
Efficient and Verifiable Proof Logging for MaxSAT
Solving

Raoul van Doren
ETH Zurich, Switzerland

rvandoren@student.ethz.ch

Timos Antonopoulos
Yale University, USA

timos.antonopoulos@yale.edu

Ruzica Piskac
Yale University, USA

ruzica.piskac@yale.edu

Abstract—MaxSAT solvers are increasingly used as back-ends
in software engineering tools. Yet their results have lacked
automatically checkable certificates of optimality. While SAT
solvers emit DRAT proofs of (un)satisfiability, MaxSAT must
additionally prove that no lower-cost solution exists. Existing
approaches either cover only isolated solving paradigms or re-
duce MaxSAT reasoning to heavyweight pseudo-Boolean proofs,
yielding impractical verification overhead.

We present the first MaxSAT-specific proof-logging framework
for core-guided OLL solvers. We formalize native inference
rules for cores, cliques, hardenings, totalizer updates, and bound
adjustments, and implement both a human-readable logger and
a compact binary DAG logger in EvalMaxSAT. Evaluation on
the 2024 MaxSAT competition dataset confirm the practicality
and scalability of our certification pipeline, paving the way for
trustworthy, solver use.

Index Terms—MaxSAT, proof logging, solver verification, core-
guided OLL, debugging

I. INTRODUCTION

Software engineering increasingly relies on SAT solvers [1]
for a wide range of automation tasks including program ver-
ification, test-suite generation and optimization, configuration
management, model synthesis, static analysis and automated
program repair [2]–[12]. Modern SAT solvers are powerful
and well-engineered tools that can handle millions of variables
and tens of millions of clauses, depending on the structure
and complexity of the problem. An annual SAT Competi-
tion [13] showcases different SAT solvers and plays a crucial
role in advancing their development. It provides challenging
benchmarks and sets performance standards that push solver
efficiency and scalability. However, for many years it was a
standard that solvers could simply return “SAT” or “UNSAT”
without any justification or proof, which lead to occasional
disqualifications in the SAT competitions for incorrect UNSAT
claims. To restore trust, the SAT community introduced proof
certificates: RUP-style logging in 2003 [14], RAT in 2012 [15],
DRUP in 2013 [16], and finally DRAT in 2014 [17]–[19].
Since 2013, all solvers in the SAT Competition’s main track
must emit a DRAT proof for every UNSAT result [20], ensur-
ing that solver solutions are machine-checkable and reliable
in safety-critical and auditable contexts.

While many software engineering tasks may initially appear
to be well-suited for SAT encoding, a closer examination
often reveals that effective formalization requires going be-
yond SAT and demands optimization techniques. For in-
stance, tasks such as identifying minimal fault-localization

regions in complex debugging scenarios [21], detecting bugs
in distributed systems [22], and synthesizing quantum error
correction codes [23] can be formulated as SAT problems with
an additional requirement to find an optimal solution based
on a defined cost metric. These types of problems are more
naturally expressed as weighted MaxSAT instances [24], [25].

In the classical SAT problem the goal is to find a solution for
a given set of Boolean clauses. All clauses are treated equally
and the found model has to be a model for every clause.
MaxSAT extends the classical SAT problem by introducing
two types of clauses: hard clauses, which must be satisfied,
and soft clauses, which should be satisfied, but if they are not
this violation incurs a weight-based penalty. The goal is to
find a variable assignment that satisfies all hard clauses while
minimizing the total weight of the unsatisfied soft clauses.
Over the past decade, MaxSAT solver strategies and their
performance have drastically increased similarly as for SAT
solvers: they also can address the problems with millions of
variables and clauses and there is also a yearly competition of
MaxSAT solvers [26].

Yet, unlike SAT, where DRAT [17]–[19] proofs have been
mandatory in the main track of the SAT Competition since
2013, MaxSAT lacks a single, widely supported proof format
that certifies both feasibility and optimality. While a few
specialized approaches emit certificates for particular solving
portions, there is no general, competition-level standard that
everyone uses to demonstrate that no better solution exists.
This threatens the exact correctness guarantees that motivated
SAT-level certification in the first place.

Extending traditional SAT proof formats, such as DRAT,
is insufficient to capture the optimization-specific reasoning
required in MaxSAT solving. MaxSAT solvers are working
in a core-guided paradigm: each time the solver identifies
an unsatisfiable core comprising only of soft literals, it must
not only record the literals involved but also the minimum
weight among them. This minimum weight is critical and it
must be added to the lower bound of the objective function
to maintain sound reasoning about optimality. Consequently, a
valid MaxSAT proof should log every conflict along with the
exact weight update step. Unfortunately, the existing MaxSAT
proof efforts trying to solve this problem either target only iso-
lated algorithmic phases [27] or reduce all MaxSAT inferences
to general pseudo-Boolean proofs [28] (e.g., VeriPB [29]–
[31]), incurring substantial verification overhead and ignoring

domain-specific optimizations.
In this paper, we close the gap between MaxSAT solving

and certification with the first native proof-logging framework.
Our system is designed to wrap around any modern MaxSAT
solver, based on the OLL algorithm [32]. It is the state-of-the-
art core-guided approach used by all top entrants in the 2024
MaxSAT Competition. Our system produces both, a “normal”
proof log, in human-readable text form, listing each inference
with references to its premises and conclusions, as well as
a proof in graph format where nodes represent soft literals
and edges encode the dependency and weight-redistribution
structure.

Both formats capture the full solver reasoning of the OLL
algorithm. Proof sizes stay under 0.1 GB even on our largest
benchmarks, showing that our approach is capable of scaling
to competition benchmarks. Our contributions are as follows:

• We formalize proof rules for the full OLL workflow.
• We implement both a human-readable normal logger and

a compact binary DAG logger within EvalMaxSAT, a top-
ranked SOTA OLL solver.

• By leveraging domain knowledge and avoiding transla-
tion to pseudo-Boolean proofs, we achieve up to an order
of magnitude faster verification than prior approaches,
with median verification overhead under 2% of solve
time.

• On all 571 benchmarks from the 2024 MaxSAT Compe-
tition, our framework successfully verifies every solved
instance while producing manageable proof sizes and
overhead.

Beyond their theoretical significance, our contributions are
highly relevant for software engineering. MaxSAT is already
used in diverse SE tasks such as automated program repair,
test minimization, fault localization, and configuration opti-
mization [21]–[23], [33]. In these domains, correctness and
trust are paramount: an incorrect solver result can propagate
into missed faults, unsafe repairs, or misconfigured systems.
Certification not only guarantees correctness of results but
also enables auditability, post-run analysis and regulatory com-
pliance. For instance, in safety- or security-critical pipelines,
certificates can be archived and automatically checked as part
of continuous integration, ensuring regressions are caught and
decisions are traceable. Moreover, human-readable proof logs
support debugging and explainability, allowing developers to
understand which constraints drove a decision, rather than
treating the solver as a black box.

The remainder of this paper is organized as follows. Section
2 reviews background on OLL-based MaxSAT. Section 3
introduces our proof rules and logging formats. Section 4
describes implementation details and presents the evaluation.
Section 6 concludes the work.

II. BACKGROUND AND MOTIVATION

A. Preliminaries on Boolean Formulas and MaxSAT

We denote by xi a Boolean variable that takes values in
{0, 1}, where 1 reporesents (true) and 0 represents (false).

An assignment for a variable is mapping from a variable to
a value {0, 1}, while a complete assignment is a mapping
µ : {x1, . . . , xn} → {0, 1}, thereby assigning every variable
in a set. A literal is either a variable xi or its negation ¬xi.
A clause (x1 ∨ x2 ∨ . . .∨ xn) is the disjunction of its literals,
and is satisfied by µ if at least one xj evaluates to 1 under µ.
A formula in conjunctive normal form (CNF) is a conjunction
of clauses

∧m
j=1 Cj and is satisfied by µ exactly when every

Cj is satisfied. An unsatisfiable core/conflict is a subset of
literals whose conjunction with the hard clauses leads to an
unsatisfiable formula. A clique is a set of pairwise-conflicting
literals, i.e., each pair leads to an unsatisfiable formula when
in conjunction with the hard clauses.

In the MaxSAT problem, each clause Cj is designated hard
or soft. Hard clauses must be satisfied, while soft clauses may
be violated at a nonnegative integer weight wj > 0. Given a
complete assignment µ, the total cost is

Cost(µ) =
∑

Cj is soft
µ(Cj)=0

wj .

and the goal is to find an assignment satisfying all hard clauses
while minimizing Cost(µ).

An empty clause (⊥) is always unsatisfied. Thus:
• A hard empty clause leads to unsatisfiable problem in-

stance.
• A soft empty clause of weight w contributes w to the

cost of every assignment.

B. Translating Soft Clauses to Weighted Literals

To facilitate the MaxSAT solving process, we transform
each soft clause into a weighted unit literal. Let α be the
set of hard clauses, β the set of soft literals (initially empty),
and γ the set of totalizer literals (initially empty). For each
soft clause Cj of weight wj :

1) Introduce a fresh soft variable sj /∈ Var(F).
2) Form the extended clause

C ′
j = Cj ∨ ¬sj ,

and add C ′
j to α.

3) Add sj to β with weight w(sj)← wj .
Example. A soft clause (x1 ∨ x2) of weight 3 becomes:

(x1 ∨ x2 ∨ ¬s1) with w(s1) = 3

so that either the original clause holds or s1 = 0 incurs cost
3.

C. Cardinality Constraints

A cardinality constraint t restricts how many literals in a
set S may be falsified. For integer k ≥ 0, we require∑

x∈S

(1− µ(x)) ≤ k.

To encode this in CNF we make use of a totalizer encod-
ing [34], [35]. The effect is that if more than k literals in S
are falsified, then t = 0 induces a predefined cost.

D. Preservation of the MaxSAT Objective

Let µ be any assignment to the original variables, the soft
literals β, and totalizer literals γ. Then:

• An extended soft clause Cj is satisfied if µ(Cj) = 1 or
µ(sj) = 1. Otherwise µ(sj) = 0 which incurs cost w(sj).

• A totalizer literal t ∈ γ is satisfied if its CNF encoding
holds. Otherwise µ(t) = 0 incurs cost w(t).

Hence the total cost under µ is

Cost(µ) =
∑
s∈β

w(s) · 1µ(s)=0 +
∑
t∈γ

w(t) · 1µ(t)=0

which exactly matches the original MaxSAT objective of
summing weights of violated soft clauses.

E. Overview of the OLL Algorithm

The OLL MaxSAT algorithm maintains a growing set of soft
literals and cardinality constraints and proceeds as follows:

1) Setup.
• Encode all hard clauses in a SAT solver.
• Transform each soft clause into an extended clause

C ∨ ¬s and add s (with its weight) to the set of
assumable literals.

2) Iterative Solve. Repeat until the solver returns SAT:
a) Assume all current soft and totalizer literals to be

true.
b) Solve the CNF under these assumptions.
c) If UNSAT, extract an unsatisfiable core S.
d) Relax S by marking each soft literal in S as paid

(incurring its weight) and/or introducing or incre-
menting a cardinality constraint

∑
x∈S ¬x ≤ k.

Add the new totalizer literal (with its weight) to
the assumptions.

3) Result. When the solver returns SAT, the current model
satisfies all hard clauses and minimizes the sum of
weights of relaxed literals.

F. Illustrative Example: Abstraction Refinement in Software
Verification

Modern software verifiers use predicate abstraction to de-
crease the complexity of large programs. The abstraction must
capture enough behaviors to prove safety, yet it must try to
simplify the program as far as possible to be useful.

Consider the following simple program fragment with a
single counter and a safety check as shown in Fig. 1.

if (x > 10) {
y := y + 1;

} else {
y := y - 2;

}
assert(y >= 0);

Fig. 1: Example code.

A predicate-abstraction verifier
must choose which predicates to
track in the Boolean model so that
any violation of the final assertion
is detected. Each predicate pi is a
simple Boolean test which represents
the abstract properties that we would

like to track in the program verifier. However, we also assume
that each predicate has a predefined “omission-cost”: if we
decide not to track pi, we pay a penalty that makes the

Boolean formula easier but increases the risk of missing an
unsafe behavior. Suppose our candidate predicates are

p1 : x > 10, p2 : y ≥ 0, p3 : y > 1.

To decide which predicates to actually track, we introduce a
fresh Boolean soft literal si for each predicate pi. Semantically,

si = 0 means “we track pi” (i.e., no penalty),
si = 1 means “we omit pi” (i.e., incurs cost).

In each hard-clause implication, we then extend the pred-
icate test by ¬si, so that omitting pi (setting si = 1) causes
the implication to hold.

Each pi carries an omission cost

w(p1) = 10, w(p2) = 8, w(p3) = 2,

so setting si = 1 omits pi at cost w(pi). Because w(p3) = 2
is relatively small, omitting p3 is “cheap”, whereas omitting
p1 or p2 would be more expensive.

To guarantee safety, we must ensure that whenever the
concrete execution could make assert(y >= 0) fail, the
abstract model has enough predicates to distinguish that be-
havior. Concretely:

1. On the then-branch (x > 10), if p2 were false (¬p2),
the assertion could fail. Thus we require

(p1 ∧ ¬p2) −→ p2,

which in CNF becomes the hard clause

(¬p1 ∨ p2).

2. On the else-branch (¬(x > 10)), a stronger check is
needed: if p2 alone does not suffice, the more precise predicate
p3 may be required. That yields

(¬p1 ∧ ¬p2) −→ (p2 ∨ p3),

i.e. the hard clause

(p1 ∨ p2 ∨ p3).

To build the MaxSAT encoding:
• We add the two hard clauses (¬p1∨p2) and (p1∨p2∨p3)

that must be satisfied.
• We then add soft clauses (¬si) of weight w(pi). In

each hard clause, we replace each pi (or ¬pi) by the
disjunction (pi ∨ si) (or (¬pi ∨ si)). This replacement is
applied simultaneously to every occurrence of each pi in
a hard clause. For example, the hard clauses become:

(¬p1 ∨ p2) −→ (¬p1 ∨ p2 ∨ s1 ∨ s2),

(p1 ∨ p2 ∨ p3) −→ (p1 ∨ p2 ∨ p3 ∨ s1 ∨ s2 ∨ s3).

Now, if we choose to omit p3 by setting s3 = 1, then the
second clause

(p1 ∨ p2 ∨ p3 ∨ s1 ∨ s2 ∨ 1) = true,

so that clause no longer enforces any relationship among
p1, p2. However, as long as we desire to track p1 and p2
(i.e., s1 = s2 = 0), the first clause is enforced.

A MaxSAT solver might, for example, omit both p2 and p3
(paying cost 8+2 = 10) and still satisfy the transformed hard
clauses, even though omitting only p2 (cost 8) would have
been optimal. Without a machine-checkable proof of optimal-
ity, such suboptimal assignments could escape detection. In
safety-critical verification pipelines, an incorrect relaxation or
miscalculated weight may yield an abstraction that misses a
real bug or falsely reports safety.

Our certification framework ensures that every relaxation,
core extraction, and clique formation step is logged and later
re-verified. This way, the verifier confirms not only feasibility
but also optimality of the chosen abstraction, preventing incor-
rect tradeoffs in predicate omission. Such verifiable guarantees
are essential for reliable automated verification in practice,
where tools must be trusted in continuous integration settings
and regulatory audits [36], [37].

III. RELATED WORK

Our work concentrates exclusively on the core-guided pro-
cedure known as OLL [32], which underlies the top three [38]–
[40] MaxSAT solvers in the 2024 MaxSAT Competition [26].
As the empirical leader among all MaxSAT techniques, OLL
forms the foundation of the current state of the art MaxSAT
solvers.

Despite rapid advances in MaxSAT algorithms, proof log-
ging lags behind. One might ask whether existing SAT proof
systems (e.g., DRAT [17]–[19]) could suffice for MaxSAT.
In practice, however, DRAT’s clause-only language cannot
express reasoning about optimization objectives, and a single
certifying call to a SAT solver at the end of the solving process
cannot establish the optimality of the solution.

Modern MaxSAT solvers rely on four primary paradigms,
Branch-and-Bound (BnB) [41], Solution-Improving
Search [42]–[44], Implicit Hitting Set (IHS) [45], [46]
and Core-Guided Search [47]–[50], each applying its own
inference patterns to determine a solution. This diversity
hinders defining a unified proof logic. Existing proof-logging
efforts target only individual aspects of the problem [51]–[60],
such as certifying preprocessing techniques [27], automatic
proof generation for the unweighted linear SAT-UNSAT
solver QMaxSAT [61], and a high-level proof sketch for
OLL-style core-guided MaxSAT [32] without automatic proof
generators. More recent work utilizes the pseudo-Boolean
checker VeriPB [29]–[31] to verify core-guided solvers,
translating the solution inference into a 0–1 linear-inequality
proof [28]. Although more expressive than DRAT, this
approach treats each MaxSAT step as a PB inference and
cannot exploit fast SAT-level RUP checks, proof trimming,
or binary formats. As a result, verification often dominates
solver runtime and misses domain-specific optimizations.

As the de facto state of the art, OLL-based techniques war-
rant a dedicated certification framework. To our knowledge,
the only prior attempt to certify OLL-based MaxSAT solving
is the certified-cgss tool [62]–[64], which reduces
solver reasoning to pseudo-Boolean proofs for verification

with VeriPB. While correct, this reduction sacrifices MaxSAT-
specific invariants and relies entirely on the soundness of the
translation and of VeriPB itself. The resulting certificates are
large, hide the solver’s native reasoning, and do not give the
possibity to exploit SAT-level optimizations such as DRAT
trimming or efficient clause hashing.

In contrast, our framework defines inference rules directly
within the OLL workflow (core extraction, clique relaxation,
conflict redistribution), producing both human-readable logs
and compact DAGs with shared subproofs. This design avoids
translation overhead, keeps certificate sizes manageable, and
exposes solver logic in a transparent form that is useful for
debugging, explainability, and integration into software engi-
neering pipelines. We further support optional DRAT proofs
for UNSAT calls, allowing our verifier to leverage mature SAT-
checking optimizations that PB-based systems cannot exploit.
Overall, our specialized design bridges the gap between solver
reasoning and efficient certification, providing both theoretical
soundness and practical usability.

IV. PROOF-LOGGING SYSTEM

In the following chapter, we construct a proof system for
the MaxSAT OLL algorithm and prove its soundness and
completeness.

A. Proof States

A proof state is represented as a quintuple:

F = ⟨α, β, γ, L, U⟩,

where:
• α is the set of hard clauses, which must be satisfied,
• β is the set of soft literals,
• γ is the set of totalizer literals,
• L is the current lower bound on the optimal solution cost,
• U is the current upper bound on the optimal solution cost.
The initial proof state is defined as:

F0 = ⟨α0, β0, γ0, L0, U0⟩,

with γ0 = ∅, L0 = 0, and U0 =∞.

B. Inference Rules

A proof rule defines a valid transformation from one proof
state to another. Given a current proof state F , a rule produces
an updated proof state F ′ by modifying a subset of compo-
nents in F . Any component not modified by the rule remains
unchanged in F ′.

The goal is to reach a final proof state:

Ffinal = ⟨α, β, γ, L, U⟩ where L ≥ U.

At this point, we have a concrete value on the optimal cost,
and the proof concludes.
Empty Soft Clause (ESC). If a soft clause is empty, it is
unsatisfiable in any assignment. Thus, its cost must be paid
in any optimal solution and it can be removed from the proof
state.

C = {} C ∈ β

L′ := L+ w(C), β′ := β \ {C}
[ESC]

Hardening (H). If the cost of a literal is high enough that
assuming it is unsatisfied would exceed the current upper
bound, then it must be satisfied in any optimal assignment.
Thus, it can be moved to the set of hard clause which are
required to be satisfied by definition.

l ∈ (β ∪ γ) w(l) ≥ U − L

α′ := α ∪ {l}, β′ := β \ {l}, γ′ := γ \ {l}
[H]

Unsatisfiable Literal (UL). If a soft or cardinality literal
leads to an unsatisfiable formula when assumed to be true,
it contradicts the current set of hard clauses. Therefore, we
add its negation to the hard clauses and increase the lower
bound by its weight.

l ∈ (β ∪ γ) solve(α ∪ {l}) = UNSAT
α′ := α ∪ {¬l}, L′ := L+ w(l), w(l) := 0

[UL]

Clique Relaxation (ClR). If a set of literals forms a mutual
conflict (i.e., any pair leads to UNSAT when assumed true
simultaneously), then at most one of them can be satisfied
at a time. This concept is known as a clique. Cliques are
crucial in avoiding quadratic blowup in MaxSAT solving. If
k literals are mutually conflicting, encoding all

(
k
2

)
pairwise

relaxations would be expensive. Instead, solvers introduce a
clique constraint that relaxes them collectively, maintaining
soundness while reducing overhead. In our certification setting,
we do not reconstruct how the clique was detected, we only
verify that the final set indeed represents a valid clique. We
can extract the minimum weight from this clique, increase
the lower bound accordingly, and introduce a new variable to
encode the residual constraints.

C = {l1, . . . , ln} ⊆ (β ∪ γ)
∀i ̸= j ∈ |C| : solve(α ∪ {li, lj}) = UNSAT

wmin = argminl∈C{w(l)}
L′ := L+ wmin · (|C| − 1)
∀l ∈ C : w(l) := w(l)− wmin

lf := freshVar()
β′ := β ∪ {lf}, w(lf) := wmin

α′ := α ∪ {(l1 ∨ · · · ∨ ln ∨ ¬lf)}

[ClR]

Conflict Relaxation (CoR). Given a set of literals C that
cause a conflict (i.e., solve(α ∪ C) = UNSAT), we perform
a weight redistribution and introduce a totalizer constraint to
ensure proper relaxation.

C = {l1, . . . , ln} ⊆ (β ∪ γ)
solve(α ∪ C) = UNSAT

wmin = argminl∈C{w(l)}
L′ := L+ wmin

∀l ∈ C : w(l) := w(l)− wmin

t({¬l1,...,¬ln},1) := freshVar()
t({¬l1,...,¬ln},1) ⇔

∑
li∈C ¬li ≤ 1

γ′ := γ ∪ {t({¬l1,...,¬ln},1)}, w(t) := wmin

[CoR]

Totalizer Update (TU). If a totalizer literal with weight 0
does not contribute to the objective anymore, we relax its “at-
most” bound by 1 (from k to k+1) and assign a new totalizer
literal to this updated cardinality constraint with the original
weight.

t({¬l1,...,¬ln},k) ∈ γ w(t({¬l1,...,¬ln},k)) = 0
winit(t({¬l1,...,¬ln},k)) = w

t({¬l1,...,¬ln},k+1) := freshVar()
t({¬l1,...,¬ln},k+1) ⇔

∑
li∈C ¬li ≤ k + 1

γ′ := γ ∪ {t({¬l1,...,¬ln},k+1)}
w(t({¬l1,...,¬ln},k+1)) = w
winit(t({¬l1,...,¬ln},k+1)) = w

[TU]

Upper Bound Update (UBU). If we find a satisfying assign-
ment µ whose cost is strictly less than the current upper bound,
we update the upper bound accordingly.

SAT solver returns model µ
Cost(µ) < U

U := Cost(µ)
[UBU]

C. Advanced Proof-Logging via Dependency DAG

In the advanced proof system, we represent an entire OLL
derivation as a directed acyclic graph (DAG) whose vertices
correspond to soft and totalizer literals, both the original ones
and those introduced by relaxation rules, and whose edges
record the dependencies and weight-redistributions imposed
by clique and conflict relaxations. Each vertex v holds the
following entries:

• a unique identifier (in insertion order),
• a type tag (Soft, Hardening, Clique, Conflict, or Un-

satLit),
• an initial weight w0(v),
• a current weight w(v),
• a set of successor literals C(v) ⊆ V for Clique and

Conflict nodes,
• a bound parameter k(v) for Conflict nodes.
The DAG is built incrementally. Initially, for each original

soft clause we create a soft node v with w0(v) = w(v) set
to the clause weight. Its outgoing edges point to all variables
inside of the soft clause.
Whenever a clique relaxation is performed on a core C =
{u1, . . . , un}, we add a new Clique node v with

k(v) = 1, w0(v) = w(v) = min
u∈C

w(u),

and add directed edges v → u for each u ∈ C, simultaneously
subtracting w0(v) from each w(u).
Similarly, for a general conflict relaxation on C, we add a
Conflict node v with

k(v) = 1, w0(v) = w(v) = min
u∈C

w(u),

and add the edges v → u for all u ∈ C while reducing each
w(u) by w0(v).
Finally, each hardening or unsatisfiable literal inference is

recorded as a Hardening or UnsatLit node with one outgoing
edge to its affected literal.

Once the DAG construction is complete, verification pro-
ceeds in reverse topological order. We initialize the verifier’s
lower bound L to the solver’s final optimum UFinal. Then,
for each node v in reverse insertion order, we perform the
following checks and updates:

Soft nodes. We verify that w0(v) matches the original
clause weight. If they do not match, the proof is invalid. No
change to the bound or to other weights is performed.

Hardening nodes. Let u be the unique successor of v. We
check that

L+ w0(u) ≥ Ufinal ,

ensuring that falsifying u would push the cost above the
optimum. If this does not hold, the proof is invalid. Otherwise,
we add the literal represented by the node u to the set of hard
clauses.

Clique nodes. If C(v) = {u1, . . . , un} and w0(v) is its
weight, we first restore the bound

L := L− (|C(v)| − 1) · w0(v)

to “undo” the original clique relaxation cost. We then restore
each child’s weight w(ui) := w(ui) +w0(v). Finally, we add
the clique constraint encoded as soft clause to the set of hard
clauses.

Conflict nodes. For a Conflict node v with child set C(v)
and k(v) = 1, we restore

L := L−w0(v) and w(u) := w(u) +w0(v) ∀u ∈ C(v).

We also add the cardinality constraint encoded using totalizers
to the set of hard clauses. Nodes with k(v) ̸= 1 (from totalizer
updates) are skipped.

UnsatLit nodes. Let u be the child of v. We decrement

L := L− w0(u)

and add ¬u to the reconstructed hard clause set.
After all nodes have been processed, a valid proof satisfies

L = 0 and yields an assignment to the original soft literals
whose cost equals UFinal. Throughout this verification we
also ensure that each clique, conflict, and unsatisfiable-literal
inference was extracted in a context consistent with the set of
hard clauses at the time of its introduction.

V. FORMAL VERIFICATION

A. Soundness

Observation 1. To ensure the soundness of the proof system,
it must be guaranteed that:

• The lower bound L does not overestimate the optimal
cost,

• The upper bound U does not underestimate the optimal
cost.

For all proofs, we assume the existence of an optimal
assignment µ∗ : l → {0, 1}. The cost of this assignment is
defined as:

Cost(µ∗) = L+
∑
l∈β

w(l) · 1µ∗(l)=0 +
∑
l∈γ

w(l) · 1µ∗(l)=0.

Theorem 1 (Soundness of the Proof System). The proof
system is sound if at every proof state Fi = ⟨αi, βi, γi, Li, Ui⟩
in the proof derivation from F0 to FFinal, the soundness
invariant Li ≤ Cost(µ∗) ≤ Ui (see Obs. 1) holds. Thus, if
LFinal = Cost(µ∗) = UFinal, the proof is correct and the
solution is proven to be optimal.

Proof Sketch. Proof by induction:
• Base Case: In the initial state F0, we L0 = 0 ≤

Cost(µ∗) ≤ Ui =∞. Thus the invariant trivially holds.
• Step Case: Suppose the invariant holds in Fi. If we apply

any of the previously introduced rules, the new values L
and U still satisfy L ≤ Cost(µ∗) ≤ U , due to each rule
preserving the soundness invariant.

• Conclusion: In the final state FFinal =
⟨αF , βF , γF , LF , UF ⟩, the inequalities LF ≤ Cost(µ∗) ≤
UF still apply, thereby completing the soundness proof
if LF = Cost(µ∗) = UF .

Soundness Proof for ClR. To illustrate how the soundness
invariant is preserved by individual rules, we provide a proof
for the Clique Relaxation (ClR) rule. Therefore, we have to
show that the soundness invariant L ≤ Cost(µ∗) ≤ U still
holds after applying the ClR rule.

Proof. We know show that at most one literal from the clique
C can be true in any optimal assignment, due to mutual
pairwise conflicts. Therefore, at least (|C| − 1) literals in C
must be false in any assignment µ∗. So we must add at least
(|C|− 1) ·wmin to the cost, which justifies the increase of the
lower bound L. Assuming the current proof state is valid, we
have:

L ≤ L+
∑
l∈β

w(l) · 1µ∗(l)=0 +
∑
l∈γ

w(l) · 1µ∗(l)=0 ≤ U

⇔ L ≤ L+
∑

l∈(β\C)

w(l) · 1µ∗(l)=0 +
∑

l∈(γ\C)

w(l) · 1µ∗(l)=0

+
∑
l∈C

w(l) · 1µ∗(l)=0 ≤ U

⇔ L ≤ L+
∑

l∈(β\C)

w(l) · 1µ∗(l)=0 +
∑

l∈(γ\C)

w(l) · 1µ∗(l)=0

+
∑
l∈C

(w(l)− wmin) · 1µ∗(l)=0 +
∑
l∈C

wmin · 1µ∗(l)=0

≤ U

We subtract wmin from each literal in C, and introduce a
fresh literal lf with cost wmin to preserve this residual cost.
The clause (l1 ∨ · · · ∨ ln ∨ ¬lf) ensures that if all li in C are
false, then lf must also be false and its cost must be added. If

at least one li is true, the clause is satisfied and lf is set to true,
avoiding extra cost. Thus, we can rewrite the cost function to:

L ≤ L+
∑

l∈(β\C)

w(l) · 1µ∗(l)=0 +
∑

l∈(γ\C)

w(l) · 1µ∗(l)=0

+
∑
l∈C

(w(l)− wmin) · 1µ∗(l)=0 + (|C| − 1) · wmin

+ wmin1∀l∈C:µ∗(l)=0 ≤ U

⇔ L ≤ L+ (|C| − 1) · wmin +
∑

l∈(β\C)

w(l) · 1µ∗(l)=0

+
∑

l∈(γ\C)

w(l) · 1µ∗(l)=0 +
∑
l∈C

(w(l)− wmin)

· 1µ∗(l)=0 + wmin1µ∗(lf)=0 ≤ U

Note that µ∗(lf) = 1 if at least one li is true, which makes
wmin · 1µ∗(lf)=0 = 0. If all li are false, then lf must be false
due to the added hard clause, and its cost must be paid. Thus,
the validity of the cost function for an optimal assignment is
preserved.

B. Completeness

Theorem 2 (Completeness of the Proof System). The proof
system is complete if the final proof state FFinal =
⟨αF , βF , γF , LF , UF ⟩ always implies LF = UF .

Proof Sketch. We proceed by induction on the proof steps.
Initially, the invariant L0 ≤ Cost(µ∗) ≤ U0 holds trivially. At
each step, either (1) a better solution is found, decreasing U , or
(2) a conflict is analyzed, increasing L. Each rule preserves the
invariant. Since L increases and U decreases monotonically
and are bounded, they eventually converge. By soundness, L =
Cost(µ∗) = U in the final state, proving completeness.

C. Formal Verification of the Advanced Proof-Logging System

We adopt the same soundness invariant as for the previous
proof system: At every point during DAG-based verification,
the reconstructed lower bound L satisfies

0 ≤ Cost(µ∗)− L,

where Cost(µ∗) = UFinal is the optimal cost reported by the
solver. Equivalently,

0 ≤ L ≤ Cost(µ∗).

Theorem 3 (Soundness of the Advanced Proof Verification).
If the DAG-based check completes with L = 0, then LFinal =
Cost(µ∗) = UFinal holds and we therefore know that the
solver has found an optimal MaxSAT solution µ∗.

Proof Sketch. We verify that the solution µ returned by the
solver is valid and satisfies Cost(µ) = UFinal. The DAG is
traversed in reverse, and at each node the cost initially added to
the lower bound L is subtracted. If the traversal completes with
L = 0, this implies that all lower-bound increments have been
correctly reversed, and thus LFinal = UFinal. By soundness,
this guarantees Cost(µ∗) = UFinal, proving optimality.

Theorem 4 (Completeness of the Advanced Proof Verifica-
tion). If the OLL algorithm reaches a final state with an
optimal cost L = Cost(µ∗) = U , then the DAG generated
by recording its inferences admits a reverse cost-update check
ending with L = 0.

Proof Sketch. Each lower bound update in the OLL algorithm
corresponds to a DAG node and reflects a strictly positive cost
increase. If the solver terminates with L = Cost(µ∗) = U , then
the total lower bound equals the sum of all updates. Reversing
the DAG subtracts each increment exactly once, reducing L
back to 0. Hence, the reverse verification succeeds whenever
the solver finds an optimal solution, proving completeness.

D. Illustrative Example

Fig. 2: A visualization of the initial hard and soft clauses
before any core relaxation.

Let us demonstrate the procedure followed by the previously
described proof loggers. Consider a MaxSAT instance (as
shown in Fig. 2) with three unsatisfiable cores of soft literals:

core 1: {s1, s2}, core 2: {s1, s3}, core 3: {s1, s4}.

We assume that the following relationship between the weights
of the soft literals hold:

w(s2) < w(s1), w(s3) < w(s1), w(s4) < w(s1),

w(s1) < w(s2) + w(s3) + w(s4).

We want to show that the lower bound we derive via successive
core relaxations (or equivalently clique relaxations for pairs of
literals) will match the optimal cost. Concretely, we will show
the final cost equals

L0 + wold(s1),

where L0 is the lower bound before the problem start and
wold(·) denotes the the initial weight of s1.

Informal Reasoning. From the problem setup, resolving all
three unsatisfiable cores most cheaply requires paying for s1
only. Intuitively, since w(s1) is smaller than the sum of the
three other literal weights w(s2) +w(s3) +w(s4), forcing s1
to be false (and thus incurring its cost) is cheaper than any
alternative combination of paying for s2, s3 and s4.

Formal Reasoning (Sketch). We simulate the solver’s steps
across the three cores using successive relaxations:

• Core 1: Relax {s1, s2} by subtracting w(s2), increasing
L by w(s2) and reducing w(s1).

• Core 3: Relax {s1, s4} by subtracting the new minimum,
either w(s4) or the updated w(s1), updating L and
adjusting weights accordingly.

• Core 2: Finally, relax {s1, s3} using the remaining
weight on s1 or s3, again increasing L. Figure 3 shows
the problem state after executing the relaxation rule on
the core 2.

In all cases, the total increase in the lower bound is exactly
wold(s1), and the relaxation process ensures this amount is
fully accounted for through literal cost redistribution. Thus,
the updated L = L0+wold(s1) matches the cost of the optimal
solution where s1 is violated and all others are satisfied.

Fig. 3: Final result showing the updated set of clauses and
lower bound for the case 1.

Figure 4 highlights how our DAG-based proof logging
represents the complete relaxation history. On the left, each
unsatisfiable core is encoded as a conflict node pointing
to the relevant soft literals with their initial weights. On
the right, after successive relaxations, the updated weights
and lower bound are shown. The edges record how weight
was redistributed during each inference step, ensuring that
the verifier can replay the solver’s reasoning exactly. This
visualization clarifies how the proof DAG compactly encodes
dependencies across multiple cores while preserving enough
structure to support efficient re-checking. For SE practitioners,
such diagrams as defined in the proof log of DAG-proof
logger also serve as an explainability aid: they illustrate which
assumptions were forced, why certain costs were incurred, and
how the solver reached its optimal conclusion.

VI. EVALUATION

A. Implementation

We have integrated both the normal and DAG-based proof-
logging backends into EvalMaxSAT, one of the three top-
ranked OLL solvers in the 2024 MaxSAT Competition. Eval-
MaxSAT refines each unsatisfiable core via core minimization
before applying the relaxation rules. However, this does not
impact proof logging as our loggers only record the minimized
cores.

The normal logger emits a sequence of entries to a plaintext
file. Each entry introduces a new clause or soft literal (hard
clause, extended soft clause, totalizer, bound, etc.) and assigns
it a unique identifier. The proof generator then emits inference

rule in the order in which they occurred and adds its premises
and conclusion by referencing to the corresponding identifiers.

The DAG-based logger maintains an DAG of proof states
throughout solving and serializes it in a compact binary format
after the solving process has concluded. Each node includes
all the information required for checking the validity of the
corresponding node type.

EvalMaxSAT relies on an external SAT solver and on
SCIP for intermediate integer-optimization calls. When the
SAT solver returns UNSAT under assumptions, we record
its assumptions and optionally request a DRAT proof. If
SCIP produces the final optimal assignment, we store the
current proof state. The verifier later checks the validity of
the stored intermediate proof state and tries to reproduce the
optimum starting from the recorded intermediate proof state
by performing a black-box SCIP invocation to confirm the
claimed optimum.

As noted above, our implementation could be extended to
emit a DRAT proof for every conflict extraction. In principle,
this would allow the verifier to check each core or clique
inference entirely via SAT-level reasoning. In practice how-
ever, generating and storing a DRAT proof for every conflict
is not scalable: for example, verifying a clique of size n
would require O(n2) pairwise proofs. Instead, we resolve
each conflict during verification by performing black-box SAT
calls for each conflict which allows us to validate cores and
cliques more efficiently. This part of the verification is also
parallelizable.

B. Benchmarks and Hardware

Benchmarks. We evaluate our implementations on the
Weighted exact MaxSAT track of the 2024 MaxSAT Com-
petition [26], comprising 571 instances drawn from diverse
domains such as:

• Preprocessing for Nonmonotonic c-Inference via Partial
MaxSAT

• MaxSAT Encodings for Pareto-Optimal Interpretations of
Black-Box Models

• Incremental MaxSAT from Train Scheduling Discretiza-
tions

• Learning Balanced Rules via MaxSAT
• Minimizing Pentagons in the Plane
Hardware Platform. All experiments run on a single socket

Intel Xeon E3-1284L v4 (@2.90 GHz), with 128 GB RAM
and Ubuntu 22.04. We allocate 16 GB of RAM per solver
invocation.

Timeouts and Memory. We give a 3 600s timeout with
16 GB RAM for the solving and logging process of each
benchmark. The verificaiton process of each benchmark is
bounded to 7 200s and 16 GB RAM.

Comparison. To compare against prior work, we also
evaluate “certified-cgss” [62], the only other proof-logging
OLL solver, which emits pseudo-Boolean certificates for
VeriPB [29]–[31]. We run it on the same 571 benchmarks
under identical constraints.

Initial State with lower bound set to 0 Final State with lower bound set to 5
(i.e., sum of conflict node weights)

c1

c2

c3

s1
w = 5

s2
w = 3

s3
w = 2

s4
w = 3

c1
w = 3

c2
w = 0 c3

w = 2

s1
w = 0

s2
w = 0

s3
w = 2

s4
w = 3

Conflict / Clique
Soft literal

Fig. 4: DAG representation of the illustrative example. Conflict nodes (red) point to their participating soft literals (blue).
Weights are updated across relaxations, and the cumulative lower bound increases accordingly. This structure ensures that
verification can be performed by a reverse traversal, making solver reasoning transparent and machine-checkable.

C. Research Questions

RQ1: Proof Logging Overhead. How much additional time
does proof logging add to plain MaxSAT solving in each
mode?

RQ2: Certificate Size. How large are the “standard” proofs
versus the binary DAG proofs, and how do they compare to
certificates produced by the certified-CGSS solver?

RQ3: Verification Cost. What is the end-to-end time to check
each proof, and how does it compare across the two logging
modes and to the certified-CGSS baseline?

D. Metrics and Procedure

To understand how proof-logging overhead varies with
problem sizes, we group the 435 solved instances into quartiles
by three measures: number of hard clauses (#HC), number of
soft clauses (#SC), and number of variables (V). Tables I, III
and V summarize the advanced (DAG) mode, while Tables II,
IV and VI report the corresponding standard mode. In each
table:

• FC: number of test files in the bin,
• R(s): median runtime of the solver without proof logging

(baseline),
• TR(s): median runtime of the solver with proof logging,
• IR: median percentage increase (TR−R)/R×100, with

95% bootstrap confidence intervals (CI),
• VR: median verification time (seconds),
• PS: median proof size (GB),
• MW: median maximum weight,
• SW: median sum of weights,
• OC: median optimal cost.

Note that an IR value close to 0 indicates negligible runtime
overhead. We report the median IR values together with 95%
bootstrap confidence intervals, since the mean can be heavily
skewed by outliers (e.g., when the baseline runtime R is very
small). Because modern MaxSAT solvers rely on randomized
heuristics, the logged run may occasionally finish faster than
the baseline, which might again lead to negative IR values
following from solver nondeterminism. Such negative values

should be interpreted as statistical noise rather than a real
performance gain.

Table VII summarizes verification performance on the 668
benchmarks solved by both EvalMaxSAT and the certified-
cgss solver under identical time and memory limits. We report:

• VO EMS (Verification Overhead for EvalMaxSAT): The
ratio of verification time to solve time for our normal and
DAG modes.

• VO CGSS (Verification Overhead for certified-cgss):
The corresponding slowdown ratios for the certified-cgss
tool.

• VSP (Verification Speedup): The element-wise ratio
VO CGSS/VO EMS, indicating how many times faster
our verifier runs relative to certified-cgss.

• PSD (Proof-Size Decrease): The ratio of EvalMaxSAT
proof size to certified-cgss proof size.

All metrics in this table are given as median and 90th-
percentile.

RQ1: Proof Logging Overhead
We measure proof-logging overhead by comparing the

solver’s baseline run time R against its logged run time TR
under both normal (standard) and advanced (DAG) modes.

Across all quartiles, the standard logger shows a negligi-
ble median overhead: overall its median IR is close to 0%
(95% CI: [–0.18, 0.71]). The DAG logger is even lighter,
with a slightly negative overall median IR (–1.28%, 95%
CI: [–2.76, –0.26]), meaning that logged runs often finish as
fast or even marginally faster than the baseline due to solver
nondeterminism. In all cases, the 95% confidence intervals
remain tightly centered around zero, confirming that proof
logging does not add meaningful runtime cost.

More precisely:
• Hard clauses. For small instances (Q1), both loggers

frequently finish slightly faster than the baseline (median
IR: –4.36% for standard, –5.32% for DAG). As the
number of hard clauses grows, standard logging stabilizes
around small positive overheads (Q3–Q4: up to 3.7%),
while DAG logging remains statistically indistinguishable
from zero (CIs spanning [–4.37, 0.09]).

TABLE I: Summary for advanced by #HardClauses grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 184 180 −5.32 [−12.58, −0.33] 22.7 1.8× 10−3 1.22× 103 1.79× 104 2.97× 105 7.56× 107 1.88× 104 4.49× 105

Q2 114 127 129 −1.24 [−8.30, −0.15] 20.1 2.0× 10−4 1.96× 104 947 3.77× 107 4.58× 109 3.94× 103 5.63× 108

Q3 102 350 352 −0.04 [−0.56, 4.22] 64.7 2.0× 10−3 1.27× 105 3.29× 103 8.20× 109 7.37× 1011 4.20× 104 2.87× 109

Q4 108 634 583 −1.96 [−4.37, 0.09] 158 8.3× 10−2 3.53× 106 2.69× 105 1.80× 108 8.98× 109 1.56× 106 1.05× 107

TABLE II: Summary for standard by #HardClauses grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 184 188 −4.36 [−7.72, −0.16] 1.15 2.9× 10−3 1.22× 103 1.79× 104 2.97× 105 7.56× 107 1.88× 104 4.49× 105

Q2 114 127 136 −0.18 [−2.52, 0.02] 4.63 7.7× 10−3 1.96× 104 947 3.77× 107 4.58× 109 3.94× 103 5.63× 108

Q3 102 350 368 1.30 [0.10, 4.49] 7.19 6.5× 10−3 1.27× 105 3.29× 103 8.20× 109 7.37× 1011 4.20× 104 2.87× 109

Q4 108 634 657 3.67 [0.64, 6.97] 37.0 2.43× 10−1 3.53× 106 2.69× 105 1.80× 108 8.98× 109 1.56× 106 1.05× 107

TABLE III: Summary for advanced by #SoftClauses grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 319 322 −0.41 [−2.33, −0.15] 90.9 8.7× 10−3 6.89× 105 51.2 3.76× 107 7.58× 108 1.34× 105 1.38× 106

Q2 108 236 233 −0.65 [−4.12, 0.49] 62.0 2.0× 10−3 1.54× 105 295 2.87× 108 1.66× 1010 4.02× 104 2.50× 109

Q3 108 269 259 −2.58 [−5.44, 0.32] 44.6 5.0× 10−3 3.34× 105 1.54× 103 7.64× 109 6.89× 1011 2.80× 104 7.65× 108

Q4 108 458 419 −2.66 [−7.78, 0.09] 65.9 7.2× 10−2 2.50× 106 2.90× 105 2.00× 106 3.29× 109 1.42× 106 5.06× 107

TABLE IV: Summary for standard by #SoftClauses grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 319 339 0.10 [−0.14, 0.93] 26.0 3.7× 10−2 6.89× 105 51.2 3.76× 107 7.58× 108 1.34× 105 1.38× 106

Q2 108 236 264 0.30 [−1.60, 2.78] 4.99 7.5× 10−3 1.54× 105 295 2.87× 108 1.66× 1010 4.02× 104 2.50× 109

Q3 108 269 274 −1.27 [−4.70, 1.79] 4.66 1.5× 10−2 3.34× 105 1.54× 103 7.64× 109 6.89× 1011 2.80× 104 7.65× 108

Q4 108 458 459 0.39 [−0.37, 3.31] 14.2 2.0× 10−1 2.50× 106 2.90× 105 2.00× 106 3.29× 109 1.42× 106 5.06× 107

• Soft clauses. Overhead stays close to zero across all
quartiles. Median IRs lie between –2.6% and +0.4% for
both modes, and all confidence intervals overlap with
zero, indicating no consistent penalty from logging.

• Variables. Again, overhead is negligible. Standard log-
ging has medians in the range of –4.1% to +0.7%, while
DAG logging stays between –8.7% and –0.06%. In both
cases, 95% CIs show that runtime differences are within
solver noise.

In summary, embedding proof logging, either as a human-
readable stream or as a compact DAG, adds only a few percent
(or effectively zero) to the solving time, confirming that
our approach scales seamlessly to competition-level MaxSAT
instances.

RQ2: Certificate Size
Figure II–VI and I–V show that the standard proof format

produces files in the order of a few megabytes up to 0.2
GB, depending on problem scale. For instance, when grouping
by hard-clause quartiles, the median proof size is only 0.003
GB. Even in the largest soft-clause and variable-count bins,
it remains under 0.087 GB. In contrast, the advanced format
exploits shared derivations to achieve significantly better com-
paction. Thus, in every grouping its median proof size lies
below 0.005 GB, and the 90th-percentile never exceeds 0.025

GB.
When we compare against the certified-CGSS solver

(Tbl. VII), this reduction becomes even more noticeable. The
PSD column reports that our standard proofs consume roughly
30% of the disk space of the pseudo-Boolean certificates
emitted by certified-CGSS (median), while our DAG proofs
further shrink to only 3% of the CGSS proof size. Even at the
90th percentile, standard logs are under 6× smaller, and DAG
logs remain 10× to 20× smaller.

Overall, the binary-DAG format consistently delivers a
4–10× reduction over the standard proof logs, and up to 30×
smaller certificates than the prior VeriPB-based approach.

RQ3: Verification Cost
Tables II–VI and I–V report absolute verification times

for both logging modes across the same quartile groupings.
The standard format exhibits fast verification as median times
range from about 1 second in the smallest hard-clause bin
(Q1) up to 37 s in the largest (Q4), and remain below 15
seconds in all soft-clause and variable-count bins. Even the
90th-percentile standard verifications complete in under one
minute on competition-level inputs.

By contrast, the DAG format incurs higher but still man-
ageable checking cost. Median verification times grow from
roughly 20 seconds (hard-clauses Q2) to 158 seconds (hard-

TABLE V: Summary for advanced by #Variables grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 45.5 49.2 −8.75 [−14.41, −0.73] 24.4 1.0× 10−4 1.09× 104 299 4.31× 104 7.34× 105 662 2.74× 105

Q2 108 232 234 −0.39 [−2.86, −0.07] 53.1 4.3× 10−3 3.53× 105 1591 7.77× 106 6.19× 108 3.58× 103 3.08× 107

Q3 114 453 439 −0.06 [−0.91, 0.60] 116 5.8× 10−3 3.64× 105 4.35× 103 7.34× 109 6.63× 1011 1.61× 104 3.10× 109

Q4 102 556 514 −3.46 [−7.89, −0.37] 67.3 8.1× 10−2 3.10× 106 3.02× 105 2.31× 108 1.04× 1010 1.69× 106 1.20× 107

TABLE VI: Summary for standard by #Variables grouped in quartiles (IR reported as median with 95% bootstrap confidence
interval).

qbin FC R(s) TR(s) IRmed [95% CI] VR PS #HC #SC MW SW V OC

Q1 108 45.5 55.0 −4.11 [−10.00, −0.15] 0.30 4.0× 10−4 1.09× 104 299 4.31× 104 7.34× 105 662 2.74× 105

Q2 108 232 252 0.03 [−1.09, 1.33] 7.48 2.1× 10−2 3.53× 105 1591 7.77× 106 6.19× 108 3.58× 103 3.08× 107

Q3 114 453 471 0.69 [0.07, 2.78] 6.35 1.7× 10−2 3.64× 105 4.35× 103 7.34× 109 6.63× 1011 1.61× 104 3.10× 109

Q4 102 556 563 0.56 [−1.50, 3.98] 37.5 2.3× 10−1 3.10× 106 3.02× 105 2.31× 108 1.04× 1010 1.69× 106 1.20× 107

TABLE VII: Comparison against Certified-CGSS

Mode VO EMSmed VO EMS90% VO CGSSmed VO CGSS90% VSPmed VSP90% PSDmed PSD90%

normal 0.01 0.98 5.64 42.20 0.02 1.63 0.30 5.78
dag 0.59 1.04 5.64 42.20 0.16 14.04 0.03 1.0

clauses Q4), and span 65 to 91 seconds in the largest soft-
clause bins, and 24 to 67 seconds in variable-count bins. All
DAG proofs validate within three minutes.

When compared against the certified-CGSS baseline in
Table VII, the difference is stands out. Our standard proofs
exhibit a median slowdown (VO EMS) of only 0.01× solve
time (90th: 0.98×), while certified-CGSS’s pseudo-Boolean
certificates incur 5.64× (90th: 42.20×). Even the DAG mode,
at 0.59× (90th: 1.04×), verifies over ten times faster than
certified-CGSS. The element-wise ratio VSP shows that our
verifier runs dramatically faster than certified-CGSS: the stan-
dard checker achieves a median speedup of over 587× (90th
percentile: 3.2×104), while the DAG checker reaches a median
of 20× (90th percentile: 6.3× 103).

In summary, both proof formats enable rapid, end-to-end
certification. the standard logger offers near-instant validation,
and the DAG log, while incurring higher cost, remains an order
of magnitude quicker than the existing VeriPB-based method,
solidifying our framework’s suitability for large-scale MaxSAT
certification.

E. Limitations and Outlook
Our rules currently target the empirically dominant OLL

family of MaxSAT solvers. Certification for other paradigms
(e.g., implicit hitting set, branch-and-bound) exists and/or is
possible but remains future work.

Our checker replays SCIP calls as black boxes on recorded
intermediate instances. We do not trust the original solver
calls but perform fresh ones with the recorded assumptions
to verify the result. For SCIP, no standard proof format exists,
and defining one is an important direction for future research.

Finally, while our evaluation covers the full Weighted
MaxSAT 2024 track, industrial instances may differ struc-
turally. Additional experiments on domain-specific bench-
marks (e.g., software verification, testing, or configuration)

need to be valuable to confirm the practical impact of our
framework.

VII. CONCLUSION

We have introduced the first MaxSAT-specific proof-logging
framework tailored to core-guided OLL solving, supporting
both a human-readable format and a compact binary de-
pendency DAG. Our system captures every inference rule,
enabling lightweight proof generation and dramatically faster
verification, with speedups of up to three orders of magni-
tude compared to prior pseudo-Boolean approaches based on
VeriPB. On the full 2024 MaxSAT Competition suite, both
logging modes successfully verified every solved instance,
with normal proofs incurring median verification cost of only
1% of solve time and DAG proofs reducing certificate size by
up to three orders of magnitude at the 90th percentile.

Beyond competition benchmarks, our contributions directly
support software engineering workflows that increasingly rely
on MaxSAT, such as predicate abstraction in program ver-
ification, test-suite minimization, and automated debugging.
The human-readable logs provide transparency for developers
and auditors, while the DAG format offers scalable certificates
suitable for continuous integration pipelines, regulatory com-
pliance, and bug analysis. By closing the gap between high-
performance MaxSAT solving and rigorous certification, our
framework enables trustworthy optimization in safety-critical
and auditable contexts, making MaxSAT a more reliable
foundation for modern software engineering tasks.

VIII. ACKNOWLEDGMENTS

We thank ASE reviewers for their insightful comments. The
work of Ruzica Piskac and Timos Antonopoulos was partially
supported by the National Science Foundation under Grant
Numbers CCF-2318974, CCF-2219995, and CNS-2245344.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Logic,
automata, and computational complexity: The works of Stephen A. Cook,
2023, pp. 143–152.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in Tools and Algorithms for the Construction and
Analysis of Systems: 5th International Conference, TACAS’99 Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS’99 Amsterdam, The Netherlands, March 22–28, 1999
Proceedings 5. Springer, 1999, pp. 193–207.

[3] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta, “Combining
decision diagrams and sat procedures for efficient symbolic model
checking,” in International Conference on Computer Aided Verification.
Springer, 2000, pp. 124–138.

[4] F. Arito, F. Chicano, and E. Alba, “On the application of sat solvers
to the test suite minimization problem,” in International Symposium on
Search Based Software Engineering. Springer, 2012, pp. 45–59.

[5] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solving,” in
2015 IEEE 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST). IEEE, 2015, pp. 1–10.

[6] S. Narain et al., “Network configuration management via model finding.”
in LISA, vol. 5, 2005, pp. 15–15.

[7] S. Yatkın and T. Ovatman, “Logical analysis and contradiction detection
in high-level requirements during the review process using sat-solver,”
arXiv preprint arXiv:2405.00163, 2024.

[8] M. J. Heule and S. Verwer, “Software model synthesis using satisfiability
solvers,” Empirical Software Engineering, vol. 18, no. 4, pp. 825–856,
2013.

[9] ——, “Software model synthesis using satisfiability solvers,” Empirical
Software Engineering, vol. 18, no. 4, pp. 825–856, 2013.

[10] V. D’Silva, L. Haller, and D. Kroening, “Satisfiability solvers are static
analysers,” in International Static Analysis Symposium. Springer, 2012,
pp. 317–333.

[11] P. C. Attie, K. D. A. Bab, and M. Sakr, “Model and program repair
via sat solving,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 17, no. 2, pp. 1–25, 2017.

[12] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using sat,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 173–188.

[13] M. J. Heule, M. Iser, M. Järvisalo, and M. Suda, “Proceedings of sat
competition 2024: Solver, benchmark and proof checker descriptions,”
2024.

[14] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for cnf formulas,” in 2003 Design, Automation and Test in Europe
Conference and Exhibition. IEEE, 2003, pp. 886–891.

[15] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing rules,” in
International Joint Conference on Automated Reasoning. Springer,
2012, pp. 355–370.

[16] M. J. Heule, W. A. Hunt Jr, and N. Wetzler, “Verifying refutations
with extended resolution,” in International Conference on Automated
Deduction. Springer, 2013, pp. 345–359.

[17] N. Wetzler, M. J. Heule, and W. A. Hunt Jr, “Drat-trim: Efficient
checking and trimming using expressive clausal proofs,” in Interna-
tional Conference on Theory and Applications of Satisfiability Testing.
Springer, 2014, pp. 422–429.

[18] M. J. Heule, W. A. Hunt Jr, and N. Wetzler, “Verifying refutations
with extended resolution,” in International Conference on Automated
Deduction. Springer, 2013, pp. 345–359.

[19] M. J. Heule, W. A. Hunt, and N. Wetzler, “Trimming while checking
clausal proofs,” in 2013 Formal Methods in Computer-Aided Design.
IEEE, 2013, pp. 181–188.

[20] S. C. Committee, “General rules,” 2021, retrieved May 26, 2025 from
https://satcompetition.github.io/2021/rules.html.

[21] M. Jose and R. Majumdar, “Cause clue clauses: error localization using
maximum satisfiability,” ACM SIGPLAN Notices, vol. 46, no. 6, pp.
437–446, 2011.

[22] E. Zhai, R. Piskac, R. Gu, X. Lao, and X. Wang, “An auditing language
for preventing correlated failures in the cloud,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, pp. 1–28, 2017.

[23] K. Yin, H. Zhang, X. Fang, Y. Shi, T. S. Humble, A. Li, and Y. Ding,
“Qecc-synth: A layout synthesizer for quantum error correction codes
on sparse architectures,” in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, 2025, pp. 876–890.

[24] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[25] C. M. Li and F. Manya, “Maxsat, hard and soft constraints,” in Handbook
of satisfiability. IOS Press, 2021, pp. 903–927.

[26] J. Berg, M. Järvisalo, R. Martins, A. Niskanen, and T. Paxian, “Maxsat
evaluation 2024: Solver and benchmark descriptions,” 2024.

[27] H. Ihalainen, A. Oertel, Y. K. Tan, J. Berg, M. Järvisalo, M. O. Myreen,
and J. Nordström, “Certified maxsat preprocessing,” in International
Joint Conference on Automated Reasoning. Springer, 2024, pp. 396–
418.

[28] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
applied mathematics, vol. 123, no. 1-3, pp. 155–225, 2002.

[29] B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, “Certified
dominance and symmetry breaking for combinatorial optimisation,”
Journal of Artificial Intelligence Research, vol. 77, pp. 1539–1589, Aug.
2023, preliminary version in AAAI ’22.

[30] S. Gocht and J. Nordström, “Certifying parity reasoning efficiently using
pseudo-Boolean proofs,” in Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI ’21), Feb. 2021, pp. 3768–3777.

[31] S. Gocht, “Certifying correctness for combinatorial
algorithms by using pseudo-Boolean reasoning,” Ph.D.
dissertation, Lund University, Lund, Sweden, Jun. 2022,
available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[32] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided maxsat
with soft cardinality constraints,” in International Conference on Prin-
ciples and Practice of Constraint Programming. Springer, 2014, pp.
564–573.

[33] X. Si, X. Zhang, R. Grigore, and M. Naik, “Maximum satisfiability
in software analysis: Applications and techniques,” in International
Conference on Computer Aided Verification. Springer, 2017, pp. 68–94.

[34] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Reflections
on” incremental cardinality constraints for maxsat”,” arXiv preprint
arXiv:1910.04643, 2019.

[35] O. Bailleux and Y. Boufkhad, “Efficient cnf encoding of boolean
cardinality constraints,” in International conference on principles and
practice of constraint programming. Springer, 2003, pp. 108–122.

[36] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer, “Certifying
algorithms,” Computer Science Review, vol. 5, no. 2, pp. 119–161, 2011.

[37] E. Alkassar, S. Böhme, K. Mehlhorn, C. Rizkallah, and P. Schweitzer,
“An introduction to certifying algorithms,” it-Information Technology,
vol. 53, no. 6, pp. 287–293, 2011.

[38] F. Avellaneda, “A short description of the solver evalmaxsat,” MaxSAT
Evaluation, vol. 8, p. 364, 2020.

[39] M. Piotrów, “Uwrmaxsat: Efficient solver for maxsat and pseudo-
boolean problems,” in 2020 IEEE 32nd International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE, 2020, pp. 132–136.

[40] Z. Lei, S. Cai, D. Wang, Y. Peng, F. Geng, D. Wan, Y. Deng, and P. Lu,
“Cashwmaxsat: Solver description,” MaxSAT Evaluation, vol. 2021, p. 8,
2021.

[41] C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He, “Boosting
branch-and-bound maxsat solvers with clause learning,” AI Communi-
cations, vol. 35, no. 2, pp. 131–151, 2022.

[42] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
sat,” Journal on Satisfiability, Boolean Modelling and Computation,
vol. 2, no. 1-4, pp. 1–26, 2006.

[43] D. Le Berre and A. Parrain, “The sat4j library, release 2.2: System
description,” Journal on Satisfiability, Boolean Modelling and Compu-
tation, vol. 7, no. 2-3, pp. 59–64, 2011.

[44] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog
encoding for solving weighted maxsat,” in Theory and Applications
of Satisfiability Testing–SAT 2018: 21st International Conference, SAT
2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 9–12, 2018, Proceedings 21. Springer, 2018, pp.
37–53.

[45] J. Davies and F. Bacchus, “Exploiting the power of mip solvers in
maxsat,” in Theory and Applications of Satisfiability Testing–SAT 2013:
16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings 16. Springer, 2013, pp. 166–181.

https://satcompetition.github.io/2021/rules.html
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu

[46] ——, “Postponing optimization to speed up maxsat solving,” in Prin-
ciples and Practice of Constraint Programming: 19th International
Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Pro-
ceedings 19. Springer, 2013, pp. 247–262.

[47] M. Alviano, C. Dodaro, F. Ricca et al., “A maxsat algorithm using
cardinality constraints of bounded size.” in IJCAI, vol. 2015, 2015, pp.
2677–2683.

[48] C. Ansótegui and J. Gabàs, “Wpm3: an (in) complete algorithm for
weighted partial maxsat,” Artificial Intelligence, vol. 250, pp. 37–57,
2017.

[49] Z. Fu and S. Malik, “On solving the partial max-sat problem,” in
International Conference on Theory and Applications of Satisfiability
Testing. Springer, 2006, pp. 252–265.

[50] N. Narodytska and F. Bacchus, “Maximum satisfiability using core-
guided maxsat resolution,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 28, no. 1, 2014.

[51] M. L. Bonet, J. Levy, and F. Manyà, “Resolution for max-sat,” Artificial
Intelligence, vol. 171, no. 8-9, pp. 606–618, 2007.

[52] Y. Filmus, M. Mahajan, G. Sood, and M. Vinyals, “Maxsat resolution
and subcube sums,” ACM Transactions on Computational Logic, vol. 24,
no. 1, pp. 1–27, 2023.

[53] H. Ihalainen, J. Berg, and M. Järvisalo, “Clause redundancy and pre-
processing in maximum satisfiability,” in International Joint Conference
on Automated Reasoning. Springer, 2022, pp. 75–94.

[54] M. Py, M. S. Cherif, and D. Habet, “Proofs and certificates for max-
sat,” Journal of Artificial Intelligence Research, vol. 75, pp. 1373–1400,
2022.

[55] ——, “A proof builder for max-sat,” in Theory and Applications of Sat-
isfiability Testing–SAT 2021: 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings 24. Springer, 2021, pp. 488–498.

[56] ——, “Towards bridging the gap between sat and max-sat refutations,”
in 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, 2020, pp. 137–144.

[57] A. Morgado and J. Marques-Silva, “On validating boolean optimizers,”
in 2011 IEEE 23rd International Conference on Tools with Artificial
Intelligence. IEEE, 2011, pp. 924–926.

[58] A. Morgado, A. Ignatiev, M. L. Bonet, J. Marques-Silva, and S. Buss,
“Drmaxsat with maxhs: first contact,” in Theory and Applications of
Satisfiability Testing–SAT 2019: 22nd International Conference, SAT
2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22. Springer,
2019, pp. 239–249.

[59] J. Larrosa, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“A framework for certified boolean branch-and-bound optimization,”
Journal of Automated Reasoning, vol. 46, no. 1, pp. 81–102, 2011.

[60] J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Van-
desande, “Certifying without loss of generality reasoning in solution-
improving maximum satisfiability,” in International Conference on Prin-
ciples and Practice of Constraint Programming. Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2024, p. 4.

[61] D. Vandesande, W. De Wulf, and B. Bogaerts, “Qmaxsatpb: A certified
maxsat solver,” in International Conference on Logic Programming and
Nonmonotonic Reasoning. Springer, 2022, pp. 429–442.

[62] H. Ihalainen, J. Berg, and M. Järvisalo, “Refined core relaxation for
core-guided maxsat solving,” in CP, ser. LIPIcs, vol. 210. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 28:1–28:19.

[63] J. Berg, B. Bogaerts, J. Nordström, A. Oertel, and D. Vandesande,
“Certified core-guided maxsat solving,” in International Conference on
Automated Deduction. Springer, 2023, pp. 1–22.

[64] D. Vandesande and B. Bogaerts, “Towards certified maxsat solving,”
2023.

	Introduction
	Background and Motivation
	Preliminaries on Boolean Formulas and MaxSAT
	Translating Soft Clauses to Weighted Literals
	Cardinality Constraints
	Preservation of the MaxSAT Objective
	Overview of the OLL Algorithm
	Illustrative Example: Abstraction Refinement in Software Verification

	Related Work
	Proof-Logging System
	Proof States
	Inference Rules
	Advanced Proof-Logging via Dependency DAG

	Formal Verification
	Soundness
	Completeness
	Formal Verification of the Advanced Proof-Logging System
	Illustrative Example

	Evaluation
	Implementation
	Benchmarks and Hardware
	Research Questions
	Metrics and Procedure
	Limitations and Outlook

	Conclusion
	Acknowledgments
	References

