
Chapter 6

Statics

Most programming languages exhibit a phase distinction between the static
and dynamic phases of processing. The static phase consists of parsing
and type checking to ensure that the program is well-formed; the dynamic
phase consists of execution of well-formed programs. A language is said
to be safe exactly when well-formed programs are well-behaved when exe-
cuted.

The static phase is specified by a statics comprising a collection of rules
for deriving typing judgements stating that an expression is well-formed of
a certain type. Types mediate the interaction between the constituent parts
of a program by “predicting” some aspects of the execution behavior of the
parts so that we may ensure they fit together properly at run-time. Type
safety tells us that these predictions are accurate; if not, the statics is con-
sidered to be improperly defined, and the language is deemed unsafe for
execution.

In this chapter we present the statics of the language L{num str} as an
illustration of the methodology that we shall employ throughout this book.

6.1 Syntax

When defining a language we shall be primarily concerned with its abstract
syntax, specified by a collection of operators and their arities. The abstract
syntax provides a systematic, unambiguous account of the hierarchical and
binding structure of the language, and is therefore to be considered the
official presentation of the language. However, for the sake of clarity, it is
also useful to specify minimal concrete syntax conventions, without going
through the trouble to set up a fully precise grammar for it.

58 6.2 Type System

We will accomplish both of these purposes with a syntax chart, whose
meaning is best illustrated by example. The following chart summarizes
the abstract and concrete syntax of L{num str}, which was analyzed in de-
tail in Chapters 4 and 5.

Type τ ::= num num numbers
str str strings

Expr e ::= x x variable
num[n] n numeral
str[s] ”s” literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

This chart defines two sorts, Type, ranged over by τ, and Expr, ranged over
by e. The chart defines a number of operators and their arities. For exam-
ple, the operator let has arity (Expr, (Expr)Expr), which specifies that it has
two arguments of sort Expr, and binds a variable of sort Expr in the second
argument.

6.2 Type System

The role of a type system is to impose constraints on the formations of
phrases that are sensitive to the context in which they occur. For exam-
ple, whether or not the expression plus(x; num[n]) is sensible depends on
whether or not the variable x is declared to have type num in the surround-
ing context of the expression. This example is, in fact, illustrative of the
general case, in that the only information required about the context of an
expression is the type of the variables within whose scope the expression
lies. Consequently, the statics of L{num str} consists of an inductive defi-
nition of generic hypothetical judgements of the form

~x | Γ ` e : τ,

where ~x is a finite set of variables, and Γ is a typing context consisting of
hypotheses of the form x : τ, one for each x ∈ X . We rely on typographical
conventions to determine the set of variables, using the letters x and y for
variables that serve as parameters of the typing judgement. We write x /∈

VERSION 1.16 DRAFT REVISED 08.27.2011

6.2 Type System 59

dom(Γ) to indicate that there is no assumption in Γ of the form x : τ for any
type τ, in which case we say that the variable x is fresh for Γ.

The rules defining the statics of L{num str} are as follows:

Γ, x : τ ` x : τ (6.1a)

Γ ` str[s] : str (6.1b)

Γ ` num[n] : num (6.1c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(6.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(6.1e)

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1; e2) : str

(6.1f)

Γ ` e : str
Γ ` len(e) : num

(6.1g)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1; x.e2) : τ2
(6.1h)

In Rule (6.1h) we tacitly assume that the variable, x, is not already declared
in Γ. This condition may always be met by choosing a suitable representa-
tive of the α-equivalence class of the let expression.

It is easy to check that every expression has at most one type.

Lemma 6.1 (Unicity of Typing). For every typing context Γ and expression e,
there exists at most one τ such that Γ ` e : τ.

Proof. By rule induction on Rules (6.1).

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently it is easy to give necessary
conditions for typing an expression that invert the sufficient conditions ex-
pressed by the corresponding typing rule.

Lemma 6.2 (Inversion for Typing). Suppose that Γ ` e : τ. If e = plus(e1; e2),
then τ = num, Γ ` e1 : num, and Γ ` e2 : num, and similarly for the other
constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing
judgement Γ ` e : τ.

In richer languages such inversion principles are more difficult to state
and to prove.

REVISED 08.27.2011 DRAFT VERSION 1.16

60 6.3 Structural Properties

6.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judge-
ment.

Lemma 6.3 (Weakening). If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′ for any x /∈
dom(Γ) and any type τ.

Proof. By induction on the derivation of Γ ` e′ : τ′. We will give one case
here, for rule (6.1h). We have that e′ = let(e1; z.e2), where by the conven-
tions on parameters we may assume z is chosen such that z /∈ dom(Γ) and
z 6= x. By induction we have

1. Γ, x : τ ` e1 : τ1,

2. Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by Rule (6.1h).

Lemma 6.4 (Substitution). If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [e/x]e′ :
τ′.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We again con-
sider only rule (6.1h). As in the preceding case, e′ = let(e1; z.e2), where z
may be chosen so that z 6= x and z /∈ dom(Γ). We have by induction and
Lemma 6.3 that

1. Γ ` [e/x]e1 : τ1,

2. Γ, z : τ1 ` [e/x]e2 : τ′.

By the choice of z we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by Rule (6.1h) that Γ ` [e/x]let(e1; z.e2) : τ, as desired.

From a programming point of view, Lemma 6.3 allows us to use an
expression in any context that binds its free variables: if e is well-typed
in a context Γ, then we may “import” it into any context that includes the
assumptions Γ. In other words the introduction of new variables beyond
those required by an expression, e, does not invalidate e itself; it remains

VERSION 1.16 DRAFT REVISED 08.27.2011

6.3 Structural Properties 61

well-formed, with the same type.1 More significantly, Lemma 6.4 on the
facing page expresses the concepts of modularity and linking. We may think
of the expressions e and e′ as two components of a larger system in which
the component e′ is to be thought of as a client of the implementation e. The
client declares a variable specifying the type of the implementation, and
is type checked knowing only this information. The implementation must
be of the specified type in order to satisfy the assumptions of the client.
If so, then we may link them to form the composite system, [e/x]e′. This
may itself be the client of another component, represented by a variable, y,
that is replaced by that component during linking. When all such variables
have been implemented, the result is a closed expression that is ready for
execution (evaluation).

The converse of Lemma 6.4 on the preceding page is called decomposi-
tion. It states that any (large) expression may be decomposed into a client
and implementor by introducing a variable to mediate their interaction.

Lemma 6.5 (Decomposition). If Γ ` [e/x]e′ : τ′, then for every type τ such
that Γ ` e : τ, we have Γ, x : τ ` e′ : τ′.

Proof. The typing of [e/x]e′ depends only on the type of e wherever it oc-
curs, if at all.

This lemma tells us that any sub-expression may be isolated as a sepa-
rate module of a larger system. This is especially useful when the variable
x occurs more than once in e′, because then one copy of e suffices for all
occurrences of x in e′.

The statics of L{num str} given by Rules (6.1) exemplifies a recurrent
pattern. The constructs of a language are classified into one of two forms,
the introductory and the eliminatory. The introductory forms for a type de-
termine the values, or canonical forms, of that type. The eliminatory forms
determine how to manipulate the values of a type to form a computation
of another (possibly the same) type. In L{num str} the introductory forms
for the type num are the numerals, and those for the type str are the literals.
The eliminatory forms for the type num are addition and multiplication, and
those for the type str are concatenation and length.

The importance of this classification will become apparent once we have
defined the dynamics of the language in Chapter 7. Then we will see that

1This may seem so obvious as to be not worthy of mention, but, suprisingly, there are
useful type systems that lack this property. Since they do not validate the structural princi-
ple of weakening, they are called sub-structural type systems.

REVISED 08.27.2011 DRAFT VERSION 1.16

62 6.4 Notes

the eliminatory forms are inverse to the introductory forms in that they
“take apart” what the introductory forms have “put together.” The coher-
ence of the statics and dynamics of a language expresses the concept of type
safety, the subject of Chapter 8.

6.4 Notes

The concept of the static semantics of a programming language was histori-
cally slow to develop, perhaps because the earliest languages had relatively
few features and only very weak type systems. The concept of a static se-
mantics in the sense considered here was introduced in the definition of
the Standard ML programming language [60], building on much earlier
work by Church and others on the typed λ-calculus [11]. The concept of
introduction and elimination, and the associated inversion principle, was
introduced by Gentzen in his pioneering work on natural deduction [29].
These principles were first explicitly applied to programming languages by
Martin-Löf [54, 68].

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 7

Dynamics

The dynamics of a language is a description of how programs are to be ex-
ecuted. The most important way to define the dynamics of a language is
by the method of structural dynamics, which defines a transition system that
inductively specifies the step-by-step process of executing a program. An-
other method for presenting dynamics, called contextual dynamics, is a vari-
ation of structural dynamics in which the transition rules are specified in
a slightly different manner. An equational dynamics presents the dynamics
of a language equationally by a collection of rules for deducing when one
program is definitionally equivalent to another.

7.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s 7→ s′, where s state and s′ state, asserting that state s may transition
to state s′.

In practice we always arrange things so that no transition is possible from
a final state: if s final, then there is no s′ state such that s 7→ s′. A state from
which no transition is possible is sometimes said to be stuck. Whereas all
final states are, by convention, stuck, there may be stuck states in a tran-
sition system that are not final. A transition system is deterministic iff for

64 7.2 Structural Dynamics

every state s there exists at most one state s′ such that s 7→ s′, otherwise it
is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial,
and si 7→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff
there is no s such that sn 7→ s, and it is complete iff it is maximal and, in
addition, sn final. Thus every complete transition sequence is maximal, but
maximal sequences are not necessarily complete. The judgement s ↓means
that there is a complete transition sequence starting from s, which is to say
that there exists s′ final such that s 7→∗ s′.

The iteration of transition judgement, s 7→∗ s′, is inductively defined by
the following rules:

s 7→∗ s (7.1a)

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
(7.1b)

It is easy to show that iterated transition is transitive: if s 7→∗ s′ and s′ 7→∗
s′′, then s 7→∗ s′′.

When applied to the definition of iterated transition, the principle of
rule induction states that to show that P(s, s′) holds whenever s 7→∗ s′, it is
enough to show these two properties of P:

1. P(s, s).

2. if s 7→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show
that P is closed under head expansion, or closed under inverse evaluation. Using
this principle, it is easy to prove that 7→∗ is reflexive and transitive.

The n-times iterated transition judgement, s 7→n s′, where n ≥ 0, is in-
ductively defined by the following rules.

s 7→0 s (7.2a)

s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′
(7.2b)

Theorem 7.1. For all states s and s′, s 7→∗ s′ iff s 7→k s′ for some k ≥ 0.

7.2 Structural Dynamics

A structural dynamics for L{num str} is given by a transition system whose
states are closed expressions. All states are initial. The final states are the

VERSION 1.16 DRAFT REVISED 08.27.2011

7.2 Structural Dynamics 65

(closed) values, which represent the completed computations. The judge-
ment e val, which states that e is a value, is inductively defined by the fol-
lowing rules:

num[n] val (7.3a)

str[s] val (7.3b)

The transition judgement, e 7→ e′, between states is inductively defined
by the following rules:

n1 + n2 = n nat

plus(num[n1]; num[n2]) 7→ num[n] (7.4a)

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

(7.4b)

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e′2)

(7.4c)

s1 ˆ s2 = s str

cat(str[s1]; str[s2]) 7→ str[s]
(7.4d)

e1 7→ e′1
cat(e1; e2) 7→ cat(e′1; e2)

(7.4e)

e1 val e2 7→ e′2
cat(e1; e2) 7→ cat(e1; e′2)

(7.4f)

let(e1; x.e2) 7→ [e1/x]e2 (7.4g)

We have omitted rules for multiplication and computing the length of a
string, which follow a similar pattern. Rules (7.4a), (7.4d), and (7.4g) are
instruction transitions, since they correspond to the primitive steps of eval-
uation. The remaining rules are search transitions that determine the order
in which instructions are executed.

Rule (7.4g) specifies a by-name interpretation, in which the bound vari-
able stands for the expression e1 itself.1 If x does not occur in e2, the expres-
sion e1 is never evaluated. If, on the other hand, it occurs more than once,
then e1 will be re-evaluated at each occurence. To avoid repeated work in
the latter case, we may instead specify a by-value interpretation of binding
by the following rules:

e1 val

let(e1; x.e2) 7→ [e1/x]e2
(7.5a)

1The justification for the terminology “by name” is obscure, but the terminology is firmly
established and cannot be changed.

REVISED 08.27.2011 DRAFT VERSION 1.16

66 7.2 Structural Dynamics

e1 7→ e′1
let(e1; x.e2) 7→ let(e′1; x.e2)

(7.5b)

Rule (7.5b) is an additional search rule specifying that we may evaluate e1
before e2. Rule (7.5a) ensures that e2 is not evaluated until evaluation of e1
is complete.

A derivation sequence in a structural dynamics has a two-dimensional
structure, with the number of steps in the sequence being its “width” and
the derivation tree for each step being its “height.” For example, consider
the following evaluation sequence.

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
7→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
7→ plus(plus(num[3]; num[3]); num[4])
7→ plus(num[6]; num[4])
7→ num[10]

Each step in this sequence of transitions is justified by a derivation accord-
ing to Rules (7.4). For example, the third transition in the preceding exam-
ple is justified by the following derivation:

plus(num[3]; num[3]) 7→ num[6]
(7.4a)

plus(plus(num[3]; num[3]); num[4]) 7→ plus(num[6]; num[4])
(7.4b)

The other steps are similarly justified by a composition of rules.
The principle of rule induction for the structural dynamics ofL{num str}

states that to show P(e 7→ e′) whenever e 7→ e′, it is sufficient to show that
P is closed under Rules (7.4). For example, we may show by rule induction
that structural dynamics of L{num str} is determinate, which means that
an expression may transition to at most one other expression. The proof a
simple lemma relating transition to values:

Lemma 7.2. For no expression e do we have both e val and e 7→ e′ for some e′.

Proof. By rule induction on Rules (7.3) and (7.4).

Lemma 7.3 (Determinacy). If e 7→ e′ and e 7→ e′′, then e′ and e′′ are α-
equivalent.

Proof. By rule induction on the premises e 7→ e′ and e 7→ e′′, carried out
either simultaneously or in either order. Since only one rule applies to each
form of expression, e, the result follows directly in each case. It is assumed
that the primitive operators, such as addition, have a unique value when
applied to values.

VERSION 1.16 DRAFT REVISED 08.27.2011

7.3 Contextual Dynamics 67

Rules (7.4) exemplify the inversion principle of language design, which
states that the eliminatory forms are inverse to the introductory forms of a
language. The search rules determine the principal arguments of each elimi-
natory form, and the instruction rules specify how to evaluate an elimina-
tory form when all of its principal arguments are in introductory form. For
example, Rules (7.4) specify that both argument of addition are principal,
and specify how to evaluate an addition once its principal arguments are
evaluated to numerals. The inversion principle is central to ensuring that
a programming language is properly defined, the exact statement of which
is given in Chapter 8.

7.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes
useful. There is no fundamental difference between the two approaches,
only a difference in the style of presentation. The main idea is to isolate
instruction steps as a special form of judgement, called instruction transi-
tion, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgement, e val, defining whether
an expression is a value, remains unchanged.

The instruction transition judgement, e1 e2, for L{num str} is de-
fined by the following rules, together with similar rules for multiplication
of numbers and the length of a string.

m + n = p nat

plus(num[m]; num[n]) num[p] (7.6a)

s ˆ t = u str
cat(str[s]; str[t]) str[u] (7.6b)

let(e1; x.e2) [e1/x]e2 (7.6c)

The judgement E ectxt determines the location of the next instruction to
execute in a larger expression. The position of the next instruction step is
specified by a “hole”, written ◦, into which the next instruction is placed, as
we shall detail shortly. (The rules for multiplication and length are omitted
for concision, as they are handled similarly.)

◦ ectxt (7.7a)

E1 ectxt

plus(E1; e2) ectxt
(7.7b)

REVISED 08.27.2011 DRAFT VERSION 1.16

68 7.3 Contextual Dynamics

e1 val E2 ectxt

plus(e1; E2) ectxt
(7.7c)

The first rule for evaluation contexts specifies that the next instruction may
occur “here”, at the point of the occurrence of the hole. The remaining rules
correspond one-for-one to the search rules of the structural dynamics. For
example, Rule (7.7c) states that in an expression plus(e1; e2), if the first
argument, e1, is a value, then the next instruction step, if any, lies at or
within the second argument, e2.

An evaluation context is to be thought of as a template that is instanti-
ated by replacing the hole with an instruction to be executed. The judge-
ment e′ = E{e} states that the expression e′ is the result of filling the hole
in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (7.8a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e}

(7.8b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e}

(7.8c)

There is one rule for each form of evaluation context. Filling the hole with
e results in e; otherwise we proceed inductively over the structure of the
evaluation context.

Finally, the contextual dynamics for L{num str} is defined by a single
rule:

e = E{e0} e0 e′0 e′ = E{e′0}
e 7→ e′

(7.9)

Thus, a transition from e to e′ consists of (1) decomposing e into an evalua-
tion context and an instruction, (2) execution of that instruction, and (3) re-
placing the instruction by the result of its execution in the same spot within
e to obtain e′.

The structural and contextual dynamics define the same transition re-
lation. For the sake of the proof, let us write e 7→s e′ for the transition
relation defined by the structural dynamics (Rules (7.4)), and e 7→c e′ for
the transition relation defined by the contextual dynamics (Rules (7.9)).

Theorem 7.4. e 7→s e′ if, and only if, e 7→c e′.

Proof. From left to right, proceed by rule induction on Rules (7.4). It is
enough in each case to exhibit an evaluation context E such that e = E{e0},
e′ = E{e′0}, and e0 e′0. For example, for Rule (7.4a), take E = ◦, and

VERSION 1.16 DRAFT REVISED 08.27.2011

7.4 Equational Dynamics 69

observe that e e′. For Rule (7.4b), we have by induction that there exists
an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and e0 e′0.
Take E = plus(E1; e2), and observe that e = plus(E1; e2){e0} and e′ =
plus(E1; e2){e′0} with e0 e′0.

From right to left, observe that if e 7→c e′, then there exists an evaluation
context E such that e = E{e0}, e′ = E{e′0}, and e0 e′0. We prove by induc-
tion on Rules (7.8) that e 7→s e′. For example, for Rule (7.8a), e0 is e, e′0 is e′,
and e e′. Hence e 7→s e′. For Rule (7.8b), we have that E = plus(E1; e2),
e1 = E1{e0}, e′1 = E1{e′0}, and e1 7→s e′1. Therefore e is plus(e1; e2), e′ is
plus(e′1; e2), and therefore by Rule (7.4b), e 7→s e′.

Since the two transition judgements coincide, contextual dynamics may
be seen as an alternative way of presenting a structural dynamics. It has
two advantages over structural dynamics, one relatively superficial, one
rather less so. The superficial advantage stems from writing Rule (7.9) in
the simpler form

e0 e′0
E{e0} 7→ E{e′0}

. (7.10)

This formulation is superficially simpler in that it does not make explicit
how an expression is to be decomposed into an evaluation context and a
reducible expression.

7.4 Equational Dynamics

Another formulation of the dynamics of a language is based on regard-
ing computation as a form of equational deduction, much in the style of
elementary algebra. For example, in algebra we may show that the polyno-
mials x2 + 2 x + 1 and (x + 1)2 are equivalent by a simple process of calcu-
lation and re-organization using the familiar laws of addition and multipli-
cation. The same laws are sufficient to determine the value of any polyno-
mial, given the values of its variables. So, for example, we may plug in 2 for
x in the polynomial x2 + 2 x + 1 and calculate that 22 + 2 2 + 1 = 9, which
is indeed (2 + 1)2. This gives rise to a model of computation in which we
may determine the value of a polynomial for a given value of its variable by
substituting the given value for the variable and proving that the resulting
expression is equal to its value.

Very similar ideas give rise to the concept of definitional, or computa-
tional, equivalence of expressions in L{num str}, which we write as X | Γ `

REVISED 08.27.2011 DRAFT VERSION 1.16

70 7.4 Equational Dynamics

e ≡ e′ : τ, where Γ consists of one assumption of the form x : τ for each
x ∈ X . We only consider definitional equality of well-typed expressions,
so that when considering the judgement Γ ` e ≡ e′ : τ, we tacitly assume
that Γ ` e : τ and Γ ` e′ : τ. Here, as usual, we omit explicit mention
of the parameters, X , when they can be determined from the forms of the
assumptions Γ.

Definitional equivalence of expressions inL{num str} is inductively de-
fined by the following rules:

Γ ` e ≡ e : τ (7.11a)

Γ ` e′ ≡ e : τ
Γ ` e ≡ e′ : τ

(7.11b)

Γ ` e ≡ e′ : τ Γ ` e′ ≡ e′′ : τ
Γ ` e ≡ e′′ : τ

(7.11c)

Γ ` e1 ≡ e′1 : num Γ ` e2 ≡ e′2 : num
Γ ` plus(e1; e2) ≡ plus(e′1; e′2) : num

(7.11d)

Γ ` e1 ≡ e′1 : str Γ ` e2 ≡ e′2 : str
Γ ` cat(e1; e2) ≡ cat(e′1; e′2) : str

(7.11e)

Γ ` e1 ≡ e′1 : τ1 Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(7.11f)

n1 + n2 = n nat

Γ ` plus(num[n1]; num[n2]) ≡ num[n] : num (7.11g)

s1 ˆ s2 = s str

Γ ` cat(str[s1]; str[s2]) ≡ str[s] : str
(7.11h)

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ (7.11i)

Rules (7.11a) through (7.11c) state that definitional equivalence is an equiv-
alence relation. Rules (7.11d) through (7.11f) state that it is a congruence re-
lation, which means that it is compatible with all expression-forming con-
structs in the language. Rules (7.11g) through (7.11i) specify the mean-
ings of the primitive constructs of L{num str}. For the sake of concision,
Rules (7.11) may be characterized as defining the strongest congruence closed
under Rules (7.11g), (7.11h), and (7.11i).

Rules (7.11) are sufficient to allow us to calculate the value of an expres-
sion by an equational deduction similar to that used in high school algebra.
For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

VERSION 1.16 DRAFT REVISED 08.27.2011

7.4 Equational Dynamics 71

by applying Rules (7.11). Here, as in general, there may be many different
ways to derive the same equation, but we need find only one derivation in
order to carry out an evaluation.

Definitional equivalence is rather weak in that many equivalences that
one might intuitively think are true are not derivable from Rules (7.11). A
prototypical example is the putative equivalence

x : num, y : num ` x1 + x2 ≡ x2 + x1 : num, (7.12)

which, intuitively, expresses the commutativity of addition. Although we
shall not prove this here, this equivalence is not derivable from Rules (7.11).
And yet we may derive all of its closed instances,

n1 + n2 ≡ n2 + n1 : num, (7.13)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (7.12), and all of its

instances, given by Equation (7.13), may be filled by enriching the notion
of equivalence to include a principle of proof by mathematical induction.
Such a notion of equivalence is sometimes called semantic, or observational,
equivalence, since it expresses relationships that hold by virtue of the dy-
namics of the expressions involved. (Semantic equivalence is developed
rigorously for a related language in Chapter 49.)

Definitional equivalence is sometimes called symbolic execution, since it
allows any subexpression to be replaced by the result of evaluating it ac-
cording to the rules of the dynamics of the language.

Theorem 7.5. e ≡ e′ : τ iff there exists e0 val such that e 7→∗ e0 and e′ 7→∗ e0.

Proof. The proof from right to left is direct, since every transition step is
a valid equation. The converse follows from the following, more general,
proposition. If x1 : τ1, . . . , xn : τn ` e ≡ e′ : τ, then whenever e1 : τ1, . . . , en :
τn, if

[e1, . . . , en/x1, . . . , xn]e ≡ [e1, . . . , en/x1, . . . , xn]e′ : τ,

then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e 7→∗ e0

and
[e1, . . . , en/x1, . . . , xn]e′ 7→∗ e0.

This is proved by rule induction on Rules (7.11).

REVISED 08.27.2011 DRAFT VERSION 1.16

72 7.5 Notes

The formulation of definitional equivalence for the by-value dynamics
of binding requires a bit of additional machinery. The key idea is motivated
by the modifications required to Rule (7.11i) to express the requirement that
e1 be a value. As a first cut one might consider simply adding an additional
premise to the rule:

e1 val

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ
(7.14)

This is almost correct, except that the judgement e val is defined only for
closed expressions, whereas e1 might well involve free variables in Γ. What
is required is to extend the judgement e val to the hypothetical judgement

x1 val, . . . , xn val ` e val

in which the hypotheses express the assumption that variables are only
ever bound to values, and hence can be regarded as values. To maintain
this invariant, we must maintain a set, Ξ, of such hypotheses as part of def-
initional equivalence, writing Ξ Γ ` e ≡ e′ : τ, and modifying Rule (7.11f)
as follows:

Ξ Γ ` e1 ≡ e′1 : τ1 Ξ, x val Γ, x : τ1 ` e2 ≡ e′2 : τ2

Ξ Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(7.15)

The other rules are correspondingly modified to simply carry along Ξ is an
additional set of hypotheses of the inference.

7.5 Notes

The use of transition systems to specify the behavior of programs goes
back to the early work of Church and Turing on computability. Turing’s
approach emphasized the concept of an abstract machine consisting of a
finite program together with unbounded memory. Computation proceeds
by changing the memory in accordance with the instructions in the pro-
gram. Much early work on the operational semantics of programming lan-
guages, such as Landin’s SECD machine [49], emphasized machine models.
Church’s approach emphasized the language for expressing computations,
and defined execution in terms of the programs themselves, rather than in
terms of auxiliary concepts such as memories or tapes. Plotkin’s elegant
formulation of structural operational semantics [75], which we use heavily
throughout this book, was inspired by Church’s and Landin’s ideas [77].

VERSION 1.16 DRAFT REVISED 08.27.2011

7.5 Notes 73

Contextual semantics, which was introduced by Felleisen [27], may be seen
as an alternative formulation of structural semantics in which “search rules”
are replaced by “context matching”. Computation viewed as equational
deduction goes back to the early work of Herbrand and Gödel. (In fact, this
style of dynamics is sometimes called Herbrand-Gödel equations). Church’s
original formulation of the λ-calculus [20] was based on equational deduc-
tion of the kind considered here.

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 8

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly
typed). Informally, this means that certain kinds of mismatches cannot arise
during execution. For example, type safety forL{num str} states that it will
never arise that a number is to be added to a string, or that two numbers
are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the statics and
the dynamics. The statics may be seen as predicting that the value of an
expression will have a certain form so that the dynamics of that expression
is well-defined. Consequently, evaluation cannot “get stuck” in a state for
which no transition is possible, corresponding in implementation terms to
the absence of “illegal instruction” errors at execution time. This is proved
by showing that each step of transition preserves typability and by showing
that typable states are well-defined. Consequently, evaluation can never
“go off into the weeds,” and hence can never encounter an illegal instruc-
tion.

More precisely, type safety for L{num str}may be stated as follows:

Theorem 8.1 (Type Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

The first part, called preservation, says that the steps of evaluation pre-
serve typing; the second, called progress, ensures that well-typed expres-
sions are either values or can be further evaluated. Safety is the conjunction
of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no
e′ such that e 7→ e′. It follows from the safety theorem that a stuck state is

76 8.1 Preservation

necessarily ill-typed. Or, putting it the other way around, that well-typed
states do not get stuck.

8.1 Preservation

The preservation theorem for L{num str} defined in Chapters 6 and 7 is
proved by rule induction on the transition system (rules (7.4)).

Theorem 8.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. We will consider two cases, leaving the rest to the reader. Consider
rule (7.4b),

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

.

Assume that plus(e1; e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1; e2) : num. The case for concatenation is handled similarly.

Now consider rule (7.4g),

e1 val

let(e1; x.e2) 7→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion lemma 6.2 on page 59,
e1 : τ1 for some τ1 such that x : τ1 ` e2 : τ2. By the substitution lemma 6.4
on page 60 [e1/x]e2 : τ2, as desired.

It is easy to check that the primitive operations are all type-preserving;
for example, if a nat and b nat and a + b = c nat, then c nat.

The proof of preservation is naturally structured as an induction on the
transition judgement, since the argument hinges on examining all possible
transitions from a given expression. In some cases one may manage to
carry out a proof by structural induction on e, or by an induction on typing,
but experience shows that this often leads to awkward arguments, or, in
some cases, cannot be made to work at all.

8.2 Progress

The progress theorem captures the idea that well-typed programs cannot
“get stuck”. The proof depends crucially on the following lemma, which
characterizes the values of each type.

VERSION 1.16 DRAFT REVISED 08.27.2011

8.2 Progress 77

Lemma 8.3 (Canonical Forms). If e val and e : τ, then

1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (6.1) and (7.3).

Progress is proved by rule induction on rules (6.1) defining the statics
of the language.

Theorem 8.4 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will
consider only one case, for rule (6.1d),

e1 : num e2 : num
plus(e1; e2) : num

,

where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that

e1 7→ e′1. In the latter case it follows that plus(e1; e2) 7→ plus(e′1; e2), as
required. In the former we also have by induction that either e2 val, or there
exists e′2 such that e2 7→ e′2. In the latter case we have that plus(e1; e2) 7→
plus(e1; e′2), as required. In the former, we have, by the Canonical Forms
Lemma 8.3, e1 = num[n1] and e2 = num[n2], and hence

plus(num[n1]; num[n2]) 7→ num[n1 + n2].

Since the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types of
the parts of e. But this approach breaks down when the typing rules are not
syntax-directed, that is, when there may be more than one rule for a given
expression form. No difficulty arises if the proof proceeds by induction on
the typing rules.

Summing up, the combination of preservation and progress together
constitute the proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
statics and dynamics are coherent, and that no ill-defined states can ever be
encountered while evaluating a well-typed expression.

REVISED 08.27.2011 DRAFT VERSION 1.16

78 8.3 Run-Time Errors

8.3 Run-Time Errors

Suppose that we wish to extend L{num str}with, say, a quotient operation
that is undefined for a zero divisor. The natural typing rule for quotients is
given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have
two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide
by zero.

2. Add dynamic checks, so that division by zero signals an error as the
outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs as ill-formed.
This is because one cannot reliably predict statically whether an expression
will turn out to be non-zero when executed (because this is an undecidable
property). We therefore consider the second approach, which is typical of
current practice.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the
dynamics need not check, when performing an addition, that its two argu-
ments are, in fact, numbers, as opposed to strings, because the type system
ensures that this is the case. On the other hand the dynamics for quotient
must check for a zero divisor, because the type system does not rule out the
possibility.

One approach to modelling checked errors is to give an inductive def-
inition of the judgment e err stating that the expression e incurs a checked
run-time error, such as division by zero. Here are some representative rules
that would appear in a full inductive definition of this judgement:

e1 val

div(e1; num[0]) err
(8.1a)

VERSION 1.16 DRAFT REVISED 08.27.2011

8.4 Notes 79

e1 err

plus(e1; e2) err
(8.1b)

e1 val e2 err

plus(e1; e2) err
(8.1c)

Rule (8.1a) signals an error condition for division by zero. The other rules
propagate this error upwards: if an evaluated sub-expression is a checked
error, then so is the overall expression.

Once the error judgement is available, we may also consider an expres-
sion, error, which forcibly induces an error, with the following static and
dynamic semantics:

Γ ` error : τ
(8.2a)

error err
(8.2b)

The preservation theorem is not affected by the presence of checked er-
rors. However, the statement (and proof) of progress is modified to account
for checked errors.

Theorem 8.5 (Progress With Error). If e : τ, then either e err, or e val, or there
exists e′ such that e 7→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at each
point in the proof.

8.4 Notes

The concept of type safety as it is understood today was first formulated
by Milner in his study of the ML type system [58]. This work gave rise
to the slogan “well-typed programs cannot go wrong.” Whereas Milner
relied on an explicit notion of “going wrong” to express the concept of a
type error, Wright and Felleisen observed that one can instead show that
ill-defined states cannot arise in a well-typed program [97], giving rise to
the slogan “well-typed programs cannot get stuck.” However, their formu-
lation relied on a backward analysis showing that a stuck state cannot be
well-typed. The formulation given here reformulates this as the progress
theorem, which itself relies on the concept of canonical forms of a type in-
troduced by Martin-Löf [68]. The informal concept of type safety is there-
fore formalized as the conjunction of progress and preservation, which en-
sure that the state of the dynamics is always well-defined.

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 9

Evaluation Dynamics

In Chapter 7 we defined the evaluation of L{num str} expression using the
method of structural dynamics. This approach is useful as a foundation for
proving properties of a language, but other methods are often more appro-
priate for other purposes, such as writing user manuals. Another method,
called evaluation dynamics presents the dynamics as a relation between a
phrase and its value, without detailing how it is to be determined in a step-
by-step manner. Evaluation dynamics suppresses the step-by-step details
of determining the value of an expression, and hence does not provide any
useful notion of the time complexity of a program. Cost dynamics rectifies
this by augmenting evaluation dynamics with a cost measure. Various cost
measures may be assigned to an expression. One example is the number of
steps in the structural dynamics required for an expression to reach a value.

9.1 Evaluation Dynamics

Another method for defining the dynamics of L{num str}, called evaluation
dynamics, consists of an inductive definition of the evaluation judgement,
e ⇓ v, stating that the closed expression, e, evaluates to the value, v.

num[n] ⇓ num[n] (9.1a)

str[s] ⇓ str[s] (9.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n nat

plus(e1; e2) ⇓ num[n]
(9.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1; e2) ⇓ str[s]
(9.1d)

82 9.2 Relating Structural and Evaluation Dynamics

e ⇓ str[s] |s| = n str

len(e) ⇓ num[n]
(9.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(9.1f)

The value of a let expression is determined by substitution of the binding
into the body. The rules are therefore not syntax-directed, since the premise
of Rule (9.1f) is not a sub-expression of the expression in the conclusion of
that rule.

The evaluation judgement is inductively defined, we prove properties
of it by rule induction. Specifically, to show that the property P(e ⇓ v)
holds, it is enough to show that P is closed under Rules (9.1):

1. Show that P(num[n] ⇓ num[n]).

2. Show that P(str[s] ⇓ str[s]).

3. Show thatP(plus(e1; e2) ⇓ num[n]), ifP(e1 ⇓ num[n1]),P(e2 ⇓ num[n2]),
and n1 + n2 = n nat.

4. Show thatP(cat(e1; e2) ⇓ str[s]), ifP(e1 ⇓ str[s1]),P(e2 ⇓ str[s2]),
and s1 ˆ s2 = s str.

5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e exp,
because the evaluation rules are not syntax-directed!

Lemma 9.1. If e ⇓ v, then v val.

Proof. By induction on Rules (9.1). All cases except Rule (9.1f) are imme-
diate. For the latter case, the result follows directly by an appeal to the
inductive hypothesis for the premise of the evaluation rule.

9.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for L{num str}. It is nat-
ural to ask whether they are equivalent, but to do so first requires that we
consider carefully what we mean by equivalence. The structural dynamics
describes a step-by-step process of execution, whereas the evaluation dy-
namics suppresses the intermediate states, focussing attention on the initial
and final states alone. This suggests that the appropriate correspondence

VERSION 1.16 DRAFT REVISED 08.27.2011

9.3 Type Safety, Revisited 83

is between complete execution sequences in the structural dynamics and the
evaluation judgement in the evaluation dynamics. (We will consider only
numeric expressions, but analogous results hold also for string-valued ex-
pressions.)

Theorem 9.2. For all closed expressions e and values v, e 7→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 9.3. If e ⇓ v, then e 7→∗ v.

Proof. By induction on the definition of the evaluation judgement. For ex-
ample, suppose that plus(e1; e2) ⇓ num[n] by the rule for evaluating addi-
tions. By induction we know that e1 7→∗ num[n1] and e2 7→∗ num[n2]. We
reason as follows:

plus(e1; e2) 7→∗ plus(num[n1]; e2)

7→∗ plus(num[n1]; num[n2])

7→ num[n1 + n2]

Therefore plus(e1; e2) 7→∗ num[n1 + n2], as required. The other cases are
handled similarly.

For the converse, recall from Chapter 7 the definitions of multi-step
evaluation and complete evaluation. Since v ⇓ v whenever v val, it suf-
fices to show that evaluation is closed under reverse execution.

Lemma 9.4. If e 7→ e′ and e′ ⇓ v, then e ⇓ v.

Proof. By induction on the definition of the transition judgement. For ex-
ample, suppose that plus(e1; e2) 7→ plus(e′1; e2), where e1 7→ e′1. Sup-
pose further that plus(e′1; e2) ⇓ v, so that e′1 ⇓ num[n1], e2 ⇓ num[n2],
n1 + n2 = n nat, and v is num[n]. By induction e1 ⇓ num[n1], and hence
plus(e1; e2) ⇓ num[n], as required.

9.3 Type Safety, Revisited

The type safety theorem for L{num str} (Theorem 8.1 on page 75) states
that a language is safe iff it satisfies both preservation and progress. This
formulation depends critically on the use of a transition system to specify
the dynamics. But what if we had instead specified the dynamics as an

REVISED 08.27.2011 DRAFT VERSION 1.16

84 9.3 Type Safety, Revisited

evaluation relation, instead of using a transition system? Can we state and
prove safety in such a setting?

The answer, unfortunately, is that we cannot. While there is an analogue
of the preservation property for an evaluation dynamics, there is no clear
analogue of the progress property. Preservation may be stated as saying
that if e ⇓ v and e : τ, then v : τ. This can be readily proved by induc-
tion on the evaluation rules. But what is the analogue of progress? One
might be tempted to phrase progress as saying that if e : τ, then e ⇓ v for
some v. While this property is true for L{num str}, it demands much more
than just progress — it requires that every expression evaluate to a value!
If L{num str} were extended to admit operations that may result in an er-
ror (as discussed in Section 8.3 on page 78), or to admit non-terminating
expressions, then this property would fail, even though progress would
remain valid.

One possible attitude towards this situation is to simply conclude that
type safety cannot be properly discussed in the context of an evaluation
dynamics, but only by reference to a structural dynamics. Another point of
view is to instrument the dynamics with explicit checks for run-time type
errors, and to show that any expression with a type fault must be ill-typed.
Re-stated in the contrapositive, this means that a well-typed program can-
not incur a type error. A difficulty with this point of view is that one must
explicitly account for a form of error solely to prove that it cannot arise!
Nevertheless, we will press on to show how a semblance of type safety can
be established using evaluation dynamics.

The main idea is to define a judgement e⇑ stating, in the jargon of the
literature, that the expression e goes wrong when executed. The exact defi-
nition of “going wrong” is given by a set of rules, but the intention is that
it should cover all situations that correspond to type errors. The following
rules are representative of the general case:

plus(str[s]; e2)⇑ (9.2a)

e1 val

plus(e1; str[s])⇑ (9.2b)

These rules explicitly check for the misapplication of addition to a string;
similar rules govern each of the primitive constructs of the language.

Theorem 9.5. If e⇑, then there is no τ such that e : τ.

Proof. By rule induction on Rules (9.2). For example, for Rule (9.2a), we
observe that str[s] : str, and hence plus(str[s]; e2) is ill-typed.

VERSION 1.16 DRAFT REVISED 08.27.2011

9.4 Cost Dynamics 85

Corollary 9.6. If e : τ, then ¬(e⇑).

Apart from the inconvenience of having to define the judgement e⇑
only to show that it is irrelevant for well-typed programs, this approach
suffers a very significant methodological weakness. If we should omit one
or more rules defining the judgement e⇑, the proof of Theorem 9.5 on the
preceding page remains valid; there is nothing to ensure that we have in-
cluded sufficiently many checks for run-time type errors. We can prove
that the ones we define cannot arise in a well-typed program, but we can-
not prove that we have covered all possible cases. By contrast the structural
dynamics does not specify any behavior for ill-typed expressions. Conse-
quently, any ill-typed expression will “get stuck” without our explicit in-
tervention, and the progress theorem rules out all such cases. Moreover,
the transition system corresponds more closely to implementation—a com-
piler need not make any provisions for checking for run-time type errors.
Instead, it relies on the statics to ensure that these cannot arise, and assigns
no meaning to any ill-typed program. Execution is therefore more efficient,
and the language definition is simpler, an elegant win-win situation for
both the dynamics and the implementation.

9.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for pro-
grams, namely the number of steps required to reach a final state. An evalu-
ation dynamics, on the other hand, does not provide such a direct notion of
complexity. Since the individual steps required to complete an evaluation
are suppressed, we cannot directly read off the number of steps required to
evaluate to a value. Instead we must augment the evaluation relation with
a cost measure, resulting in a cost dynamics.

Evaluation judgements have the form e ⇓k v, with the meaning that e
evaluates to v in k steps.

num[n] ⇓0 num[n] (9.3a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]
(9.3b)

str[s] ⇓0 str[s] (9.3c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(9.3d)

REVISED 08.27.2011 DRAFT VERSION 1.16

86 9.5 Notes

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(9.3e)

Theorem 9.7. For any closed expression e and closed value v of the same type,
e ⇓k v iff e 7→k v.

Proof. From left to right proceed by rule induction on the definition of the
cost dynamics. From right to left proceed by induction on k, with an inner
rule induction on the definition of the structural dynamics.

9.5 Notes

The structural similarity between evaluation dynamics and typing rules
was first developed in the definition of Standard ML [60]. Martin-Löf’s
formulation of type theory as a programming language [68] also stressed
evaluation dynamics to define computation. The advantage of evaluation
semantics is that it directly defines the relation of interest, that between
a program and its outcome. The disadvantage is that it is not as well-
suited to metatheory as structural semantics, precisely because it glosses
over the fine structure of computation. The concept of a cost dynamics
was introduced by Blelloch and Greiner in their study of parallel computa-
tion [14, 34]. The sequential cost semantics given here sets the stage for the
treatment of parallelism in Chapter 41.

VERSION 1.16 DRAFT REVISED 08.27.2011

