
Hardware Translation Coherence for Virtualized Systems
Zi Yan Ján Veselý Guilherme Cox Abhishek Bhattacharjee

Department of Computer Science, Rutgers University
{zi.yan,jan.vesely,guilherme.cox,abhib}@cs.rutgers.edu

ABSTRACT
To improve system performance, operating systems (OSes) often
undertake activities that require modification of virtual-to-physical
address translations. For example, the OS may migrate data between
physical pages to manage heterogeneous memory devices. We refer
to such activities as page remappings. Unfortunately, page remap-
pings are expensive. We show that a big part of this cost arises from
address translation coherence, particularly on systems employing
virtualization. In response, we propose hardware translation in-
validation and coherence or HATRIC, a readily implementable
hardware mechanism to piggyback translation coherence atop exist-
ing cache coherence protocols. We perform detailed studies using
KVM-based virtualization, showing that HATRIC achieves up to 30%
performance and 10% energy benefits, for per-CPU area overheads
of 0.2%. We also quantify HATRIC’s benefits on systems running
Xen and find up to 33% performance improvements.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid) sys-
tems; • Software and its engineering → Virtual machines; Oper-
ating systems; Virtual memory;

KEYWORDS
Virtualization, translation coherence, heterogeneous memory.

1 INTRODUCTION
As the computing industry designs systems for big-memory work-
loads, system architects have begun embracing heterogeneous mem-
ory architectures. For example, Intel is integrating high-bandwidth
on-package memory in its Knight’s Landing chip and 3D Xpoint
memory in several products [29]. AMD and Hynix are releasing
High-Bandwidth Memory or HBM [14, 35]. Similarly, Micron’s
Hybrid Memory Cube [48, 59] and byte-addressable persistent mem-
ories [18, 54, 67, 68] are quickly gaining traction. Vendors are com-
bining these high-performance memories with traditional high ca-
pacity and low cost DRAM, prompting research on heterogeneous
memory architectures [2, 5, 35, 43, 46, 49, 54, 64].

Fundamentally, heterogeneous memory management requires that
OSes remap pages between memory devices with different latency
/ bandwidth / energy characteristics for desirable overall operation.
Page remapping is not a new concept. OSes have long used it to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
This work is based on an earlier work: Hardware Translation Coherence for Virtualized
Systems, in Proceedings of the 44th Annual International Symposium on Computer
Architecture, (June 24-28), ACM, 2017 http://dx.doi.org/10.1145/3079856.3080211

migrate physical pages to defragment memory and create superpages
[4, 36, 45, 63], to migrate pages among NUMA sockets [25, 37],
and to deduplicate memory by enabling copy-on-write optimizations
[52, 53, 58]. However, while page remappings are used sparingly in
these scenarios, they become frequent when using heterogeneous
memories. This is because page remapping is necessary for appli-
cations to utilize a memory device’s technology characteristics by
moving data to these memory devices. Consequently, IBM and Red-
hat are already deploying Linux patchsets to enable page remapping
amongst coherent heterogeneous memory devices [16, 26, 34].

These efforts face an obstacle: page remappings suffer perfor-
mance and energy penalties. There are two components to these
penalties. The first is the overhead of copying data. The second is
the cost of translation coherence. It is this second cost that this paper
focuses on. When privileged software remaps a physical page, it has
to update the corresponding virtual-to-physical page translation in
the page table. Translation coherence is the means by which caches
dedicated to translations (e.g., TLBs [12, 40, 50, 51], MMU caches
[10], etc.) are kept up-to-date with page table mappings.

Past work has shown that translation coherence overheads can
consume 10-30% of system runtime [46, 57, 65]. These overheads
are even worse on virtualized systems. We show that as much as 40%
of application runtime on virtualized systems can be wasted on trans-
lation coherence overhead. This is because modern virtualization
support requires the use of two page tables. Systems with hardware
assists for virtualization like Intel VT-x and AMD-V use a guest
page table to map guest virtual pages to guest physical pages and a
nested page table to map guest physical pages to system physical
pages [9]. Changes to either page table require translation coherence.

The problem of coherence is not restricted to translation mappings.
In fact, the systems community has studied problems posed by
cache coherence for several decades [61] and has developed efficient
hardware cache coherence protocols [42]. What makes translation
coherence challenging today is that unlike cache coherence, it relies
on cumbersome software support. While this may have sufficed in
the past when page remappings were used relatively infrequently,
it is problematic today as heterogeneous memories require more
frequent page remapping. Consequently, we believe that there is a
need to architect better support for translation coherence. In order
to understand what this support should constitute, we list three
attributes desirable for translation coherence.

1○ Precise invalidation: Processors use several hardware transla-
tion structures – TLBs, MMU caches [7, 10], and nested TLBs
(nTLBs) [9] – to cache portions of the page table(s). Ideally, trans-
lation coherence should invalidate the translation structure entries
corresponding to remapped pages, rather than flushing all the con-
tents of these structures.

2○ Precise target identification: The CPU running privileged code
that remaps a page is known as the initiator. An ideal translation

coherence protocol would allow the initiator to identify and alert only
CPUs whose TLBs, MMU caches, and nTLBs cache the remapped
page’s translation. By restricting coherence messages to only these
targets, other CPUs remain unperturbed by coherence activity.

3○ Lightweight target-side handling: Target CPUs should invali-
date their translation structures and relay acknowledgment responses
to the initiator quickly, without excessively interfering with work-
loads executing on the target CPUs.

Over time, vendors have addressed some of these requirements.
For example, x86-64 and ARM architectures support instructions
that invalidate specific TLB entries, obviating the need to flush the
entire TLB in some cases. OSes like Linux can track coherence
targets (though not with complete precision so some spurious co-
herence activity remains) [65]. Crucially however, all this support is
restricted to native execution. Translation coherence for virtualized
systems meets none of these goals today.

In particular, virtualized translation coherence becomes especially
problematic when there are changes to the nested page table. Con-
sider 1○ – when hypervisors change a nested page table entry, they
track guest physical and system physical page numbers, but not
the guest virtual page. Unfortunately, x86-64 and ARM only allow
precise TLB invalidation for entries whose guest virtual page is
known. Consequently, hypervisors are forced to conservatively flush
all translation structures, even if only a single page is remapped.
This degrades performance since virtualized systems need expen-
sive two-dimensional page table walks to re-populate the flushed
structures [3, 9, 11, 15, 17, 24, 50, 51, 53].

Virtualized translation coherence protocols also fail to achieve 2○.
Hypervisors track the subset of CPUs that a guest VM runs on but
cannot (easily) identify the CPUs used by a process within the VM.
Therefore, when the hypervisor remaps a page, it conservatively
initiates coherence activities on all CPUs that may potentially have
executed any process in the guest VM. While this does spare CPUs
that never execute the VM, it needlessly flushes translation structures
on CPUs that execute the VM but not the process.

Finally, 3○ is also not implemented. Initiators currently use ex-
pensive inter-processor interrupts (on x86) or tlbi instructions (on
ARM, Power) to prompt VM exits on all target CPUs. Translation
structures are flushed on a VM re-entry. VM exits are particularly
detrimental to performance, interrupting the execution of target-side
applications [1, 9].

We believe that it is time to implement translation coherence in
hardware to solve these issues. This view is inspired by influential
prior work on UNITD [57], which showcased the potential of hard-
ware translation coherence. We propose hardware translation
invalidation and coherence or HATRIC, a hardware mechanism
that goes beyond UNITD and other recent work on TLB coherence
for native systems [46, 65], and tackles 1○- 3○. HATRIC extends
translation structure entries with coherence tags (or co-tags) storing
the system physical address where the translation entry resides (not
to be confused with the physical address stored in the page table).
This solves 1○, since translation structures can now be identified
by the hypervisor without knowledge of the guest virtual address.
HATRIC exposes co-tags to the underlying cache coherence protocol,
achieving 2○ and 3○.

We evaluate HATRIC under a forward-looking virtualized system
with a high-bandwidth die-stacked memory and a slower off-chip
memory. HATRIC improves performance by up to 33% and saves
up to 10% of energy, but requires only 0.2% additional CPU area.
Overall, our contributions are:

• We quantify the overheads of translation coherence on hyper-
visor-managed die-stacked memory. We focus on KVM but
also study Xen. All prior work on translation coherence [46,
57, 65] overlooks the problems posed by changes to nested
page tables. We show that such changes cause slowdown,
but that better translation coherence can potentially improve
performance by as much as 35%.

• We design HATRIC to subsume translation coherence in hard-
ware by piggybacking on existing cache coherence protocols.
Our initial goal was to use UNITD, with the simple extensions
recommended in the original paper [57] for virtualization.
However, we found UNITD to be inadequate for virtualiza-
tion in three important ways. First, UNITD (and indeed all
prior work on translation coherence [46, 65]) ignores MMU
caches and nested TLBs, which we find accounts for 8-15%
of system runtime. Second, UNITD requires large energy-
hungry CAMs. Third, the original UNITD work presents a
blueprint, but not concrete details, on how to fold translation
coherence atop directory-based coherence protocols. HATRIC
addresses all three shortcomings to provide a complete end-
to-end solution for virtualized translation coherence.

• We perform several studies that illustrate the benefits of HA-
TRIC’s design decisions. Further, we discuss HATRIC’s advan-
tages over purely software approaches to mitigate translation
coherence issues.

While we focus mostly on the particularly arduous challenges of
translation coherence due to nested page table changes, HATRIC is
also applicable to shadow paging [3, 24] and native execution.

2 BACKGROUND
We begin by presenting an overview of the key hardware and soft-
ware structures involved in page remapping. Our discussion focuses
on x86-64 systems. Other architectures are broadly similar but differ
in some low-level details.

2.1 HW and SW Support for Virtualization
Virtualized systems accomplish virtual-to-physical address transla-
tion in one of two ways. Traditionally, hypervisors used shadow page
tables to map guest virtual pages (GVPs) to system physical pages
(SPPs), keeping them synchronized with guest OS page tables [3].
However, the overheads of page table synchronization can be high
[24]. Consequently, most systems now use two-dimensional page
tables instead. Figure 1 illustrates two-dimensional page table walks
(see past work for more details [3, 7–9, 23, 53]). Guest page tables
map GVPs to guest physical pages (GPPs). Nested page tables map
GPPs to SPPs. Further, x86-64 systems use 4-level forward mapped
radix trees for both page tables [8, 9, 23, 53]. We refer to these as
levels 4 (the root level) to 1 (the leaf level) similar to recent work
[7, 9, 10]. When a process running in a guest VM makes a memory

!"#$!"%$!"&$!"'$ ("#$
)**$

("#$

+**$

,-./$

+**$

("%$

!"#$!"%$!"&$!"'$ ("%$
)**$

("%$

+**$

("&$

!"#$!"%$!"&$!"'$ ("&$
)**$

("&$

+**$

("'$

!"#$!"%$!"&$!"'$ ("'$
)**$

("'$
+**$

,-./$

!"#$!"%$!"&$!"'$
)**$

,-./$

0012$!3"4$

Figure 1: Two-dimensional page table walks for virtualized systems.
Nested page tables are represented by boxes and guest page tables are
represented by circles. Each page table’s levels from 4 to 1 are shown.
We show items cached by MMU caches and nTLBs. TLBs (not shown)
cache translations from the requested guest virtual page (GVP) to the
requested system physical page (SPP).

reference, its GVP is translated to an SPP. The guest CR3 register is
combined with the requested GVP (not shown in the picture) to de-
duce the GPP of level 4 of the guest page table (shown as GPP Req.).
However, to look up the guest page table (gL4-gL1), the GPP must be
converted into the SPP where the page table resides. Therefore, we
first use the GPP to look up the nested page tables (nL4-nL1), to find
SPP gL4. Looking up gL4 then yields the GPP of the next guest page
table level (gL3). The rest of the page table walk proceeds similarly,
requiring 24 sequential, and hence expensive, memory references
in total. CPUs use three types of translation structures to accelerate
this walk:

1○ Private per-CPU TLBs cache the requested GVP to SPP map-
pings, short-circuiting the entire walk. TLB misses trigger hardware
page table walkers to look up the page table.

2○ Private per-CPU MMU caches store intermediate page table
information to accelerate parts of the page table walk [7, 9, 10].
There are two flavors of MMU cache. The first is a page walk
cache and is implemented in AMD chips [9, 10]. Figure 1 shows
the information cached in page walk caches. Page walk caches are
looked up with GPPs and provide SPPs where page tables are stored.
The second is called a paging structure cache and is implemented by
Intel [7, 10]. Paging structure caches are looked up with GVPs and
provide the SPPs of page table locations. Paging structure caches
generally perform better, so we focus on them [7, 10].

3○ Private per-CPU nTLBs short-circuit nested page table lookups
by caching GPP to SPP translations [9]. Figure 1 shows the informa-
tion cached by nTLBs.

Apart from caching translations in these dedicated structures,
CPUs also cache page tables in private L1 (L2, etc.) caches and
the shared last-level cache (LLC). The presence of separate private
translation caches poses coherence problems. While standard cache
coherence protocols ensure that page table entries in private L1

(L2, etc.) caches are coherent, there are no such guarantees for
TLBs, MMU caches, and nTLBs. Instead, privileged software keeps
translation structures coherent with data caches and one another.

2.2 Page Remapping in Virtualized Systems
We now detail how translation coherence can be triggered on a
virtualized system. All page remappings can be classified by the data
they move, and the software agent initiating the move.

Remapped data: Systems may remap a page storing a○ the guest
page table; b○ the nested page table; or c○ non-page table data. Most
remappings are from c○ as they constitute most memory pages. We
have found that less than 1% of page remappings correspond to a○-
b○. We therefore highlight HATRIC’s operation using c○ although
HATRIC also implicitly supports the first two cases.

Remapping initiator: Pages can be remapped by a guest OS or
the hypervisor. When a guest OS remaps a page, the guest page
table changes. Past work achieves low-overhead guest page table
coherence with simple and effective software approaches [47]. Un-
fortunately, there are no such workarounds to mitigate the translation
coherence overheads of hypervisor-initiated nested page table remap-
pings. For these reasons, cross-VM memory deduplication [27, 53]
and page migration between NUMA memories on multi-socket
systems [6, 55, 56] are known to be expensive. In the past, such over-
heads may have been mitigated by using these optimizations spar-
ingly. However, with heterogeneous memories such as die-stacked
memory, we may actually desire nested page table remappings to
dynamically migrate data for good performance (see past work ex-
ploring paging policies for die-stacked memory [46]).

3 SOFTWARE TRANSLATION COHERENCE
Our goal is to ensure that translation coherence does not impede
the adoption of heterogeneous memories. We study forward-looking
die-stacked DRAM as an example of an important heterogeneous
memory system. Die-stacked memory uses DRAM stacks that are
tightly integrated with the processor die using high-bandwidth links
like through-silicon vias or silicon interposers [32, 46]. Die-stacked
memory is expected to be useful for multi-tenant and rack-scale
computing where memory bandwidth is often a performance bottle-
neck and will require a combination of application, guest OS, and
hypervisor management [20, 38, 46, 66].

3.1 Translation Coherence Overheads
We quantify translation coherence overheads on a die-stacked system
that is virtualized with KVM. We modify KVM to page between the
die-stacked and off-chip DRAM. Since ours is the first work to con-
sider hypervisor management of die-stacked memory, we implement
a variety of paging policies. Rather than focusing on developing
a single best policy, our objective is to show that current transla-
tion coherence overheads are so high that they generally curtail the
effectiveness of any paging policy.

Our paging mechanisms extend prior work on software-guided
die-stacked DRAM paging [46]. When off-chip DRAM data is ac-
cessed, there is a page fault. KVM then migrates the desired page
into an available die-stacked DRAM physical page frame. The GVP

!"
!#$%"
!#%"

!#&%"
'"

'#$%"
'#%"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

.4((147" 9434".4.+5(:" :04;+%!!" 3/(<04(<" 84.125-"

=
/
(
>
-
1
"(
)
0-

4
75
?1
9
"3
)
"

(
)
*+
,
-
"

Figure 2: Performance of no-hbm (no die-stacked DRAM), inf-hbm
(data always in die-stacked DRAM), curr-best (best die-stacked DRAM
paging policy with current software translation coherence overheads),
and achievable (best paging policy, assuming no translation coherence
overheads). Data is normalized to no-hbm runtime.

and GPP remain unchanged but KVM changes the SPP and hence
its nested page table entry. This triggers translation coherence.

We run our modified KVM on the detailed cycle-accurate simula-
tor described in Section 5. Like prior work [46], we model a system
with 2GB of die-stacked DRAM with 4× the memory bandwidth of
a slower off-chip 8GB DRAM. This is a total of 10GB of addressable
DRAM. We model 16 CPUs based on Intel’s Haswell architecture.

Figure 2 quantifies the performance of hypervisor-managed die-
stacked DRAM. We normalize all performance numbers to the run-
time of a system with only off-chip DRAM and no high-bandwidth
die-stacked DRAM (no-hbm). Further, we show an unachievable
best-case scenario where all data fits in an infinite-sized die-stacked
memory (inf-hbm). After profiling several paging strategies (evalu-
ated in detail in Section 6), we plot the best-performing ones with the
curr-best bars. These results assume traditional software translation
coherence mechanisms. In contrast, the achievable bars represent
the potential performance of the best paging policies with ideal
zero-overhead translation coherence.

Figure 2 shows that (unachievable) infinite die-stacked DRAM
can improve performance by 25-75% (inf-hbm versus no-hbm). Un-
fortunately, the current best paging policies (curr-best) fall far short
of ideal inf-hbm. Translation coherence overheads are a big culprit
– when these overheads are eliminated in achievable, system per-
formance comes within 3-10% of the case with infinite die-stacked
DRAM capacity (inf-hbm). In fact, Figure 2 shows that translation
coherence overheads can be so high that they can prompt die-stacked
DRAM to, counterintuitively, degrade performance. For example,
data caching and tunkrank suffer 23% and 10% performance degra-
dations in curr-best, respectively, despite using high-bandwidth
die-stacked memory.

We also compare the costs of translation coherence to those of
the actual data copy. We find that translation coherence can degrade
performance almost as badly as data copying. For example, when
running canneal with 16 CPUs, both translation coherence and data
copying consume 30% of runtime. Like us, others have also noted
that translation coherence can surprisingly exceed or match data copy
costs [46]. Intuitively, this is because translation coherence scales
poorly compared to data copying. While copying involves reading
and writing a fixed-size page’s data contents between memories
regardless of core counts, translation coherence costs continue to
increase with more cores. Virtualization exacerbates this problem by
forcing VM exits on all these cores.

!"#$%&'()&&

*+,-.!/01.&

!"#$2&

!"#$3&

$(4',&&

'&,'5-&&

6-7&89:&;<0*&

.-=<-07&>/7&&

?1.&'@@&!"#$0&

&A#A0&&
B'/7&&

?1.&'CD0&

E@<0*&89:F&

GG$&HF&&

(89:&

I<-07&

I<-07&

I<-07&

JK/7&

LCD&

LCD&

E@<0*&89:F&

GG$&HF&&

(89:&

E@<0*&89:F&

GG$&HF&&

(89:&

I<-07&

I<-07&

JK/7&

Figure 3: Sequence of operations associated with a page unmap. Initia-
tor to target IPIs are shown in blue 1○, VM exits are shown in green 2○,
and translation structure flushes are shown in black 3○.

3.2 Page Remapping Anatomy
We now shed light on why translation coherence performs poorly.
While we use page migration between off-chip and die-stacked
DRAM as our driving example, the same mechanisms are used
today to migrate pages between NUMA memories, or to defragment
memory. When a VM is configured, KVM assigns it virtual CPU
threads or vCPUs. Figure 3 assumes 3 vCPUs executing on physical
CPUs. Suppose vCPU 0 frequently demands data in GVP 3, which
maps to GPP 8 and SPP 5, and that SPP 5 resides in off-chip DRAM.
The hypervisor may want to migrate SPP 5 to die-stacked memory
(e.g. SPP 512) to improve performance. On a VM exit (assumed to
have occurred prior in time to Figure 3), the hypervisor modifies the
nested page table to update the SPP, triggering translation coherence.
There are three problems with this:

All vCPUs are identified as targets: Figure 3 shows that the hyper-
visor initiates translation coherence by setting the TLB flush request
bit in every vCPU’s kvm_vcpu structure. The kvm_vcpu structure
stores vCPU state. When a vCPU is scheduled on a physical CPU,
kvm_vcpu is used to provide register content, instruction pointers,
etc. By setting bits in kvm_vcpu, the hypervisor signals that TLB,
MMU cache, and nTLB entries need to be flushed.

Ideally, we would like the hypervisor to identify only the CPUs
that cache the stale translation as targets. The hypervisor does skip
physical CPUs that never executed the VM. However, it flushes all
physical CPUs that ran any of the vCPUs of the VM, regardless of
whether they cache the modified page table entries.

All vCPUs suffer VM exits: Next, the hypervisor launches inter-
processor interrupts (IPIs) to all the vCPUs. IPIs are deployed by the
processor’s advanced programmable interrupt controllers (APICs).
APIC implementations vary and depending on the APIC technology,
KVM converts broadcast IPIs into a loop of individual IPIs or a
loop across processor clusters. We have profiled IPI overheads using
microbenchmarks on Haswell systems and like past work [46, 65],
we find that they consume thousands of clock cycles. If the receiving
CPUs are running vCPUs, they suffer VM exits, compromising goal
3○ from Section 1. IPI targets then acknowledge the initiator, which

is paused waiting for all vCPUs to respond.

All translation structures are flushed: The next step is to invali-
date stale mappings in translation structure entries. Current archi-
tectures provide ISA and microarchitectural support for this via, for
example, invlpg instructions in x86. There are two caveats however.

First, these instructions need the GVP of the modified nested page
table mapping to identify the TLB entries that need to be invalidated.
This is primarily because modern TLBs maintain GVP bits in the
tag. While this is a good design choice for non-virtualized systems,
it is problematic for virtualized systems because hypervisors do not
have easy access to GVPs. Instead, they have GPPs and SPPs. Con-
sequently, KVM and Xen flush all TLB contents when they modify
a nested page table entry, rather than selectively invalidating TLB
entries. Second, there are currently no instructions to selectively
invalidate MMU caches or nTLBs, even though they are tagged with
GPPs and SPPs. This is because the marginal benefits of adding ISA
support for selective MMU cache and nTLB invalidation are limited
when the more performance-critical TLBs are flushed.

3.3 Hardware Versus Software Solutions
It is natural to ask whether translation coherence problems can
be solved with better software. However, we believe that practical
software solutions can only partially solve the problem of flushing
all translation structures and cannot easily solve the problem of
identifying all vCPUs as translation coherence targets. Consider
the problem of flushing translation structures. One might consider
tackling this by modifying the guest-hypervisor interface to enable
the hypervisor to use existing ISA support (e.g., invlpg) to selectively
invalidate TLB entries. But this only fixes TLB invalidation – no
architectures currently support selective invalidation instructions for
MMU caches and nTLBs, so these would still have to be flushed.

Even if this problem could be solved, making target-side transla-
tion coherence handling lightweight is challenging. Fundamentally,
handling translation coherence in software means that CPU con-
text switches are unavoidable. One alternative to VM exits might
be to switch to lighter-weight interrupts to query the guest OS for
GVP-SPP mappings. Unfortunately, even these interrupts remain
expensive. We profiled interrupt costs using microbenchmarks on
Intel’s Haswell machines and found that they require 640 cycles on
average, which is just half of the average of 1300 cycles required
for a VM exit. Contrast this with HATRIC, which entirely eliminates
these costs by never disrupting the operation of the guest OS or
requiring context switching.

4 HARDWARE DESIGN
We now detail HATRIC’s design. HATRIC achieves all three goals
from Section 1. It does so by adding co-tags to translation struc-
tures. This obviates the need for full translation structure flushes
by more precisely identifying invalidation targets. HATRIC then
exposes these co-tags to the cache coherence protocol to precisely
identify coherence targets and to eliminate VM exits.

4.1 Co-Tags
What are co-tags? Consider the page tables of Figure 4 and suppose
that the hypervisor modifies the GPP 2–SPP 2 nested page table map-
ping, making the TLB entry caching information about SPP 2 stale.
Since the TLB caches GVP–SPP mappings rather than GPP–SPP
mappings, this means that we would like to selectively invalidate
GVP 1–SPP 2 from the TLB, and although not shown, correspond-
ing MMU cache and nTLB entries. Co-tags allow us to do this by
logically acting as tag extensions that allow precise identification of

!"#$%&'(&

&

!)'&*& & &!''&*&

!)'&+ & &!''&+&

!)'&, & &!''&,&

-&

(./&

&

&

&

&

!(01!!!!!20%0&

!)'*&&3''*&

!)'+&&3'',&

4056705#&

!"#$%&83&

9#$%#6&'(&

&

!''&*& & &3''&*&

!''&+ & &3''&+&

!''&, & &3''&,&

-&

4:;#5<=$>5&

?>@%01&

*A+**B&

A++*&

3>C705#&

*A****&

*A***B&

*A**+*&

*A+***&

*A+**B&

A++*&

Figure 4: We add co-tags to store the system physical addresses where
nested page table entries are stored. In our final implementation, we
only store a subset of the system physical address bits.

translations when the hypervisor does not know the GVP. In other
words, each TLB, MMU cache, and nTLB entry has its own co-tag.
Co-tags store the system physical address of the nested page table
entry (nL1 from the bottom-most row in Figure 1). For example,
GVP 1–SPP 2 uses the nested page table entry at system physical
address 0x1010, which is stored in the co-tag.

What do co-tags accomplish? Co-tags not only permit more pre-
cise translation identification, but can also be piggybacked on ex-
isting cache coherence protocols. When the hypervisor modifies a
nested page table translation, cache coherence protocols detect the
modification to the system physical address of the page table en-
try. Ordinarily, all private caches respond so that only one amongst
them holds the up-to-date copy of the cache line storing the nested
page table entry. With co-tags, HATRIC extends cache coherence as
follows. Coherence messages, previously restricted to just private
caches, are now also relayed to translation structures too. Co-tags are
used to identify which (if any) TLB, MMU cache, and nTLB entries
correspond to the modified nested page table cache line. Overall,
this means that co-tags: a○ pick up on nested page table changes
entirely in hardware, without the need for IPIs, VM exits, or invlpg
instructions; b○ rely on, without fundamentally changing, existing
cache coherence protocols; c○ permit selective TLBs, MMU caches,
and nTLBs rather than flushes.

How are co-tags implemented? Logically, co-tags act as tag exten-
sions. Physically, we implement co-tags in separate set-associative
structures, one per translation structure. Each translation structure’s
co-tag array maintains one co-tag per translation structure entry. It
is possible to use either set-associative CAM or SRAM structures
to realize co-tag arrays. Naturally, CAM-based lookups are quicker.
We therefore focus on set-associative CAM structures, similar to the
reverse CAM structures used for UNITD [57].

Thus far, we have assumed that co-tags store all the bits associated
with the physical address of its corresponding page table entry. This,
however, is a naive implementation with an important drawback.
Like the reverse CAMs used in UNITD, co-tags storing all 64 physi-
cal address bits become as large as TLB entries themselves. Even
worse, co-tags triple the area needed for MMU cache and nTLB
entries. Since address translation can account for 13-15% of pro-
cessor energy [21, 30, 31, 33, 60], using such large CAMs implies
unacceptable area and energy overheads.

Therefore, our HATRIC implementation uses co-tags with a fewer
number of bits than the 64 physical address bits. This decreased
resolution means that groups of TLB entries, rather than individual
TLB entries, may be invalidated when one nested page table entry is
changed. However, judiciously-sized co-tags achieve a good balance

!"#$

$

$

"%$&$

$

$

'()$*$ '()$%$ '()$+$ '()$,$

""'$#-./$ ""'$#-./$ ""'$#-./$ ""'$#-./$

012345627$

$

012345627$

$

012345627$

$

012345627$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!-8$9$:;-232<$=*>$%>$,?$$$$$$$$$$$$$$ $$

Figure 5: Coherence directories identify translation structures caching
page table entries, aside from private L1 cache contents.
between invalidation precision, and area/energy overheads. Section 6
shows, using detailed RTL modeling, that 2-byte co-tags (a per-core
area overhead of 0.2%) strike a good balance.

Who sets co-tags? For performance, co-tags must be set by hard-
ware without an OS or hypervisor interrupt. HATRIC uses the page
table walker to do this. On TLB, MMU cache, and nTLB misses,
the page table walker performs a two-dimensional page table walk.
In so doing, it infers the system physical address of the page table
entries and stores it in the TLB, MMU cache, and nTLB co-tags.

4.2 Coherence States and Initiators
Since TLBs, MMU caches, and nested TLBs are read-only structures,
HATRIC integrates them into existing cache coherence protocol
in a manner similar to read-only instruction caches. We describe
HATRIC’s operation on a directory-based MESI protocol, with the
coherence directories located at the shared LLC cache banks and use
dual-grain coherence directories from recent work [69].

Translation structure coherence states: Since translation struc-
tures are read-only, their entries require only two states: Shared (S),
and Invalid (I). These two states may be realized using valid bits.
When a translation is entered into the TLB, MMU cache, or nTLB,
the valid bit is set, representing the S state. At this point, the trans-
lation can be accessed by the local CPU. The translation structure
entry remains in this state until it receives a coherence message.
Co-tags are compared to incoming messages. When an invalidation
request matches the co-tag, the translation entry is invalidated.

Translation coherence initiators: With HATRIC, translation coher-
ence activity is initated by either the hardware page table walker or
privileged software (i.e., the OS or hypervisor). Page table walkers
are hardware finite state machines that are invoked on TLB misses.
They traverse page tables and are responsible for filling translation
information into the translation structures and setting the co-tags.
Page table walkers cannot map or unmap pages. On the other hand,
the OSes and hypervisor can map and unmap page table entries using
standard load/store instructions. HATRIC picks up these changes and
keeps private cache and translation structures coherent.

4.3 Coherence Directory and Co-Tag Interaction
HATRIC requires some changes to the coherence directory. We dis-
cuss these changes and their design implications in this section.

Tracking translation entries: There are several ways to implement
coherence directories, but we assume banked directories placed in
conjunction with the LLC (one bank per LLC bank). HATRIC’s

coherence directories track, as is usual, both cache lines that store
non-page table data and page table data. However, some changes are
necessary to interpret the directory entries maintaining page table
data. Specifically, all cache coherence protocol directory entries
maintain a sharer list that indicates which CPUs have their private
caches hosting each cache block. Directory entries for non-page
table data can be left unchanged. However, we need to change how
the sharer list is updated and interpreted for directory entries tracking
page table data. Consider a directory entry for page table data with
a sharer list of {CPU 0, CPU 1, CPU 3}. Ordinarily, this sharer list
means that a cache line storing page table data is available in the
private caches of CPU 0, CPU 1, and CPU 3. In other words, this
sharer list tells us nothing about which translation structures (i.e.,
TLBs, MMU caches, and nTLBs) maintain page table entries from
this page table cache line. Instead, HATRIC updates and interprets
these sharer lists different. That is, a sharer list with CPU 0, CPU
1, and CPU 3 indicates that these CPUs may be caching page table
entries from the corresponding page table cache line in any of the
private caches or translation structures.

Figure 5 shows an example of how sharer lists are maintained. We
show a system with four CPUs, with an LLC and adjoining directory,
each banked four ways. CPU 0 maintains a cache line of eight page
table entries, one of which also exists in its TLB. Meanwhile CPU
1 also maintains this cache line, but does not cache any of the page
table entries in its TLB, while CPU 3 caches one of the page table
entries in the TLB but none in the private cache. The sharer list in
the directory entry does not differentiate among these cases however,
and merely tracks the fact that these CPUs maintain a private copy
of at least one of the page table entries in the cache line in one of the
private caches or translation structures (i.e., the TLB or, although
not shown, the MMU caches or nTLBs).

It is possible to modify the sharer list to provide more specific
information about where translations reside. However, this requires
additional bits of storage in directory entries. Instead, we choose
this pseudo-specific implementation to simplify hardware. Naturally,
this may result in spurious coherence messages – when a CPU
modifies page table contents and invalidation messages need to
be sent to the sharers, they are relayed to the L1 caches and all
translation structures regardless of which ones actually cache page
tables. In Figure 5, for example, this results in spurious coherence
activity to CPU 3’s L1 cache. In practice, because modifications of
the page table are rare compared to other coherence activity, this
additional traffic is tolerable. Ultimately, the gains from eliminating
high-latency software TLB coherence far outweigh these relatively
minor overheads (see Section 6).

Coherence granularity: HATRIC’s directory entries store informa-
tion at the cache line granularity. Since x86-64 systems cache 8
page table entries per 64-byte cache line, similar to false sharing in
caches, HATRIC conservatively invalidates all translation structure
entries caching these 8 page table entries if a single page table entry
is modified. Consider CPU 3 in Figure 5, where the TLB caches two
translations mapped to the same cache line. If any CPU modifies
either one of these translations, HATRIC has to invalidate both TLB
entries. This has implications on the size of co-tags. Recall that in
Section 4.1, we stated that co-tags use a subset of the address bits.
We want to use the least significant and hence highest entropy bits as

!"#$

$

$

"%$&$

$

$

'()$*$ '()$%$ '()$+$ '()$,$

""'$#-./$ ""'$#-./$ ""'$#-./$ ""'$#-./$

012345627$

$

012345627$

$

012345627$

$

012345627$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!-8$9$:;-232<$=*>$%>$,?$$$$$$$$$$$$$$ $$

(-83$5-@A3$3.527$*$B%%$@15<C$D$="%$<35$E>$"+<35E?F

F$(-83$5-@A3$3.527$G$B%%$@15<CD="%<35E>$"+$<35$E?$

Figure 6: We use additional coherence directory entries adjacent to the
directory entry tracking sharers, to track TLB set numbers.

co-tags. But since cache coherence protocols track groups of 8 trans-
lations, co-tags do not store the 3 least significant address bits. Our
2 byte co-tags use bits 18-3 of the system physical address storing
the page table. Naturally, this means that translations from different
addresses in the page table may alias to the same co-tag. In practice,
we find this has little adverse effect on HATRIC’s performance.

Looking up co-tags: Thus far, we have ignored details of how the
translation structure co-tags are looked up. However, when directory
entries identify sharers, it is important that the TLB, MMU cache,
and nTLB lookup and invalidation messages they relay be energy
efficient. As we have already detailed, we achieve better energy
efficiency than prior work on UNITD by architecting the co-tags
as set-associative CAMs. This begs the following question: how
can directory entries identify the target set number in the various
translation structures? We use separate approaches for TLBs and
MMU caches/nTLBs.

1○ TLBs: HATRIC uses the simple approach for L1 and L2 TLBs
and records set numbers in the directory. Since a directory entry
essentially tracks information about all 8 page table entries within a
cache line, we need to record L1 and L2 TLB set numbers for each
individual page table entry. Modern systems (e.g., Intel’s Broad-
well or Skylake architectures) tend to use 64 entry L1 TLBs and
512-1536 entry L2 TLBs that are 4 way and 8-12 way associative,
respectively. Therefore, L1 and L2 TLBs tend to use up to 16 and
128 sets respectively, meaning that they need 4 and 7 bits for set
identification. This amounts to a total of 88 bits to store all the L1
and L2 TLB set numbers for all 8 page table entries in a cache line.

Consequently, we studied two options for embedding set numbers
in the directory. In one option, we use an additional coherence
directory entry to record TLB set information. We save storage space
by using 6 bits to record L1 and L2 TLB set numbers for each of the
8 page table entries. This results in a usage of 48 bits, matching the
size of coherence directory entries. The tradeoff is that this approach
requires lookup of multiple TLB sets to find the matching co-tag,
expending more energy. In the second option (shown in Figure 6),
we use two additional directory coherence directory entries, which
comfortably maintain all 11 set identification bits per page table entry.
In both scenarios, these additional directory entries are managed
such that their allocation and replacement are performed in tandem
with the original directory entry storing sharer information. We have
modeled both options and have found no performance difference

!"#$%&'(&

&

!)'&*& & &!''&*&

!)'&+ & &!''&+&

!)'&, & &!''&,&

-&

.(/0&

&

&

&

&

&

&

!(12!!!!!31%1&

!'',&&4'',&

&-&

5167816#&

!"#$%&94&

:#$%#7&'(&

&

!''&*& & &4''&*&

!''&+ & &4''&+&

!''&, & &4''&,&

-&

5;<#6=>$?6&

@?A%12&

B++*&

-&

4?C816#&

*B****&

*B***D&

*B**+*&

*B+***&

*B+**D&

B++*&
!(12!!!!!31%1&

!''+&&4''*&

&-&

@?A%12&

*B+**D&

-&

Figure 7: MMU cache and nTLB set numbers can be inferred directly
from the physical address of the page table entry being modified, so
there is no need to store them in the coherence directory entries.

between the two approaches and only a minor energy difference. We
assume the second approach for the remainder of this work since we
have found it to be more energy efficient.

2○ MMU caches and nTLBs: One might initially consider treating
MMU caches and nTLBs in a manner that parallels TLBs and embed
their set numbers in the directory too. However, we use a alternative
storage-efficient approach. We observe that MMU caches and nTLBs
cache information from a single dimension of the page tables, as
opposed to TLBs, which cache information across both dimensions.
This enables an implementation trick that precludes the need to
embed MMU cache and nTLB set information in the directory.

Figure 7 shows this approach. We show the contents of a guest
page table, and a nested page table. Furthermore, we focus on
changes to the nTLB, with changes to MMU caches proceeding
in a similar manner. Suppose that the nested page table entry map-
ping GPP 2 to SPP 2 is changed by a CPU. The coherence directory
entry must consequently infer the set numbers within the MMU
caches and nTLBs where this translation resides, so as to relay inval-
idation messages to them. We observe the following. The coherence
protocol already tracks the physical address of the nested page table
entry that is being changed ((0x1010) in our example). Since each
page table entry is 8 bytes, the last 3 bits can be ignored. However,
bits 11-3 of the physical address identifies which of the 512 page
table entries in the nested page table page is being modified. It so
happens that these 9 bits correspond exactly with 9 bits from the GPP.
For example, if we’re updating an L1 page table entry, bits 11-3 of
the nested page table entry’s physical address are equivalent to bits
20-12 of the GPP. Therefore, if – and this is true for all commercial
MMU caches and nTLBs today – the MMU caches and nTLBs have
fewer than 29 or 512 sets, the desired MMU cache/nTLB set can be
uniquely identified by bits 11-3 of the physical address of the nested
page table being changed. Since modern MMU caches and nTLBs
use 2-8 sets (see Figure 7) today, there is no need to embed MMU
cache or nTLB set numbers in the coherence directory entries.

Co-tag lookup filtering: Naturally, we would like to initiate coher-
ence activities for translation structures only when page tables are
modified, to save co-tag lookup energy and reduce coherence traffic.
Therefore, we need a way to distinguish directory entries correspond-
ing to cache lines from page tables from those that store non-page
table data. We achieve this by adding a single bit, a nested page table
or nPT bit, for every coherence directory entry. The nPT bit is set by
the hardware page table walker when any page table entry from the
corresponding cache line is brought into the translation structures.

!"#$%$

"&'()*+$,$ -'&+.*/&0$
!"#1

"&'()*+$,$

2('.*$$

"3$4'5+$

-+6/*+$
#78)*+$$

9:)&+&$4'9*$

;$&+<=$

>?!"#1$

@!A$

B&'*+$"3$

4'5+$

"3$4'5+$$

!$;$

!"#$%$

"&'()*+$,$ -'&+.*/&0$
!"#1

"&'()*+$,$

2('.*$$

"3$4'5+$

-+6/*+$

C/$.:)5D+$

;$&+<=$
>?!"#%$

C/&6)4$ E@3FG!$

B&'*+$"3$

4'5+$

"3$4'5+$$

!$;$

G5($

>7H&'/H9$

@!A$

C/$

6)*.:$
>?!"#1$

Figure 8: Coherence activity from the eviction of a cache line holding
page table entries from CPU0’s private cache. HATRIC updates sharer
list information lazily in response to cache line evictions.

Silent versus non-silent evictions: Directories track translations in
a coarse-grained and pseudo-specific manner. This has implications
on cache line evictions. Usually, when a private cache line is evicted,
the directory is sent a message to update the line’s sharer list [69].
An up-to-date sharer list eliminates spurious coherence traffic. We
continue to employ this strategy for non-page table cache lines but
use a slightly different approach for page tables. When a cache line
holding page table entries is evicted, its content may still be cached in
the TLB, MMU cache, or nTLB. Even worse, other translations with
matching co-tags may still be residing in the translation structures.
One option is to detect all translations with matching co-tags and
invalidate them. This hurts energy because of additional translation
structure lookups, and hurts performance because of unnecessary
TLB, MMU cache, and nTLB entry invalidations.

Figure 8 shows how HATRIC handles this problem, contrasting
it with traditional cache coherence. Our approach is to essentially
employ a slightly modified version of the well-known concept of
silent evictions already used to reduce coherence traffic [61]. To
showcase this in detail, suppose CPU 0 evicts a cache line con-
taining page table entries. Both approaches relay a message to the
coherence directory. Ordinarily, we remove CPU 0 from the sharer
list. However, if HATRIC sees that this message corresponds to a
cache line storing a page table (by checking the directory entry’s
page table bits), the sharer list is untouched. This means that if CPU
1 subsequently writes to the same cache line, HATRIC sends spurious
invalidate messages to CPU 0, unlike traditional cache coherence.
However, we mitigate frequency of spurious messages; when CPU
0 sees spurious coherence traffic, it sends a message back to the
directory to demote CPU 0 from the sharer list. Sharer lists are hence
lazily updated. Similarly, evictions from translation structures lazily
update coherence directory sharer lists.

Directory evictions: Past work shows that coherence directory entry
evictions require back-invalidations of the associated cache lines in
the cores [69]. This is necessary for correctness; all lines in private
caches must always have a directory entry. HATRIC extends this
approach to relay back-invalidations to all translation structures.

4.4 Putting It All Together
Figure 9 details HATRIC’s overall operation. Initially, CPU 0’s TLB
and L1 caches are empty. On a memory access, CPU 0 misses in the
TLB 1○. Whenever a request is satisfied from a page table line in the
L1 cache in the M, E, or S state, there is no need to initiate coherence
transactions. However, suppose that the last memory reference in

!"#$

$

$

"%$&$

$

$

'()$*$ '()$%$ '()$+$ '()$,$

""'$#-./$ ""'$#-./$ ""'$#-./$ ""'$#-./$

012345627$

$

012345627$

$

012345627$

$

012345627$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

.(!8!-9$8$:;-232<$$$$$$$$$$$$$$ $$

%$$$8$!-9$8$=*>$%>$,?$

%$

+$

@$

A$

,B$
,-$

C-$

C4$

CB$

CD$

"%$-.D$"+$!"#$<35$.EFB32$G62$H-93$5-BI3$3.5213<$*JK$

Figure 9: Coherence directories identify translation structures caching
page table entries, aside from private L1 cache contents.

the page table walk from Figure 1 is absent in the L1 cache. A read
request is sent to the coherence directory in step 2○.

Two scenarios are possible. In the first, the translation may be
uncached in the private caches and there is no coherence directory
entry. A directory entry is allocated and the nPT bit is set. In the
second scenario (shown in Figure 9) the request matches an existing
directory entry. The nPT bit already is set and HATRIC reads the
sharer list which identifies CPUs 1 and 3 as also caching the desired
translation (and the 7 adjacent translations in the cache line) in
shared state. In response, the cache line with the desired translations
is sent back to CPU 0 (from CPU 1, 3, or memory, whichever is
fastest), updating the L1 cache 3a○ and TLB 3b○. Subsequently, the
sharer list adds CPU 0.

Now suppose that CPU 1 runs the hypervisor and unmaps the solid
green translation from the nested page table in step 4○. To transition
the L1 cache line into the M state, the cache coherence protocol
relays a message to the coherence directory. The corresponding
directory entry is identified in 5○ and we find that CPU 0 and 3
need to be sent invalidation requests. However, the sharer list is (i)
coarse-grained and (ii) pseudo-specific. Because of (i), CPU 0 has
to invalidate not only its TLB entry 6a○ but also 8 translations in the
L1 cache 6b○ and CPU 3 has to invalidate the 2 TLB entries with
matching co-tags 6c○. Because of (ii), CPU 1’s L1 cache receives a
spurious invalidation message 6d○.

4.5 Other Key Observations
Translation structure lookup latency and energy: We have mod-
eled the area, latency, and energy implications of HATRIC on trans-
lation structures using CACTI. Our improvements result in a 0.2%
area increase for each CPU, primarily from implementing co-tags.
Despite this, translation structure accesses initiated by the local CPU
see no change in access times and energy. This is because co-tags
are not accessed on CPU-side lookups and are only used on trans-
lation coherence lookups. Further, when CPU-side lookups occur
at the same time as coherence lookups, we prioritize the former. Fi-
nally, since HATRIC does not need associative lookups when probing
co-tags, translation coherence lookups suffer little energy.

Other co-tag sizing issues: An important design issue is the rela-
tionship between translation structure size and co-tag resolution. In
general, we need more co-tag bits for larger translation structures to
ensure that false-positive matches do not become excessive. How-
ever, since we assume a set-associative co-tag implementation, the

number of false-positives is restricted to the number of co-tags in a
set, in the worst case. So unless translations become far more set-
associative (an unlikely event since L2 TLBs already employ 12-way
set associativity), false-positives are unlikely to become problematic.

Metadata updates: Beyond software changes to the translations,
they may also be changed by hardware page table walkers. Specif-
ically, page table walkers update dirty and access bits to aid page
replacement policies [53]. However because these updates are picked
up by the standard cache coherence protocol, HATRIC naturally han-
dles these updates too.

Prefetching optimizations: Beyond simply invalidating stale trans-
lation structure entries, HATRIC could potentially update (or prefetch)
the updated mappings into the translation structures. Since a thor-
ough treatment of these studies requires an understanding of how to
manage translation access bits while speculatively prefetching into
translation structures [41], we leave this for future work.

Coherence protocols: We have studied a MESI directory based
coherence protocol but we have also implemented HATRIC atop
MOESI protocols too. HATRIC requires no fundamental changes to
support these protocols.

Synonyms and superpages: HATRIC naturally handles synonyms
or virtual address aliases. This is because synonyms are defined
by unique translations in separate page table locations, and hence
separate system physical addresses. Therefore, changing or removing
a translation has no impact on other translations in the synonym set,
allowing HATRIC to be agnostic to synonyms. Similarly, HATRIC
supports superpages, which also occupy unique translation entries
and can be easily detected by co-tags.

Multiprogrammed workloads: One might expect that when an ap-
plication’s physical page is remapped, there is no need for translation
coherence activities to extend to the other applications, because they
operate on distinct address spaces. Unfortunately, hypervisors do
not know which physical CPUs an application executed on; all they
know is the vCPUs the entire VM uses. Therefore, the hypervisor
conservatively flushes even the translation structures of CPUs that
never ran the offending application. HATRIC eliminates this problem
by precisely tracking the correspondence between translations and
CPUs.

Comparison to past approaches: HATRIC is inspired by UNITD
[57]. HATRIC uses energy-frugal co-tags instead of UNITD’s large
reverse-lookup CAMs, achieving greater energy efficiency. We show-
case this in Section 6 where we compare the efficiency of HATRIC
versus an enhanced UNITD design for virtualization. Further, HA-
TRIC extends translation coherence to MMU caches and nTLBs.
Beyond UNITD, past work on DiDi [65] also targets translation
coherence for non-virtualized systems. Similarly, recent work inves-
tigates translation coherence overheads in the context of die-stacked
DRAM [46]. While this work mitigates translation coherence over-
heads, it does so specifically for non-virtualized x86 architectures.
Finally, recent work uses software mechanisms to reduce translation
overheads for guest page table modifications [47], while HATRIC
tackles nested page table coherence.

5 METHODOLOGY
Our experimental methodology has two primary components. First,
we modify KVM to implement paging on a two-level memory with
die-stacked DRAM. Second, we use detailed cycle-accurate simula-
tion to assess performance and energy.

5.1 Die-Stacked DRAM Simulation
We evaluate HATRIC’s performance on a cycle-accurate simulation
framework that models the operation of a 32-CPU Haswell processor.
We assume 2GB of die-stacked DRAM with 4× the bandwidth
of slower 8GB off-chip DRAM, similar to prior work [46]. Each
CPU maintains 32KB L1 caches, 256KB L2 caches, 64-entry L1
TLBs, 512-entry L2 TLBs, 32-entry nTLBs [9], and 48-entry paging
structure MMU caches [10]. Further, we assume a 20MB LLC. We
model the energy usage of this system using the CACTI framework
[44]. We use Ubuntu 15.10 Linux as our guest OS and evaluate
HATRIC in detail using KVM and Xen.

We use a trace-based approach to drive our simulation framework.
We collect instruction traces from our modified hypervisors with
50 billion memory references using a modified version of Pin [39]
which tracks all GVPs, GPPs, and SPPs, as well as changes to the
guest and nested page tables. In order to collect accurate paging
activity, we collect these traces on a real system. Ideally, we would
like this system to use die-stacked DRAM but since this technology
is in its infancy, we are inspired by recent work [46] to modify a
real-system to mimic the activity of die-stacking. We take an existing
multi-socket NUMA platform and by introducing contention, creates
two different speeds of DRAM. We use a 2-socket Intel Xeon E5-
2450 system, running our software stack. We dedicate the first socket
for execution of the software stack and mimicry of fast or die-stacked
DRAM. The second socket mimics the slow or off-chip DRAM. It
does so by running several instances of memhog on its cores. Similar
to prior work [51, 53], we use memhog to carefully generate memory
contention to achieve the desired bandwidth differential between
the fast and slow DRAM of 4×. By using Pin to track KVM and
Linux paging code on this infrastructure, we accurately generate
instruction traces to test HATRIC.

5.2 KVM Paging Policies
Our goal is to showcase the overheads imposed by translation co-
herence on paging decisions rather than design the optimal paging
policy. Thus, we pick well-known paging policies that cover a wide
range of design options. For example, we have studied FIFO and
LRU replacement policies, finding the latter to perform better as ex-
pected. We implement LRU policies in KVM by repurposing Linux’s
well-known pseudo-LRU CLOCK policy [19]. LRU alone doesn’t
always provide good performance since it is expensive to traverse
page lists to identify good candidates for eviction from die-stacked
memory. Instead, performance is improved by moving this operation
off the critical path of execution; we therefor pre-emptively evict
pages from die-stacked memory so that a pool of free pages are
always maintained. We call this operation a migration daemon and
combine it with LRU replacement. We have also investigated the
benefits of page prefetching; that is, when an application demand
fetches a page from off-chip to die-stacked memory, we also prefetch

!"
!#$%"
!#%"

!#&%"
'"

'#$%"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

0122314" 5161"0107829" 9:1;7%!!" 6<2=:12=" >103-8?"

@
<
2
A
?
3
"2
B
:?

#"
6B
"-
4B
C
"

-C"

716:80"

85314"

Figure 10: For varying vCPUs, runtime of the best KVM paging pol-
icy without HATRIC (sw), with HATRIC (hatric), and with zero-overhead
translation coherence (ideal). All results are normalized to the case with-
out die-stacked DRAM.

a set number of adjacent pages. Generally, we have found that the
best paging policy uses a combination of these approaches.

5.3 Workloads
We focus on two sets of workloads. The first set comprises applica-
tions that benefit from the higher bandwidth of die-stacked memory.
We use canneal and facesim from PARSEC [13], data caching and
tunkrank from Cloudsuite [22], and graph500 as part of this group.
We also create 80 multiprogrammed combinations of workloads
from all the SPEC applications [28] to showcase the problem of
imprecise target identification in virtualized translation coherence.

Our second group of workloads is made up of smaller-footprint
applications whose data fits within the die-stacked DRAM. We
use these workloads to evaluate HATRIC’s overheads in situations
where hypervisor-mediated paging (and hence translation coherence)
between die-stacked and off-chip DRAM is rarer. We use the remain-
ing PARSEC applications [13] and SPEC applications [28] for these
studies.

6 EVALUATION
Performance as a function of vCPU counts: Figure 10 shows HA-
TRIC’s runtime, normalized as a fraction of application runtime in
the absence of any die-stacked memory (no-hbm from Figure 2).
We compare runtimes for the best KVM paging policies (sw), HA-
TRIC, and ideal unachievable zero-overhead translation coherence
(ideal). Further, we vary the number of vCPUs per VM and observe
the following. HATRIC is always within 2-4% of the ideal perfor-
mance. In some cases, HATRIC is instrumental in achieving any
gains from die-stacked memory at all. Consider data caching, which
slows down when using die-stacked memory because of translation
coherence overheads, HATRIC cuts runtimes down to roughly 75%
of the baseline runtime in all cases.

Figure 10 also shows that HATRIC is valuable across all vCPU
counts. In some cases, more vCPUs exacerbate translation coherence
overheads. This is because IPI broadcasts become more expensive
and more vCPUs suffer VM exits. This is why data caching and
tunkrank become slower (see sw) when vCPUs increase from 4 to 8.
HATRIC eliminates these problems, flattening runtime improvements
across all vCPU counts. In other scenarios, fewer vCPUs worsen
performance since each vCPU performs more of the application’s
total work. Here, the impact of a full TLB, nTLB, and MMU cache
flush for every page remapping is expensive (e.g. graph500 and
facesim). HATRIC eliminates these overheads almost entirely.

!"
!#$%"
!#%"

!#&%"
'"

'#$%"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

561136(" 0676"5658-1." .)628%!!" 7*19)619" 4653:-,"

;
*
1
<
,
3
"1
=
),

#"
7=
":
(=
>
"

:>"

867)-5"

-036("

'#%?"'#@'"

Figure 11: HATRIC’s performance benefits for KVM paging policies,
with LRU, migration daemons (mig-dmn), and prefetching (pref.). Re-
sults are normalized to the case without die-stacked DRAM.

!"

!#$%"

!#%"

!#&%"

'"

'#$%"

'("$(")(" '("$(")(" '("$(")(" '("$(")(" '("$(")("

+,,-+." /+0+"+*12,3" 34+51%!!" 06,74+,7" 8+*-92:"

;
6
,
<
:
-
",
=
4:

#"
0=
"'
(
"

+
,
/
"9
.=
>
"

9>"

1+042*"

2/-+."

Figure 12: HATRIC’s performance benefits as a function of translation
structure size. 1× indicates default sizes, 2× doubles sizes, and so on. All
results are normalized to the case without die-stacked DRAM.

Performance as a function of paging policy: Figure 11 also shows
HATRIC performance but as a function of different KVM paging
policies. We study three policies with 16 vCPUs. First, we show lru,
which determines which pages to evict from die-stacked DRAM. We
then add the migration daemon (&mig-dmn), and page prefetching
(&pref).

Figure 11 shows HATRIC improves runtime substantially for
any paging policy. Performance is best when all techniques are
combined but HATRIC achieves 10-30% performance improvements
even for just lru. Furthermore, Figure 11 shows that translation
coherence overheads can often be so high that the paging policy
itself makes little difference to performance. Consider tunkrank,
where the difference between lru versus the &pref bars is barely 2-
3%. With HATRIC, however, paging optimizations like prefetching
and migration daemons help.

Impact of translation structure sizes: One of HATRIC’s advan-
tages is that it converts translation structure flushes to selective
invalidations. This improves TLB, MMU cache, and nTLB hit rates
substantially, obviating the need for expensive two-dimensional page
table walks. We expect HATRIC to improve performance even more
as translation structures become bigger (and flushes needlessly evict
more entries). Figure 12 quantifies the relationship. We vary TLB,
nTLB, and MMU cache sizes from the default (see Section 5) to
double (2×) and quadruple (4×) the number of entries.

Figure 12 shows that translation structure flushes largely counter-
act the benefits of greater size. Specifically, the sw results see very
small improvements, even when sizes are quadrupled. Inter-DRAM
page migrations essentially flush the translation structures so often
that additional entries are not effectively leveraged. Figure 12 shows
that this is a wasted opportunity since zero-overhead translation
coherence (ideal) actually does enjoy 5-7% performance benefits.

!"

!#$"

%"

%#$"

&"

&#$"

'
(
)
*
+
,
")
-
.
+
#"
/-
"

0
1-
2
"

3-.41-560"

02" 75/.89"

!"

%"

&"

:"

;"

$"

3-.41-560"

02" 75/.89"

Figure 13: (Left) Weighted runtime for all 80 multiprogrammed work-
loads on VMs without (sw) and with HATRIC (hatric); (Right) the same
for the slowest application in mix.

HATRIC solves this problem, comprehensively achieving within 1%
of the ideal, thereby exploiting larger translation structures.

Multiprogrammed workloads: We now focus on multiprogrammed
workloads made up of sequential applications. Each workload runs
16 Spec benchmarks on a Linux VM atop KVM. As is standard for
multiprogrammed workloads, we use two performance metrics [62].
The first is weighted runtime improvement, which captures overall
system performance. The second is the runtime improvement of the
slowest application in the workload, capturing fairness.

Figure 13 shows our results. The graph on the left plots the
weighted runtime improvement, normalized to cases without die-
stacked DRAM. As usual, sw represents the best KVM paging policy.
The x-axis represents the workloads, arranged in ascending order
of runtime. The lower the runtime, the better the performance. Sim-
ilarly, the graph on the right of Figure 12 shows the runtime of
the slowest application in the workload mix; again, lower runtimes
indicate a speedup in the slowest application.

Figure 13 shows that translation coherence can be disastrous to the
performance of multiprogrammed workloads. More than 70% of the
workload combinations suffer performance degradation when using
die-stacked memory without HATRIC. These applications suffer
from unnecessary translation structure flushes and VM exits, caused
by software translation coherence’s imprecise target identification.
The runtime of 11 workloads is more than double. Additionally,
translation coherence degrades application fairness. For example, in
more than half the workloads, the slowest application’s runtime is
2×+ with a maximum of 4×+. Applications that struggle are usually
those with limited memory-level parallelism that benefit little from
the higher bandwidth of die-stacked memory and instead, suffer
from the additional translation coherence overheads.

HATRIC solves these issues, achieving improvements for every
single weighted runtime and even for the slowest applications. In
fact, HATRIC eliminates translation coherence overheads, reducing
runtime to 50-80% of the baseline without die-stacked DRAM. The
key enabler is HATRIC’s precise identification of coherence targets;
applications that do not need to participate in translation coherence
operations have their translation structure contents left unflushed
and do not suffer VM exits.

Performance-energy tradeoffs: Intuitively, we expect that since
HATRIC reduces runtime substantially, it should reduce static en-
ergy sufficiently to offset the higher energy consumption from the
introduction of co-tags. Indeed, this is true for workloads that have

!"#$%

!"$&%

&"!'%

!"(% !")% !"#% !"*% !"$% &%

+
,
-.

"%
/
0
/
-1
2
%

+,-."%-304./%

!"#$%

!"$&%

&"!'%

!"(% !")% !"#% !"*% !"$% &% &"&%+
,
-.

"%
/
0
/
-1
2
%

+,-."%-304./%

5,6781%9:% 5,6781%&:% 5,6781%':%

Figure 14: (Left) Performance-energy plots for default HATRIC config-
uration compared to a baseline with the best paging policy; and (Right)
impact of co-tag size on performance-energy tradeoffs.

sufficiently large memory footprints to trigger inter-memory pag-
ing. However, we also assess HATRIC’s energy implications on
workloads that do not frequently remap pages (i.e. their memory
footprints fit comfortably within die-stacked DRAM).

The graph on the left of Figure 14 plots all the workloads includ-
ing the single-threaded and multithreaded ones that benefit from die-
stacking and those whose memory needs fit entirely in die-stacked
DRAM. The x-axis plots the workload runtime, as a fraction of the
runtime of sw results. The y-axis plots energy, similarly normalized.
We desire points that lie on the lower-left corner of the graph.

Figure 14 shows that HATRIC always boosts performance, and
almost always improves energy too. Energy savings of 1-10% are
routine. In fact, HATRIC even improves the performance and energy
of many workloads that do not page between the two memory levels
significantly. This is because these workloads still remap pages to
defragment memory (to support superpages) and HATRIC mitigates
the associated translation coherence overheads. There are some rare
instances (highlighted in black) where energy does exceed the base-
line by 1-1.5%. These are workloads for whom efficient translation
coherence does not make up for the additional energy of the co-tags.
Nevertheless, these overheads are low, and their instances rare.

Co-tag sizing: We now turn to co-tag sizing. Excessively large co-
tags consume significant lookup and static energy, while small ones
force HATRIC to invalidate too many translation structures on a page
remap. The graph on the right of Figure 14 shows the performance-
energy implications of varying co-tag size from 1 to 3 bytes.

First and foremost, 2B co-tags, our design choice, provides the
best balance of performance and energy. While 3B co-tags track page
table entries at a finer granularity, they only modestly improve perfor-
mance over 2B co-tags, but consume much more energy. Meanwhile
1B co-tags suffer in terms of both performance and energy. Since
1B co-tags have a coarser tracking granularity, they invalidate more
translation entries from TLBs, MMU caches, and nTLBs than larger
co-tags. While the smaller co-tags do consume less lookup and static
energy, these additional invalidations lead to more expensive two-
dimensional page table walks and a longer system runtime. The end
result is an increase in energy.

Coherence directory design decisions: Section 4 detailed the nu-
ances modifying traditional coherence directories to support trans-
lation coherence. Figure 15 captures the performance and energy
(normalized to those of the best paging policy or sw in previous
graphs) of these approaches. We consider the following options,
beyond baseline HATRIC:

!"#$

!"%$

&$

'
(
)
*
+,
$

-
.
*
/0
12
/

3
4
0
5
67
$

8
.
/6
25
9:
1;
<
$

=
>
/?
5
9:
/1
;
@
$

(
AA
$

=
>
2B

5
A1
C7
0
$6
>
$?
7
D6
$

4
5
<
1;
<
$4
>
A1
9E
$

*3;FB7$

-;72<E$

Figure 15: Baseline HATRIC versus approaches with eager update of
directory on cache and translation structure evictions (EGR-dir-update),
fine-grained tracking of translations (FG-tracking), and an infinite di-
rectory with no back-invalidations (No-back-inv). All combines these ap-
proach. We show average runtime and energy, normalized to the metrics
for the best paging policy without HATRIC.

EGR-dir-update: This is a design that eagerly updates coherence
directories whenever a translation entry is evicted from a CPU’s
L1 cache or translation structures. While this does reduce spurious
coherence messages, it requires expensive lookups in translation
structures to ensure that entries with the same co-tag have been
evicted. Figure 15 shows that the performance gains from reduced
coherence traffic is almost negligible, while energy does increase,
relative to HATRIC.

FG-tracking: We study a hypothetical design with greater specificity
in translation tracking. That is, coherence directories are modified
to track whether translations are cached in the TLBs, MMU caches,
nTLBs, or L1 caches. Unlike HATRIC, if a translation is cached in
only the MMU cache but not the TLB, the latter is not sent invali-
dation requests. Figure 15 shows that while one might expect this
specificity to result in reduced coherence traffic, system energy is
slightly higher than HATRIC. This is because more specificity re-
quires more complex and area/energy intensive coherence directories.
Further, since the runtime benefits are small, we believe HATRIC
remains the smarter choice.

No-back-inv: We study an ideal design with infinitely-sized coher-
ence directories which never need to relay back-invalidations to
private caches or translation structures. We find that this does reduce
energy and runtime, but not significantly from HATRIC.

All: Figure 15 compares HATRIC to an approach which marries all
the optimizations discussed. HATRIC almost exactly meets the same
performance and is more energy-efficient, largely because the eager
updates of coherence directories add significant translation structure
lookup energy.

Comparison with UNITD: We now compare HATRIC to prior work
on UNITD [57]. To do this, we first upgrade the baseline UNITD
design in several ways. First and most importantly, we extend virtu-
alization support by storing the system physical addresses of nested
page tables entries in the originally proposed reverse-lookup CAM
[57]. Second, we extend UNITD to work seamlessly with coherence
directories. We call this upgraded design UNITD++.

Figure 16 compares HATRIC and UNITD++ results, normalized to
results from the case without die-stacked DRAM. As expected both
approaches outperform a system with only traditional software-based
translation coherence (sw). However, HATRIC provides an additional

!"

!#$%"

!#%"

!#&%"

'"

'#$%"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

01**-12" 3141"01056*." .(175%!!" 4)*8(1*8" 910-:6,"

;
<
(,

#"
4<
":
2<
=
"

:="

514(60"

)*643>>"

Figure 16: Comparison of HATRIC’s performance and energy versus
UNITD++. All results are normalized to results for a system without die-
stacked memory and compared to sw.

5-10% performance boost versus UNITD++ by also extending the
benefits of hardware translation coherence to MMU caches and
nTLBs. Further, HATRIC is more energy efficient than UNITD++ as
it boosts performance (saving static energy) but also does not need
reverse-lookup CAMs.

Xen results: To assess HATRIC’s generality, we have begun study-
ing its effectiveness on Xen. Because our memory traces require
months to collect, we have thus far evaluated canneal and data
caching, assuming 16 vCPUs. Our initial results show that Xen’s
performance is improved by 21% and 33% for canneal and data
caching respectively, over the best paging policy employing software
translation.

7 CONCLUSION
We propose HATRIC, folding translation coherence atop existing
hardware cache coherence protocols. We achieve this with simple
modifications to translation structures (TLBs, MMU caches, and
nTLBs) and with state-of-the-art coherence protocols. HATRIC is
readily-implementable and beneficial for upcoming systems, es-
pecially as they rely on page migration to exploit heterogeneous
memory systems.

ACKNOWLEDGMENTS
We thank Martha Kim and Ricardo Bianchini for helpful feedback
on early drafts of this paper. We also thank Daniel Sanchez, David
Nellans, and Jayneel Gandhi for suggestions on improving the final
version. We thank the National Science Foundation, which partially
supported this work through grants 1253700 and 1337147, as well
as VMware for partial support of this work through a research gift.

REFERENCES
[1] Keith Adams and Ole Agesen. 2006. A Comparison of Software and Hard-

ware Techniques for x86 Virtualization. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XII). ACM, New York, NY, USA, 2–13. https:
//doi.org/10.1145/1168857.1168860

[2] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and Stephen W.
Keckler. 2015. Page Placement Strategies for GPUs Within Heterogeneous Mem-
ory Systems. In Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’15).
ACM, New York, NY, USA, 607–618. https://doi.org/10.1145/2694344.2694381

[3] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting Hardware-
assisted Page Walks for Virtualized Systems. In Proceedings of the 39th Annual
International Symposium on Computer Architecture (ISCA ’12). IEEE Computer
Society, Washington, DC, USA, 476–487. http://dl.acm.org/citation.cfm?id=
2337159.2337214

https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/2694344.2694381
http://dl.acm.org/citation.cfm?id=2337159.2337214
http://dl.acm.org/citation.cfm?id=2337159.2337214

[4] Andrea Arcangeli. 2010. Transparent Hugepage Support. KVM Forum (August
2010). Retrieved April 18, 2017 from https://www.linux-kvm.org/images/9/9e/
2010-forum-thp.pdf

[5] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H. Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achiev-
ing High Performance and Scalability in Heterogeneous Systems. In Proceed-
ings of the 39th Annual International Symposium on Computer Architecture
(ISCA ’12). IEEE Computer Society, Washington, DC, USA, 416–427. http:
//dl.acm.org/citation.cfm?id=2337159.2337207

[6] Amitabha Banerjee, Rishi Mehta, and Zach Shen. 2015. NUMA Aware I/O
in Virtualized Systems. In Proceedings of the 2015 IEEE 23rd Annual Sympo-
sium on High-Performance Interconnects (HOTI ’15). IEEE Computer Society,
Washington, DC, USA, 10–17. https://doi.org/10.1109/HOTI.2015.17

[7] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’T Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). ACM, New York, NY, USA,
48–59. https://doi.org/10.1145/1815961.1815970

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A Mechanism
for Speculative Address Translation. In Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’11). ACM, New York, NY,
USA, 307–318. https://doi.org/10.1145/2000064.2000101

[9] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating Two-dimensional Page Walks for Virtualized Systems. In Proceed-
ings of the 13th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XIII). ACM, New York, NY,
USA, 26–35. https://doi.org/10.1145/1346281.1346286

[10] Abhishek Bhattacharjee. 2013. Large-reach Memory Management Unit Caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-46). ACM, New York, NY, USA, 383–394. https:
//doi.org/10.1145/2540708.2540741

[11] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Proceedings
of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’17). ACM, New York,
NY, USA, 63–76. https://doi.org/10.1145/3037697.3037705

[12] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011. Shared last-
level TLBs for chip multiprocessors. In 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. 62–63. https://doi.org/10.1109/
HPCA.2011.5749717

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08). ACM, New York, NY, USA, 72–81. https:
//doi.org/10.1145/1454115.1454128

[14] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang,
Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W. Nelson, Daniel Pantuso,
Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen, and Clair Webb. 2006. Die
Stacking (3D) Microarchitecture. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 39). IEEE Computer
Society, Washington, DC, USA, 469–479. https://doi.org/10.1109/MICRO.2006.
18

[15] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R. Alameldeen,
Chris Wilkerson, Yoongu Kim, and Onur Mutlu. 2014. Improving DRAM per-
formance by parallelizing refreshes with accesses. In 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 356–367.
https://doi.org/10.1109/HPCA.2014.6835946

[16] Jonathan Corbet. 2016. Heterogeneous memory management. (2016). Retrieved
April 18, 2017 from http://lwn.net/Articles/684916

[17] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’17). ACM, New York, NY, USA, 435–448.
https://doi.org/10.1145/3037697.3037704

[18] Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. 2013. A Circuit-architecture
Co-optimization Framework for Exploring Nonvolatile Memory Hierarchies. ACM
Trans. Archit. Code Optim. 10, 4, Article 23 (Dec. 2013), 22 pages. https://doi.
org/10.1145/2541228.2541230

[19] Malcolm C. Easton and Peter A. Franaszek. 1979. Use Bit Scanning in Re-
placement Decisions. IEEE Trans. Comput. C-28, 2 (Feb 1979), 133–141.
https://doi.org/10.1109/TC.1979.1675302

[20] Babak Falsafi, Tim Harris, Dushyanth Narayanan, and David A. Patterson. 2016.
Rack-scale Computing (Dagstuhl Seminar 15421). Dagstuhl Reports 5, 10 (2016),
35–49. https://doi.org/10.4230/DagRep.5.10.35

[21] Dongrui Fan, Zhimin Tang, Hailin Huang, and Guang R. Gao. 2005. An Energy
Efficient TLB Design Methodology. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design (ISLPED ’05). ACM, New
York, NY, USA, 351–356. https://doi.org/10.1145/1077603.1077688

[22] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia

Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 37–48.
https://doi.org/10.1145/2150976.2150982

[23] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2014.
Efficient Memory Virtualization: Reducing Dimensionality of Nested Page Walks.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-47). IEEE Computer Society, Washington, DC, USA,
178–189. https://doi.org/10.1109/MICRO.2014.37

[24] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift. 2016. Agile Paging: Exceed-
ing the Best of Nested and Shadow Paging. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture (ISCA ’16). IEEE Press, Piscataway,
NJ, USA, 707–718. https://doi.org/10.1109/ISCA.2016.67

[25] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra
Fedorova, and Vivien Quéma. 2014. Large Pages May Be Harmful on NUMA
Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA,
USA, 231–242. http://dl.acm.org/citation.cfm?id=2643634.2643659

[26] Jerome Glisse. 2016. HMM (Heterogeneous memory management) v5. (2016).
Retrieved April 18, 2017 from http://lwn.net/Articles/619067

[27] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. 2015. Proactively
Breaking Large Pages to Improve Memory Overcommitment Performance in
VMware ESXi. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’15). ACM, New York, NY,
USA, 39–51. https://doi.org/10.1145/2731186.2731187

[28] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https://doi.org/10.1145/1186736.
1186737

[29] Intel. 2015. Introducing Intel Optane Technology - Bringing 3D
XPoint Memory to Storage and Memory Products. (2015). Re-
trieved April 18, 2017 from https://newsroom.intel.com/press-kits/
introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage\
-and-memory-products

[30] Toni Juan, Tomas Lang, and Juan J. Navarro. 1997. Reducing TLB Power Re-
quirements. In Proceedings of the 1997 International Symposium on Low Power
Electronics and Design (ISLPED ’97). ACM, New York, NY, USA, 196–201.
https://doi.org/10.1145/263272.263332

[31] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G. Chen. 2002.
Generating Physical Addresses Directly for Saving Instruction TLB Energy. In
Proceedings of the 35th Annual ACM/IEEE International Symposium on Microar-
chitecture (MICRO 35). IEEE Computer Society Press, Los Alamitos, CA, USA,
185–196. http://dl.acm.org/citation.cfm?id=774861.774882

[32] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. 2015. Enabling
Interposer-based Disintegration of Multi-core Processors. In Proceedings of the
48th International Symposium on Microarchitecture (MICRO-48). ACM, New
York, NY, USA, 546–558. https://doi.org/10.1145/2830772.2830808

[33] Vasileios Karakostas, Jayneel Gandhi, Adrian Cristal, Mark D. Hill, Kathryn S.
McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal. 2016.
Energy-efficient address translation. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 631–643. https://doi.org/10.
1109/HPCA.2016.7446100

[34] Anshuman Khandaul. 2016. Define coherent device memory node. (2016).
Retrieved April 18, 2017 from http://lwn.net/Articles/404403

[35] Joonyoung Kim, Younsu Kim, undefined, undefined, undefined, and unde-
fined. 2014. HBM: Memory solution for bandwidth-hungry processors. 2014
IEEE Hot Chips 26 Symposium (HCS) 00 (2014), 1–24. https://doi.org/doi.
ieeecomputersociety.org/10.1109/HOTCHIPS.2014.7478812

[36] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 705–721.
http://dl.acm.org/citation.cfm?id=3026877.3026931

[37] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and
Memory Placement on NUMA Systems: Asymmetry Matters. In Proceedings of
the 2015 USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC ’15). USENIX Association, Berkeley, CA, USA, 277–289. http://dl.acm.org/
citation.cfm?id=2813767.2813788

[38] Gabriel Loh and Mark D. Hill. 2012. Supporting Very Large DRAM Caches with
Compound-Access Scheduling and MissMap. IEEE Micro 32, 3 (May 2012),
70–78. https://doi.org/10.1109/MM.2012.25

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190–200.
https://doi.org/10.1145/1065010.1065034

https://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf
https://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf
http://dl.acm.org/citation.cfm?id=2337159.2337207
http://dl.acm.org/citation.cfm?id=2337159.2337207
https://doi.org/10.1109/HOTI.2015.17
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/MICRO.2006.18
https://doi.org/10.1109/MICRO.2006.18
https://doi.org/10.1109/HPCA.2014.6835946
http://lwn.net/Articles/684916
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/2541228.2541230
https://doi.org/10.1145/2541228.2541230
https://doi.org/10.1109/TC.1979.1675302
https://doi.org/10.4230/DagRep.5.10.35
https://doi.org/10.1145/1077603.1077688
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
http://dl.acm.org/citation.cfm?id=2643634.2643659
http://lwn.net/Articles/619067
https://doi.org/10.1145/2731186.2731187
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage\-and-memory-products
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage\-and-memory-products
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage\-and-memory-products
https://doi.org/10.1145/263272.263332
http://dl.acm.org/citation.cfm?id=774861.774882
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1109/HPCA.2016.7446100
http://lwn.net/Articles/404403
https://doi.org/doi.ieeecomputersociety.org/10.1109/HOTCHIPS.2014.7478812
https://doi.org/doi.ieeecomputersociety.org/10.1109/HOTCHIPS.2014.7478812
http://dl.acm.org/citation.cfm?id=3026877.3026931
http://dl.acm.org/citation.cfm?id=2813767.2813788
http://dl.acm.org/citation.cfm?id=2813767.2813788
https://doi.org/10.1109/MM.2012.25
https://doi.org/10.1145/1065010.1065034

[40] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
Improvements for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and
Shared Last-Level TLBs. ACM Trans. Archit. Code Optim. 10, 1, Article 2 (April
2013), 38 pages. https://doi.org/10.1145/2445572.2445574

[41] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee.
2016. COATCheck: Verifying Memory Ordering at the Hardware-OS Interface. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16). ACM, New
York, NY, USA, 233–247. https://doi.org/10.1145/2872362.2872399

[42] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why On-chip
Cache Coherence is Here to Stay. Commun. ACM 55, 7 (July 2012), 78–89.
https://doi.org/10.1145/2209249.2209269

[43] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Ig-
natowski, and Gabriel H. Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 126–136. https://doi.org/10.1109/HPCA.2015.7056027

[44] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2007). 3–14. https://doi.org/10.1109/MICRO.2007.33

[45] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Practical,
Transparent Operating System Support for Superpages. SIGOPS Oper. Syst. Rev.
36, SI (Dec. 2002), 89–104. https://doi.org/10.1145/844128.844138

[46] Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-
Stacked DRAM. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT) (PACT ’15). IEEE Computer Society, Wash-
ington, DC, USA, 188–200. https://doi.org/10.1109/PACT.2015.30

[47] Jiannan Ouyang, John R. Lange, and Haoqiang Zheng. 2016. Shoot4U: Using
VMM Assists to Optimize TLB Operations on Preempted vCPUs. In Proceedings
of the12th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’16). ACM, New York, NY, USA, 17–23. https://doi.org/10.
1145/2892242.2892245

[48] J. T. Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23
Symposium (HCS). 1–24. https://doi.org/10.1109/HOTCHIPS.2011.7477494

[49] Sujay Phadke and Satish Narayanasamy. 2011. MLP aware heterogeneous memory
system. In 2011 Design, Automation Test in Europe. 1–6. https://doi.org/10.1109/
DATE.2011.5763155

[50] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 558–567. https://doi.org/10.1109/HPCA.2014.6835964

[51] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhat-
tacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-45). IEEE Computer Society, Washington, DC, USA, 258–269.
https://doi.org/10.1109/MICRO.2012.32

[52] Binh Pham, Jan Vesely, Gabriel Loh, and Abhishek Bhattacharjee. 2015. Using
TLB Speculation to Overcome Page Splintering in Virtual Machines. Rutgers Tech-
nical Report DCS-TR-713. Department of Computer Science, Rutgers University,
Pistcataway, NJ.

[53] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can
You Have It Both Ways?. In Proceedings of the 48th International Symposium
on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 1–12. https:
//doi.org/10.1145/2830772.2830773

[54] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In Proceedings of the International Conference on
Supercomputing (ICS ’11). ACM, New York, NY, USA, 85–95. https://doi.org/10.
1145/1995896.1995911

[55] Dulloor Subramanya Rao and Karsten Schwan. 2010. vNUMA-mgr: Managing
VM memory on NUMA platforms. In 2010 International Conference on High
Performance Computing. 1–10. https://doi.org/10.1109/HIPC.2010.5713191

[56] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng-Zhong Xu. 2013. Optimizing
Virtual Machine Scheduling in NUMA Multicore Systems. In Proceedings of
the 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA) (HPCA ’13). IEEE Computer Society, Washington, DC,
USA, 306–317. https://doi.org/10.1109/HPCA.2013.6522328

[57] Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy. 2010.
UNified Instruction/Translation/Data (UNITD) coherence: One protocol to rule
them all. In HPCA - 16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture. 1–12. https://doi.org/10.1109/HPCA.2010.
5416643

[58] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B.
Gibbons, Michael A. Kozuch, Todd C. Mowry, and Trishul Chilimbi. 2015. Page
overlays: An enhanced virtual memory framework to enable fine-grained memory
management. In 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). 79–91. https://doi.org/10.1145/2749469.2750379

[59] Agam Shah. 2014. Micron’s Revolutionary Hybrid Memory Cube
Tech is 15 Times Faster than Today’s DRAM. (2014). Re-
trieved April 18, 2017 from http://www.pcworld.com/article/2366680/
computer-memory-overhaul-due-with-microns-hmc-in-early-2015.html

[60] Avinash Sodani. 2011. Race to Exascale: Opportunities and Challenges. (2011).
Retrieved April 18, 2017 from https://www.microarch.org/micro44/files/Micro%
20Keynote%20Final%20-%20Avinash%20Sodani.pdf

[61] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers.

[62] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur
Mutlu. 2016. BLISS: Balancing Performance, Fairness and Complexity in Memory
Access Scheduling. IEEE Transactions on Parallel and Distributed Systems 27,
10 (Oct 2016), 3071–3087. https://doi.org/10.1109/TPDS.2016.2526003

[63] Madhusudhan Talluri and Mark D. Hill. 1994. Surpassing the TLB Performance
of Superpages with Less Operating System Support. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VI). ACM, New York, NY, USA, 171–182.
https://doi.org/10.1145/195473.195531

[64] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Abhishek Bhat-
tacharjee. 2016. Observations and opportunities in architecting shared vir-
tual memory for heterogeneous systems. In 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). 161–171.
https://doi.org/10.1109/ISPASS.2016.7482091

[65] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex
Ramirez, Avi Mendelson, Nacho Navarro, Adrian Cristal, and Osman S. Un-
sal. 2011. DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a
Shared TLB Directory. In 2011 International Conference on Parallel Architectures
and Compilation Techniques. 340–349. https://doi.org/10.1109/PACT.2011.65

[66] VMware. 2011. Performance Best Practices for VMware vSphere 5.0. (2011).
Retrieved April 18, 2017 from https://www.vmware.com/pdf/Perf_Best_Practices_
vSphere5.0.pdf

[67] Yuan Xie. 2011. Modeling, Architecture, and Applications for Emerging Memory
Technologies. IEEE Des. Test 28, 1 (Jan. 2011), 44–51. https://doi.org/10.1109/
MDT.2011.20

[68] Yuan Xie. 2013. Emerging Memory Technologies: Design, Architecture, and
Applications. Springer Publishing Company, Incorporated.

[69] Jason Zebchuk, Babak Falsafi, and Andreas Moshovos. 2013. Multi-grain Co-
herence Directories. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 359–
370. https://doi.org/10.1145/2540708.2540739

https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/MICRO.2007.33
https://doi.org/10.1145/844128.844138
https://doi.org/10.1109/PACT.2015.30
https://doi.org/10.1145/2892242.2892245
https://doi.org/10.1145/2892242.2892245
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/DATE.2011.5763155
https://doi.org/10.1109/DATE.2011.5763155
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1109/HIPC.2010.5713191
https://doi.org/10.1109/HPCA.2013.6522328
https://doi.org/10.1109/HPCA.2010.5416643
https://doi.org/10.1109/HPCA.2010.5416643
https://doi.org/10.1145/2749469.2750379
http://www.pcworld.com/article/2366680/computer-memory-overhaul-due-with-microns-hmc-in-early-2015.html
http://www.pcworld.com/article/2366680/computer-memory-overhaul-due-with-microns-hmc-in-early-2015.html
https://www.microarch.org/micro44/files/Micro%20Keynote%20Final%20-%20Avinash%20Sodani.pdf
https://www.microarch.org/micro44/files/Micro%20Keynote%20Final%20-%20Avinash%20Sodani.pdf
https://doi.org/10.1109/TPDS.2016.2526003
https://doi.org/10.1145/195473.195531
https://doi.org/10.1109/ISPASS.2016.7482091
https://doi.org/10.1109/PACT.2011.65
https://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf
https://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf
https://doi.org/10.1109/MDT.2011.20
https://doi.org/10.1109/MDT.2011.20
https://doi.org/10.1145/2540708.2540739

	Abstract
	1 Introduction
	2 Background
	2.1 HW and SW Support for Virtualization
	2.2 Page Remapping in Virtualized Systems

	3 Software Translation Coherence
	3.1 Translation Coherence Overheads
	3.2 Page Remapping Anatomy
	3.3 Hardware Versus Software Solutions

	4 Hardware Design
	4.1 Co-Tags
	4.2 Coherence States and Initiators
	4.3 Coherence Directory and Co-Tag Interaction
	4.4 Putting It All Together
	4.5 Other Key Observations

	5 Methodology
	5.1 Die-Stacked DRAM Simulation
	5.2 KVM Paging Policies
	5.3 Workloads

	6 Evaluation
	7 Conclusion
	Acknowledgments
	References

