abstraction

The reason to distinguish neutral from canonical constructors is to en-
sure that it is impossible to apply an elimination form to an introduction
form, which demands an equation to capture the inversion principle. For
example, the putative constructor 〈c1,c2〉 · l, which would be definitionally
equivalent to c1, is ill-formed according to Grammar (24.1). This is because
the argument to a projection must be neutral, but a pair is only canonical,
not neutral.

The canonical constructor â is the inclusion of neutral constructors into
canonical constructors. However, the grammar does not capture a crucial
property of the statics that ensures that only neutral constructors of kind
T may be treated as canonical. This requirement is imposed to limit the
forms of canonical contructors of the other kinds. In particular, variables of
function, product, or unit kind will turn out not to be canonical, but only
neutral.

The statics of constructors and kinds is specified by the judgements

∆ ` a ⇑ κ neutral constructor formation
∆ ` c ⇓ κ canonical constructor formation

In each of these judgements ∆ is a finite set of hypotheses of the form

u1 ⇑ κ1, . . . , un ⇑ κn

for some n ≥ 0. The form of the hypotheses expresses the principle that
variables are neutral constructors. The formation judgements are to be
understood as generic hypothetical judgements with parameters u1, . . . , un
that are determined by the forms of the hypotheses.

The rules for constructor formation are as follows:

∆, u ⇑ κ ` u ⇑ κ (24.1a)

REVISED 08.27.2011 DRAFT VERSION 1.16

222 24.2 Higher Kinds

∆ ` a ⇑ κ1 × κ2

∆ ` a · l ⇑ κ1
(24.1b)

∆ ` a ⇑ κ1 × κ2

∆ ` a · r ⇑ κ2
(24.1c)

∆ ` a1 ⇑ κ2→ κ ∆ ` c2 ⇓ κ2

∆ ` a1[c2] ⇑ κ
(24.1d)

∆ ` a ⇑ T

∆ ` â ⇓ T
(24.1e)

∆ ` 〈〉 ⇓ 1 (24.1f)

∆ ` c1 ⇓ κ1 ∆ ` c2 ⇓ κ2

∆ ` 〈c1,c2〉 ⇓ κ1 × κ2
(24.1g)

∆, u ⇑ κ1 ` c2 ⇓ κ2

∆ ` λ u.c2 ⇓ κ1→ κ2
(24.1h)

Rule (24.1e) specifies that the only neutral constructors that are canon-
ical are those with kind T. This ensures that the language enjoys the fol-
lowing canonical forms property, which is easily proved by inspection of
Rules (24.1).

Lemma 24.1. Suppose that ∆ ` c ⇓ κ.

1. If κ = 1, then c = 〈〉.

2. If κ = κ1 × κ2, then c = 〈c1,c2〉 for some c1 and c2 such that ∆ ` ci ⇓ κi
for i = 1, 2.

3. If κ = κ1→ κ2, then c = λ u.c2 with ∆, u ⇑ κ1 ` c2 ⇓ κ2.

24.2 Higher Kinds

To equip a language, L, with constructors and kinds requires that we aug-
ment its statics with hypotheses governing constructor variables, and that
we relate constructors of kind T (types as static data) to the classifiers of
dynamic expressions (types as classifiers). To achieve this the statics of L
must be defined to have judgements of the following two forms:

∆ ` τ type type formation
∆ Γ ` e : τ expression formation

VERSION 1.16 DRAFT REVISED 08.27.2011

24.2 Higher Kinds 223

where, as before, Γ is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

for some k ≥ 0 such that ∆ ` τi type for each 1 ≤ i ≤ k.
As a general principle, every constructor of kind T is a classifier:

∆ ` τ ⇑ T

∆ ` τ type
. (24.2)

In many cases this is the sole rule of type formation, so that every classifier
is a constructor of kind T. However, this need not be the case. In some
situations we may wish to have strictly more classifiers than constructors
of the distinguished kind.

To see how this might arise, let us consider two extensions of L{→∀}
from Chapter 22. In both cases we extend the universal quantifier ∀(t.τ)
to admit quantification over an arbitrary kind, written ∀ u :: κ.τ, but the
two languages differ in what constitutes a constructor of kind T. In one
case, the impredicative, we admit quantified types as constructors, and in
the other, the predicative, we exclude quantified types from the domain of
quantification.

The impredicative fragment includes the following two constructor con-
stants:

∆ ` → ⇑ T→ T→ T (24.3a)

∆ ` ∀κ ⇑ (κ→ T)→ T (24.3b)

We regard the classifier τ1 → τ2 to be the application→[τ1][τ2]. Similarly,
we regard the classifier ∀ u :: κ.τ to be the application ∀κ[λ u.τ].

The predicative fragment excludes the constant specified by Rule (24.3b)
in favor of a separate rule for the formation of universally quantified types:

∆, u ⇑ κ ` τ type

∆ ` ∀ u :: κ.τ type
. (24.4)

The point is that ∀ u :: κ.τ is a type (as classifier), but is not a constructor of
kind type.

The significance of this distinction becomes apparent when we con-
sider the introduction and elimination forms for the generalized quantifier,
which are the same for both fragments:

∆, u ⇑ κ Γ ` e : τ

∆ Γ ` Λ(u::κ.e) : ∀ u :: κ.τ
(24.5a)

REVISED 08.27.2011 DRAFT VERSION 1.16

224 24.3 Hereditary Substitution

∆ Γ ` e : ∀ u :: κ.τ ∆ ` c ⇓ κ

∆ Γ ` e[c] : [c/u]τ
(24.5b)

(Rule (24.5b) makes use of substitution, whose definition requires some
care. We will return to this point in Section 24.3.)

Rule (24.5b) makes clear that a polymorphic abstraction quantifies over
the constructors of kind κ. When κ is T this kind may or may not include
all of the classifiers of the language, according to whether we are working
with the impredicative formulation of quantification (in which the quanti-
fiers are distinguished constants for building constructors of kind T) or the
predicative formulation (in which quantifiers arise only as classifiers and
not as constructors).

The main idea is that constructors are static data, so that a constructor
abstraction Λ(u::κ.e) of type ∀ u :: κ.τ is a mapping from static data c of
kind κ to dynamic data [c/u]e of type [c/u]τ. Rule (24.1e) tells us that every
constructor of kind T determines a classifier, but it may or may not be the
case that every classifier arises in this manner.

24.3 Hereditary Substitution

Rule (24.5b) involves substitution of a canonical constructor, c, of kind κ
into a family of types u ⇑ κ ` τ type. This operation is is written [c/u]τ, as
usual. Although the intended meaning is clear, it is in fact impossible to in-
terpret [c/u]τ as the standard concept of substitution defined in Chapter 1.
The reason is that to do so would risk violating the distinction between
neutral and canonical constructors. Consider, for example, the case of the
family of types

u ⇑ T→ T ` u[d] ⇑ T,

where d ⇑ T. (It is not important what we choose for d, so we leave it
abstract.) Now if c ⇓ T→ T, then by Lemma 24.1 on page 222 we have
that c is λ u′.c′. Thus, if interpreted conventionally, substitution of c for
u in the given family yields the “constructor” (λ u′.c′)[d], which is not
well-formed.

The solution is to define a form of canonizing substitution that simplifies
such “illegal” combinations as it performs the replacement of a variable by
a constructor of the same kind. In the case just sketched this means that we
must ensure that

[λ u′.c′/u]u[d] = [d/u′]c′.

If viewed as a definition this equation is problematic because it switches
from substituting for u in the constructor u[d] to substituting for u′ in the

VERSION 1.16 DRAFT REVISED 08.27.2011

24.3 Hereditary Substitution 225

unrelated constructor c′. Why should such a process terminate? The an-
swer lies in the observation that the kind of u′ is definitely smaller than the
kind of u, since the former’s kind is the domain kind of the latter’s function
kind. In all other cases of substitution (as we shall see shortly) the size of
the target of the substitution becomes smaller; in the case just cited the size
may increase, but the type of the target variable decreases. Therefore by
a lexicographic induction on the type of the target variable and the struc-
ture of the target constructor, we may prove that canonizing substitution is
well-defined.

We now turn to the task of making this precise. We will define simulta-
neously two principal forms of substitution, one of which divides into two
cases:

[c/u : κ]a = a′ canonical into neutral yielding neutral
[c/u : κ]a = c′ ⇓ κ′ canonical into neutral yielding canonical and kind
[c/u : κ]c′ = c′′ canonical into canonical yielding canonical

Substitution into a neutral constructor divides into two cases according to
whether the substituted variable u occurs in critical position in a sense to be
made precise below.

These forms of substitution are simultaneously inductively defined by
the following rules, which are broken into groups for clarity.

The first set of rules defines substitution of a canonical constructor into
a canonical constructor; the result is always canonical.

[c/u : κ]a′ = a′′

[c/u : κ]â′ = â′′
(24.6a)

[c/u : κ]a′ = c′′ ⇓ κ′′

[c/u : κ]â′ = c′′
(24.6b)

[u/〈〉 : κ]=〈〉 (24.6c)

[c/u : κ]c′1 = c′′1 [c/u : κ]c′2 = c′′2
[c/u : κ]〈c′1,c′2〉 = 〈c′′1,c′′2 〉

(24.6d)

[c/u : κ]c′ = c′′ (u 6= u′) (u′ /∈ c)
[c/u : κ]λ u′.c′ = λ u′.c′′

(24.6e)

The conditions on variables in Rule (24.6e) may always be met by renaming
the bound variable, u′, of the abstraction.

REVISED 08.27.2011 DRAFT VERSION 1.16

226 24.3 Hereditary Substitution

The second set of rules defines substitution of a canonical constructor
into a neutral constructor, yielding another neutral constructor.

(u 6= u′)
[c/u : κ]u′ = u′

(24.7a)

[c/u : κ]a′ = a′′

[c/u : κ]a′ · l = a′′ · l
(24.7b)

[c/u : κ]a′ = a′′

[c/u : κ]a′ · r = a′′ · r
(24.7c)

[c/u : κ]a1 = a′1 [c/u : κ]c2 = c′2
[c/u : κ]a1[c2] = a′1(c′2)

(24.7d)

Rule (24.7a) pertains to a non-critical variable, which is not the target of sub-
stitution. The remaining rules pertain to situations in which the recursive
call on a neutral constructor yields a neutral constructor.

The third set of rules defines substitution of a canonical constructor into
a neutral constructor, yielding a canonical constructor and its kind.

[c/u : κ]u = c ⇓ κ (24.8a)

[c/u : κ]a′ = 〈c′1,c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]a′ · l = c′1 ⇓ κ′1

(24.8b)

[c/u : κ]a′ = 〈c′1,c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]a′ · r = c′2 ⇓ κ′2

(24.8c)

[c/u : κ]a′1 = λ u′.c′ ⇓ κ′2→ κ′ [c/u : κ]c′2 = c′′2 [c′′2 /u′ : κ′2]c
′ = c′′

[c/u : κ]a′1[c′2] = c′′ ⇓ κ′

(24.8d)
Rule (24.8a) governs a critical variable, which is the target of substitution.
The substitution transforms it from a neutral constructor to a canonical con-
structor. This has a knock-on effect in the remaining rules of the group,
which analyze the canonical form of the result of the recursive call to de-
termine how to proceed. Rule (24.8d) is the most interesting rule. In the
third premise, all three arguments to substitution change as we substitute
the (substituted) argument of the application for the parameter of the (sub-
stituted) function into the body of that function. Here we require the type
of the function in order to determine the type of its parameter.

VERSION 1.16 DRAFT REVISED 08.27.2011

24.4 Canonization 227

Theorem 24.2. Suppose that ∆ ` c ⇓ κ, and ∆, u ⇑ κ ` c′ ⇓ κ′, and ∆, u ⇑ κ `
a′ ⇑ κ′. There exists a unique ∆ ` c′′ ⇓ κ′ such that [c/u : κ]c′ = c′′. Either there
exists a unique ∆ ` a′′ ⇑ κ′ such that [c/u : κ]a′ = a′′, or there exists a unique
∆ ` c′′ ⇓ κ′ such that [c/u : κ]a′ = c′′, but not both.

Proof. Simultaneously by a lexicographic induction with major component
the structure of the kind κ, and with minor component determined by
Rules (24.1) governing the formation of c′ and a′. For all rules except Rule (24.8d)
the inductive hypothesis applies to the premise(s) of the relevant formation
rules. For Rule (24.8d) we appeal to the major inductive hypothesis applied
to κ′2, which is a component of the kind κ′2→ κ′.

24.4 Canonization

With hereditary substitution in hand, it is perfectly possible to confine our
attention to constructors in canonical form. However, for some purposes
it can be useful to admit a more relaxed syntax in which it is possible to
form non-canonical constructors that can nevertheless be transformed into
canonical form. The prototypical example is the constructor (λ u.c2)[c1],
which is malformed according to Rules (24.1), because the first argument of
an application is required to be in atomic form, whereas the λ-abstraction
is in canonical form. However, if c1 and c2 are already canonical, then the
malformed application may be transformed into the well-formed canonical
form [v1/u]c2, where substitution is as defined in Section 24.3 on page 224.
If c1 or c2 are not already canonical we may, inductively, put them into
canonical form before performing the substitution, resulting in the same
canonical form.

A constructor in general form is one that is well-formed with respect to
Rules (24.1), but disregarding the distinction between atomic and canoni-
cal forms. We write ∆ ` c :: κ to mean that c is a well-formed constructor
of kind κ in general form. The difficulty with admitting general form con-
structors is that they introduce non-trivial equivalences between construc-
tors. For example, one must ensure that 〈int,bool〉 · l is equivalent to int

wherever the fomer may occur. With this in mind we will introduce a can-
onization procedure that allows us to define equivalence of general form
constructors, written ∆ ` c1 ≡ c2 :: κ, to mean that c1 and c2 have identical
canonical forms (up to α-equivalence).

Canonization of general-form constructors is defined by these two judge-
ments:

REVISED 08.27.2011 DRAFT VERSION 1.16

228 24.4 Canonization

1. Canonization: ∆ ` c :: κ ⇓ c: transform general-form constructor c of
kind κ to canonical form c.

2. Atomization: ∆ ` c ⇑ c :: κ: transform general-form constructor c to
obtain atomic form c of kind κ.

These two judgements are defined simultaneously by the following rules.
The canonization judgement is used to determine the canonical form of a
general-form constructor; the atomization judgement is an auxiliary to the
first that transforms constructors into atomic form. The canonization judge-
ment is to be thought of as having mode (∀, ∀, ∃), whereas the atomization
judgement is to be thought of as having mode (∀, ∃, ∃).

∆ ` c ⇑ c :: T
∆ ` c :: T ⇓ ĉ

(24.9a)

∆ ` c :: 1 ⇓ 〈〉
(24.9b)

∆ ` c · l :: κ1 ⇓ c1 ∆ ` c · r :: κ2 ⇓ c2

∆ ` c :: κ1 × κ2 ⇓ 〈c1,c2〉
(24.9c)

∆, u ⇑ κ1 ` c[u] :: κ2 ⇓ c2

∆ ` c :: κ1→ κ2 ⇓ λ u.c2
(24.9d)

∆, u ⇑ κ ` u ⇑ u :: κ
(24.9e)

∆ ` c ⇑ c :: κ1 × κ2

∆ ` c · l ⇑ c · l :: κ1
(24.9f)

∆ ` c ⇑ c :: κ1 × κ2

∆ ` c · r ⇑ c · r :: κ2
(24.9g)

∆ ` c1 ⇑ c1 :: κ1→ κ2 ∆ ` c2 :: κ1 ⇓ c2

∆ ` c1[c2] ⇑ c1[c2] :: κ2
(24.9h)

The canonization judgement produces canonical forms, and the atom-
ization judgement produces atomic forms.

Lemma 24.3. 1. If ∆ ` c :: κ ⇓ c, then ∆ ` c ⇓ κ.

2. If ∆ ` c ⇑ c :: κ, then ∆ ` c ⇑ κ.

Proof. By induction on Rules (24.9).

Theorem 24.4. If Γ ` c :: κ, then there exists c such that ∆ ` c :: κ ⇓ c.

Proof. By induction on the formation rules for general-form constructors,
making use of an analysis of the general-form constructors of kind T.

VERSION 1.16 DRAFT REVISED 08.27.2011

24.5 Notes 229

24.5 Notes

The classical approach is to consider general-form constructors at the out-
set, for which substitution is readily defined, and then to test equivalence
of general-form constructors by reduction to a common irreducible form.
Two main lemmas are required for this approach. First, every constructor
must reduce in a finite number of steps to an irreducible form; this is called
normalization. Second, the relation “has a common irreducible form” must
be shown to be transitive; this is called confluence. Here we have turned the
development on its head by considering only canonical constructors in the
first place, then defining substitution using Watkins’s method [96]. Hav-
ing defined substitution it is then straightforward to decide equivalence
of general-form constructors by canonization of both sides of a candidate
equation.

REVISED 08.27.2011 DRAFT VERSION 1.16

