
Chapter 1

Theorem proving with Coq

1.1 Introduction

1.1.1 What is Coq?

Coq is a tool to help you write formal proofs, that are mechanically veri�able. This means
that once you have proved something in Coq, you have very high assurance that it is true �
more than what you usually have when doing a pen-and-paper proof. It can be used in an
interactive style, thus we call it an interactive proof assistant. It is based on a very expressive
logic, the Calculus of Inductive Constructions.

1.1.2 What Coq is not.

Coq is not a tool that will automatically prove theorems. So, you can't have Coq solve your
logic or math homework for you, or prove the Goldbach conjecture. Still, it greatly simpli�es
the development of formal proofs, by automating some aspects of it.

1.1.3 Why you should learn to use it.

Many reasons: to understand formal mathematical logic better; to verify that a proof is
indeed valid; to develop certi�ed software.

1.1.4 How you could learn to use it.

• Sit through this section for the basics.

• Follow the standard Coq tutorial. (this presentation is based on it)

• Use the reference manual for things not covered there.

• For more detailed introductions, look at the Coq'Art book and Adam Chlipala's book.
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• Treat it as a programming language: the only proper way to learn it is to use it!

1.1.5 How to use it.

Coq is installed in the zoo machines, in the directory

/c/cs430/bin

As a development environment for it, you can either use the CoqIDE or ProofGeneral, which
is an Emacs-based environment. Both are installed in the same directory.

1.2 Propositional Logic

We will now see how to prove a simple theorem of propositional logic, namely the S axiom
of the Hilbert calculus, in Coq. Its statement is
(P → Q → R) → (P → Q) → P → R

Coq commands are displayed using �xed-width font below. We start our Coq development
by starting a new section. Sections are used in Coq developments for presentation reasons,
in order to group de�nitions and theorems together, and also to introduce local assumptions
and local variables.

Section PropositionalLogic.

In this section, for example, we will introduce three symbols that will serve as atomic
propositions. This is done through the use of the following Variables command, where the
type Prop is used to classify propositions.

Variables P Q R : Prop.

As we said, Coq is an interactive tool. That means that instead of having to write a
development in full and then pass it to Coq (the way we write programs and pass them to a
compiler), we can feed a development little by little to Coq, which will then help us proceed.
Environments like CoqIDE and ProofGeneral help us do that, and one should use the rest
of this tutorial like that.

As a �rst step, we state the theorem we're trying to prove.

Theorem hilbert axiom S : (P → Q → R) → (P → Q) → P → R.

If we feed the above statement of the theorem to Coq, it replies with the following:
1 subgoal

P : Prop
Q : Prop
R : Prop
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============================
(P → Q → R) → (P → Q) → P → R

What is presented here is the current proof state. Above the line lie the currently avail-
able variables and hypotheses; below the line lies the goal that we have to prove. Proving
something in Coq involves using the right commands to transform this proof state into sim-
pler forms or to satisfy the current goal using the current hypotheses. Such commands are
called tactics.

The �rst tactic we will use is intros. This tactic transforms a proof state with a goal
that involves logical implication, by moving the left-hand side of the implication into our set
of hypotheses, giving it a name, and leaving the right-hand side of the goal.

intros H1.

The current proof state is the following:
1 subgoal

P : Prop
Q : Prop
R : Prop
H1 : P → Q → R

============================
(P → Q) → P → R

We proceed by doing the same thing for the next two implications.

intros H2 H3.

There are multiple ways to proceed; the way that is most natural for a Coq development
to proceed at this point would be to state that the goal R will be proved using the hypothesis
P → Q → R. To prove R using this hypothesis we need two extra requirements, namely P

and Q, which will become new subgoals that we have to prove. We use the apply tactic to
tell Coq which hypothesis to use.

apply H1.

It is easy to prove the �rst subgoal P, since we already have it as a hypothesis. The
exact tactic can be used in this case to take care of the goal, since the hypothesis H3 is
exactly the goal that we are trying to prove.

exact H3.

For proving the second subgoal Q, we can similarly use the hypothesis P → Q. If we read
the logical implication arrow as a functional arrow, we could view proofs of this proposition
as functions that given a proof of proposition P, return a proof of proposition Q. This in fact
is the reading of logical implication in constructive logic, which Coq adheres to. Therefore
we can create a proof of Q by applying the function H2 : P → Q to the argument H3 : P.
Thus by using the tactic exact again we can solve the current goal.

exact (H2 H3 ).
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Now Coq tells us

Proof completed.

which means that we're done. We use the command Qed. to close the proof of this
theorem.

Qed.

Note that this is not the only way to prove the above fact, and perhaps not the best way.
We could even have Coq prove it automatically for us, by using the auto tactic.

Let's see now how to handle logical connectives like ∧ and ∨. Again we need to consider
these in their constructive reading: a proof of A ∧ B is composed of a proof of A and a proof
of B, while a proof of A ∨ B is a choice between the left-hand side or the right-hand side
plus a proof of the associated proposition.

Theorem distr and or : (P ∧ Q) ∨ (P ∧ R) → P ∧ (Q ∨ R).
intros H.

Having the hypothesis (P ∧ Q) ∨ (P ∧ R), we want to proceed by cases on whether
the left or the right proposition of the disjunction holds. Here the destruct tactic is useful:
given a hypothesis, it will require that we prove the same goal for all of the possible ways
that this hypothesis can be proven. Since in this case our hypothesis can only be proven by
either a proof of P ∧ Q or a proof of P ∧ R, it will generate two subgoals that we need to
prove.

destruct H as [H1 | H2 ].
In the �rst case, we have that P ∧ Q, and we need to prove P ∧ (Q ∨ R). To prove a

goal that involves a conjunction, we use the split tactic, that generates two subgoals, one
for each operand of the conjunction.

split.

We can use destruct for the conjunctive hypothesis P ∧ Q, in order to get both P and
Q as hypotheses.

destruct H1 as [HP HQ ].
exact HP.

Now we need to prove Q ∨ R; since we already have a proof for Q, we use the left tactic
to denote that we will prove the left part of this disjunction.

destruct H1 as [HP HQ ].
left.
exact HQ.

The case for P ∧ R is similar; we �rst use destruct to get the proofs of P and R out of
the proof of P ∧ R and then we can just allude to auto here to complete the proof for us.

destruct H2 as [HP HR].
auto.
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Qed.

Logical negation is represented as implication of False; so not A is equivalent to A →
False. Still, the treatment of logical negation in Coq is uncommon, in that in its underlying
logic the law of the excluded middle does not hold, unless we explicitly include it. We can
still prove the law of noncontradiction:

Theorem noncontradiction : not (P ∧ not P).

We prove this by opening up the de�nition of logical negation using the unfold tactic.
The rest is similar to the above.

unfold not.
intros H.
destruct H as [H1 H2 ].
auto.
Qed.

We can summarize some of the tactics we can use for propositional logic in the following
table:

As a goal As a hypothesis
→ intros (various)
∧ split destruct

∨ left or right destruct

True trivial �
False � destruct

We conclude this section using the following command.

End PropositionalLogic.

1.3 Predicate logic

Universally quanti�ed goals can be proven by introducing a new free variable through the
intros tactic, while such hypotheses can be used by specifying instantiations for the quanti-
�ed variables (implicitly or explicitly) when using tactics like apply and destruct. Existen-
tially quanti�ed goals can be proven by selecting a witness for which they hold; existentially
quanti�ed hypotheses can be opened up so as to give a name to their contained witness for
the rest of the proof.

Section PredicateLogic.

We �rst assume a domain of discourse; the objects of this domain will be what we quantify
over.

Variable D : Set.

We de�ne the binary relation R, which can also be viewed as a two-place predicate over
our domain of discourse.

Variable R : D → D → Prop.
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Theorem re� if : (∀ x y : D, R x y → R y x ) →
(∀ x y z : D, R x y → R y z → R x z ) →
(∀ x : D, (∃ y : D, R x y) → R x x ).

intros Rsym.
intros Rtrans.

When our goal begins with a universal quanti�er, we can use intros (just like in the case
of logical implication) to add a new free variable of the type that we quantify over to our
list of hypotheses. In a pen-and-paper proof, we would say "assume an arbitrary x..."; this
is what intros is equivalent to here.

intros x.

intros xR .

The proof needs to proceed as follows; since we know that ∃ y : D, x R y, we can show
through the use of the transitive property that R y x → R x x. Then, the proof can be
completed through the use of the symmetric property. So the �rst step is to open up the
existential so that we can use y in the rest of the proof; we do this through the destruct

tactic.

destruct xR as [y xRy ].

Now we want to use the hypothesis that R is transitive; we do this through the apply

tactic. The conclusion of this hypothesis is uni�ed with the current goal; this instantiates
its quanti�ed variables x and z, but the variable y remains uninstantiated � Coq cannot
magically guess what value we want for it. Thus we need to specify its value, or alternatively
use the eapply tactic which would leave the variable uninstantiated, so that it can be uni�ed
later.

apply Rtrans with (y := y).

The current goal is proved directly by a hypothesis; we can use the tactic assumption to
denote that without specifying the name of the hypothesis.

assumption.

To complete the proof we also need to show that R(y,x), which is trivially proved using
the hypothesis that R is symmetric.

apply Rsym.
assumption.
Qed.

Let's try another theorem, that also involves functions and equality. We assume two
functions, and also that our domain of discourse is inhabited (by requiring one element that
belongs in it).

Variables f g : D → D.
Variable d : D.

Theorem example pred theorem : (∀ x : D, ∃ y : D, f x = g y) →
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(∃ c : D, ∀ x : D, f x = c) →
(∃ y : D, ∀ x : D, f x = g y).

It is obvious why this holds; the function f is constant, so by instantiating our �rst
premise with an arbitrary x we can get a y such that g y = c, which is exactly the witness
we need for our existential goal.

intros H1 H2.

We open up the existential hypothesis that f is constant, naming the constant value as
c.

destruct H2 as [c H2' ].

Now we want to state the fact that there exists a y such that g y = c. One way to do
this is to use the cut tactic; it will introduce it as a new premise in our goal, and later we
will have to show why this fact holds.

cut (∃ y : D, c = g y).
intros H3.

Again we open up the just-introduced existential hypothesis to give an explicit name to
its witness that we can use for the rest of the proof.

destruct H3 as [yc H3' ].

We will prove our goal exactly for this witness; note the use of the exists tactic to handle
existential goals.

∃ yc.

At this point we need to prove that f x = g y ; we already know that c = g y thus it
su�ces to show that f x = c which is an assumption. We use the rewrite tactic to use the
fact that c = g y and replace g y with c in our goal.

rewrite ← H3'.
assumption.

To prove that ∃ y : D, c = g y, it su�ces to change c to f x for an arbitrary x. That's
what we do below, providing an explicit instantiation for the universally quanti�ed variable
of the hypothesis H2'.

rewrite ← H2' with (x := d).
apply H1.
Qed.

End PredicateLogic.

One more example of proofs for predicate logic propositions from elementary group the-
ory: we show that in a group, there always is an x such that a × x = b.

Section GroupTheory.

A group is de�ned by a set G and a closed operation on members of that set; we require
that the operation is associative, that a unit element exists, and that every element has an
inverse.
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Variable G : Set.
Variable operation : G → G → G.
Variable e : G.
Variable inv : G → G.
Infix "×" := operation.

Hypothesis associativity : ∀ x y z : G, (x × y) × z = x × (y × z ).
Hypothesis identity : ∀ x : G, x × e = e ∧ e × x = x.
Hypothesis inverse : ∀ x : G, x × inv x = e ∧ inv x × x = e.

The statement of the theorem follows.

Theorem latin square property : ∀ a b : G, ∃ x : G, a × x = b.

The proof proceeds by stating that such an x as the theorem requires is inv a × b; then
we need to show why a × (inv a × b) = b, which is provable through associativity of ×, the
fact that a × inv a = e, and then that e × b = b.

intros a b.
∃ (inv a × b).
rewrite ← associativity.

We want to isolate the left part of the conjunction of our hypothesis about the inverses,
while instantiating its quanti�ed variable to a.

destruct inverse with (x := a) as [H ].
rewrite H.

Same thing for the right part of the property of the identity element, instantiating its
quanti�ed variable to b.

destruct identity with (x := b) as [ H' ].
trivial.
Qed.

End GroupTheory.

We can thus augment the previous tactics table with the following:
As a goal As a hypothesis

∀ intros ... with (x := ...)
∃ exists destruct

= trivial when a = a rewrite

Yet another (still informal) explanation of the tactics is the following:

Ψ, H : P ⊢ Q

Ψ ⊢ P → Q
intros H

Ψ, H : P → Q ⊢ P

Ψ, H : P → Q ⊢ Q
apply H
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Ψ ⊢ P Ψ ⊢ Q

Ψ ⊢ P ∧ Q
split

Ψ, H1 : P, H2 : Q ⊢ R

Ψ, H : P ∧ Q ⊢ R
destruct H as [H1 H2]

Ψ ⊢ P

Ψ ⊢ P ∨ Q
left

Ψ ⊢ Q

Ψ ⊢ P ∨ Q
right

Ψ, H1 : P ⊢ R Ψ, H2 : Q ⊢ R

Ψ, H : P ∨ Q ⊢ R
destruct H as [H1 | H2]

Ψ, y : t ⊢ P [y/x]

Ψ ⊢ ∀x : t.P
intros y

... tactic H' ...

Ψ, H : ∀x : t.P, H ′ : P [a/x] ⊢ Q

Ψ, H : ∀x : t.P ⊢ Q
tactic H' with (x := a)

Ψ ⊢ P [a/x]

Ψ ⊢ ∃x : t.P
exists a

Ψ, y : t,H ′ : P [y/x] ⊢ Q

Ψ, H : ∃x : t.P ⊢ Q
destruct H as [y H']

Ψ ⊢ P → Q Ψ ⊢ P

Ψ ⊢ Q
cut P
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1.4 Inductive de�nitions

In Coq we specify the objects that we reason about by de�ning inductively how such objects
can be constructed. For example, if we want to be able to reason about natural numbers,
we would give the following de�nition:

Inductive nat : Set :=
O : nat

| S : nat → nat.

O is the constructor that corresponds to zero; S is the constructor that corresponds to
the successor function.

Immediately from the previous de�nition, we get the principle of induction over natural
numbers: Print nat ind.

nat ind : ∀ P : nat → Prop,
P O →
(∀ n : nat, P n → P (S n)) →
∀ n : nat, P n

In fact, inductive de�nitions play a much more central role in Coq than just being able
to inductively de�ne sets like natural numbers. Predicates like the ≤-relation for natural
numbers are also be inductively de�ned.

Inductive le : nat → nat → Prop :=
le n : ∀ n : nat, le n n

| le S : ∀ n m : nat, le n m → le n (S m).

Even logical connectives like ∨ are de�ned inductively.

Inductive or (A B : Prop) : Prop :=
or introl : A → or A B

| or intror : B → or A B.

Let's now see some example proofs involving induction. We'll prove the theorems:
∀ n : nat, O ≤ n

∀ n m : nat, n ≤ m → S n ≤ S m

Theorem le O n : ∀ n : nat, O ≤ n.

We want to proceed by performing natural number induction. We specify this using the
induction tactic, which gives us the two expected subgoals � the base case and the step
case of the induction.

induction n.

Both cases are provable by using the appropriate constructor from the de�nition of le; in
the second case we also need to use the inductive hypothesis. Using the tactic constructor

we choose the constructor whose conclusion matches the current goal.
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constructor.
constructor.
trivial.
Qed.

We could have written the above proof using the tactics combinator ;. This composes
two tactics together, applying the second one to all the subgoals that the �rst one generates.
Thus an equivalent way to write the above proof would be:

induction n; constructor ; trivial.

Let's now move on to the next theorem.

Theorem le S S : ∀ n m : nat, n ≤ m → S n ≤ S m.

What is interesting is that it is easier to prove this by performing induction on the
derivation of n ≤ m instead of natural number induction on n or m.

The induction principle that we get from the de�nition of ≤ is the following:
(∀ n.P n n) → (∀ n, m.P n m → P n (S m)) →
(∀ n, m.n ≤ m → P n m)

By instantiating P to fun a b ⇒ S a ≤ S b we get:
(∀ n.S n ≤ S n) → (∀ n, m.S n ≤ S m → S n ≤ S (S m)) →
(∀ n, m.n ≤ m → S n ≤ S m)

We specify that we want to perform induction on the derivation of n ≤ m again through
the induction tactic. We give it the number of the hypothesis after all the universal quan-
ti�ers that we want to perform induction on. The rest is proved trivially by the de�nition
of ≤ and the inductive hypothesis.

induction 1; constructor ; trivial.

Qed.

As a last example, let's see how recursive functions are handled. We can use the Fixpoint
command to de�ne such functions, e.g. the addition of natural numbers:

Fixpoint plus (a b : nat) : nat :=
match a with

O ⇒ b

|S a ⇒ S (plus a b)
end.

These functions need to be terminating, in order to ensure logical consistency.

We can now prove theorems like the following:

Theorem le plus : ∀ n m p, n ≤ m → n ≤ plus p m.

The simpl tactic can be used to perform evaluation of a function.

We proceed by induction on p.

induction p.
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Our goal is n ≤ m → n ≤ plus O m; we can use simpl to see that it is equivalent to n

≤ m → n ≤ m � after the evaluation of plus O m.

simpl.
trivial.

Similarly in the inductive step case, we use simpl to perform the evaluation of plus (S
p) m in the goal.

intros H.
simpl.
constructor.
apply IHp.
trivial.
Qed.

1.5 Declarative proof style

The proof scripts we've been writing are very hard to read, and also perform too many
low-level steps. There are a number of ways we can mitigate these problems, and arrive at
scripts that are better at conveying the essential ideas of proofs, and easier to write. One
way to do this is to use Coq's new declarative proof mode, where we specify intermediate
steps rather than the tactics required to reach them; another way is through the careful use
of automation. Here we'll brie�y see the declarative style.

Let's revisit a theorem we proved earlier and see its declarative proof.

Theorem latin square property decl : ∀ a b : G, ∃ x : G, a × x = b.
proof.
let a : G, b : G.
take (inv a × b).
have H1 :(a × (inv a × b) = (a × inv a) × b) by associativity.
have H2 :(a × inv a = e) by inverse.
have (a × (inv a × b) = e × b) by H1, H2.

�= b by identity.
hence thesis.

end proof.
Qed.

Another example we saw before.

Theorem le plus decl : ∀ n m p : nat, n ≤ m → n ≤ p + m.
proof.
let n, m, p : nat be such that H :(n ≤ m).
per induction on p.
suppose it is O.
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reconsider thesis as (n ≤ m).
thus thesis by H.

suppose it is (S p' ) and IH :(n ≤ p' + m).
reconsider thesis as (n ≤ S (p' + m)).
thus thesis by IH.

end induction.
end proof.
Qed.

The basic way of doing proofs in the declarative style is the following:

• We use let and assume instead of intros.

• We use have to state one fact and explicitly provide justi�cation for it by listing the
hypotheses we use. then is similar but includes the previous fact in the justi�cations.

• We use thus to show (part of) the thesis, including justi�cation if needed. hence

includes the previous fact.

• When doing induction, we need to explicitly specify the di�erent cases. Dependent
induction is still not supported though...

For more info, look at the documentation for C-zar in the Coq reference manual.
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