
Proving UNSAT in Zero Knowledge
Ning Luo

Yale University

New Haven, USA

ning.luo@yale.edu

Timos Antonopoulos

Yale University

New Haven, USA

timos.antonopoulos@yale.edu

William R. Harris
∗

Galois, Inc

Portland, USA

bll.hrris@gmail.com

Ruzica Piskac

Yale University

New Haven, USA

ruzica.piskac@yale.edu

Eran Tromer

Columbia University

New York City, USA

et2555@columbia.edu

Xiao Wang

Northwestern University

Evanston, USA

wangxiao@cs.northwestern.edu

ABSTRACT

Zero-knowledge (ZK) protocols enable one party to prove to others

that it knows a fact without revealing any information about the

evidence for such knowledge. There exist ZK protocols for all prob-

lems in NP, and recent works developed highly efficient protocols

for proving knowledge of satisfying assignments to Boolean formu-

las, circuits and other NP formalisms. This work shows an efficient

protocol for the the converse: proving formula unsatisfiability in ZK

(when the prover posses a non-ZK proof). An immediate practical

application is efficiently proving safety of secret programs.

The key insight is to prove, in ZK, the validity of resolution
proofs of unsatisfiability. This is efficiently realized using an alge-

braic representation that exploits resolution proofs’ structure to

represent formula clauses as low-degree polynomials, combined

with ZK random-access arguments. Only the proof’s dimensions

are revealed.

We implemented our protocol based on recent interactive ZK

protocols and used it to prove unsatisfiability of formulas that en-

code combinatoric problems and program correctness conditions

in standard verification benchmarks, including Linux kernel dri-

vers and Intel cryptography modules. The results demonstrate both

that our protocol has practical utility, and that its aggressive opti-

mizations, based on non-trivial encodings, significantly improve

practical performance.

CCS CONCEPTS

• Theory of computation → Cryptographic protocols; Logic

and verification.

KEYWORDS

Zero-knowledge proofs, Propositional unsatisfiability

ACM Reference Format:

Ning Luo, Timos Antonopoulos, William R. Harris
∗
, Ruzica Piskac, Eran

Tromer, and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3559373

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/3548606.3559373

1 INTRODUCTION

Zero-knowledge proofs enable one party, the prover, to convince
a second party, the verifier, that they know the validity of a claim,

without revealing information about their evidence for the claim.

There exist zero-knowledge protocols for proving knowledge of

solutions to all problems in NP [39] and perhaps beyond [12]. In

recent years, numerous efficient protocols and optimized imple-

mentations have been developed for ZK proofs of NP problems

such as circuit satisfiability, correct execution of programs (e.g.,

[4, 14, 16, 21, 22, 24, 36, 38, 43, 46, 47, 49, 56, 59, 66]). These found a

rapidly-expanding set of applications, including: blockchain privacy

[13, 25] and scalability [23, 65], legal systems [35] and anonymous

networks [6].

However, there are plenty of hard problems of practical interest

outside of NP, and in particular, instances of the UNSAT problem.

UNSAT is the decision problem of determining if a given Boolean

formula does not have any satisfying assignment. Beside its theoret-

ical interest as the quintessential coNP-complete problem, UNSAT

also naturally captures the task of proving that program is secure
(under various desirable definitions of security). Indeed, various

approaches to program and system verification essentially reduce

program verification (specifically, proving that a program does not

reach an undesired state, e.g. in which the program accesses mem-

ory incorrectly or performs an arithmetic operation that results in

overflow) to proving that a given SAT formula is unsatisfiable [55].

Thus, proving UNSAT in zero knowledge would enable appli-

cations where a code analyst wishes to prove to another party

that a public program is correct. A number of existing firms, in-

cluding Coverity, ShiftLeft, and SonarQube [1–3], provide value to

their users via code-analysis-as-a-service. While not all of these

services attempt to provide formal guarantees about the states that

a program may reach, such guarantees are of immediate value to

developers, have been produced by various in-house analyses in the

recent past, and could realistically be produced by analysis services

in the near future [8, 50].

Even when the code of a bounded program is public, determining

the states that the program can reach is computationally hard, and

is achieved in practice only through the use of subtle heuristics

and carefully tuned implementations. Thus, even when a service

that determines reachable states are applied to public programs, the

service’s results may constitute sensitive IP. Clauses of a resolution

proof of program safety are intermediate deductions about the

∗
Author now employed at Google LLC

https://doi.org/10.1145/3548606.3559373
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3559373

program’s reachable states: thus, if the analyst’s IP is to be protected,

such clauses must be kept secret.

In principle, a party who knows that a formula is unsatisfiable

and has a certificate for this fact, can prove knowledge of this certifi-

cate using generic ZK for NP [41] applied to the certificate-checker.

However, such approaches would be too inefficient to be used in

practice because reducing UNSAT to these problems that are prov-

able in ZK directly incurs a high, albeit polynomial, overhead. An

approach that would compile programs (of bounded runtime) to

Boolean circuits [48] would also need to include a proof of the

circuit’s unsatisfiability. Similarly, an approach that would per-

form static analysis of general programs in zero knowledge based

on abstract interpretation [34] would critically rely on efficient

implementations of operations over SAT formulas, including the

validation of proofs of their logical entailment or equivalence.

In this work, we designed and implemented a novel, efficient

protocol for proving UNSAT in zero-knowledge. In general, our

protocol can be used directly to efficiently prove knowledge of solu-

tions to any problem in coNP, once the problem has been reduced

to proving UNSAT. In particular, our protocol can be used as highly
efficient backend for proving safety of potentially-secret programs

in zero knowledge, either by validating proofs of SAT formulas gen-

erated by model checkers, or by efficiently implementing primitives

required by analyses based on abstract interpretation.

The key insight behind our approach is to efficiently validate an

additional argument for UNSAT in the form of a resolution proof,
a sequence of clauses that can be derived from the given formula

and which concludes in a contradiction. Such proofs are both well-

understood in principle and efficiently supported in practice. In

principle, they are a sound and complete proof system for proving

UNSAT. Although short resolution proofs may not always exist for

UNSAT formulas in general, they are often found efficiently by state-

of-the-art SAT solvers applied to encodings of practical problems

in planning and program verification. Thus, we can develop ZK

protocol for instances of UNSAT by requiring the resolution proof as

advice, revealing its length (the number of clauses in the derivation),

and validating the resolution proof by executing a RAM program

in ZK [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66].

A second insight, critical for efficiency, is that in practice reso-

lution proofs usually have low width in addition to short length:

i.e., each clause in the derivation contains only a small number of

literals. By revealing the proof’s width along with its length, we

can implement a significantly optimized protocol that represents

clauses in the derivation as low-degree polynomials and validates

the derivation itself by checking a small number of polynomial

equalities. The resulting protocol’s performance is essentially inde-

pendent of the number of literals, and depends only on the width

and length of the proof. It outperforms the previous one (which

hides the width) when clauses are sparse, e.g., when there are more

than 1000 variables but each clause contains at most 100 literals.

We evaluated our protocol empirically by implementing it via the

EMP framework [67] and using it to prove unsatisfiability of formu-

las that encode problems in combinatorial optimization, planning,

and the verification of safety-critical programs drawn from the

SV-COMP [17] benchmark set. This includes verification of Linux

device drivers, Windows NT device drivers, and C implementations

of floating-point computation.

Our contribution

• We initiate the study of the practicality of proving the unsatisfia-

bility of Boolean formulas in zero knowledge, and its applications

to proving properties of programs in zero knowledge.

• Bringing together formal methods and cryptography, we pro-

pose ZK-friendly algebraic encodings of Boolean formulas and

of (relaxed) resolution proof of formula unsatisfiability.

• Using these, we design and optimize concrete ZK proof schemes

for UNSAT that are efficient enough to support useful program-

verification formula sizes.

• We present a prototype implementation, which can be found

at https://github.com/zkunsat/zkunsat, and benchmark this im-

plementation on large formulas, including ones representing the

safety of Linux kernel drivers and Intel cryptography modules.

Non-goals Our ZK protocol can also be directly applied to prove

unsatisfiable of secret formulas, which can in turn be committed.

However, more efforts on top of our protocol are needed to enable

ZK proof of program correctness for private (and possibly com-

mitted) programs. To build a complete tool that verifies the safety

of a secret program in ZK, it is also necessary to verify that an

formula models the secret program’s semantics. This means that

any unsafe executions of the secret program corresponds an inter-

pretation of a secret formula. Proving that an formula models the

secret program’s semantics, and thus verifying secret programs in

ZK, is beyond the scope of the presented in this paper. We provide

more discussion at the end of the paper.

Organization The remainder of this paper is organized as follows:

Section 2 presents an overview of our protocol by example; Sec-

tion 3 reviews foundational definitions and results on which our

work is based; Section 4 presents our protocol in technical detail;

Section 5 describes our implementation and empirical evaluation of

the protocol; Section 6 compares our contribution to related work,

and Section 7 concludes.

2 ZK PROGRAM SAFETY BY EXAMPLE

This section describes how our protocol proves UNSAT efficiently

and how it can be applied to prove safety of a public program.

To contextualize, we start with a brief tutorial to the standard

techniques of proving program properties using resolution proofs

We then give an overview of the zero-knowledge protocol and an

optimization that significantly improves its performance.

Building a formula To illustrate how program verification can

be encoded as the satisfiability problem of Boolean formulae, we

use the small C program sum3 given in Figure 1a. sum3 returns the

sum of three integers, while avoiding integer overflows past the

maximum representable integer MAX. For simplicity we consider the

case of single-bit integers and MAX=1 (in which case sum3 is simply

the OR of 3 bits).

In this case the operators + and - over int1 both correspond

to XOR, and <= corresponds to implication. We can thus write a

Boolean formula 𝜑 , in Figure 1b, that describes the program ex-

ecution. Within 𝜑 , propositional variable acc𝑖 denotes the value
of C variable acc after the 𝑖-th update. Propositional variables 𝑏𝑖
are used to denote the branching condition; 𝑟𝑒𝑡 corresponds to the

https://github.com/zkunsat/zkunsat

1 int1 sum3(int1 a0, int1 a1, int1 a2) {
2 int1 acc = a0;
3 if (acc <= MAX - a1)
4 acc = acc + a1;
5 if (acc <= MAX - a2)
6 acc = acc + a2;
7 return acc;
8 }

(a) sum3: program that sums three 1-bit numbers without overflow.

𝑎𝑐𝑐0 ↔ 𝑎0 ∧ 𝑏0 ↔ (𝑎𝑐𝑐0 → (True ⊕ 𝑎1)) ∧
𝑎𝑐𝑐1 ↔ 𝑎𝑐𝑐0 ⊕ 𝑎1 ∧ 𝑜1 ↔ 𝑏0 ∧ 𝑎𝑐𝑐0 ∧ 𝑎1 ∧
𝑎𝑐𝑐2 ↔ 𝑏0 ? 𝑎𝑐𝑐1 : 𝑎𝑐𝑐0 ∧ 𝑏1 ↔ (𝑎𝑐𝑐2 → (True ⊕ 𝑎2)) ∧
𝑎𝑐𝑐3 ↔ 𝑎𝑐𝑐2 ⊕ 𝑎2 ∧ 𝑜2 ↔ 𝑏1 ∧ 𝑎𝑐𝑐2 ∧ 𝑎2 ∧
𝑎𝑐𝑐4 ↔ 𝑏1 ? 𝑎𝑐𝑐3 : 𝑎𝑐𝑐2 ∧
𝑟𝑒𝑡 ↔ 𝑎𝑐𝑐4

(b) A Boolean formula 𝜑 that models the semantics of sum3.

Figure 1: An example program and Boolean formula that characterizes its executions.

value returned by the program; 𝑜1 and 𝑜2 are Boolean values de-

noting that overflow occurs, and the other propositional variables

correspond to program parameters and local variables.

Every satisfying assignments of formula 𝜑 correspond to a valid

execution of program sum3. A program overflow happens if and

only if any of 𝑜𝑖 are true, i.e., if the formula 𝜑𝑜 ≡ 𝑜1 ∨ 𝑜2 is also

satisfied. Thus, verifying that sum3 never overflows MAX can be done
by proving unsatisfiability of the formula 𝜑 ∧ 𝜑𝑜 , which asserts

that in a correct execution (asserted by 𝜑) an overflow occurred

(asserted by 𝜑𝑜). In general, translating verification tasks for C

programs into Boolean formulas can be done with existing tools

such as CBMC [28].

Having a relatively low number of variables, we could simply

enumerate all possible variable assignments, evaluate 𝜑 ∧ 𝜑𝑜 on

each assignment, and confirm that no assignments satisfies the

formula. However, this obviously does not scale, since the number

of assignments grows exponentially in the number of variables.

Resolution refutation A better method of showing that a for-

mula is unsatisfiable is a resolution refutation [60]. A formula is

unsatisfiable if and only if we can derive ⊥ (false) by applying

resolution steps, according to the fundamental theorem about refu-

tational completeness of first-order logic [7] (which applies also

to the propositional logic we employ here). Resolution proofs are

reviewed in formal detail in Section 3.2.1, but we give here the

details needed to follow the example:

Resolution is performed on formulas in the clausal normal form,

i.e., a conjunction of disjunctions. Each conjunct is called a clause.
For example, (𝑥1∨𝑥2∨¬𝑥3)∧(𝑥3∨𝑥1)∧¬𝑥4 is in the clausal normal

form and it consists of three clauses. Negations can be applied only

to variables. Every propositional formula can be converted into an

equivalent conjunctive normal form.

The resolution step is given by the following schema:

𝐴 ∨ 𝑝 ¬𝑝 ∨ 𝐵

𝐴 ∨ 𝐵

This reads as follows: the resolution step takes as input two clauses

𝐴 ∨ 𝑝 and ¬𝑝 ∨ 𝐵, and derives a new clause, 𝐴 ∨ 𝐵, which is a

logical consequence of two input clauses. The derived clause is

called the resolvent, and variable 𝑝 is called the pivot. In the context

of refutational completeness theorem, on the given set of clauses,

the resolution rule can be applied as many time as needed until it

is either no longer possible to derive new clauses, or the ⊥ formula

has been derived.

Although simple, the resolution rule is the basis of modern auto-

mated first-order reasoners [61], and their applications to program

verification. Indeed, we proceed to show its use to prove that sum3
does not overflow.

We show that 𝜑 ∧𝜑𝑜 is unsatisfiable through several steps. First,

we convert 𝜑 ∧ 𝜑𝑜 into the clausal normal form, denoting the re-

sulting formula with 𝜑𝐶𝑁𝐹 . This results in a large formula. For

readability, we list here only four of its clauses, which suffice to de-

rive ¬𝑜1. These clauses are: ¬𝑏0∨¬𝑎𝑐𝑐0∨¬𝑎1, 𝑏0∨¬𝑜1, 𝑎𝑐𝑐0∨¬𝑜1

and 𝑎1 ∨ ¬𝑜1. From these we can derive ¬𝑜1 by applying the reso-

lution rule 3 times, as follows:

¬𝑏0 ∨ ¬𝑎𝑐𝑐0 ∨ ¬𝑎1 𝑎𝑐𝑐0 ∨ ¬𝑜1

¬𝑏0 ∨ ¬𝑎1 ∨ ¬𝑜1 𝑎1 ∨ ¬𝑜1

¬𝑏0 ∨ ¬𝑜1 𝑏0 ∨ ¬𝑜1

¬𝑜1

Similarly, we can derive ¬𝑜2. Finally, we can derive ⊥ by using

the resolution rule twice more, applied to ¬𝑜1 and ¬𝑜2 (whose

derivations, above, are denoted by . . . below) and to the clause

𝑜1 ∨ 𝑜2 that is also in 𝜑𝐶𝑁𝐹 :

𝑜1 ∨ 𝑜2

. . .
¬𝑜1

𝑜2 ¬
. . .
𝑜2

⊥
We managed to derive ⊥, establishing that the original formula 𝜑 ∧
𝜑𝑜 was unsatisfiable, hence sum3 does not have integer overflows.

1

Resolution proofs as non-ZK proofs of UNSAT The derivation

of⊥ (called the resolution proof) is a certificate of unsatisfiability. In-
deed, given an alleged resolution proof, it can be efficiently checked

by a resolution-proof checker that follows a claimed derivation tree

and verifies that: in every invocation of the resolution rules, all

inputs have appeared in the original formula or prior derivations,

and the resolvent is correctly derived with respect to some pivot;

and the last resolvent is ⊥.
Thus, a trivial proof protocol for UNSAT is for the prover to hand

over a resolution proof to the verifier. However, this is far from zero

knowledge. A resolution proof, constructed and derived as above,

reveals information about the program (which is encoded in the

formula) and the analysis technique (which created the derivations).

In general, resolution refutations can be hard artifacts to con-

struct from a program: there is no efficient algorithm to generate

them and in fact no polynomial bound on the length that such

derivations may have. In the domain of Boolean formulas that

1
Had the formula been satisfiable, applying the resolution rules could never have

derived ⊥, and moreover (for propositional logic), the process would have eventually

terminated and let us read a satisfying assignment out of the derived clauses [7],

revealing inputs to sum3 that cause an overflow.

correspond to program verification conditions, the structure of a

resolution proof may reflect the insights of a manual or automatic

program analyzer. In particular, a valid refutation of 𝜑 ∧ 𝜑𝑜 could

include derived properties of the variables 𝑎𝑐𝑐3 and 𝑎𝑐𝑐4 or relating

variables 𝑎1 and 𝑎3 (e.g., it could derive the clause

¬𝑏0 ∨ ¬𝑎𝑐𝑐0 ∨ ¬𝑎1 . (1)

Indeed, one of the main technical challenges for first-order auto-

mated reasoners is to make sure that they are deriving (mainly)

goal-oriented clauses. Often it is the case that a reasoner will derive

more and more clauses that are indeed consequences of previous

clauses but are not used in the proof of deriving the ⊥ clause.

In our example we produced a proof derivation that only derived

clauses needed to derive ⊥. Our clause selection was guided by

insights about the structure of sums3 and selecting only clauses

relevant to refuting the overflow clause 𝑜1 ∨ 𝑜2.

ZK proofs of UNSAT Our first ZK protocol for UNSAT mitigates

the above information leakage, by proving that a public formula is

unsatisfiable while only revealing the number of clauses in one of

its refutations.

Essentially, the prover uses a ZK proof system to prove that it

locally executed the computation "run the resolution-proof checker

on the given formula and a secret resolution proof", and the checker

accepted. The resulting ZK proof, presented to the ZK verifier, is

as convincing as the original resolution proof (by the soundness

property of the ZK proof system), but effectively redacts all details

of the checker’s input and execution trace.

Technically, this works by representing the resolution-proof

checker as an algebraic constraint system, and applying a suitable

zero-knowledge proof scheme to this constraint system. Efficiency

hinges on suitable choice of ZK proof system, and careful encoding

of the resolution-proof checker as algebraic constraints. Details are

given in Section 4.

Optimization by revealing resolution width Implementing a

resolution-proof checker requires a representation of formulas and

clauses. The natural one is encoding clauses as vectors, whose

length is the number of propositional variables in the formula. For

example: one binary vector specifying which variables appear in

the clause, and another specifying their polarity. Validating the

proof then is reduced to Boolean operations over the binary vectors

that represent clauses.

Applying the aforementioned ZK transformation to this repre-

sentation yields a scheme that is already efficient enough to prove

knowledge of resolution proofs for interesting formulas on a prac-

tical machine: it takes about 80 seconds to verify a proof of 2
15

literals and 3000 resolvents. However, its limitations are revealed in

plenty of cases that arise in practice: according to our evaluation, it

fails to prove that driver benchmarks are safe up to 2000 steps as

there are over 150K variables in the resulting formula.

A possible optimization is apparently already in the verification

condition of sums3: 𝜑 ∧ 𝜑 ′
are defined over eleven propositional

variables modeling all parameters, return values, local variables, and

overflow conditions, but each individual clause contains literals over

at most three variables; i.e., the proof’s width is three. Intuitively,

this is because the two additions can be proved not to overflow

by independently analyzing them and the conditions that guard

them. As discussed in Section 5, this is typical, and reputations of

verification conditions collected from practical programs indeed

tend to width much lower than their total number of variables.

Resolution proofs of low width 𝑤 can be validated more effi-

ciently than the general case by representing each clause of the

proof as a degree-𝑤 univariate polynomial, in a formal variable

𝑋 , over a large-enough finite field. For each literal 𝑎 in a clause 𝐶 ,

the polynomial representation of 𝐶 , denoted 𝑝𝐶 , contains a term

𝑋 −𝜙 (𝑎), where 𝜙 (𝑎) denotes a distinct field element that identifies

𝑎; identifiers of literals and their negations satisfy a simple arith-

metic relation that ensures that the laws of Boolean arithmetic are

embedded faithfully.

E.g., Clause (1) is represented as the degree-3 polynomial

(𝑋 − 𝜙 (𝑏0)) (𝑋 − 𝜙 (𝑎𝑐𝑐0)) (𝑋 − 𝜙 (𝑎1))

Under this representation, checking that some clause 𝐶0 logically
implies some clause 𝐶1 amounts to checking that the associated

polynomial 𝑝𝐶0
divides polynomial 𝑝𝐶1

or equivalently, that there is

some polynomial 𝑞 such that 𝑞 ·𝑝𝐶0
= 𝑝𝐶1

. This correspondence can

be applied to validate steps of resolution by checking polynomial

equalities: instead of checking polynomial division, we ask the

prover to provide 𝑞 and then proving the equality between a given

polynomial and the multiplication of polynomials. The equality

can be checked efficiently via the Schwartz-Zippel lemma, while

polynomial multiplication can be done based on any compatible

ZK protocol. We describe this encoding in detail in Section 4.1.

.

3 TECHNICAL PRELIMINARIES

3.1 Fields and polynomials

A field F is a set equipped with two binary operations, referred to as
addition and multiplication, that forms a commutative group under

addition (with additive identity denoted 0F), has a multiplicative

identity (denoted 1F), contains a multiplicative inverse for each non-

zero element, and in which multiplication distributes over addition.

For field elements 𝑎, 𝑏 ∈ F, the sum and product of 𝑎 and 𝑏 are

denoted 𝑎 + 𝑏 and 𝑎 · 𝑏, respectively.
We will define protocols that use univariate polynomials over

a given field F, which will be referred to for the rest of the paper

simply as “polynomials” and denoted F[𝑋]. A root of polynomial

𝑝 is a field element 𝑎 ∈ F for which 𝑝 (𝑎) = 0F. For polynomials 𝑝

and 𝑞, the sum and product of 𝑝 and 𝑞 are denoted 𝑝 + 𝑞 and 𝑝 · 𝑞,
respectively. If there is some polynomial 𝑟 such that 𝑟 · 𝑝 = 𝑞, then

𝑝 divides 𝑞, denoted 𝑝 | 𝑞. A polynomial that can be expressed as

a product of 𝑑 (𝑑 ≥ 0 linear polynomials is completely reducible.
Constant polynomials are always completely reducible polynomial.

For all polynomials 𝑝 and𝑞with root𝑎 ∈ F, the polynomial 𝑝 ·𝑞 has𝑎
as a repeated root. For each polynomial 𝑝 , we can construct a unique

completely reducible divisor 𝑝∗ as by having 𝑝∗ =
𝑘∏
𝑖=0

(𝑋 − 𝑎𝑘) ,

where 𝑎0, . . . , 𝑎𝑘 are all the roots of 𝑝 . Notice 𝑝∗ has no repeated

root, and can be divided by every completely reducible divisor of 𝑝

that has no repeated root;

3.2 Boolean logic

In this work, we primarily consider Boolean formulas in a clausal

form. A literal over a set of variables Vars (whose elements are

denoted using lowercase letters) is an element in Vars paired with

a bit that denotes if the variable occurs positively or negatively

(the set of literals over Vars is denoted Lits = Vars × B, where B
denotes the Booleans); a positive occurrence of variable 𝑥 ∈ Vars is
denoted as simply 𝑥 , while a negative occurrence of 𝑥 is denoted

¬𝑥 . A clause is a set of literals and it denotes the logical disjunction
of the literals that is contains. The empty clause is denoted ⊥; the
union of clauses 𝐶 and 𝐶 ′

is denoted 𝐶 ∨𝐶 ′
and 𝐶 extended with

a single literal ℓ is denoted 𝐶 ∨ ℓ . Note that because clauses are

sets of literals (and not general multisets or sequences), a given

clause can contain at most one occurrence of a given literal. As one

consequence,

(𝐶 ∨ ℓ) ∨ ℓ = 𝐶 ∨ ℓ

for each clause 𝐶 and literal ℓ .

A formula is a set of clauses, which denotes their conjunction;

the set of formulas is denoted F . An assignment 𝑓 : Vars → B,
satisfies a positive (negative) literal 𝑙 if it assigns 𝑙 ’s variable to

True (False); it satisfies a clause 𝐶 if and only if it satisfies some

literal in 𝐶 . As such, an empty clause ⊥ cannot be satisfied by any

assignment. 𝑓 satisfies formula 𝜑 ∈ F if and only if it satisfies each

clause in 𝜑 , and the formula 𝜑 is unsatisfiable if it is not satisfied
by any assignment.

3.2.1 Resolution proofs. Resolution proofs are formal arguments

that a given clause is implied by a given formula.

Definition 3.1. For clauses 𝐶 and 𝐶 ′
, the resolvent of premise

clauses 𝑥 ∨𝐶 and ¬𝑥 ∨𝐶 ′
on pivot variable 𝑥 is the clause 𝐶 ∨𝐶 ′

.

Resolution derivations are sequences of clauses in which each

clause in the sequence is the resolvent of the two preceding two

clauses.

Definition 3.2. A (resolution) derivation from formula 𝜑 is a finite

sequence of clauses ⟨𝐶𝑖 ⟩ in which each𝐶𝑖 is either (1) a clause in 𝜑

or (2) the resolvent of two clauses 𝑗, 𝑘 < 𝑖 . A (resolution) refutation
of 𝜑 is a derivation from 𝜑 in which the final clause is ⊥.

Resolution derivations are sound: i.e., if a clause 𝐶 can be de-

rived from a formula 𝜑 then each assignment that satisfies 𝜑 also

satisfies 𝐶 . As an immediate consequence, if there is a refutation

of 𝜑 , then 𝜑 is unsatisfiable. Conversely, resolution is complete for
proving unsatisfiability: if a formula 𝜑 is unsatisfiable, then there

is a refutation of 𝜑 [30]. However, unsatisfiable formulas may not

have resolution refutations that are short: there is an infinite set of

unsatisfiable formulas with no resolution refutation of size bounded

by a polynomial over the size of the formula [44]. The length of a

derivation is the number of clauses that it contains. The width of a

derivation is the maximum number of literals that occur over all

of its clauses; the product of a refutation’s length with it’s width

is the refutation’s area. In general, there is a trade-off between a

proof’s dimensions: there is an infinite set of formulas in which

all refutations have length or width exponential in the size of the

formula [63].

Functionality FZK
Witness: On receiving (Witness, 𝑥) from the prover, where 𝑥 ∈ F,
store 𝑥 and send [𝑥] to each party.

Instance: On receiving (Instance, 𝑥) from both parties, where 𝑥 ∈ F,
store 𝑥 and send [𝑥] to each party. If the inputs sent by the two parties
do not match, the functionality aborts.

Circuit relation: On receiving (Relation,𝐶, [𝑥0], . . . , [𝑥𝑛−1]) from
both parties, where𝑥𝑖 ∈ F and𝐶 ∈ F𝑛 → F𝑚 , compute 𝑦1, . . . , 𝑦𝑚 :=

𝐶 (𝑥0, . . . , 𝑥𝑛−1) and send { [𝑦1], . . . , [𝑦𝑚] } to both parties.

Productions-of-polynomial equality check: On receiving

(PoPEqCheck, 𝑛, { [𝑃𝑖 (𝑋)] }𝑖∈[𝑛] , { [𝑄𝑖 (𝑋)] }𝑖∈[𝑛]) from both

parties, where [𝑃𝑖 (𝑥)] and [𝑄𝑖 (𝑥)] are polynomials with their

coefficient committed: if Π𝑖𝑃𝑖 (𝑥) ≠ Π𝑖𝑄𝑖 (𝑥) , the functionality

aborts.

Figure 2: Functionality for zero-knowledge proofs of circuit

satisfiability and polynomials.

3.3 Efficient zero-knowledge protocols

The focus of this work is not to design a general-purpose zero-

knowledge proof protocol but to apply existing protocols to build

applications with significant practical importance and to explore

its efficiency. To this end, we present in Figure 2 a ZK functionality

(FZK) required for performing clause resolution in zero-knowledge.

The functionality is reactive and allows the prover to commit to

witnesses and later prove circuit satisfiability over the specified

field. We use [𝑥] to represent an idealized commitment of the value;

its real data depends on the underlying ZK protocol that instantiates

FZK. In VOLE-based ZK that we use in this paper [11, 32, 68, 70],

the underlying commitment is information-theoretic MAC. The last

two instructions in FZK prove relationships about polynomials. It

is well known that the equality of two committed polynomials over

a large field can be efficiently checked in zero-knowledge using

Schwartz–Zippel lemma with the cost of evaluating a random point

on two committed polynomials. We include an extended instruction

PoPDegCheck to prove that the products of two sets of polynomials

are equal. All ZK protocols in the commit-and-prove paradigm can

be used to instantiate this functionality, with [𝑥] representing a

commitment of 𝑥 . As a result, our clause resolution protocol has

the potential to be connected to many different ZK backends. By

designing our protocol in the FZK hybrid world, future ZKUNSAT

works based on other ZKPs will benefit from this modular design

because the security follows immediately from the composition

theorem [27].

Zero-knowledge proofs of random accesses. There has been

a long line of works [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66]

in supporting ZK proofs over RAM programs. Here, we are only

interested in themechanisms that enable RAM accesses in ZK rather

than the overall RAM architecture, which involves many other

aspects like designing an instruction set. Existing works enable

RAM accesses in roughly two ways. Some prior works [46, 47, 49,

56] combine ZK protocols with oblivious RAMs [42]: the prover

proves in ZK the computation of an oblivious RAM client that

translates each private access to a set of public accesses. The second

approach [14, 16, 24, 26, 36, 66] is to prove all RAM accesses in a

batch: by gathering all accesses and their results, the correctness

validation can be expressed in a circuit of quasi-linear size.

4 ENCODING SCHEME AND PROTOCOL

This section describes our protocol in technical detail. The pro-

tocol’s key correctness and security properties, along with key

lemmas that support them, are stated as lemmas and theorems;

their proofs are included in the full version of the paper [53].

A proof of refutation of a formula 𝜙 can be viewed as a list

of tuples, each of which specifies two clauses. The process of a

resolution derivation can be viewed as an iterative procedure. We

start with a list of clauses C that only contains all clauses in 𝜙 .

In each iteration, we fetch two clauses from C as premise clauses,

compute their resolvent, and append the resulting clause to C. If
the resolution completes, the last clause added to C should be ⊥.

To perform the derivation in zero-knowledge, we need to pay

attention to two core tasks: 1) efficiently perform clause resolu-

tion given two clauses; and 2) efficiently fetch clauses from C in

ZK while keeping indices private. Below, we will introduce the

technical details in how our solutions work and why they improve

efficiency. Section 4.1 discusses our encoding methods for both

literals and clauses. It provides huge improvement compared to a

bit-vector-based representation. In Section 4.2, we further improve

the efficiency of clause resolution by introducing a weakened ver-

sion of resolution. It provides more flexibility with prover when

providing premise clauses and thus there fewer conditions to check

in zero-knowledge proof. Finally, in Section 4.3, we discuss our

solution for the second task.

4.1 Clause representation

To improve the efficiency of the aforementioned procedures, the

central task is finding a suitable way to represent clauses. Ideally

the representation should be compact so that the overhead when

storing in a random-access array in ZK would not be too high; other

the other hand, it should preserve the structure of a clause so that

clause resolution could be done efficiently.

4.1.1 Naive encoding methods. As discussed in Section 3.2, a clause

is essentially a set (of literals). Therefore, clause encoding resembles

a lot in set encoding, which has been studied in numerous scenarios.

Our first attempt was to use bit vectors inspired by the bit-vector

representation of sets. Assuming that |Lits| is public, then a clause

can be represented as a bit vector of length |Lits|, such that the 𝑖-th

bit indicates if the 𝑖-th literal appears in the clause. This representa-

tion is very intuitive as Boolean operations on bit vectors are closely

related to Boolean logic on clauses: element-wise AND (resp., OR)

on two vectors is the conjunction (resp., disjunction) of the underly-

ing clauses. However, the downside of this approach is also obvious.

Every operation on a clause has a complexity of 𝑂 (|Lits|), even if

the number of literals in the clause is significantly less. Therefore

this encoding does not really scale for large formulas.

The bit vector representation is not good for sparse clauses

(where the number of literals is much less than |Lits|), but it can be

improved using a better encoding. A natural next step is to instead

use an enumeration-based representation for a set (and thus clause).

For example, if we map every literal ℓ ∈ Lits to an integer in [Lits],
any clause with 𝑑 literals can be represented in log |Lits| bits. The
downside of this approach is that operations on this representation

are more complicated to instantiate. For example, to compute the

conjunction of two clauses represented in this way, we would need

to compute the intersection of two sets.

4.1.2 Encoding clauses as polynomials. To enable compact repre-

sentation and efficient operations at the same time, our protocol

encodes clauses as polynomials over some finite field. Such rep-

resentation has a small encoding size while operations, including

clause resolution can still be done efficiently by representing them

as operations on polynomials.

As the first step, we need to encode literals to field elements. In

addition to completeness (i.e., different literals should be encoded

to different field elements), we also want the encoding to support

efficient negation of a literal, which is useful when doing clause

resolution. For a field F where |F| > |Lits| = 2|Vars|, we want to
find an injective function 𝜙 : Lits → F such that for each variable

𝑥 ∈ Vars,
𝜙 (𝑥) + 𝜙 (¬𝑥) = 1F (2)

The definition can be adjusted to use field elements 𝑎 ∈ F other
than 1F, so long as 𝑎 ensures that 𝜙 is injective. Each 𝜙 satisfying

Equation (2) is a literal encoding into F.
For the rest of this paper, let F denote an arbitrary field that

satisfies such conditions for Vars and let 𝜙 refer to an arbitrary

literal encoding of F.
Given a concrete encoding of literals as field elements, we can

encode a clause (which is a set of literals) as a field polynomial. From

literal encoding 𝜙 , we define an encoding 𝛾𝜙 : Clauses → F[𝑋]
of clauses as (univariate) polynomials over F such that the image

under 𝜙 of the literals in each clause 𝐶 are the roots of the image

of 𝐶 under 𝛾𝜙 :

𝛾𝜙 (ℓ0 ∨ · · · ∨ ℓ𝑑) = (𝑋 − 𝜙 (ℓ0)) . . . (𝑋 − 𝜙 (ℓ𝑑))
for literals ℓ0, . . . , ℓ𝑑 ∈ Lits. As an important special case, the encod-

ing of the clause ⊥ is 𝛾𝜙 (⊥) = 1F, where 1F denotes a polynomial

with only a constant term, which is distinct from the field element

in Equation 2.

For the rest of this paper, we will only be using only one field

and one literal encodings; thus we will omit the subscript and write

simply 𝛾 (𝐶) to denote the encoding of a clause 𝐶 , whenever the

field and literal are unambiguous from the context.

The key property of 𝜙 and 𝛾𝜙 introduced above is stated formally

as follows. It only requires the fact that 𝜙 is injective, not that 𝜙

additionally satisfies Equation (2).

Lemma 4.1. For each literal ℓ and clause 𝐶 , ℓ ∈ 𝐶 if and only if
𝜙 (ℓ) is a root of the polynomial 𝛾 (𝐶).

As a corollary, logical implication over clauses corresponds to

divisibility of clauses, under literal and clause encodings.

Corollary 4.2. For clauses 𝐶 and 𝐶 ′, if 𝐶 → 𝐶 ′, then

𝛾 (𝐶) | 𝛾 (𝐶 ′)

4.1.3 ZK operations on polynomial-encoded clauses. We are now

ready to put clause operations inside a ZK protocol. The first oper-

ations is to allow the prover to commit to a clause. A clause with

𝑑 literals can be encoded as a degree-𝑑 polynomial; however, in

some cases even the degree could reveal information about the

prover’s witness (i.e., the refutation proof). To commit a clause 𝐶

without revealing its real degree, the prover, after obtaining the

Functionality FClause
Input: On receiving (Input, ℓ0, · · · , ℓ𝑘−1

, 𝑤) from prover and

(Input, 𝑤) from verifier where ℓ𝑖 ∈ Lits, the functionality check that

𝑘 ≤ 𝑤 and abort if it does not hold. Otherwise store𝐶 = ℓ0∨· · ·∨ℓ𝑘−1
,

and send [𝐶] to each party.

Equal: On receiving (Equal, [𝐶0], [𝐶1]) from both parties, check if

𝐶0 = 𝐶1; if not, the functionality aborts.

X-Res: On receiving (Xres, [𝐶0], [𝐶1], [𝐶𝑟]) from both parties,

check if {𝐶0,𝐶1 } ⊢X-Res 𝐶𝑟 ; if not the functionality aborts.

IsFalse:On receiving (IsFalse, [𝐶]) from both parties, check if𝐶 = ⊥;
if not, the functionality aborts.

Figure 3: Functionality for ZK operations on clauses.

coefficients of𝐶 (𝑥), can simply use zeros as high-order coefficients.

Another caveat is that a cheating prover could potentially commit

an irreducible polynomials, which cannot be factorized; this would

make witness-extraction fail. To ensure extractability of clause com-

mitments, we need the prover to commit all root of the polynomial

again and two parties can use FZK to ensure the validity of the

polynomial.

Another important operation is clause resolution. To check that

clause 𝐶𝑟 is a resolvent of clauses 𝐶0 and 𝐶1, we must check that

there is a variable 𝑥 such that 𝐶0 = 𝑥 ∨ 𝐶 , 𝐶1 = ¬𝑥 ∨ 𝐶 ′
, and

𝐶𝑟 = 𝐶0 ∨𝐶1. When translated to our polynomial-based encoding,

we need to check the above relationship on roots of the polynomial.

While polynomial division can be easily checked by the prover pro-

viding an extended witness and proving the equality of polynomial

product, checking intersection of the roots from two polynomi-

als would require extra effort, e.g., incorporating techniques from

Papamanthou et al. [58].

4.2 Improved resolution via weakening

This section proposes a more efficient way of ZK resolution deriva-

tion without hurting security at all. Our key idea is a new way to

weaken the properties checked by resolution while maintaining

the soundness of such a check.

4.2.1 Resolution with weakening. To define our encoding scheme,

we first define a set of derivations of SAT formulas that slightly

generalizes resolution derivations (Section 3.2.1). The only differ-

ences are that in a weak resolution, (1) a pivot variable need not

necessarily occur in the premises and (2) the resolvent need only

be implied by resolvent of the premises (potentially weakened with

literals built from the pivot variable).

Definition 4.3. A weak resolvent of clauses 𝐶 and 𝐶 ′
on pivot

variable 𝑥 is a clause 𝐶 ′′
such that

𝐶 → 𝐶 ′′ ∨ 𝑥 and 𝐶 ′ → 𝐶 ′′ ∨ ¬𝑥

As a special case, one weak resolvent of clauses𝐶∨𝑥 and ¬𝑥∨𝐶 ′

on pivot variable 𝑥 is their resolvent, 𝐶 ∨𝐶 ′
(Defn. 3.1).

A weakened resolution derivation is a sequence of weak resol-

vents, analogous to how a resolution derivation (Defn. 3.2) is a

sequence of resolvents:

Definition 4.4. A weak (resolution) derivation from formula 𝜑 is a

finite sequence of clauses ⟨𝐶𝑖 ⟩ in which each 𝐶𝑖 is either (1) in 𝜑

or (2) a weak resolvent of two clauses 𝑗, 𝑘 < 𝑖 .

Weak refutations are similarly defined as instances of weak

derivations. It is straightforward to show that weak resolution

derivations are both a sound and complete system for refuting

Boolean formulas: i.e., a Boolean formula is unsatisfiable if and

only if it has a weak refutation. Soundness follows from the fact

that resolution refutations are sound and every refutation is a weak

refutation. Completeness can be proved by interleaving each step

of resolution in a given weak refutation with a (potentially empty)

sequence of resolutions that derives the weakening of a resolvent

from the resolvent itself.

Compared to derivations, weak derivations do not have any

apparent interesting proof-theoretic properties. However, in Sec-

tion 4.2.2 we will introduce a scheme specifically for encoding and

validating weak resolvents; the validation cannot apparently be

adjusted to validate exactly resolvents without more than doubling

the size of the encoding of each validation. Moreover, a practical

consequence of the fact that each refutation is a weak refutation is

that any refutation generated by existing SAT theorem provers can

be directly encoded by our scheme. In principle, such refutations

could potentially be minimized by replacing multiple steps of res-

olution that derive a weakening of a resolvent with a single step

of weak resolution; however, our current implementation does not

perform such an optimization.

4.2.2 Proving weakened resolution in ZK. Aweak resolution deriva-

tion can be efficiently checked using field arithmetic: clauses in the

derivation are represented as polynomials and the fact that a clause

is a weak resolvent of two clauses can be checked efficiently by

testing equality of polynomials. We present our protocol in Figure 4.

A clause can be checked to be a weak resolvent to two other

clauses by checking equalities of the clauses encodings as polyno-

mials. The key idea behind the protocol is to check the implications

over clauses that define a weak resolution (Definition 4.4) by check-

ing divisibility of polynomials, which itself is checked by checking

equality of polynomials using a secret witness divisor. The prover

can efficiently construct such witnesses, using the pivot variable of

the step of resolution.

In detail, for the prover to prove that committed clause 𝐶𝑟 is a

weak resolvent of clauses𝐶0 and𝐶1 on pivot variable 𝑋 , the prover

finds clauses𝑊0 and𝑊1 such that

𝑊0 ∨𝐶0 = 𝐶𝑟 ∨ 𝑥 and 𝑊1 ∨𝐶1 = 𝐶𝑟 ∨ ¬𝑥

𝑊0 and𝑊1 can always be defined to be:

𝑊0 = (𝐶𝑟 ∪ {𝑥}) \𝐶0 and 𝑊1 = (𝐶𝑟 ∪ {¬𝑥}) \𝐶1

The prover then commits polynomials 𝑝0,𝑤0, 𝑝1,𝑤1, and 𝑝𝑟 , that

encode 𝐶0,𝑊0, 𝐶1,𝑊1, and 𝐶𝑟 , respectively, along with the follow-

ing polynomial encodings of the literals with variable 𝑥 :

𝜌 (𝑋) = 𝑋 − 𝜙 (ℓ𝑝) and 𝜌 (𝑋) = 𝑋 − 𝜙 (¬ℓ𝑝)

The verifier validates the prover has committed encodings of

clauses𝐶0 and𝐶1 with weak resolvent𝐶𝑟 by attesting the following

polynomial equalities over the committed polynomials:

Protocol ΠClause

Parameters: A set Lits of all possible literals and a finite field F. An

integer 𝑤 and a set of clauses C𝑤 that contains all clauses no more

than 𝑤 literals of Lits. 𝜙 : Lits → F is injective.
Inputs:

(1) P holds a clauses𝐶 = ℓ0 ∨ · · · ∨ ℓ𝑘−1
∈ C𝑤 , defines 𝛾 (𝐶) (𝑋) =

(𝑋 − 𝜙 (ℓ0)) · · · (𝑋 − 𝜙 (ℓ𝑘−1
)) and locally computes 𝑐0, . . . , 𝑐𝑤

such that 𝛾 (𝐶) (𝑋) = ∑
𝑖∈[0,𝑤] 𝑐𝑖𝑋

𝑖
.

(2) For each 𝑖 ∈ [0, 𝑤], two parties use FZK to get [𝑐𝑖]. Two parties

output [𝛾 (𝐶)] = { [𝑐𝑖] }𝑖∈[0,𝑤]

Equal: Both parties send (PoPEqCheck, 1, [𝛾 (𝐶0) (𝑋)],
[𝛾 (𝐶1) (𝑋)]) to FZK.
X-Res:

(1) P locally computes𝑊0 (𝑋),𝑊1 (𝑋) and ℓ𝑝 , such that𝑊0 (𝑋) ·
𝛾 (𝐶0) (𝑋) = 𝛾 (𝐶𝑟) (𝑋) · (𝑋 + 𝜙 (ℓ𝑝)) and𝑊1 (𝑋) · 𝛾 (𝐶1) (𝑋) =
𝛾 (𝐶𝑟) (𝑋) · (𝑋 + 𝜙 (¬ℓ𝑝)) . Note that the degree of𝑊0 (𝑋) and
𝑊1 (𝑋) are bounded by 𝑤.

(2) P locally computes 𝜌 (𝑋) = 𝑋 − 𝜙 (ℓ𝑝) , of which the degree is

bounded by 1.

(3) Two parties use FZK to authenticate all 𝑤 + 1 polynomial coef-

ficients in𝑊0 (𝑋) and𝑊1 (𝑋) , and two polynomial coefficients

in 𝜌 (𝑋) . As a result, two parties get [𝑊0 (𝑋)], [𝑊1 (𝑋)] and
[𝜌 (𝑋)].

(4) Using FZK, two parties check that the highest coefficient in

[𝜌 (𝑋)] is non-zero, this make sense that [𝜌 (𝑋)] has degree

exactly 1.

(5) The prover locally computes polynomial 𝜌 (𝑋) = 𝜌 (1F −𝑋) and
commits its 2 coefficients to obtain [𝜌 (𝑋)]. Then two parties

check that the committed coefficients satisfy 𝜌 (𝑋) = 𝜌 (1F −𝑋) .
(6) Both parties send (PoPEqCheck, 2, ([𝑊0 (𝑋)], [𝛾 (𝐶0) (𝑋)]),

([𝛾 (𝐶𝑟) (𝑋)], [𝜌 (𝑋)])) to FZK.
(7) Both parties send (PoPEqCheck, 2, ([𝑊1 (𝑋)], [𝛾 (𝐶1) (𝑋)]),

([𝛾 (𝐶𝑟) (𝑋)], [𝜌 (𝑋)])) to FZK.
IsFalse: Both parties send (PoPEqCheck, 1F, [𝛾 (𝐶) (𝑋)], [1]) .

Figure 4: Our protocol to instantiate FClause.

𝑤0 · 𝑞0 = 𝑞𝑟 · 𝜌 (3)

𝑤1 · 𝑞1 = 𝑞𝑟 · 𝜌 (4)

𝜌 (𝑋) + 𝜌 (1F − 𝑋) = 0F (5)

The verifier also attests that 𝜌 and 𝜌 have degrees of at most one.

Equations (3) to (5) combined with the attestation of degrees are

referred to as the weak resolution test.
The following lemma establishes that encodings of clauses in

a step of weakened resolution, combined with additional witness

polynomials, are solutions to the weak resolution test. It is a key

lemma used to prove that the overall protocol (Figure 6) is complete.

Lemma 4.5. If clause 𝐶𝑟 is a weak resolvent of clauses 𝐶0 and 𝐶1

on variable 𝑥 , then there are polynomials 𝜌 and 𝜌 of degree at most
one, and polynomials𝑤0 and𝑤1 that combined with

𝑞0 = 𝛾 (𝐶0) 𝑞1 = 𝛾 (𝐶1) 𝑞𝑟 = 𝛾 (𝐶𝑟)
satisfy the weak resolution test.

The following lemma establishes that each solution to the weak

resolution test corresponds to some step of weakened resolution. It

is a key lemma used to show that the overall protocol is sound in

Section 4.4, and uses maximal completely reducible divisors, intro-
duced in Section 3.1.

Lemma 4.6. For polynomials𝑞0 𝑞1,𝑞𝑟 ,𝑤0,𝑤1, 𝜌 , and 𝜌 that satisfy
the weak resolution test, clause 𝛾−1 (𝑞∗𝑟) is a weak resolvent of clause
𝛾−1 (𝑞∗

0
) and clause 𝛾−1 (𝑞∗

1
).

The full version of the paper [53] contains a complete proof of

Lemma 4.6 but to see that the lemma is well-defined, note that for

each polynomial 𝑝 , the clause 𝛾−1 (𝑝∗) is well-defined, because the
polynomial 𝑝∗ is completely reducible (Sec. 3.1) and 𝛾 is a bijection

into the completely reducible polynomials.

4.3 Weakened random array access

Our protocol to check resolution proof requires an array to store

all literals in all intermediate clauses and the ability to access array

elements where the index is private to the prover. This could be

instantiated using prior works discussed in Section 3.3. However,

the overhead would be too high since the bit representation of

clause is fairly large: every clause contains up to 𝑤 literals, each

of which requires at least log |Lits| bits to encode. As a result each

clause needs at least𝑤 log |Lits| bits to represent. All existing RAM
constructions need some sort of bit decomposition on the payload

of the array and thus this quickly becomes an huge overhead.

We improved upon a recent prior work [36] for efficient RAM

access in ZK in multiple ways. First, as described at the beginning

of this section, we only need two operations to the array: append a

value to the array and read. In the context of ZK, the prover could

precompute all values and thus prepare the whole array ahead of

time. During the execution of the protocol, if we need to append 𝑣 ,

we read from the location to be written and check that the value

equals to 𝑣 . This way, we only need to support read.

Second, we relax the functionality so that the prover can freely

choose the read indices as long it does not read values not appended

to the array yet; thus the functionality is significantly weakened.

E.g., we can no longer ensure if the prover read the same element

twice or not. However, in the context of ZK refutation proof, this

weak functionality is sufficient: as long as the protocol arrives to

⊥, we can always extract a valid UNSAT proof of the formula.

Third, each memory cell contains a complete clause, which con-

sists of𝑤 field elements. In [36], the number of AND gates is pro-

portional to the bit-length of the payload; so larger elements lead

to a high cost. We improve the access time by applying a universal

hash function before the accesses are checked so that the effective

bit-length is much shorter. To ensure the soundness, the universal

hash function is picked only right before the batch checking.

4.4 Putting everything together

In Figure 6, we put together our main protocol in the (FZK, FClause,
FFlexZKArray)-hybrid model. Our protocol assumes that the number

of steps in the refutation proof and the width of the proof are public.

It proves to the verifier in ZK that the prover has a valid refutation

proof.

The protocol consists of three parts: 1) the prover run the verifi-

cation locally and prepare𝐶1, . . . ,𝐶𝑅+|𝜑 |−1
; the first |𝜑 | clauses are

the original formula and the rest are intermediate clauses; In the

Functionality FFlexZKArray
Array initialization: On receiving (Init, 𝑁 , [𝑚0], . . . , [𝑚𝑁−1])
from P and V , where𝑚𝑖 ∈ F, store the {𝑚𝑖 } and set 𝑓 := honest
and ignore subsequent initialization calls.

Array read: On receiving (Read, ℓ, 𝑑, 𝑡) from P, and (Read, 𝑡) from
V , where 𝑑 ∈ F and ℓ, 𝑡 ∈ N, send [𝑑] to each party. If 𝑑 ≠𝑚ℓ or 𝑡

from both parties do not match or ℓ ≥ 𝑡 then set 𝑓 := cheating.

Array check: Upon receiving (check) from V do: If P sends (cheat)
then send cheating to V . If P sends (continue) then send 𝑓 to V .

Figure 5: Functionality forweak randomaccess arrays in ZK.

Protocol CheckProof

Inputs: Both parties have formula𝜙 = 𝐶0∧· · ·∧𝐶 |𝜙 |−1
. P has a proof

of refutation ((𝑘0, 𝑙0), . . . (𝑘𝑅−1, 𝑙𝑅−1)) ; Both parties know the length

of the refutation proof 𝑅 and the width of the proof 𝑤 = max𝑖 { |𝐶𝑖 | }.
Protocol:

(1) The two parties obtain [𝐶𝑖]𝑖∈[0,|𝜙 |−1] using FClause; since 𝜙 is

known to both parties, it uses instance to authenticate the coeffi-

cients.

(2) P locally runs the refutation proof verification process and

gets 𝐶 |𝜙 |−1+𝑖 from the 𝑖-th iteration. The two parties obtain

[𝐶𝑖]𝑖∈[|𝜙 |−1,|𝜙 |−1+𝑅] using FClause using witness authenticating
the coefficients.

(3) The two parties send (Init, |𝜙 | + 𝑅 − 1, [𝐶0], . . . , [𝐶 |𝜙 |+𝑅−1
]) to

FFlexZKArray.
(4) For the 𝑖-th iteration, the two parties advance the proof check by

doing the following.

(a) The prover looks up the tuple (𝑘𝑖 , 𝑙𝑖) from the refutation

proof such that {𝐶𝑘𝑖 ,𝐶𝑙𝑖 } ⊢X-Res 𝐶𝑖 .

(b) Fetching the premise: the prover sends (Read, 𝑙𝑖 ,𝐶𝑙𝑖 , 𝑖) to
FFlexZKArray; V sends (Read, 𝑖) to FFlexZKArray, from which

the two parties obtain [𝐶𝑙𝑖]. Similarly, the two parties obtain

[𝐶𝑘𝑖] and [𝐶𝑖].
(c) Checking the inference: the two parties send

(Xres, [𝐶𝑙𝑖], [𝐶𝑘𝑖], [𝐶𝑖]) to FClause.
(5) After 𝑅 iterations, two parties use FClause to check that [𝐶𝑅]

equals ⊥; if the functionality aborts, V aborts.

(6) Two parties send (check) to FFlexZKArray, if the functionality aborts,
V aborts.

Figure 6: Protocol for checking resolution proof.

𝑖-th iteration, the prover verifies one step of the refutation in ZK

by: 2) fetching relevant existing clauses and 3) proving that they

derive to 𝐶𝑖 . The proof is accepted if the last clause if False.

Theorem 4.7. The protocol in Figure 6 is a zero-knowledge proof
of knowledge of refutation proof.

We provide a proof of sketch of this theorem in the full ver-

sion [53] . Because we model the zero-knowledge proof as a func-

tionality, the simulator plays the role of knowledge extractor in the

case of a corrupted prover and plays the role of ZK simulator in

the case of a corrupted verifier. Such a formulation was adopted

in prior works [11, 32, 51, 68, 70] and was formally discussed by

Hazay and Lindell [45].

5 IMPLEMENTATION AND EVALUATION

This section contains details of our implementation and the re-

sults of its empirical evaluation. We will openly release our im-

plementation to accompany the final publication of our results.

All of our benchmarks were performed on AWS instances of type

r5b.2xlarge with 64GB of memory, 16 vCPUs and a 10Gbps net-

work connection between the prover and the verifier. We used

an instance with a large amount of memory because our largest

benchmark (described below) uses more than 32GB of memory.

5.1 Implementation and optimization

We implemented and evaluated our protocol as a tool, named ZkUn-

sat, using the EMP-toolkit interactive zero-knowledge proof li-

brary for Boolean/arithmetic circuits and polynomials [67] and the

high-performance library NTL [62] for arithmetic on polynomials

over finite fields. Because the underlying ZK protocol in EMP is a

constant-round interactive ZK, our whole protocol is also constant-

round. In ZkUnsat, we instantiated the protocol on the binary field

F
2

128 , under which field operations can be efficiently implemented

using the CLMUL instruction; we represented the indices of clauses

using 20-bit integers, which support refutation proofs of length up

to one million.

To verify refutations of practical formulas, we aggressively opti-

mized our implementation’s memory usage. When verifying practi-

cal resolution proofs in the clear, memory usage is typically moder-

ate; however, when verifying them in ZK, it is significantly higher

due to the use of information-theoreticMACs [36].We implemented

protocol components to to store only data that is essential to com-

plete the rest of validation. Recall that for each resolvent, the prover

must prepare and commit a set of polynomials (see Section 4). Stor-

ing witnesses for all resolvents simultaneously would consume a

prohibitive amount of memory. However, the witness of a resol-

vent is only used when that resolvent is being validated. Thus, in

our implementation, the prover generates and commits the wit-

ness only before checking the corresponding resolvents. Moreover,

the witness is stored in memory only during the validation of its

corresponding resolvent.

5.2 Performance per phase

Verifying a refutation of a formula 𝜑 consists of three phases: (1)

loading all clauses deduced in the refutation; (2) fetching clauses

as premises; and (3) validating steps of deduction (see Figure 6).

We empirically evaluated the relationship between the cost of per-

forming each of the phases and the size of practical refutations,

specifically the size of the formulas |𝜑 |, the refutation’s length 𝑙 ,

and the refutation’s width𝑤 , in addition to their effect on overall

performance.

Instance generation In order to benchmark the distinct phases

of our protocol, we generated refutations of particular sizes by

repeating clauses in a small proof. In more detail, starting from a

refutation of formula 𝜑 of length 𝑙 , we generated a refutation of

formula 𝜑 ′
with |𝜑 ′ | ≥ |𝜑 |, of length 𝑙 ′ ≥ 𝑙 . To do so, we added

|𝜑 ′ | − |𝜑 | copies of an arbitrary clause in 𝜑 and added 𝑙 ′−𝑙 copies of
an arbitrary resolvent in the proof. Because the width of a proof is

a public parameter provided by the prover, we generated one proof

for each combination of formula size |𝜑 | ∈ {2000, 2200, · · · , 3000},

2000 2200 2400 2600 2800 3000
Size of Input Formula

0

5

10

15

20

25

30

Ti
m

e
fo

rR
es

ol
ut

io
n

(s
)

w = 150, l = 5000
w = 300, l = 5000

w = 150, l = 500
w = 300, l = 500

Figure 7:Clause verification time vs. size of input formula. The total

time for verifying a resolution proof changes negligibly with an increase in

the size of the input formula, under various fixed refutation lengths 𝑙 and

widths 𝑤.

small length 𝑙 = 50 or large length 𝑙 ∈ {2000, 3000, · · · , 8000},
and width 𝑤 ∈ {100, 150, 300, 450}. They cover a large range of

parameters that can be accurately evaluated and can also tell us the

performance trend of our protocol.

Input formulas sizeWe measured the growth of the total verifi-

cation time when the size of input formulas increase under fixed

lengths 𝑙 and widths𝑤 ; Figure 7 contains the evaluation’s results.

For each length and width, verification time changes negligibly as

the size of the input formula increases. Furthermore, to demon-

strate that showing unsatisfiability of a large formula in plaintext

can be harder than verifying an existing refutation proof in ZK, we

constructed formulas where the former process takes more than 180

seconds using PicoSAT, whereas the latter takes roughly 5 seconds

with ZkUnsat (see the full version [53]).

Refutation width A refutation’s width determines the degree of

the polynomials that encode clauses maintained by the protocol. To

evaluate the effect of width on protocol performance, we measured

the protocol’s verification time under varying widths, with fixed

input formula size |𝜑 | = 3000.

Figure 8 contains the evaluation’s results. In practice, verification

time is linear in the refutation’s width. Furthermore, the times of

each of the protocol’s three phases are linear in the width, as well.

We can also see that the majority of the time is spent on validating

deduction and fetching premises, two main parts that our work

optimized. In addition, compared to the protocol’s other phases,

the time taken to input the proof rises less significantly with width.

Refutation length A refutation contains a series of resolvents,

where the deduction of each by resolution must be verified. In

principle, the refutation’s length 𝑙 determines the number of groups

of either bit-vectors or polynomials that are verified as encodings of

steps of resolution is linear in the refutation length 𝑙 . We evaluated

our implementation’s actual performance versus refutation length,

under different fixed refutation widths. Figure 9 contains the results

of our evaluation, which demonstrate that in practice, verification

time is indeed linear in refutation length. Moreover, the cost for

inputting the proof only shows a limited increase when the length

𝑙 grows, while the increase of time cost for checking inference and

fetching premises are adequately visible.

Len. Width Comm. Len. Width Comm.

(MB) (MB)

2,000 150 75.68 3,000 100 72.91

2,000 300 142.40 3,000 200 136.20

2,000 450 200.87 3,000 300 209.95

Table 1: Communication cost vs. length and width. The amount of

data communicated is nearly proportional to the refutation’s area.

Communication cost We evaluated the communication costs for

verifying refutations of different length and width; Table 1 contains

the evaluation’s results. Similar to verification time, the amount of

communicated data grows proportionally to the refutation’s length

and width; refutations with similar areas were verified with similar

communication costs.

Clause representations To evaluate the effect of representing

refutation clauses as polynomials, we compared protocols that use

polynomials to a generic protocol that represents clauses as bit-

vectors (see Section 4.1.1). To do so, we increased the number of

literals Lits from 2
8
to 2

15
and measured the time required by the

generic protocol with length 𝑙 = 3, 000 and input formula of size

|𝜑 | = 1000.

Figure 10 contains the evaluation’s results. As expected from a

complexity analysis of the generic protocol, the time used by its

implementation in practice increases linearly with |Lits|, while the
polynomial-based protocol’s verification time is unaffected. The

polynomial-based protocols perform better when the set of literals

is suitably large: the polynomial-based protocol with 𝑤 = 100

outperforms the generic methods when |Lits| = 2
11
. A proof with

number of literals |Lits| = 2
15

and large width𝑤 = 400 is verified

by the generic protocol in over 80 seconds, but verified by the

polynomial-based protocol in only 20 seconds.

5.3 Verifying safety-critical proofs in ZK

We evaluated ZkUnsat on refutations generated from benchmarks

in corpus of theCompetition on Software Verification (SV-COMP) [17],
and major competition for evaluating program verifiers on practical

and challenging programs. From the complete SV-COMP corpus,

we selected benchmarks of two types: (1) system drivers, selected

to evaluate ZkUnsat’s practicality and (2) programs that induce

large refutations, to evaluate ZkUnsat’s scalability. The system

drivers benchmarks are real-world implementations of drivers, in-

strumented with code annotations that define the correct behavior.

As an illustration, consider the following example: if at some point

in a program two system variables need to be equal, the program

is instrumented with the if statement that checks this equality. If

they are not equal, then this should raise an alert. These alerts are

typically implemented as a call to a special “error-code” procedure.

In this example, to verify that two variables are equal at the given

program point means to formally prove that the error procedure

is never invoked in the instrumented code. In the jargon of the

verification community, we need to prove that the error code is

never reached.

One prominent approach to program verification [9, 10], given

program 𝑃 , compiles it to a Boolean formula 𝜑 such that each execu-

tion of 𝑃 corresponds to an satisfying assignment of 𝜑 . Additionally,

the program property is compiled to a second Boolean predicate

𝜓 that is satisfied by all program runs in which the property is

100 200 300 400
Width (w)

0

10

20

V
al

id
at

e
D

ed
uc

tio
n

(s
)

100 200 300 400
Width (w)

10

20

Fe
tc

h
Pr

em
is

es
(s

)

100 200 300 400
Width (w)

4

6

8

In
pu

tP
ro

of
(s

)

100 200 300 400
Width (w)

20

40

To
ta

lT
im

e
(s

)

l = 2000 l = 4000 l = 6000 l = 8000

Figure 8: Verification time vs. refutation width. Plots of phase time and total performance vs. width 𝑤, for various refutation lengths 𝑙 ∈ [2, 000, 8, 000],
with a fixed formula size of |𝜑 | = 3, 000. The times spent inputting the proof, fetching premises, and checking resolution steps are all linear in the width.

l = 2000 l = 4000 l = 6000 l = 8000
0

10

20

30

40

50

Ti
m

e
(s

)

w1
w1

w1
w1

w2

w2

w2

w2

w3

w3

w3

w3

w4

w4

w4

w4w1 : w = 100
w2 : w = 200
w3 : w = 300
w4 : w = 400

Input Proof Fetch Premises Validate Deduction

Figure 9: Verification time vs. refutation length. For different fixed

refutation widths 𝑤, verification time is linear in the refutation’s length

𝑙 . As the length grows, the increase in time of inputting proof is less than

the increase for fetching premises and checking resolution. Furthermore,

as length increases, the time for fetching premises and checking resolution

dominates verification time.

8 9 10 11 12 13 14 15
log2 |Lits|

20

40

60

80

Ti
m

e
(s

)

Our protocol with w = 100
Our protocol with w = 200
Our protocol with w = 300
Our protocol with w = 400
Generic solution based on Boolean vectors

Figure 10: Time vs. number of literals, per clause representation.

A plot of verification time of different protocols vs. the number of variables

used by the input formula, on refutations with fixed length 3, 000, which

was chosen as sufficiently large to observe an effect. The purple line depicts

the performance of a protocol that represents clauses as bit-vectors and

reveals nothing about the proof; the other lines depict the performance

of protocols that represent clauses as polynomials and additionally reveal

various upper bounds on the refutation’s width.

preserved. Thus, the program is safe if the formula 𝜑 → 𝜓 is valid

or, equivalently, the formula 𝜑 ∧ ¬𝜓 is unsatisfiable. A refutation

of 𝐹 ∧ ¬𝑃 is this a formal argument that the program 𝑃 is correct.

The SV-COMP verification benchmarks are compiled to Boolean

formulas using the C Bounded Model Checker (CBMC) [52]. Com-

pilation from C code to a Boolean formula is relatively straight-

forward, with the exception of unbounded looping or iteration. To

cope with such control structures, a Bounded Model Checker (BMC)
(BMC) [19] takes an additional non-negative integer unwind and

unwinds all loops at most unwind times, generating the program

that safely halting if it to attempts to execute unwind + 1 iterations.

The resulting program does not model all of the given program’s

executions, but in practice there is considerable practical value in

verifying even bounded programs up to even just a few unwindings.

We evaluatedZkUnsat’s performance on refutations correspond-

ing to verification problems for proving unreachability of error

locations, with unwindings of unwind in {6, 7, · · · , 26}. In practice,

the small unwinding is usually sufficient to test properties of the

program [5, 57]. All of the verification problems that we evaluated

were obtained from the public SV-COMP repository:

• ldv-crypto-qat2: verification of safety for Intel(R) QuickAssist

(QAT) crypto poll mode driver for analysis of pointer aliases and

function pointers.

• ldv-net-usb-cdc-subset3: safety verification for the Linux

Simple USB Network Links (CDC Ethernet subset) driver by

analysis of pointer aliases and function pointers.

• ntdriver-floppy4: The code is instrumented with control labels

that describe the correctness behavior of a Window NT floppy

disk driver. The verification task boils down to reachability anal-

ysis and proving that the error code is never reached..

• ntdriver-cdaudio5: The specification and verification problems

are defined similarly to the case of ntdriver-floppy.

Refutations of the generated formulas were generated using the

PicoSAT SAT solver [18]. Figure 11 reports the features of refuta-

tions and the performance of ZkUnsat vs. the chosen unwinding

bounds. Refutation length and width either increased sharply with

unwinding bounds or remained constant. We expect that the latter

occurs due to optimizations within both CBMC and PicoSAT. Veri-

fication time is determined by refutation area, as in the evaluations

described above.

The results demonstrate that ZkUnsat can be used to verify

arguments of safety of practical programs in ZK; ZkUnsat can

2
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.

tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c

3
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-

rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c

4
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/floppy.i.cil-1.c

5
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/cdaudio.i.cil-1.c

github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/floppy.i.cil-1.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/cdaudio.i.cil-1.c

5 10 15 20 25
Unwind

212

214

L
en

gt
h

(l
)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

Figure 11: Verification features vs. bound on loop unwindings for drivers. Plots of refutation length, width, and verification time vs. bound on loop

unwindings for a set of Windows NT and Linux drivers.

Program Len. (K) Width Time (s)

inv-square-int 194 414 172.5

rlim-invariant 481 198 1943.3

sin-interpolated-smallrange 375 308 2571.8

interpolation 135 790 3771.6

inv-sqrt-quake 182 749 5764.1

zonotope-loose 35 2887 9996.9

zonotope-tight 64 2887 11143.3

interpolation2 600 1047 OOM

Table 2: Length, width, and verification time in the large. The per-

formance of ZkUnsat on large proofs for proving properties of benchmark

programs with floating point computation. Column “Time (s)" contains the

performance of ZkUnsat in seconds; column “Len. (K)" contains the refuta-

tion’s length, in multiples of 1, 000; column “Width" contains the refutation’s

width. The value “OOM" denotes that ZkUnsat ran out of memory.

verify the safety and correctness of all the presented drivers in

under five minutes. The largest refutation corresponds to the ver-

ification of ldv-net-usb-cdc-subset with loops unwound 256

times; ZkUnsat verifies this refutation in under 256 seconds.

To evaluate ZkUnsat’s scalability, we evaluated its performance

on large refutations of formulas corresponding to the verification

of programs that use floating-point operations.
6
. Out of a total of

58 benchmarks, we selected benchmarks whose formulas could be

extracted from the program and solved in under 30 minutes, and

whose proofs have length at least 𝑙 ≥ 10, 000 and a width of at least

𝑤 ≥ 100. We omitted benchmarks whose generated refutations

were too large to be parsed within allocated memory.

The results, given in Table 2, demonstrate that ZkUnsat can

verify proofs of moderate length and of width as large as 2.8K in

an amount of time that would be useful in multiple cases: under

three hours. The results also give insight into ZkUnsat’s current

limitations: when attempting to verify a refutation containing 600K

resolvents and with width 1, 047, our implementation exhausted

the allocated memory.

The verification time and memory requirements depend on the

clausal length and width of the proof. To see if ZkUnsat is practical,

it is also important to learn the distribution of proof length/width

for real programs. We uniformly sampled a set of SV-COMP verifi-

cation tasks that generate unsatisfiable SAT formulas, setting the

parameter unwind to the standard value 2. The distribution of proof

6
github.com/sosy-lab/sv-benchmarks/tree/master/c/float-benchs

101 102 103

Width

102

104

106

L
en

gt
h

SV-COMP Our benchmarks

Figure 12:Distribution of the clausal length andwidth of formulae

for real programs in SV-COMP.

length/width is depicted in Figure 12, alongside the paper’s exam-

ples. The result shows that the scale of formulae in our benchmarks

can cover 804 of 814 (98.7%) verification tasks from SV-COMP.

6 RELATEDWORK

The previous work closest to our goal addresses approaches to

static program analysis in zero knowledge [34]. When the proven

invariants of programs are used to establish that the secret pro-

gram satisfies a specification of correctness, such static analyses

effectively prove that safety of a program in zero knowledge. The

contribution of this work is complementary to such approaches:

definitions of static analyses in ZK describe how to generate a ZK

proof statement about a potentially unbounded program, given a

definition of an abstract domain of the facts, equipped with opera-

tions that describe how to merge multiple facts soundly. Current

implementations of such schemes have used encouraging but rel-

atively lightweight abstract domains, which typically are used to

prove simple program properties. In contrast, our approach for

verifying resolution proofs in ZK can be used to instantiate such

schemes with a comparatively powerful abstract symbolic domain
of facts as Boolean formulas. Within such a scheme, the symbolic

domain could be used to deep safety and correctness properties of

unbounded programs.

In [54], the authors present ppSAT, a privacy-preserving satis-
fiability solver, where two parties can contribute two private, re-

spectively to each party, formula and the tool employs Multi-Party

Computation (MPC) techniques to determine if the conjunction of

github.com/sosy-lab/sv-benchmarks/tree/master/c/float-benchs

these two formulas is satisfiable. The approach taken in that work

is finely tuned for proving the satisfiability of formulas. As such,

although the tool could be used for showing unsatisfiability of the

conjunction of the input formulas, it would have to check all the

possible variable assignments that are exponential in number.

Resolution proofs are well-studied systems for formally proving

the validity of, or refuting, statements in formal logics. Classical

results have established that they are a sound and complete system

for refuting propositional formulas [60], that there are families

of unsatisfiable formulas without short refutations in resolution-

based systems [44], and that in general there may be a fundamental

tradeoff between a refutations dimensions, namely its length and

its width [63]. Practical implementations of many modern SAT

solvers can be configured so that, upon determining that a formula

𝜑 is unsatisfiable, they generate a refutation of 𝜑 as a resolution

proof [18, 31, 33, 37]. In this work, we have introduced a slight

variation of a standard resolution proof system for Boolean logic;

the proposed system retains the soundness and completeness of

standard systems, but its refutations can be verified more efficiently

than proofs in systems that are equivalent in expressive power but

that imposes stricter requirements on the structure of its proofs.

Our approach does not rely on novel, tight bounds on the resolution

proofs’ dimensions: instead, we have defined a optimized ZK verifier

that reveals only the refutation’s dimensions. Proofs in standard

systems directly correspond to proofs in our relaxed system: thus,

our approach can be used to verify proofs generated by all existing

SAT solvers without modification to the underlying solver.

An extensive line of work has investigated reducing problems

in verification to solving or refuting SAT formulas [10, 19, 52, 69].

Such approaches, given a program 𝑃 and property 𝑄 , generate a

propositional formula 𝜑 such that 𝑃 (or a bounded approximation

of 𝑃) satisfies 𝑄 if and only if 𝜑 is unsatisfiable. Our approach for

validating a proof of unsatisfiability can be combined with any such

model checker and any process that generates resolution proofs

as refutations to prove that a program satisfies a desired property

without revealing information about proof itself.

Zero-knowledge proofs in the RAM model has been studied

extensively in recent years [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66].

Most of these works focus on designing a general-purpose RAM

machine or random access structure to be used for any computation.

To support efficient fetching of premise clauses, we optimize a

prior RAM construction [36] in our setting. Our construction is no

longer general-purpose, but it provides improved efficiency in our

application.

While this paper studies cryptographic proofs composed with

resolution proofs, a different notion of "proofs about proofs" is

recursively composing cryptographic proofs with cryptographic

proofs, as in Incrementally Verifiable Computation [64] and Proof-

Carrying Data [15, 20].

7 CONCLUSION

We have presented a novel protocol for proving knowledge that a

given propositional formula is unsatisfiable while revealing mini-

mal information about the known supporting argument, structured

as a resolution refutation. The protocol’s key features are the use

of (1) a sub-protocol for efficiently executing RAM programs in

zero knowledge, used to hide which facts derived from the formula

are used at which steps of the argument and (2) an encoding of

propositional clauses as arithmetic polynomials, which allows us

to aggressively minimize costs by revealing only the refutation’s

length and width. Our empirical evaluation of a prototype imple-

mentation indicates that the protocol can be used to prove the safety

and correctness of safety-critical software (specifically, system de-

vice drivers) while keeping secret the details of why the software

is correct.

Future work and challenges. A compelling direction for fu-

ture work is to develop a protocol that proves the safety of a pro-

gram that is itself kept secret: this could be achieved by extending

the presented protocol to verifiably translate a secret program to

a formula satisfied by the hypothetical unsafe executions, and use

the existing protocol to prove that no such assignment in fact exists.

We believe that such a formula could be generated either by relating

a secret formula to the syntactic structure of a secret program that

at each control point steps by executing some instruction secretly

chosen from a public set of faithful instruction models, or by vali-

dating additional resolution proofs that prove that each instruction

formula models program instruction semantics faithfully. By in-

cluding public instruction models or symbolically proving that each

instruction formula faithfully models error-triggering conditions,

secret programs could be proved to satisfy properties that require

that no instruction in the program performs an error, e.g. accessing

memory out of bounds, overflowing arithmetic, or dividing by zero.

Both such strategies would draw on the wealth of existing work

in automated theorem proving and symbolic reasoning driven by

the software verification community. In general, verifying stateful

program properties may require verifying a program in which as-

sertions have effectively been inlined. A verifier could potentially

inline assertions correctly but blindly by following a protocol based

on Multi-Party Computation(MPC) [40, 71], where the prover and
verifier input assertions and programs, respectively.

Resolution is one of the proof systems for the unsatisfiability

problem that is well-studied and implemented. Other alternatives

remain unexplored, among which Groebner proof system [29] is

of particular interest. In a Groebner proof system, the witnesses

are in the form of polynomials over a finite field and thus could

have natural encodings in ZK. On the other hand, the translation

from clauses to polynomials will introduce additional overhead that

could affect the overall performance.

ACKNOWLEDGEMENTS

Work by William Harris and Eran Tromer is supported in part by

DARPA under Contract No. HR001120C0085. Work by Xiao Wang

is supported in part by DARPA under Contract No. HR001120C0087,

NSF award CNS-2016240, and research awards from Meta and

Google. Work by Timos Antonopoulos has been supported in part

by ONR under Grant N00014-17-1-2787 and by NSF awards CCF-

2106845, CCF-2131476. Work by Ruzica Piskac and Ning Luo is

supported in part by NSF award CNS-1562888 and CCF-2131476.

The views, opinions, and/or findings expressed are those of the

author(s) and should not be interpreted as representing the official

views or policies of the Department of Defense or the U.S. Gov-

ernment. Distribution Statement “A” (Approved for Public Release,

Distribution Unlimited).

REFERENCES

[1] 2002. Coverity. https://coverity.com

[2] 2008. SonarQube. https://www.sonarqube.org

[3] 2016. ShiftLeft. https://www.shiftleft.io

[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted

Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087–2104. https:

//doi.org/10.1145/3133956.3134104

[5] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2003.

Evaluating the “small scope hypothesis”. In In Popl, Vol. 2. Citeseer.
[6] Elli Androulaki, Seung Geol Choi, Steven M Bellovin, and Tal Malkin. 2008.

Reputation systems for anonymous networks. In International Symposium on
Privacy Enhancing Technologies Symposium. Springer, 202–218.

[7] Leo Bachmair and Harald Ganzinger. 2001. Resolution Theorem Proving. In

Handbook of Automated Reasoning (in 2 volumes), John Alan Robinson and Andrei

Voronkov (Eds.). Elsevier and MIT Press, 19–99. https://doi.org/10.1016/b978-

044450813-3/50004-7

[8] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K Rajamani. 2004. SLAM

and Static Driver Verifier: Technology transfer of formalmethods insideMicrosoft.

In International Conference on Integrated Formal Methods. Springer, 1–20.
[9] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.

2001. Automatic Predicate Abstraction of C Programs. In Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Snowbird, Utah, USA, June 20-22, 2001, Michael Burke and Mary Lou

Soffa (Eds.). ACM, 203–213. https://doi.org/10.1145/378795.378846

[10] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. 2001. Boolean and

Cartesian Abstraction for Model Checking C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems, 7th International Conference, TACAS
2001 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings (Lecture Notes
in Computer Science, Vol. 2031), Tiziana Margaria and Wang Yi (Eds.). Springer,

268–283. https://doi.org/10.1007/3-540-45319-9_19

[11] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin

and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Virtual Event, 92–122.

https://doi.org/10.1007/978-3-030-84259-8_4

[12] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian,

Silvio Micali, and Phillip Rogaway. 1990. Everything Provable is Provable in

Zero-Knowledge. In CRYPTO’88 (LNCS, Vol. 403), Shafi Goldwasser (Ed.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 37–56. https://doi.org/10.1007/0-

387-34799-2_4

[13] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459–474. https://doi.org/10.1109/

SP.2014.36

[14] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A.

Garay (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 90–108.

https://doi.org/10.1007/978-3-642-40084-1_6

[15] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Scal-

able Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO 2014, Part II (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Ger-

many, Santa Barbara, CA, USA, 276–294. https://doi.org/10.1007/978-3-662-

44381-1_16

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct

Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, San Diego,

CA, USA, 781–796.

[17] Dirk Beyer. 2017. Software verification with validation of results. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 331–349.

[18] Armin Biere. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling
and Computation 4, 2-4 (2008), 75–97.

[19] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-

shan Zhu. 2003. Bounded model checking. (2003).

[20] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive

composition and bootstrapping for SNARKS and proof-carrying data. In 45th
ACM STOC, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM

Press, Palo Alto, CA, USA, 111–120. https://doi.org/10.1145/2488608.2488623

[21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik

Soni. 2020. Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time

and Space Overheads. In TCC 2020, Part II (LNCS, Vol. 12551), Rafael Pass and
Krzysztof Pietrzak (Eds.). Springer, Heidelberg, Germany, Durham, NC, USA,

168–197. https://doi.org/10.1007/978-3-030-64378-2_7

[22] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik

Soni. 2021. Time- and Space-Efficient Arguments from Groups of Unknown

Order. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin and Chris Peikert

(Eds.). Springer, Heidelberg, Germany, Virtual Event, 123–152. https://doi.org/

10.1007/978-3-030-84259-8_5

[23] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda: De-

centralized Cryptocurrency at Scale. Cryptology ePrint Archive, Report 2020/352.

https://eprint.iacr.org/2020/352.

[24] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.

2018. Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program

Execution. In ASIACRYPT 2018, Part I (LNCS, Vol. 11272), Thomas Peyrin and

Steven Galbraith (Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland,

Australia, 595–626. https://doi.org/10.1007/978-3-030-03326-2_20

[25] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,

and Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In

2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San

Francisco, CA, USA, 947–964. https://doi.org/10.1109/SP40000.2020.00050

[26] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blum-

berg, and Michael Walfish. 2013. Verifying Computations with State. In SOSP ’17.
341–357.

[27] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. Journal of Cryptology 13, 1 (Jan. 2000), 143–202. https://doi.org/10.1007/

s001459910006

[28] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking

ANSI-C programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 168–176.

[29] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. 1996. Using the Groebner

Basis Algorithm to Find Proofs of Unsatisfiability. In 28th ACM STOC. ACM Press,

Philadephia, PA, USA, 174–183. https://doi.org/10.1145/237814.237860

[30] Martin Davis and Hilary Putnam. 1960. A computing procedure for quantification

theory. Journal of the ACM (JACM) 7, 3 (1960), 201–215.
[31] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Proofs and Refutations,

and Z3.. In LPAR Workshops, Vol. 418. Citeseer, 123–132.
[32] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowl-

edge and Its Applications. In 2nd Conference on Information-Theoretic Cryptogra-
phy.

[33] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[34] Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang. 2021. Zero

Knowledge Static Program Analysis. In ACM CCS 2021, Giovanni Vigna and

Elaine Shi (Eds.). ACM Press, Virtual Event, USA, 2951–2967. https://doi.org/10.

1145/3460120.3484795

[35] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J.

Weitzner. 2018. Practical Accountability of Secret Processes. In USENIX Secu-
rity 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,

Baltimore, MD, USA, 657–674.

[36] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and

Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.

In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual

Event, USA, 178–191. https://doi.org/10.1145/3460120.3484800

[37] Zhaohui Fu, YogeshMarhajan, and SharadMalik. 2004. Zchaff sat solver. Princeton
University. Princeton, NJ 8544 (2004).

[38] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS, Vol. 7881), Thomas Johansson and Phong Q. Nguyen (Eds.). Springer,

Heidelberg, Germany, Athens, Greece, 626–645. https://doi.org/10.1007/978-3-

642-38348-9_37

[39] Oded Goldreich, SilvioMicali, and AviWigderson. 1986. Proofs that Yield Nothing

But their Validity and aMethodology of Cryptographic Protocol Design (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,

174–187. https://doi.org/10.1109/SFCS.1986.47

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, New York City, NY, USA, 218–229.

https://doi.org/10.1145/28395.28420

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs That Yield

Nothing But Their Validity Or All Languages in NP Have Zero-Knowledge Proof

Systems. Journal of the ACM 38, 3 (1991), 691–729.

[42] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (may 1996), 431–473. https://doi.org/10.1145/

233551.233553

[43] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien

Coron (Eds.). Springer, Heidelberg, Germany, Vienna, Austria, 305–326. https:

//doi.org/10.1007/978-3-662-49896-5_11

[44] Armin Haken. 1985. The intractability of resolution. Theoretical computer science
39 (1985), 297–308.

https://coverity.com
https://www.sonarqube.org
https://www.shiftleft.io
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

[45] Carmit Hazay and Yehuda Lindell. 2010. A Note on Zero-Knowledge Proofs

of Knowledge and the ZKPOK Ideal Functionality. Cryptology ePrint Archive,

Report 2010/552. https://eprint.iacr.org/2010/552.

[46] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz Zero-Knowledge Pro-

cessor with BubbleRAM. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 2055–2074.

https://doi.org/10.1145/3372297.3417283

[47] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero

Knowledge for Everything and Everyone: Fast ZK Processor with Cached ORAM

for ANSI C Programs. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1538–1556. https://doi.org/10.

1109/SP40001.2021.00089

[48] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. 2012.

Secure two-party computations in ANSI C. In ACM CCS 2012, Ting Yu, George
Danezis, and Virgil D. Gligor (Eds.). ACM Press, Raleigh, NC, USA, 772–783.

https://doi.org/10.1145/2382196.2382278

[49] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. 2015. Efficient Zero-

Knowledge Proofs of Non-algebraic Statements with Sublinear Amortized Cost.

In CRYPTO 2015, Part II (LNCS, Vol. 9216), Rosario Gennaro and Matthew J. B.

Robshaw (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 150–169.

https://doi.org/10.1007/978-3-662-48000-7_8

[50] Franjo Ivančić, Zijiang Yang, Malay K Ganai, Aarti Gupta, Ilya Shlyakhter, and

Pranav Ashar. 2005. F-Soft: Software verification platform. In International
Conference on Computer Aided Verification. Springer, 301–306.

[51] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM

Press, Berlin, Germany, 955–966. https://doi.org/10.1145/2508859.2516662

[52] Daniel Kroening andMichael Tautschnig. 2014. CBMC–C boundedmodel checker.

In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 389–391.

[53] Ning Luo, Timos Antonopoulos, William Harris, Ruzica Piskac, Eran Tromer,

and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. Cryptology ePrint

Archive, Paper 2022/206. https://eprint.iacr.org/2022/206.

[54] Ning Luo, Samuel Judson, Timos Antonopoulos, Ruzica Piskac, and Xiao Wang.

2022. ppSAT: Towards Two-Party Private SAT Solving. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association.

[55] Kenneth L McMillan. 2003. Interpolation and SAT-based model checking. In

International Conference on Computer Aided Verification. Springer, 1–13.
[56] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. 2017. Sublinear Zero-

Knowledge Arguments for RAM Programs. In EUROCRYPT 2017, Part I (LNCS,
Vol. 10210), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer, Hei-

delberg, Germany, Paris, France, 501–531. https://doi.org/10.1007/978-3-319-

56620-7_18

[57] Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for

systematic testing of multithreaded programs. ACM Sigplan Notices 42, 6 (2007),

446–455.

[58] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011.

Optimal Verification of Operations on Dynamic Sets. In CRYPTO 2011 (LNCS,
Vol. 6841), Phillip Rogaway (Ed.). Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 91–110. https://doi.org/10.1007/978-3-642-22792-9_6

[59] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 238–252. https:

//doi.org/10.1109/SP.2013.47

[60] J. A. Robinson. 1965. AMachine-Oriented Logic Based on the Resolution Principle.

J. ACM 12, 1 (jan 1965), 23–41. https://doi.org/10.1145/321250.321253

[61] John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press. https://www.sciencedirect.

com/book/9780444508133/handbook-of-automated-reasoning

[62] Victor Shoup et al. 2001. NTL: A library for doing number theory.

[63] Neil Thapen. 2016. A tradeoff between length and width in resolution. Theory of
Computing 12, 1 (2016), 1–14.

[64] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge

Imply Time/Space Efficiency. In TCC 2008 (LNCS, Vol. 4948), Ran Canetti (Ed.).

Springer, Heidelberg, Germany, San Francisco, CA, USA, 1–18. https://doi.org/

10.1007/978-3-540-78524-8_1

[65] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Geor-

gios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer. 2022.

Plumo: An Ultralight Blockchain Client. In FC 2022 (LNCS). Springer, Heidelberg,
Germany.

[66] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and

Michael Walfish. 2015. Efficient RAM and control flow in verifiable outsourced

computation. In NDSS 2015. The Internet Society, San Diego, CA, USA.

[67] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[68] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1074–1091. https://doi.org/10.

1109/SP40001.2021.00056

[69] Yichen Xie andAlex Aiken. 2007. Saturn: A scalable framework for error detection

using boolean satisfiability. ACM Transactions on Programming Languages and
Systems (TOPLAS) 29, 3 (2007), 16–es.

[70] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM

Press, Virtual Event, USA, 2986–3001. https://doi.org/10.1145/3460120.3484556

[71] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,

162–167. https://doi.org/10.1109/SFCS.1986.25

https://eprint.iacr.org/2010/552
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2022/206
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1145/321250.321253
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	2 ZK program safety by example
	3 Technical Preliminaries
	3.1 Fields and polynomials
	3.2 Boolean logic
	3.3 Efficient zero-knowledge protocols

	4 Encoding Scheme and Protocol
	4.1 Clause representation
	4.2 Improved resolution via weakening
	4.3 Weakened random array access
	4.4 Putting everything together

	5 Implementation and Evaluation
	5.1 Implementation and optimization
	5.2 Performance per phase
	5.3 Verifying safety-critical proofs in ZK

	6 Related Work
	7 Conclusion
	References

