
Ou: Automating the Parallelization of Zero-Knowledge Protocols
Yuyang Sang

∗

Yale University

New Haven, USA

yuyang.sang@yale.edu

Ning Luo
∗

Northwestern University

Evanston, USA

ning.luo@northwestern.edu

Samuel Judson

Yale University

New Haven, USA

samuel.judson@yale.edu

Ben Chaimberg

Yale University

New Haven, USA

ben.chaimberg@yale.edu

Timos Antonopoulos

Yale University

New Haven, USA

timos.antonopoulos@yale.edu

Xiao Wang

Northwestern University

Evanston, USA

wangxiao1254@gmail.com

Ruzica Piskac

Yale University

New Haven, USA

ruzica.piskac@yale.edu

Zhong Shao

Yale University

New Haven, USA

zhong.shao@yale.edu

Abstract
A zero-knowledge proof (ZKP) is a powerful cryptographic prim-

itive used in many decentralized or privacy-focused applications.

However, the high overhead of ZKPs can restrict their practical

applicability. We design a programming language, Ou, aimed at

easing the programmer’s burden when writing efficient ZKPs, and a

compiler framework, Lian, that automates the analysis and distribu-

tion of statements to a computing cluster. Lian uses programming

language semantics, formal methods, and combinatorial optimiza-

tion to automatically partition an Ou program into efficiently sized

chunks for parallel ZK-proving and/or verification. We contribute:

(1) A front-end language where users can write proof statements

as imperative programs in a familiar syntax;

(2) A compiler architecture and implementation that automatically

analyzes the program and compiles it into an optimized IR that

can be lifted to a variety of ZKP constructions; and

(3) A cutting algorithm, based on Pseudo-Boolean optimization

and Integer Linear Programming, that reorders instructions and

then partitions the program into efficiently sized chunks for

parallel evaluation and efficient state reconciliation.

1 Introduction
Zero-knowledge proofs (ZKPs) [24] enable a prover to convince a

verifier about the truth of some statement without revealing why.

Recent advances by the cryptographic research community have

brought a tremendous improvement in the efficiency of general-

purpose zero-knowledge (ZK) proving (see [1] for a comprehen-

sive survey), as well as numerous creative applications of ZKPs

(e.g., [3, 6, 10, 12, 21]). However, various practical challenges make

the adoption of ZK unfeasible for tasks of realistic sizes. A particular

problem is the lack of a comprehensive toolkit of programming

languages and compilers providing a full suite of effective, intuitive,

parallel-aware, and general methods for writing complex statements

intended for efficient ZKPs.

*
These authors contributed equally to this work.

Conference’17, July 2017, Washington, DC, USA
.

Challenge 1: Simple and scalable development. One signifi-

cant challenge for applying ZKPs to new problems is describing the

statement to be proven in a way that is at the same time natural to

the programmer and conducive to compilation.

Most existing languages and compilers for ZK (and for the closely

related problem of secure multiparty computation, or MPC) support

only the ‘circuit model’ based on data-oblivious computation, where

control flow must be independent of all private variables [9, 31, 32].

They encode the statement as a monolithic program and emit an ap-

propriate circuit representation for their target protocol. Although

this model is theoretically complete [25, 34], it does not capture

the full flexibility and power of modern ZKP constructions. For

example, many statements can be accelerated by non-determinism

(e.g., [7, 8]), where the prover provides extra hints to the compu-

tation. Other statements (e.g., 3-coloring and Hamiltonian cycles

in graphs [23]) can be verified with high concrete efficiency un-

der a probabilistic guarantee: the verifier provides extra random

challenges, to which the prover replies with challenge-dependent

hints.

We contribute a more general-purpose ZK programming frame-

work able to support proofs over multiple computational models.

Our aim is to ease development for new domains – especially so for

ZK statements that aremore naturally expressed in those alternative

models, or for which those models provide superior performance.

Challenge 2: Scalability in hardware resources.All sufficiently

advanced technology may be indistinguishable from magic [18],

but the ‘magic’ of ZK often depends as much in practice on massive

hardware resources as on mathematical ingenuity. These demands

lead to practical bottlenecks in computation and/or communication

resources when scaling ZKPs to large statements. For example,

most zkSNARK protocols [11, 14, 26, 36, 39] require temporary

storage linear in the running time of the computation being proved.

Although VOLE-based ZKPs [4, 20, 41] use less memory, they only

do so at the expense of a significant increase in required bandwidth.

To aid practicality, a line of recent work has started to “scale

out” ZK protocols: instead of assuming the prover and/or verifier

have access to one giant machine, they assume access to a cluster

of machines and the capability to distribute the task amongst these

resources. For example DIZK [42] distributes the prover compu-

tation of Groth’s ZK protocol [27] by manually partitioning the

R1CS constraints into equal-sized chunks. zkBridge [43] can dis-

tribute the prover computation of Virgo [45] efficiently to multiple

servers when the statement already has a high degree of paral-

lelism. Meanwhile, EZEE [44] distributes among multiple machines

the prover-verifier computation and communication of an inter-

active, garbled-circuit-based zero-knowledge proof protocol [30].

Giraffe [38] addresses the challenge of automatically distributing

computations in the verifiable outsourcing context by breaking

down overly large computations that cannot be outsourced as a

whole.

Though efficient in deployment, in order to distribute their cho-

sen ZK protocol over a cluster of servers each of these works re-

quire the developer to first both i) modify the ZKP protocols to

be amenable to distributed computation; and ii) to manually parti-

tion the computation into smaller chunks to be proven in parallel.

Such manual processes may be error-prone and lead to suboptimal

solutions, especially for statements of real-world complexity.

1.1 Summary of Contributions
In this paper, we design a programming framework – a language

Ou and a supporting compiler architecture Lian – enabling pro-

grammers to write zero-knowledge statements without thinking

about distributed computation. Our compiler automatically and

efficiently chunks this program for efficient parallel proving or

verification.

(1) Our framework provides a C-like programming language with

annotations so that developers, including those without deep

knowledge of cryptography, can easily write ZK applications

even when using protocols with advanced features.

(2) We develop a compiler and static analysis pipeline, written in

OCaml, that calculates the local and communication costs of

each program instruction, then automatically finds an efficient

way to chunk the corresponding ZK statement. The optimal-

ity measure minimizes the sum of the maximum per-machine

cost and cumulative communication costs. This analysis can

distribute ZK statements incorporating randomized verification.

(3) We prove our system sound, i.e., we show the semantics of

the distributed verification of substatements is equivalent to

verifying the whole statement centrally.

(4) Empirically, we show that for many statements, including gradi-

ent descent and Merkle Tree, our framework can automatically

find efficient partitioning of the statements, thus achieving

speedup proportional to the number of machines available.

What this paper is not about. Lian does not establish a program’s

functional correctness or data-obliviousness, nor the hardness of

witness finding for the ZK statement. We assume a program written

in our language is sound and secure for its intended ZK application,

and is suitably constructed for the target protocol: e.g., we assume

the program is data-oblivious if the target is circuit-based.

1.2 Technical Challenges and Solutions
Ou and Lian address a series of challenges arising from each of

language design, cryptography, and combinatorial optimization.

1 #define S 100
2 #define secparam 128
3 plocal1 plc1 int[S][S] mmult_plcmx (...) {...}
4 pvt2 int[S] mmult_pvtvec (...) {...}
5 pvt2 int[S] mmult_pubvec (...) {...}
6

7 void frvlds(pvt1 int [S][S] M,
8 pvt1 int [S][S] M1, pvt1 int [S][S] M2) {
9 /* array of verifier controlled randomness */
10 pub2 int [S] s = {0};
11

12 int t = 0;
13 /* repeat for secparam number of times */
14 while (t < secparam) {
15 int i = 0;
16 while (i < S) {s[i] = v_rand(0, 1); i = i+1;}
17

18 /* compute z = (M1 * (M2 * s)) */
19 pvt2 int[S] w = mmult_pubvec(M2, s);
20 pvt2 int[S] z = mmult_pvtvec(M1, w);
21

22 /* compute q = (M * s) */
23 pvt2 int[S] q = mmult_pubvec(M, s);
24

25 /* check that q and z are the same */
26 i = 0;
27 while (i < S) {
28 assert (q[i] == z[i]); i = i+1;
29 }
30 t = t+1;
31 }
32 }
33

34 unit mmult(plc1 int [S][S] M1, plc1 int [S][S] M2) {
35 /* prover locally computes M1 * M2 = M */
36 plc1 int[S][S] M = mmult_plcmx(M1, M2);
37 return frvlds(commit(M), commit(M1), commit(M2));
38 }

Figure 1: Running example. We consider this Ou implementa-

tion of Freivalds’ algorithm for randomized verification of 100x100

matrix multiplication.

Cryptographic insight. To enable arbitrary partitioning of a state-
ment, the underlying ZK protocol needs to be ‘flexible’: it must

allow proving multiple statements of the same witness while en-

suring consistency. To this end, our framework focuses on the

commit-and-prove paradigm. The prover first commits to their pri-

vate inputs, and then constructs a proof establishing some (public)

relationship among the committed values without revealing them

to the verifier. Because the inputs are committed the prover can

establish multiple statements on them, all while the verifier is cer-

tain their values remain consistent. Any ZKP system can support

this capability by proving the consistency of commitments in ZK,

but certain protocols have direct support which incurs less cost

(e.g., [2, 4, 15, 16, 19, 29, 30, 41]). Given such a ZK backend secure

under parallel composition, regardless of its internals, e.g., the use

of Fiat-Shamir or random oracle, we can then distribute the proof

of any ZK statement in parallel.

During compilation, we first partition the statement into multi-

ple substatements, before the prover precomputes the input/output

of each substatement locally. The prover can then in parallel prove

to the verifier the correctness of each substatement and then es-

tablish the consistency of the input/output between substatements.

Although this works in principle, designing a scalable system that

automatically distributes the computation with minimum runtime-

and developer-overhead is still challenging. For example, in ZK

data dependency rarely constrains statement partitioning, unlike

2

in normal computation or MPC where it does so always. So in ZK

even inherently sequential statements can often be parallelized.

Automatic statement partitioning. In ZK the prover knows both

the public and private inputs, and can thus ‘predict’ all intermediate

values. As a result, data dependencies can be resolved before prov-

ing: computation of 𝑦 = 𝑓 (𝑔(𝑥1), 𝑥2) can be partitioned into two

parallel verification tasks, 𝑡 = 𝑔(𝑥1) and 𝑦 = 𝑓 (𝑡, 𝑥2). The prover,
with inputs 𝑥1 and 𝑥2, just appends 𝑡 to form an extended witness.
For ordinary computation this parallelization would be infeasible,

because 𝑓 depends on 𝑔. The prover’s ability to ‘locally precompute’

creates new opportunities to maximize parallelism.

To partition effectively, after parsing and typechecking our archi-

tecture undertakes two distinct special compilation phases: shallow
simulation and deep simulation. The first automatically partitions

the ZK statement and then selects variables as witnesses (the ap-

pendices to the input, like 𝑡) for each of the 𝜅 substatements. The

parameter 𝜅 is user-chosen, and will equal the number of available

compute cores in the cluster. Deep simulation then uses the prover’s

private inputs to concretely compute the values of those extended

witnesses, as well as of any public variables.

Shallow simulation proceeds by using live variable analysis to

compute the costs of each instruction in the statement, and then

models them as a directed acyclic graph for partitioning by either

pseudo-Boolean optimization (PBO) or integer linear programming
(ILP). This requires loop unrolling and function inlining as flatten-

ing techniques. The resultant ZK substatements are then compiled

to the chosen backend protocol implementation for distribution as

programs to the participating servers: in our evaluation we use the

VOLE-based EMP-toolkit [40]. Lian’s deep simulation then propa-

gates input-dependent values through the statement to concretely

compute both public values and the prover’s witnesses for each

substatement. To distinguish which values are available during our

different simulation phases, we use knowledge levels: 𝐾0 for (private
input-independent) values that are known at compile time, and

𝐾1 for (private input-dependent) values that are known at distri-

bution time. This way, reusing a proof with different inputs only

requires recomputing the deep simulation, and not the shallow

simulation or partitioning, where the latter is likely to be the most

computationally intensive compilation task.

Supporting randomized verification.As noted, randomized ver-

ification can be much more efficient than deterministic verification.

However, supporting it during shallow simulation in particular is

a challenge. With deterministic verification an oblivious program

trace is known at compile time, which allows Lian to analyze the

cost of each substatement easily. With randomized verification the

program might branch on the at-the-time unknown randomness,

preventing the cost from being calculated precisely as whether an

expensive statement is entered may depend on a coin flip. Also,

privacy imparts an ordering requirement on randomized verifica-

tion: the verifier’s randomness used in checking a ZK statement

can only be revealed after the prover commits to its inputs. This

means that the partitioning needs to obey sequential ordering for

values that are dependent on dynamic choices of the verifier.

Ou uses a third knowledge level, 𝐾2, to indicate that the value of

a variable can only be known at runtime. The type system enforces

non-interference with respect to a security lattice, allowing 𝐾0-

and 𝐾1-leveled variables to flow into 𝐾2-leveled variables, but not

the other way around. The partitioning then treats the 𝐾2-leveled

variables as one contiguous block in order to estimate worst-case

cost and enforce sequential ordering.

Handling large statements.Naively implementing the aforemen-

tioned techniques does not scale to large ZK statements. If the cost

graph contains toomany nodes then finding efficient chunks will be

computationally infeasible. Classical graph partitioning and many

related variants are NP-hard with efficient (approximate) optimiza-

tion algorithms known only in certain special cases, and even then

often only theoretically [13]. More subtly, a naive representation of

each substatement, e.g., as a circuit or R1CS, is necessarily linear in

its running time. For large statements, especially those containing

unrolled loops or inlined function calls, it is therefore crucial to

work with ‘compact representations’ of substatements which are

sublinear in the running time.

Ou and Lian support sublinear representations through atomic,
a user-provided annotation to indicate that a function should be

condensed, rather than flattened, during shallow simulation. By do-

ing so, we contract the component of the cost graph corresponding

to the function into a single node of cost cumulative of its con-

stituent instructions. This reduces the size of the graph and makes

optimization more practical. Even if the atomic function is called

multiple times, only one copy of the declaration exists. This brings

the partitioning problem into the realm of practicality for both PBO

and ILP solving, despite its inherent hardness.

1.3 Roadmap
Sec. 2 is an overview of the Lian framework’s workflow. Sec. 3

presents the language’s syntax, typing rules, and dynamic semantics.

Sec. 4 shows how the shallow simulation unfolds the program

into a sequential program, and formally proves the two programs

have the same behavior. Sec. 5 then describes how the compiler

finds an efficient way to partition the sequential program into

multiple chunks and generate a distributed program. Sec. 6 shows

how the deep simulation evaluates all dependent data between

chunks. It also proves that with these data, the distributed program

has the same behavior as if it was run without distribution. Finally,

Sec. 7 studies the effectiveness of the framework for distributing

the computations of various benchmarks.

2 Lian Design Overview
Figure 2 shows the architecture and workflow of the Lian frame-

work. The user first writes a program in Ou. Upon invocation, the

compiler parses and typechecks the program. The Ou type system

enforces non-interference over the security lattice given in Figure 3.

This lattice specifies non-interference along two dimensions:

i the public or private nature of the information; and

ii the knowledge level of the information (i.e., if the information

is available at compile time, distribution time or run time)

Accordingly, the lattice defines seven security domains: public pub×
{𝐾0, 𝐾1, 𝐾2}, committed and authenticated pvt × {𝐾1, 𝐾2}, and
prover-local plc × {𝐾1, 𝐾2}. As syntactic sugar, we write pub0 for

(pub, 𝐾0) and similarly for the rest of the lattice. The variables in

the public domain are known by both the prover and the verifier,

the variables in the prover-local domain are only known by the

3

prover

program.ou

parse and
typecheck

shallow
simulation

part0

ZKP

part1 part𝜅… part0 part1 part𝜅…

deep
simulation

verifier

partition

non-interference

PBO/ILP
optimization

private
inputs

extended
witnesses public

randomness

inlining and
unrolling

atomic
processing

live variable
analysis

Figure 2: The Lian framework, beginning with anOu program and
ending in binaries for an implementation of a ZKP protocol. Square
blocks with light text identify the compiler components: the operations

(blue) and their underlying methods (green). Dark text indicates a program

or protocol: the Ou program (purple semi-rounded rectangle), compiled

substatement binaries (gold rounded rectangles), and the ZKP protocol itself

(light blue diamond). Corresponding knowledge levels are displayed as well.

prover, and the variables in the authenticated domain are only

known by the prover but the verifier holds a commitment to them.

Since values known at compile time can only be public, (pvt, 𝐾0)
and (plc, 𝐾0) do not exist.

The authenticated and prover-local variables contain informa-

tion computed from the prover’s secret inputs. Public variables

are usually used to guide the program’s execution, either deter-

ministically as iterators or fixed constants, or as verifier-provided

randomness. In a valid Ou program every variable is annotated

by the security label of a position in the lattice.
1
For example, in

Figure 1 pub0 annotates the public matrix size constant S that

is known at compile time. In comparison, further up the lattice

pvt2 = (pvt, 𝐾2) annotates w, which depends on both the prover’s

committed private values (M2, necessitating pvt) and on the veri-

fier’s public randomness (s, necessitating 𝐾2).
The security lattice enforces that the private and prover-local do-

mains’ information never flow into the public domain except by ex-

plicit lowering through a reveal operation. This non-interference

property [22, 35] allows the safe partial execution of the program

during compile time (the shallow simulation), as the control flow

can be pre-determined. The inclusion of the knowledge levels in

the security lattice is essential to guaranteeing that reveal opera-

tions and public verifier-randomness are safely handled under the

non-interference guarantee.

Once typechecking completes shallow simulation commences.

Shallow simulation yields a sequential program consisting of a flat-

tened sequence of operations through loop unrolling and function

inlining. With two exceptions, every instruction in the original

1
The parser accepts unannotated declarations, which are interpreted as pub0.

pub0

pub1 pvt1 plc1

pub2 pvt2 plc2

reveal commit

reveal commit

announce

announce

Figure 3: Security Lattice

Ou program forms its own independent block in this sequential

program: the constituent instructions of functions decorated by

the atomic keyword are combined into a single block, as are all

𝐾2-annotated variables. In both cases, this mapping enforces they

be treated as one cumulative ‘instruction’ for the purposes of parti-

tioning. In Figure 1 for example, the suffix of the program beginning

with the first mmult_pubvec call on L19 will be condensed, thereby

guaranteeing the security of the parallel composition in the pres-

ence of public randomness.

If the user sets 𝜅 = 1, so that only a single partition is desired,

then this sequential program will be directly compiled into the ZK

statement as specified by the backend. However, usually 𝜅 > 1

as the developer desires parallelization, and we generally assume

this to hold through the remainder of our discussion. The Lian
compiler next conducts live variable analysis to track dependencies

among the blocks and builds a corresponding directed acyclic graph

𝐺 = (𝑉 , 𝐸). An edge (𝑖, 𝑗) ∈ 𝐸 captures that 𝑗-th instruction block

depends on some information computed in the 𝑖-th instruction

block. For example, in Figure 1 the commit(M) on L37 depends on

the mmult_plcmx block on L36.

In order to obtain efficient paritions, the results of the live vari-

able analysis are used to decorate𝐺 with both edge and node labels,

each indicating a form of cost to the optimality of any partition.

Nodes in𝐺 are labeled with their computation cost, which models

the time required by the prover and verifier to execute the block’s

proving or verification operations in the chosen ZKP protocol back-

end. Edges are labeled with the cutting cost, which models the com-

munication cost required to reconcile the state of the blocks across

compute nodes in the cluster. The latter is linear to the operation’s

inbound dependent data. We assume that cutting and computation

costs are directly comparable through some scaling factor (𝛼), but

otherwise omit that detail as it is irrelevant to the function of our

compiler.

Lian next uses combinatorial optimization to find the efficient-

cuts to partition𝐺 . This optimization problem is most easily under-

stood as an ILP, though as the constituent variables are all Booleans

it is amenable to representation as a PBO problem as well.

We formally give the opt(·) function for this problem, as well

as all of its constraints, in Sec. 5.2. Informally, the objective can be

understood as the maximum of the cumulative computation costs of

each partition, plus the sum of all cutting costs on edges bisected by

the 𝜅 − 1 cuts (needed to create the user-specified 𝜅 chunks). Users

can adjust the parameters of the ILP/PBO instances or objective

functions to align with different ZK backends and relevant metrics.

4

The partitioned program is compiled into binaries for the chosen

ZKP protocol backend. As Lian is designed to use commit-and-prove

ZK protocols as a black box without any intern changes of them,

our highly adaptable framework can support a wide range of back-

ends, including the NIZK protocols obtained via the Fiat-Shamir

transform [5]. These binaries are then sent to any and all individual

provers and verifiers. All computation up to this point is based

only on public 𝐾0 information, and so the binaries may be freely

distributed and reused. However, for the programs to run in parallel,

the dependent values between partitions must be computed ahead

of time. This is the deep simulation. The prover uses their private

information to simulate execution of each substatement program,

and saves the output values of each one that then become the inputs

to others. These output values are the ‘extended witnesses’ of Fig-

ure 2. For example, in Figure 1 a cut at L12 would make each entry

in M an extended witness. After deep simulation completes, the

prover can, with any verifier, execute the ZKP protocol by running

their binaries in parallel and connecting each binary to the other

party’s running copy over the network (i.e., part0 to part0, part1
to part1, and so on up to part𝜅).

Finally, after all the chunks have been checked in parallel, their

inputs and outputs must be reconciled to check consistency of

variables passed across the cuts. This step is essential, otherwise the

prover could violate soundness by inconsistently computing their

extended witnesses, so that, e.g., some variable 𝑡 = 0 in one partition

but 𝑡 = 1 in another. Therefore the runtime of the proving is not

only a function of how large each of the partitioned substatements

are, but also of how much data must be communicated amongst the

compute cores during this consistency checking step – justifying its

inclusion in the optimization objective. Lian automatically compiles

this reconciliation step into the binaries themselves, so it requires

no additional expertise on behalf of the verifier.

3 Ou Language

3.1 Language Syntax
Figure 4 demonstrates Ou’s syntax. Note that we use 𝑎+ as short-

hand for one or more non-terminals separated by commas like

𝑎1, · · · , 𝑎𝑛 , and use 𝑎∗ to represent zero or more non-terminals like-

wise. A program consists of a collection of struct declaration (𝑠𝑑),

function declaration (𝑓 𝑑), and external function declaration (𝑓 𝑥)

statements. There must exist a main function acting as the entry

point to the entire program. The syntax is very similar to many

imperative languages, except for the addition of security levels ℓ to
label primitive types and annotations 𝜂 to label certain functions.

Each atomic type 𝜏 is annotated with a security level ℓ . Arrays

have both a 𝜏 indicating their elements’ type, as well as an ℓ indicat-

ing their access level. The access level can be viewed as the security

level of indexes. A struct’s type only mentions its name, and not its

fields, so that we can support recursive struct definitions.

There are two different kinds of expressions: L-expressions (𝜖)

and R-expressions (𝑒). An L-expression refers to a memory loca-

tion like a variable 𝑥 , an array index 𝜖 [𝑒], a struct field 𝜖.𝑙 , or a

dereferenced pointer ∗ 𝑒 . An R-expression represents a value like

an integer, float, or Boolean constant; the calling of a builtin func-

tion, array constructor, or struct constructor; or the loading of an

L-expression or a pointer to an L-expression. When constructing an

ℓ ::= pub0 | pub1 | pub2 | pvt1 | pvt2 | plc1 | plc2
𝜏 ::= ℓ int | ℓ bool | ℓ float | unit | 𝜏 [ℓ num] | struct 𝑠 | 𝜏 ∗

𝑒 ::= ℓ num | ℓ true | ℓ false | null | tt | (𝑒)
| 𝔣(𝑒∗) | ℓ {𝑒+} | {(.label = 𝑒)+} | 𝜖 | & 𝜖

𝜖 ::= 𝑥 | 𝜖 [𝑒] | 𝜖.label | ∗ 𝑒
𝑐 ::= 𝜏 𝑥 = 𝑒 | 𝜖 = 𝑒

| 𝜏 𝑥 = 𝑓 (𝑒∗) | 𝑐1; 𝑐2 | {𝑐} | assert 𝑒
| if 𝑒 then 𝑐1 else 𝑐2 | while 𝑒 do 𝑐
| return 𝑒 | return | break | continue

𝜂 ::= normal | atomic | box1 | box2 | plocal1 | plocal2
𝑠𝑑 ::= struct 𝑠 = {(𝜏 label)+}
𝑓 𝑑 ::= 𝜂 𝜏 𝑓 ((𝜏 𝑥)∗){𝑐}
𝑓 𝑥 ::= 𝜂 𝜏 𝑓 ((𝜏)∗)
𝑝𝑟𝑜𝑔 ::= (𝑠𝑑 |𝑓 𝑑 |𝑓 𝑥)∗

Figure 4: Syntax of the Ou language

array ℓ {𝑒0, . . . , 𝑒𝑛−1}, the user has to specify its access level. The

user can also write normal binary and unary operators, including

typecasting following the arrows in Figure 3, and all typical arith-

metic operations on integers, floats, and Booleans, but Lian will

automatically convert them into builtin function calls. For exam-

ple, given a variable x of type pvt1 int and a variable y of type

pub0 int, x + y will be automatically rewritten into the expression

pvt1_int_add(x, pvt1_int_of_pub0(y)).
A command 𝑐 can be a variable declaration, an assignment, the

calling of a user-defined function, conditional branching, a while
loop, a sequence of commands 𝑐1; 𝑐2, a block of commands, return-
ing from a function, or break-ing out of a loop.

Note the syntax treats builtin functions and user-defined func-

tions differently. A builtin function 𝔣 can be called in expressions

freely, while a user-defined function 𝑓 has to be received immedi-

ately by a variable. This distinction is needed because all builtin

functions are pure while user-defined functions can have side-

effects. As shallow simulation will reorder computations, having

side-effects in expressions can alter behavior. We do still allow call-

ing user-defined functions freely in any expression, but just like in

C the programmer cannot assume any execution order as Lian will

automatically rewrite the code to extract these calls.

Each function also has an annotation 𝜂 which enforces restric-

tions on its body. Most common are normal functions (the parser
interprets unannotated functions as normal) which only permit

branching on pub0 Boolean expressions. An atomic function is

similar, except that shallow simulation will not unfold its body. To

branch on a pub1 value, the user must write the code inside a box1
function, while box2 is similar except for additionally allowing

branching on pub2 variables. Functions annotated by plocal1 or
plocal2 are prover-local functions, which only manipulate plc1
or plc2 values respectively. We call functions annotated by box or

plocal sandboxed functions, as the type system enforces restric-

tions to isolate their effects. We further elaborate in Sec. 3.2.

Before typechecking, Lian first scans the program and collects

some top-level definitions: Θ maps a struct name 𝑠 to its defini-

tion {𝑙1 : 𝜏1, 𝑙2 : 𝜏2, . . . }. Λ𝑢 maps a user-defined function name 𝑓

to its definition or declaration. When 𝑓 is defined, Λ𝑢 (𝑓) is like
internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏1 𝑥𝑛) → 𝜏, 𝑐) consisting of its annota-

tion, parameter list, return type, and function body; When 𝑓 is

5

external, Λ𝑢 (𝑓) records only external (𝜂, (𝜏1, . . . , 𝜏1) → 𝜏). Note
the language does not support global variables, so the prover can

only use external functions to communicate her secret with the

program. In addition, the language has builtin functions’ typing in-

formation Λ𝑏 , which map a builtin function name 𝔣 to its signature

(𝜏1, . . . , 𝜏𝑛) → 𝜏 . Builtins do not have an explicit function body 𝑐 ,

but in Sec. 3.3 we will assign each a math interpretation L𝔣M.
In order to ensure the security of ZKP programs, it is crucial

for users to label witness variables as pvt accurately. Failing to

do so can lead to information leakage. Lian offers provably-sound

typing rules that enable users to implement secure Ou programs.

By implementing a type checker for these rules, Lian can identify

and report any errors resulting from incorrect usage of security

levels or annotations that violate the typing rules.

3.2 Typing Rules
Figure 5 demonstrates the language’s typing rules. Each typing rule

relies on the defined struct definitions Θ and function definitions

Λ𝑢 and Λ𝑏 . As these are all fixed we omit them from our written

rules for concision. We also rely on a typing environment Γ, which
is a list of scopes 𝛾1 · · ·𝛾𝑛 . Each scope 𝛾𝑖 maps variable names to

their types. All newly defined variables reside in the first scope 𝛾1.

Note that though the compiler allows the same name to be defined

in different scopes, for clarity our discussion assumes that names

never conflict.

Typing orders. We say ℓ1 ≤ ℓ2 if there’s a path from ℓ1 to ℓ2 in

Figure 3. We say a type 𝜏 is wellformed if:

• it is an atomic type like ℓ int or ℓ bool;
• it is struct 𝑠 such that 𝑠 is defined in Θ and the types of all its

fields are wellformed; or

• it is an array of type 𝜏 [ℓ 𝑛] such that 𝜏 is wellformed and ℓ is no

greater than any security level in 𝜏 .

For the last condition the relevant security levels include those of

the atomic type as well as the array’s access levels. Wellformedness

guarantees the values loaded from arrays are never less secure

than the access needed to load them. This restriction is important

for both shallow simulation and deep simulation as they need to

fully evaluate all 𝐾0 expressions and 𝐾1 expressions, respectively.

For example, if 𝑎[𝑒] loads a pub0 integer from array 𝑎 with pvt1
access, then shallow simulation does not have enough knowledge to

evaluate 𝑒 , thus it can not know which value is loaded. So although

𝑎[𝑒]’s type is pub0, the shallow simulation cannot evaluate it. To

make shallow and deep simulation behave as expected, we assume

all types in this paper are wellformed.

Typing expressions. For L-expressions, Γ ⊢𝐿 𝜖 : 𝜏, ℓ means in

the typing environment Γ an L-expression 𝜖 points to a value of

type 𝜏 , and the L-expression itself has access level ℓ . The access

level can help us determine whether an L-expression can be fully

evaluated during shallow simulation (pub0) or deep simulation

(pub1, pvt1 and plc1) or neither (pub2, pvt2 and plc2). Similarly,

for R-expressions, Γ ⊢𝑅 𝑒 : 𝜏 means an R-expression 𝑒 is of type 𝜏

in the typing environment Γ.
Note that in practice the Lian compiler is more forgiving than the

language’s strict typing rules, as it performs implicit type conver-

sion along the security lattice’s arrows. For example, an expression

𝑒 of type pub0 int can be used as a pvt1 int, and Lian will auto-

matically wrap it inside a casting function pvt1_int_of_pub0(e).

We also require all pointers to have pub0 access level. This re-
striction is important to the live variable analysis needed for par-

titioning. Suppose we were to allow a pointer 𝑝 to have a pvt1
access level: then shallow simulation could not evaluate the pointer

itself in order to determine which location is mutated after running

∗ 𝑝 = 𝑒 . This would mean all locations in the stack could potentially

be the address. Similarly, loading a value from ∗ 𝑝 would mean

any location could potentially be read. Therefore this restriction on

pointer access levels is needed to make the live variable analysis

yield meaningful results, rather than just concluding by labeling

all variables as live.

Typing commands.When typechecking a command 𝑐 which con-

stitutes a function’s body, we need its return type 𝜏𝑟 to guarantee

that each return command in 𝑐 yields a valid value. We also need

a set of branching security levels 𝐿𝑏 to guard all branching ex-

pressions inside 𝑐 . In normal and atomic functions, all branching
expressions have to be pub0, but prover-local and boxed functions

enforce fewer restrictions.

Typing a program. The type checker first checks all struct def-
initions, and makes sure there are no name collisions between

struct names and field names, and then checks each function’s

body. For a function definition 𝜂 𝜏 𝑓 (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛){𝑐}, we apply
the command’s typing rule on its body: Γ, 𝜏, 𝐿𝑏 ⊢ {𝑐} : Γ, where
Γ = {𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛} and 𝐿𝑏 is determined by 𝜂:

𝐿𝑏 =



{pub0} if 𝜂 is atomic or normal

{pub0, pub1} if 𝜂 is box1

{pub0, pub1, pub2} if 𝜂 is box2

{plc1} if 𝜂 is plocal1

{plc1, plc2} if 𝜂 is plocal2.

There are additional restrictions placed on sandboxed functions. We

require that plocal1 and box1 functions only modify external data

that is𝐾1 or𝐾2, and only return𝐾1 or𝐾2 results. Similarly plocal2
and box2 functions can only modify external data that is 𝐾2, and

only produce 𝐾2 results. The reason is similar to the restrictions on

arrays’ access levels: shallow simulation cannot execute plocal1 or
box1 functions, so it is infeasible to allow them to modify or return

any 𝐾0 data. If they could, simulation of any other computations

that rely on such data could not proceed after the function call.

We also restrict that plocal functions can only manipulate plc
data. Since all plocal functions only run on the prover’s side they

cannot include any pub or pvt values, as their use would require

the verifier’s participation.

To enforce the first restriction, we only need to examine the

function’s signature: all pointers passed into plocal1 and box1
functions should only point to 𝐾1 or 𝐾2 data, while all pointers

passed into plocal2 and box2 functions should only point to 𝐾2
data. The return types have similar restrictions. Since the language

does not support global variables, sandboxed functions can only

update external data via the pointers in the arguments. To enforce

the second restriction, we need to examine the entire function body

to make sure all expressions’ types only have plc annotations, and

the body only calls other plocal functions.

6

Γ ⊢𝐿 𝜖 : 𝜏, ℓ
𝑥 : 𝜏 ∈ 𝛾

𝛾 · Γ ⊢𝐿 𝑥 : 𝜏, pub0

Γ ⊢𝐿 𝜖 : 𝜏 [ℓ 𝑛], ℓ ′ Γ ⊢𝑅 𝑒 : ℓ int ℓ ≤ ℓ ′

Γ ⊢𝐿 𝜖 [𝑒] : 𝜏, ℓ
Γ ⊢𝐿 𝜖 : struct 𝑠, ℓ 𝑠 :𝑚 ∈ Θ 𝑙 : 𝜏 ∈𝑚

Γ ⊢𝐿 𝜖.𝑙 : 𝜏, ℓ
Γ ⊢𝑅 𝑒 : 𝜏 ∗

Γ ⊢𝐿 ∗ 𝑒 : 𝜏, pub0
Γ ⊢𝑅 𝑒 : 𝜏

Γ ⊢𝑅 ℓ 𝑛 : ℓ int
Γ ⊢𝐿 𝜖 : 𝜏, ℓ
Γ ⊢𝑅 𝜖 : 𝜏

Γ ⊢𝐿 𝜖 : 𝜏, pub0
Γ ⊢𝑅 & 𝜖 : 𝜏 ∗

∀𝑖 ∈ [0, 𝑛 − 1], Γ ⊢𝑅 𝑒𝑖 : 𝜏
Γ ⊢𝑅 ℓ {𝑒0, . . . , 𝑒𝑛−1} : 𝜏 [ℓ 𝑛]

𝔣 ↦→ ((𝜏1, . . . , 𝜏𝑛) → 𝜏) ∈ Λ𝑏 ∀𝑖 ∈ [1, 𝑛], Γ ⊢𝑅 𝑒𝑖 : 𝜏𝑖
Γ ⊢𝑅 𝔣(𝑒1, . . . , 𝑒𝑛) : 𝜏

Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐 : Γ′

𝛾 · Γ ⊢𝑅 𝑒 : 𝜏
𝛾 · Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝜏 𝑥 = 𝑒 : 𝛾 ∪ {𝑥 : 𝜏} · Γ

Γ ⊢𝑅 𝑒 : 𝜏 Γ ⊢𝐿 𝜖 : 𝜏, ℓ
Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝜖 = 𝑒 : Γ

𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

or 𝑓 ↦→ external (𝜂, (𝜏1, . . . , 𝜏𝑛) → 𝜏) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], 𝛾 · Γ ⊢𝑅 𝑒𝑖 : 𝜏𝑖
𝛾 · Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛) : 𝛾 ∪ {𝑥 : 𝜏} · Γ

Γ ⊢𝑅 𝑒 : ℓ bool
ℓ ∈ 𝐿𝑏

Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐1 : Γ1
Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐2 : Γ2

Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ if 𝑒 then 𝑐1 else 𝑐2 : Γ

Γ ⊢𝑅 𝑒 : ℓ bool
Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ assert 𝑒 : Γ

Γ ⊢𝑅 𝑒 : 𝜏𝑟
Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ return 𝑒 : Γ

Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐1 : Γ1 Γ1, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐2 : Γ2
Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐1; 𝑐2 : Γ2

Γ ⊢𝑅 𝑒 : ℓ bool ℓ ∈ 𝐿𝑏 Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ 𝑐 : Γ′

Γ, 𝜏𝑟 , 𝐿𝑏 ⊢ while 𝑒 do 𝑐 : Γ

Figure 5: Typing Rules

3.3 Dynamic Semantics
This section defines the dynamic semantics that apply if all secrets

are known. The semantics correspond to the program’s behavior

in the ideal world where it has enough knowledge to fully evaluate

all expressions into values and check if all assertions are satisfied.

We will use this semantics as a baseline to prove the simulation

and distribution are correct. The semantics rules are not surprising.

The detailed definitions are listed in appendix B.

R-values and L-values. We use 𝑣 to denote R-values (or “values”

for short) and 𝜇 to denote L-values. R-values can be atomic values

like Vunit and Vint ℓ 𝑛, an empty pointer Vnull, a pointer Vref 𝜇,
an array Varray ℓ 𝑎 where ℓ is the array’s access level and 𝑎 is a
mapping from indexes to R-values like {0 ↦→ 𝑣0, . . . , 𝑛 ↦→ 𝑣𝑛}, or
a struct Vstruct𝑚 where𝑚 is a mapping from label to R-values

like {𝑙0 ↦→ 𝑣0, . . . , 𝑙𝑛 ↦→ 𝑣𝑛}. An L-value is a reference to a memory

location: it can be Vvar 𝛼 that points to an alias, or Vindex 𝜇 ℓ 𝑖 that
refers to an array 𝜇’s index 𝑖 , or Vfield 𝜇 𝑙 that refers to a struct

𝜇’s field 𝑙 . An alias is used by the stack to disambiguate during

recursion, and can be viewed as a memory address.

𝑣 ::= Vunit | Vnull | Vref 𝜇
| Vint ℓ num | Vfloat ℓ num | Vbool ℓ bool
| Varray ℓ array | Vstruct map

𝜇 ::= Vvar 𝛼 | Vindex 𝜇 ℓ num | Vfield 𝜇 label
The program runs on a stack Ω, i.e., a list of frames𝜔1 ·𝜔2 · · ·𝜔𝑛 .

The last frame 𝜔𝑛 stores main’s variables. The stack grows with

nested function calls, and the top frame 𝜔1 stores the current func-

tion call’s local variables. Each frame 𝜔 is a map from aliases to

values. We use Ω[𝛼 ↦→ 𝑣] to denote adding a mapping 𝛼 ↦→ 𝑣 to

the top frame. Whenever a new variable 𝑥 is defined, Lian allocates

a unique alias new(𝑥) for it. This is useful when recursion occurs,

as the same variable 𝑥 might have different instances in the stack,

so we cannot bind their values to the same name 𝑥 . We also use

a function find(Ω, 𝑥) to find the latest alias allocated for 𝑥 in the

stack. Note that when 𝑥 is defined for the first time, new(𝑥) returns
𝑥 directly instead of allocating a new alias for it.

Given a stack Ω, we use a function load(Ω, 𝜇) to load the value

referred by 𝜇 in Ω, and use a function store(Ω, 𝜇, 𝑣) to compute

the updated stack after replacing the value at 𝜇 with 𝑣 . They both

search the entire stack from top frame to bottom instead of working

only with the top frame.

Semantics. The semantics look up the sets of user-defined func-

tions Λ𝑢 and builtin functions Λ𝑏 to interpret function calls. As

they are immutable, for concision we omit them from our rules.

Expressions: J𝜖KΩ
𝐿
computes L-expression 𝜖 in stack Ω and yields an

L-value, J𝑒KΩ
𝑅
evaluates R-expression 𝑒 and yields an R-value. Note

Lian assigns a mathematical interpretation L𝔣M for each builtin func-

tion 𝔣 which maps a tuple of R-values to an R-value. For example,

Lpvt1_int_addM(Vint pvt1 𝑛, Vint pvt1𝑚) = Vint pvt1 (𝑛 +𝑚)
is assigned by the compiler for integer addition.

Commands: (𝑐,Ω1) →𝐶 (𝑟,Ω2, 𝛽) means that running a command

𝑐 from a stack Ω1 yields a sequence of assertion results 𝛽 , a result 𝑟

which is either cont or ret 𝑣 , and a changed stack Ω2. Since the

command constitutes a function’s body, we use ret 𝑣 to mean the

function returns with 𝑣 and cont to mean it has not yet returned.

4 Shallow Simulation
Shallow simulation executes and unfolds the program with 𝐾0
knowledge to obtain a simplified sequential program. Lian will

attempt as much simplification as possible, and output all unknown

computations as a sequence of commands for later analysis and

partitioning. All normal and atomic functions will be executed,

but only the former’s execution history will be output, while the

latter will be output as indivisible calls. As sandboxed functions

rely on 𝐾1 or 𝐾2 knowledge, they will not be executed in shallow

simulation and will be kept in the generated sequential program.

4.1 Shallow Semantics
This section formalizes the shallow simulation’s behavior as a shal-
low semantics. Figure 6 shows its details. The actual implementation

uses several optimizations to speed up the simulation.

Symbolic values. To define the semantics of both shallow simula-

tion and deep simulation, we define symbolic values to represent

R-values not known during the simulation. We do so by redefining

the R-value constructor from Sec. 3.3 to support SVsym variants,

and also use symbolic stacks, which store symbolic values.

7

Builtin functions. During shallow simulation only a subset of the

builtin functions can be interpreted as the rest rely on either 𝐾1
or 𝐾2 knowledge. We use L𝔣M0 to denote a shallow simulateable

interpretation of a builtin function. It takes in a list of expressions

and yields an expression as the result. For example, we have the

interpretation Lpub0_int_addM0 (pub0 1, pub0 2) = pub0 3, while

pvt1_int_add ∉ L−M0 as it relies on 𝐾1 knowledge.
Semantics. J𝜖KΩ

𝐿0
= 𝜖 ′ means simplifying an L-expression 𝜖 in a

symbolic stack Ω with 𝐾0 knowledge results in an L-expression

𝜖 ′. These semantics simplify an L-expression instead of evaluating

it directly, as the stack may not contain enough information to

fully evaluate it to an L-value. Similarly, J𝑒KΩ
𝑅0

= 𝑒 ′ simplifies an

R-expressions.

When storing a simplified expression into the stack, we use a

partial function ⌊−⌋𝐿0 to evaluate an L-expression down to an L-

value, and a total function ⌊−⌋𝑅0
to evaluate an R-expression down

to a symbolic R-value. ⌊−⌋𝑅0
is able to be total because it replaces all

unknown subexpressions by SVsym. When loading a value from the

stack, we use a total function ⌈−⌉𝐿 to lift a symbolic L-value to an

L-expression, and a total function ⌈−,−⌉𝑅 to lift a symbolic R-value

to an R-expression and concretize any SVsym variables using the

appropriate L-value. See Figure 19.

We reuse load and store to load and store symbolic values to and

from the symbolic stack.

sload(Ω, 𝜖) =
{
⌈load(Ω, 𝜇), 𝜇⌉𝑅 when ⌊𝜖⌋𝐿0 = 𝜇
𝜖 otherwise

sstore(Ω, 𝜖, 𝑒) =
{
store(Ω, 𝜇, ⌊𝑒⌋𝑅0

) when ⌊𝜖⌋𝐿0 = 𝜇
Ω otherwise

When 𝜖 is not completely known, type wellformedness guarantees

that the symbolic value referred to by it must also be unknown, i.e.,
SVsym or an array or struct of unknown values. When so the value

to be stored must also be unknown, thus sstore behaves correctly

even when 𝜖 is not fully evaluated.

Commands: (𝑐,Ω1) ;𝐶 (𝑟,Ω2, ℎ) means simplifying a command 𝑐

in a symbolic stack Ω1 results in: a return status 𝑟 which is either

cont or ret 𝑒 , a new stack Ω2, and a sequence of history ℎ. We use

· to denote an empty history.

Shallow simulation does not have enough knowledge to simulate

a sandboxed function, thus it returns a symbolic value default(𝜏)
generated from the type 𝜏 . Also, the typing rule guarantees even

if a pointer is passed into the function, the pointed data must be

filled with SVsym. So no matter whether the function has side effect

or not, the symbolic stack remains unchanged.

Note that we have added two pseudo-commands push and pop into
the generated program. They help mark the points where a function

is called and returned, and their dynamtic semantics are just push-

ing and poping stacks. Though helpful for the compiler, ignoring

them does not change the program’s behavior as the alias mecha-

nism guarantees there will never be name conflicts. We introduces

them mainly as machinery to help us prove refinement.

Atomic function calls. The size of a generated program can be

very large as it is linear in the execution time. To reduce the chal-

lenge for partitioning, we allow users to annotate some functions

as atomic in order to contract the function call into one command

in the generated program. Atomic annotations are optional for

programs and are intended solely for optimization purposes. The

effectiveness of an atomic annotation depends on the user’s un-

derstanding of the program structure. If an atomic annotation is

inappropriate, it may increase the compilation time, but it will not
compromise the program’s security.

Their semantics are very similar to normal function calls, but

instead of generating a sequence of history, an atomic function

call 𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛) only yields one command in the history:

𝜏 𝛼 = 𝑓 (𝑒 ′
1
, . . . , 𝑒 ′𝑛) R 𝑆𝑅 W 𝑆𝑊 . Here we add a new kind of command

to encode atomic function calls, but its dynamic semantics are the

same as for normal function calls. The two extra sets 𝑆𝑅 and 𝑆𝑊
are only used to help perform live variable analysis.

𝑆𝑅 records a set of L-values defined before calling 𝑓 that may be

read during the function call, while 𝑆𝑊 records a set of L-values

defined before calling 𝑓 that may be updated during the function

call. They are collected during the simulation using functions from

Sec. 5.1: REF(𝑐) computes all L-values that may be read in command

𝑐; DEF(𝑐) computes all L-values that may be updated in 𝑐 .

One convenient fact about shallow simulation is that no pointer

dereference will appear in a generated program. It is a corollary of

a more essential property: shallow simulation fully evaluates all

expressions that only need 𝐾0 knowledge, including all pointers. In

Appendix C, we define normalized expressions to formally describe

this property to help prove the corrrectness of shallow simulation.

4.2 Correctness of Shallow Simulation
We start by defining a refinement function ℛ mapping R-values

to symbolic R-values. It replaces all non-pub0 atomic values with

SVsym. We overloadℛ to also represent the function that performs

the transformations to convert a stack into a symbolic stack.

ℛ(Vint ℓ 𝑛) =

{
SVint ℓ 𝑛 when ℓ = pub0

SVsym otherwise

ℛ(Vref 𝜇) = SVref 𝜇
ℛ(Varray ℓ 𝑎) = SVarray ℓ

⋃{𝑖 ↦→ ℛ(𝑎(𝑖))}
ℛ(Vstruct𝑚) = SVstruct

⋃{𝑙𝑖 ↦→ ℛ(𝑚(𝑙𝑖))}

See Figure 7. We also define a semantics J𝑟KΩ
𝑅
in order to evaluate

return statuses.

JcontKΩ𝑅 = cont Jret 𝑒KΩ𝑅 = ret J𝑒KΩ𝑅

Theorem 1. If (𝑐,Ω1) →𝐶 (𝑟,Ω2, 𝛽), then there exist 𝑟 ′ and ℎ s.t.

(𝑐,ℛ(Ω1)) ;𝐶 (𝑟 ′,ℛ(Ω2), ℎ)

and (ℎ,Ω1) →𝐶 (cont,Ω2, 𝛽) and J𝑟 ′KΩ2

𝑅
= 𝑟 .

Figure 7 demonstrates this theorem. Although shallow simulation

reorders some computations by simplifying 𝐾0 expressions and un-

folding the program, this theorem guarantees such reordering does

not change the behavior. We prove the theorem in Appendix C.2.

5 Statement Partitioning
The shallow simulation unfolds the original program into a sequen-

tial program ℎ = 𝑐1; . . . ; 𝑐𝑛 . The compiler then tries to find a way

to partition these commands into 𝜅 chunks so that the distributed

running time and the communication time are minimized. Sec. 5.1

8

𝑣 ::= SVunit | SVnull | SVref 𝜇
| SVint ℓ num | SVbool ℓ bool
| SVfloat ℓ num | SVsym
| SVarray ℓ array | SVstruct map

J𝑥KΩ
𝐿0

= find(Ω, 𝑥)
J𝜖 [𝑒]KΩ

𝐿0
= J𝜖KΩ

𝐿0
[J𝑒KΩ

𝑅0

]
J𝜖.𝑙KΩ

𝐿0
= J𝜖KΩ

𝐿0
.𝑙

J∗ 𝑒KΩ
𝐿0

= 𝜖 where J𝑒KΩ
𝑅0

= & 𝜖

Jℓ 𝑛KΩ
𝑅0

= ℓ 𝑛

J𝜖KΩ
𝑅0

= sload(Ω, J𝜖KΩ
𝐿0
)

J& 𝜖KΩ
𝑅0

= & J𝜖KΩ
𝐿0

J𝔣(𝑒1, . . . , 𝑒𝑛)KΩ𝑅0

=


L𝔣M0 (J𝑒1KΩ𝑅0

, . . . , J𝑒𝑛KΩ
𝑅0

)
when 𝔣 ∈ domL−M0

𝔣(J𝑒1KΩ𝑅0

, . . . , J𝑒𝑛KΩ
𝑅0

) o/w

⌈Vvar 𝛼⌉𝐿 = 𝛼

⌈Vindex 𝜇 ℓ 𝑛⌉𝐿 = ⌈𝜇⌉𝐿 [ℓ 𝑛]
⌈Vfield 𝜇 𝑙⌉𝐿 = ⌈𝜇⌉𝐿 .𝑙
⌈SVint ℓ 𝑛, 𝜇⌉𝑅 = ℓ 𝑛

⌈SVref 𝜇 ′, 𝜇⌉𝑅 = & ⌈𝜇 ′⌉𝐿
⌈SVsym, 𝜇⌉𝑅 = ⌈𝜇⌉𝐿

⌈SVarray ℓ 𝑎, 𝜇⌉𝑅 = ℓ {⌈𝑎(0), Vindex 𝜇 ℓ 0⌉𝑅, . . . }
⌈SVstruct𝑚, 𝜇⌉𝑅 = {.𝑙1 = ⌈𝑚(𝑙1), Vfield 𝜇 𝑙1⌉𝑅, . . . }

⌊𝛼⌋𝐿0 = Vvar 𝛼
⌊𝜖 [ℓ 𝑛]⌋𝐿0 = Vindex 𝜇 ℓ 𝑛 when ⌊𝜖⌋𝐿0 = 𝜇 and ℓ = pub0

⌊𝜖.𝑙⌋𝐿0 = Vfield 𝜇 𝑙 when ⌊𝜖⌋𝐿0 = 𝜇
⌊∗ (& 𝜖)⌋𝐿0 = 𝜇 when ⌊𝜖⌋𝐿0 = 𝜇

⌊ℓ 𝑛⌋𝑅0
=

{
SVint ℓ 𝑛 when ℓ = pub0

SVsym o/w

⌊& 𝜖⌋𝑅0
= SVref ⌊𝜖⌋𝐿0

⌊ℓ {𝑒0, . . . }⌋𝑅0
= SVarray ℓ

⋃{𝑖 ↦→ ⌊𝑒𝑖 ⌋𝑅0
}

⌊{.𝑙1 = 𝑒1, . . . }⌋𝑅0
= SVstruct

⋃{𝑙𝑖 ↦→ ⌊𝑒𝑖 ⌋𝑅0
}

⌊𝜖⌋𝑅0
= SVsym

⌊𝑓 (𝑒1 . . . 𝑒𝑛)⌋𝑅0
= SVsym

(𝑐,Ω) ;𝐶 (𝑟,Ω′, ℎ)
new(𝑥) = 𝛼 J𝑒KΩ

𝑅0

= 𝑒 ′

(𝜏 𝑥 = 𝑒,Ω) ;𝐶 (cont,Ω[𝛼 ↦→ ⌊𝑒 ′⌋𝑅0
], 𝜏 𝛼 = 𝑒 ′)

J𝜖KΩ
𝐿0

= 𝜖 ′ J𝑒KΩ
𝑅0

= 𝑒 ′

(𝜖 = 𝑒,Ω) ;𝐶 (cont, sstore(Ω, 𝜖 ′, 𝑒 ′), 𝜖 ′ = 𝑒 ′)
(return 𝑒,Ω) ;𝐶 (ret J𝑒KΩ

𝑅0

,Ω, ·)

(assert 𝑒,Ω) ;𝐶 (cont,Ω, assert J𝑒KΩ
𝑅0

)
J𝑒KΩ

𝑅0

= pub0 true (𝑐1,Ω) ;𝐶 (𝑟,Ω′, ℎ)

(if 𝑒 then 𝑐1 else 𝑐2,Ω) ;𝐶 (𝑟,Ω′, ℎ)

(𝑐1,Ω) ;𝐶 (cont,Ω1, ℎ1) (𝑐2,Ω1) ;𝐶 (𝑟,Ω2, ℎ2)
(𝑐1; 𝑐2,Ω) ;𝐶 (𝑟,Ω2, ℎ1;ℎ2)

new(𝑥) = 𝛼 𝜂 = normal
𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], J𝑒𝑖KΩ𝑅0

= 𝑒 ′
𝑖
∧ new(𝑥𝑖) = 𝛼𝑖

(𝑐,⋃{𝛼𝑖 ↦→ ⌊𝑒 ′
𝑖
⌋𝑅0

} · Ω) ;𝐶 (ret 𝑒, 𝜔 · Ω′, ℎ)
ℎ′ = (push;𝜏1 𝛼1 = 𝑒 ′

1
; . . . ;𝜏𝑛 𝛼𝑛 = 𝑒 ′𝑛 ;ℎ; pop 𝜏 𝛼 = 𝑒)

(𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) ;𝐶 (cont,Ω′[𝛼 ↦→ ⌊𝑒⌋𝑅0
], ℎ′)

new(𝑥) = 𝛼 𝜂 ∉ {normal, atomic}
𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

or 𝑓 ↦→ external (𝜂, (𝜏1, . . . , 𝜏𝑛) → 𝜏) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], J𝑒𝑖KΩ𝑅0

= 𝑒 ′
𝑖

Ω′ = Ω[𝛼 ↦→ default(𝜏)]
(𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) ;𝐶 (cont,Ω′, 𝜏 𝛼 = 𝑓 (𝑒 ′

1
, . . . , 𝑒 ′𝑛))

Figure 6: Shallow Semantics

Ω1 Ω2

ℛ(Ω1) ℛ(Ω2)

𝑐

𝑟, 𝛽

𝑐

𝑟 ′, ℎ

ℎ

cont, 𝛽

𝑟 ′

𝑟

Figure 7: Shallow Semantics Refinement
describes the live variable analysis algorithm that finds data de-

pendencies in the sequential program. Sec. 5.2 then describes how

Lian encodes the cut search problem and uses a solver to find the

efficient partition. Sec. 5.3 then explains how we generate the dis-

tributed program from the sequential program, the partition, and

the dependencies.

5.1 Live Variable Analysis
Lian performs live variable analysis on a sequential program ℎ =

𝑐1; . . . ; 𝑐𝑛 . The goal is to generate a dependency graph𝐷𝐺 = (𝐷𝑉, 𝐷𝐸)
where 𝐷𝑉 = {1 . . . 𝑛} and each edge (𝑖, 𝑗) ∈ 𝐷𝐸 is decorated with

a set of L-values DEP(𝑖, 𝑗) that may be read in 𝑐 𝑗 and may be ma-

nipulated in 𝑐𝑖 . We use ‘may’ rather than ‘will’ because shallow

simulation cannot determine all L-expressions’ values. Nonethe-

less, we can still conduct an over-approximate analysis using some

approximation functions. Note DEP(𝑖, 𝑗) is only meaningful when

𝑖 < 𝑗 , so DEP(𝑖, 𝑗) = ∅ when 𝑖 ≥ 𝑗 .

Appendix D defines two utility functions: REF(𝑐) computes the set

of L-values that may be read in 𝑐 , while DEF(𝑐) computes the set of

L-values that are newly defined or may be updated in 𝑐 . Recall that

we used these functions in Sec. 4.1.

Analysis Algorithm. The program is a sequence of commands

ℎ = 𝑐1; . . . ; 𝑐𝑛 . We start live variable analysis from its end and let

LIVE(𝑛) := ∅. We then scan from the end to the beginning and

compute unresolved dependent variables for each command 𝑐𝑖 .

LIVE(𝑖 − 1) = {𝜇 ↦→ 𝑗 ∈ LIVE(𝑖) | 𝜇 ∉ DEF(𝑐𝑖) ∪ REF(𝑐𝑖)}
∪ {𝜇 ↦→ 𝑖 | 𝜇 ∈ REF(𝑐𝑖)}

LIVE(𝑖) is a mapping from L-values to the commands that may

read them in the future. In the first line, if 𝑐𝑖 uses an L-value 𝜇

9

that is later dependent by 𝑐 𝑗 ,
2
then we can safely delete it from

LIVE(𝑖) and add that L-value as a dependency between 𝑐𝑖 and 𝑐 𝑗 .

However, 𝑐𝑖 may read other L-values, so in the second line we mark

all L-values from REF(𝑐𝑖) as unresolved and dependent on 𝑐𝑖 . Such

dependencies will eventually be resolved because every L-value is

part of a variable defined in the program, and the command that

defines the variable cannot read it. Now we can construct the graph

𝐷𝐺 by defining the dependency function:

DEP(𝑖, 𝑗) = {𝜇 | 𝜇 ↦→ 𝑗 ∈ LIVE(𝑖) ∧ 𝜇 ∈ DEF(𝑐𝑖) ∪ REF(𝑐𝑖)}
In order to capture all dependencies of and from a command, we

denote DEP(𝑖,−) := ⋃𝑛
𝑗=1 DEP(𝑖, 𝑗) and DEP(−, 𝑗) := ⋃𝑛

𝑖=1 DEP(𝑖, 𝑗).
It follows from our definition that 𝐷𝐺 is a directed acyclic graph,

i.e., 𝑖 ≥ 𝑗 =⇒ DEP(𝑖, 𝑗) = ∅. Any L-value dependent on 𝑐𝑖 must

either be read or written in 𝑐𝑖 , any L-value dependent by 𝑐 𝑗 must

be added into the live set during the scan, which can only happen

when it is read in 𝑐 𝑗 , so we have the following lemmas:

Lemma 2. DEP(𝑖,−) ⊆ DEF(𝑐𝑖) ∪ REF(𝑐𝑖).

Lemma 3. DEP(−, 𝑗) = REF(𝑐 𝑗).

We need to define a notion of similarity between stacks to rea-

son about the correctness of live variable analysis and program

distribution. Given two stacks Ω1 and Ω2 and a set of L-values

𝑆 , we say Ω1 and Ω2 are similar up to 𝑆 , denoted as Ω1 ≈𝑆 Ω2,

if (1) ∀𝜇 ∈ 𝑆, load(Ω1, 𝜇) = load(Ω2, 𝜇), and (2) the two stacks

have similar structures in terms of 𝑆 , i.e., every alias appearing in 𝑆

resides in the same frame in both stacks.

Theorem 4 shows the live variable analysis is correct. It says the

dependent L-values of 𝑐 𝑗 are enough to safely execute the command

and yield all values that are dependent later. It can be proven using

lemma 2 and 3, then prove the values in REF(𝑐 𝑗) are enough for 𝑐 𝑗
to execute and produce the desired behavior.

Theorem 4. If both (𝑐1; . . . ; 𝑐 𝑗−1,Ω) →𝐶 (cont,Ω 𝑗−1, 𝛽 𝑗−1) and
(𝑐 𝑗 ,Ω 𝑗−1) →𝐶 (cont,Ω 𝑗 , 𝛽), then

∀Ω′
𝑗−1,Ω 𝑗−1 ≈DEP(−, 𝑗) Ω

′
𝑗−1 =⇒

∃Ω′
𝑗 , (𝑐 𝑗 ,Ω

′
𝑗−1) →𝐶 (cont,Ω′

𝑗 , 𝛽) ∧ Ω 𝑗 ≈DEP(𝑗,−) Ω
′
𝑗 .

5.2 Efficient-Cut Search
The final intermediary pass of the compilation partitions the pro-

gram into 𝜅 chunks for parallel execution. Recall that after the

flattening during shallow simulation (Sec. 4) and the live variable

analysis (Sec. 5.1), Lian obtains a sequential program ℎ = 𝑐1; . . . ; 𝑐𝑛
and a dependency graph 𝐷𝐺 = (𝐷𝑉, 𝐷𝐸) where each edge (𝑖, 𝑗)
in 𝐷𝐸 is decorated with a set of dependent L-values DEP(𝑖, 𝑗). The
compiler then extracts a directed acyclic graph 𝐺 = (𝑉 , 𝐸) from
𝐷𝐺 capturing the dependency relation and the costs. Each node 𝑖

in𝑉 is decorated with 𝑐𝑖 ’s computation cost 𝑃𝐶𝑖 . An edge (𝑖, 𝑗) ∈ 𝐸
indicates 𝑐 𝑗 reads at least one L-value used last by 𝑐𝑖 , and is dec-

orated with the communication cost 𝐶𝑖 𝑗 and a cuttable bit 𝐵𝑖 𝑗 . If

there is a 𝐾2 L-value in DEP(𝑖, 𝑗), then 𝑐𝑖 and 𝑐 𝑗 must reside in the

same chunk, thus𝐶𝑖 𝑗 = ∞ and 𝐵𝑖 𝑗 = 0; Otherwise,𝐶𝑖 𝑗 equals to the

accumulated cutting cost of all 𝐾1 L-values in DEP(𝑖, 𝑗) and 𝐵𝑖 𝑗 = 1.

2
In traditional live variable analysis, a live variable is only resolved when it is modified

or defined, but here we also resolve it when it is read. This is a compromise to simplify

the efficient-cut search and to reduce cutting cost in most cases. See Appendix D.

We use combinatorial optimization constrained by 𝐺 to find the

efficient cutting of ℎ into 𝜅 chunks ⟨ℎsub
1
, ℎsub

2
, · · · , ℎsub𝜅 ⟩. We na-

tively write this optimization problem as an integer linear program

(ILP). However, the variables (though not the constants) it uses

are all Booleans, and therefore the objective can be interpreted as

a pseudo-Boolean function and optimized using pseudo-Boolean

optimization (PBO) as well.

We begin by defining 𝑢𝑏 = log(∑𝑛
𝑖=1 𝑃𝐶𝑖), the length of the cost

of the sequential computation.We next define a pair of matrices.Y ∈
{0, 1}𝑛×𝑛 , indicates the location of cuts: Y𝑖 𝑗 = 1 means that a cut

is made between the 𝑖-th and 𝑗-th instruction block. X ∈ {0, 1}𝑛×𝜅
indicates the inclusion of instruction blocks into partitions: X𝑖𝑡 = 1

indicates the 𝑖-th instruction is in the 𝑡-th partition for 𝑡 ∈ [𝜅].
Finding the cheapest partitioning then reduces to solving the

optimization objective of

obj(𝐺) = min

X,Y

[∑
(𝑖, 𝑗) ∈𝐸

Y𝑖 𝑗 ·𝐶𝑖 𝑗 + max

𝑡 ∈[𝜅]

𝑛∑
𝑖=1

X𝑖𝑡 · 𝑃𝐶𝑖
]

subject to some consistency constraints on X and Y. In order to

soundly model this problem for constrained optimization without a

min-max objective requires, for PBO in particular, a bit of due care.

To convert the original objective into a PBO problem, here we add

a bit-vector COP to encode max𝑡 ∈[𝜅]
𝑛∑
𝑖=1

X𝑖𝑡 · 𝑃𝐶𝑖 . Our approach
is closely related to prior work in the literature on PBO for graph

partitioning [17]:

min

𝑢𝑏∑
𝑖=1

2
(𝑖−1) · COP𝑖 +

∑
𝑒∈𝐸

𝐶𝑒 · Y𝑒

𝑠 .𝑡 . ∀𝑖 ∈ [𝑛] :
𝜅∑
𝑡=1

X𝑖𝑡 = 1

∀(𝑖, 𝑗) ∈ 𝐸 : Y𝑖 𝑗 ≤ 𝐵𝑖 𝑗

∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ [𝜅] : X𝑖𝑡 + X𝑗𝑡 ≤ 2 − Y𝑖 𝑗
∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ [𝜅] : |X𝑖𝑡 − X𝑗𝑡 | ≤ Y𝑖 𝑗

∀𝑡 ∈ [𝜅] :
𝑢𝑏∑
ℓ=1

2
(ℓ−1) · COPℓ ≥

𝑛∑
𝑖=1

X𝑖𝑡 · 𝑃𝐶𝑖
∀𝑖 ∈ [𝑛], 𝑡 ∈ [𝜅] : X𝑖𝑡 ∈ {0, 1}
∀(𝑖, 𝑗) ∈ 𝐸 : Y𝑖 𝑗 ∈ {0, 1}
∀ℓ ∈ [𝑢𝑏] : COPℓ ∈ {0, 1}

The first constraint enforces that every instruction appears in ex-

actly one partition, the second that only cuttable edges are cut, and

the third and fourth together that if the 𝑖-th and 𝑗-th instruction

blocks are in different partitions, then any edge (𝑖, 𝑗) must be rep-

resented in the appropriate cut by Y𝑖 𝑗 . The final four constraints
simply enforce the Boolean character of the variables.

The fifth constraint is the most nuanced. It enforces that

COP𝑖 = the 𝑖-th bit of max

𝑡 ∈[𝜅]

𝑛∑
𝑖=1

X𝑖𝑡 · 𝑃𝐶𝑖

so that the computation in the objective function is correct. This

relationship can be encoded much more simply in a general ILP,

but is necessary for PBO compatibility. Notice that no constraints

force the partitions to be contiguous: even though ℎ is a sequential

program, the ℎsub𝑡 can have a much more complex structure, at the

10

cost of additional extended witnesses and so more communication

during the consistency checking.

With this encoding, Lian hands this optimization problem to

either a PBO or ILP solver (we use the Gurobi PBO solver in our

benchmarks). The solver’s output may not always be optimal in

practice, as it is limited by the available computational resources.

Consequently, the corresponding cut scheme we employ may also

be suboptimal. The compiler then converts the result into a function

chunk(−) such that chunk(𝑖) = 𝑡 if 𝑋𝑖𝑡 = 1 in the solver’s result.

Fact 1. chunk(𝑖) ≠ chunk(𝑗) =⇒ no 𝐾2 L-value in DEP(𝑖, 𝑗).

This follows directly from the PBO constraints.

5.3 Distributed Program
Given a sequential program ℎ = 𝑐1; . . . ; 𝑐𝑛 from the shallow simu-

lation, a dependency graph DEP(−,−) from live variable analysis,

and a partition chunk(−) from efficient-cut search, the compiler

generates 𝜅 programs for distributed execution among 𝜅 pairs of

prover and verifier computation cores.

The 𝑡-th chunk is a sequential program sync𝑡1 ; 𝑐𝑡1 ; sync𝑡2 ; 𝑐𝑡2 ; . . .
such that 𝑡 = chunk(𝑡1) = chunk(𝑡2) = . . . and 𝑡1 < 𝑡2 <

We denote a communication between the prover and the verifier

by sync𝑡 𝑗 . These communication rounds are used to share 𝐾0 or

authenticate 𝐾1 data that are needed by 𝑐𝑡 𝑗 , i.e., data pointed by

L-values in

⋃
chunk(𝑖)≠𝑡 DEP(𝑖, 𝑡 𝑗), as necessary. Deep simulation

(Sec. 6) computes all this dependent data and distribute it to all of

the prover cores. So each pair of prover core and verifier core can

run their chunk without the others’ involvement. At the end, all

verifier cores will work together to do a consistency check. The goal

is to make sure all data provided by the prover cores in sync𝑡 𝑗 are
indeed the same as produced by their dependent commands in other

chunks. Note the deep simulation only computes 𝐾0 and 𝐾1 values,

but Fact 1 guarantees all data needed for multipole chunks does

not contain 𝐾2 information, thus the deep simulation is enough.

6 Deep Simulation
The deep simulation executes the program with 𝐾0 and 𝐾1 knowl-

edge and evaluates all 𝐾0 and 𝐾1 values. The goal is to compute all

data that are dependent between different chunks in the distributed

program. It is similar to shallow simulation, except that (i) the defi-

nitions of all external functions are known, (ii) the knowledge level

is 𝐾1 instead of 𝐾0, and (iii) the purpose is to evaluate all 𝐾0 and all

𝐾1 values instead of unfolding the program.

6.1 Deep Semantics
This section formalizes deep simulation as a deep semantics. We

use the same symbolic values and stacks as in Sec. 4.1. We still use

⌈−,−⌉𝑅 and ⌈−⌉𝐿 to lift R-values and L-values to R-expressions and

L-expressions. But when converting in the reversed direction, we

use ⌊−⌋𝑅1
and ⌊−⌋𝐿1 instead of ⌊−⌋𝑅0

and ⌊−⌋𝑅0
. The only difference

is when converting atomic expressions. For example, ⌊ℓ 𝑛⌋𝑅1
=

SVint ℓ 𝑛 when ℓ ≤ plc1. We also define dload and dstore based

on these operations just like sload and sstore.
The semantics for L-expressions J𝜖KΩ

𝐿1
and R-expressions J𝑒KΩ

𝑅1

are also similar except for using ⌊−⌋𝐿1 and ⌊−⌋𝑅1
to interact with

the symbolic stack, allowing dereference expression to be not fully

evaluated, and use L𝔣M1 to interpret builtin functions. L−M1 is a su-
perset of L−M0 by adding more functions that can be computed with

𝐾1 knowledge. For example, Lpvt1_int_addM1 (pvt1 𝑛, pvt1𝑚) =
pvt1 (𝑛 +𝑚). Appendix E has their detailed definitions.

Commands’ semantics is also similar. (𝑐,Ω1) ↩→𝐶 (𝑟,Ω2) means

running command 𝑐 from stack Ω1 results in a return status 𝑟

which is either cont or ret 𝑒 and a new stack Ω2. Note it no longer

generates a history as the purpose of the deep simulation is merely

computing 𝐾0 and 𝐾1 values. Also, it executes normal, atomic,
plocal1 and box1 functions while ignores plocal2 and box2. The
detailed rules are in appendix E.

6.2 Correctness of Deep Simulation
Similar to shallow simulation, we define a refinement function𝒬
that converts R-values to symbolic R-values. This time we only

turn all values with pub2, pvt2 and plc2 security levels into SVsym.
This function is also overridden to apply on stacks.

Ω1 Ω2

𝒬(Ω1) 𝒬(Ω2)

𝑐

𝛽, 𝑟

𝑐

𝑟 ′

Figure 8: Deep Semantics Refinement

Theorem 5. If (𝑐,Ω1) →𝐶 (𝑟,Ω2, 𝛽) then there exists 𝑟 ′ where

(𝑐,𝒬(Ω1)) ↩→𝐶 (𝑟 ′,𝒬(Ω2)) and J𝑟 ′KΩ2

𝑅
= 𝑟 .

The proof is very similar to theorem 1 as their semantics are

similar except for the deep semantics is a bit simpler.

6.3 Correctness of Distribution
Sec. 5.3 shows the distributed program, and Sec. 6.1 evaluates all

dependent data that are needed in the sync steps. We now proves

these data are sufficient for the distributed program to terminate

with the same behavior as if running without distribution.

Given a sequential program 𝑐1; . . . ; 𝑐𝑛 generated by the shallow

simulation and an initial stack Ω0, suppose the program runs like

(𝑐𝑖 ,Ω𝑖−1) →𝐶 (cont,Ω𝑖 , 𝛽𝑖) without cutting. We focus on the 𝑡-th

chunk and align its execution like in Figure 9. Each command 𝑐 𝑗

corresponds to two stacks Ωpre
𝑗

and Ωpost
𝑗

. If chunk(𝑗) = 𝑡 , we first
run sync𝑗 to add external dependent values into Ωpost

𝑗−1 , then run

𝑐 𝑗 ; Otherwise, the stack remains unchanged.

Ωpost
𝑗−1 Ωpre

𝑗 Ωpost
𝑗

Ωpre
𝑗+1 Ωpost

𝑗+1
sync𝑗 𝑐 𝑗

cont, 𝛽

Ω 𝑗−1 Ω 𝑗 Ω 𝑗+1
𝑐 𝑗

cont, 𝛽

𝑐 𝑗+1

Figure 9: Execution in a Chunk

We need to prove that the following theorem holds, then theorem

4 ensures that 𝑐 𝑗 terminates with the same behavior.

Theorem 6. ∀𝑗 ∈ chunk−1 (𝑡),Ωpre
𝑗

≈𝑆 Ω 𝑗−1 where 𝑆 = DEP(−, 𝑗).

11

In appendix F, we prove this theorem by first defining a set of

L-values 𝜙𝑡
𝑗
that are internally dependent in the 𝑡-th chunk after 𝑐 𝑗 ,

then prove the stack in the uncut execution is always similar to the

𝑡-th chunk’s local stack up to this set. So the internal dependency is

handled, we then use theorem 5 to handle the external dependency

happening in sync, combining them together proves the theorem.

7 Evaluation

7.1 Evaluation Setup and Metrics
We use three metrics to evaluate the effectiveness of our tool:

• Compilation Time is the time used for shallow simulation, data

dependency analysis, and efficient-cut search. PBO solving during

the compilation is done via the Gurobi [28] PBO solver. We do

not include the time cost of deep simulation in the compilation

time, but deep simulation takes less than 0.5% of the compilation

time for all examples.

• Effective Ratio of a distributed zero knowledge program is de-

fined as the quotient of the cost of the sequential execution (total

costs of all instructions) by the cost of the distributed execution

(as the objective function in Sec. 5).When a program is distributed

to 𝜅 chunks, the closer the effective ratio is to 𝜅, the better the

distribution scheme is. We note that the optimal effective ratio

may be smaller than 𝜅, depending on the statement.

• Execution Time refers to the end-to-end performance. We com-

pileOu code to a VOLE-based ZK implementation (EMP [40]) and

measure the execution time of the resulting distributed programs.

We opt to use VOLE-based ZK backend as one of our motivations

is to work with large-scale applications. This choice allows us

to handle large statements without requiring costly machines

with large memory. In addition, our implementation can be easily

extended to support a rich set of ZK protocols, since EMP can be

connected to SIEVE-IR [37].

To evaluate our tool, we focus on two programs with different

features. All implementations in our language Ou can be found

in the supplementary material. As the effectiveness of Lian also

depends on the structure of the input program, we further provide

visualization for the program structure of gradient descent and

merkle tree in the appendix G.

(1) Gradient descent (GD) is an optimization algorithm for find-

ing the optimal model in machine learning. It works by itera-

tively updating the parameters of a model in the direction of

the negative gradient of the cost function concerning those pa-

rameters. We implement gradient decent for logistic regression

with 10 features.

(2) Merkle tree (MT) is a type of data structure used to verify

the integrity of large amounts of data. It breaks the data into

smaller blocks, then recursively hashes each pair of blocks to

create a new set of parent nodes using a cryptographic hash

function. By proving the correct computation of the Merkle

tree, the prover can prove they have the original data without

revealing the actual data to the verifier [33].

7.2 Evaluation of the Partition Quality
First, we demonstrate the changes in the effective ratio of the dis-

tribution scheme found by Lian for GD and MT program changes

with the size of programs and the number of cuts. GD takes a set

20 40 60 80
Machines

10

20

30

40

E
ff

ec
tiv

e
R

at
io

Iterations = 20
Iterations = 40

Iterations = 60
Iterations = 80

(a)

0 100 200 300 400
Iterations

10

20

30

40

E
ff

ec
tiv

e
R

at
io

Machines = 10
Machines = 20

Machines = 30
Machines = 40

(b)
Figure 10: The effective ratio for the distribution scheme found by
Lian for the GD programs with different numbers of iterations and
various numbers of machines (𝜅). With the increase in 𝜅, the effec-
tive ratio will reach the limit. A small-size program with a large
𝜅 will make the effective ratio of the distribution scheme much
smaller than 𝜅.

4 6 8 10
Machines

4

6

8

10

E
ff

ec
tiv

e
R

at
io

Blocks = 8
Blocks = 64

Blocks = 128

(a)

8 64 128
Input Blocks

4

6

8

10

E
ff

ec
tiv

e
R

at
io

Machines = 4
Machines = 6

Machines = 8
Machines = 10

(b)
Figure 11: The effective ratio for the distribution scheme found by
Lian for the MT programs is close to the numbers of machines (𝜅)
with different numbers of input blocks and 𝜅.

{(x, 𝑦)} as input, where x is a vector of size 𝑀 . Throughout this

section, we fix |{(x, 𝑦)}| to be 20 and |x| to be 10.

The effective ratio of Lian is affected by the length of the pro-

gram being distributed. The length of GD and MT programs are

decided by the number of iterations and the number of input blocks,

respectively. As shown in Figure 10b and Figure 11b, Lian can find

the distribution scheme that achieves the almost optimal effective

ratio for large programs for both GD and MT cases.

Figure 10a and Figure 11a demonstrate that the effective ratio

will increase with the number of machines rising when the number

of partitions is relatively small. Moreover, the results present an

upper bound of the effective ratio of the distribution scheme for a

given program. For example, the effective ratio for the GD programs

involving 80 iterations reaches 40 and stays unchanged regardless

of the increasing number of machines. Nevertheless, the results

show that our tool can utilize a high degree of parallelization.

7.3 Effectiveness of Atomic Annotation
In this section, we study the impact of annotation to the compilation

time and effective ratio. For all examples, we set the time limit of the

PBO solver to 10 minutes. In the program for GD, there is a function

called update_all(). This function updates the model’s parameter

using all data points and is called for each iteration. There is a

function called sha256_node() that computes the hash of internal

blocks in the MT program. We compare the compilation time and

effective ratio of GD programs (or MT programs) with and without

update_all()(or sha256_node()) being atomic while changing

𝜅 and the number of iterations.

12

10 20 30
Machines

0

500

1000

1500

2000

C
om

pi
la

tio
n

Ti
m

e
(s

)

10 20 30
Machines

10

20

30

#
E

ff
ec

tiv
e

R
at

io
With Atomic Annotation Without Atomic Annotation

Figure 12: Compiling takes significantly greater time for GD programs
when the function update_all() is not annotated with the atomic keyword.
On the other hand, atomic annotation rules out some feasible solutions, mak-
ing the distribution scheme slightly suboptimal.

10 15 20 25 30
Machines

600

610

620

630

C
om

pi
la

tio
n

Ti
m

e
(s

)

10 15 20 25 30
Machines

10

15

20

#
E

ff
ec

tiv
e

R
at

io

With Atomic Annotation Without Atomic Annotation

Figure 13: Adding annotation improves both the effectiveness of both com-
pilation and the effective ratio of the MT program for 32-block input.

The results of our evaluation show that the effects of adding

atomic annotations depend on the structure of the programs. Fig-

ure 12 and Figure 13 show a significant rise in the compilation

efficiency when adding annotation for both GD and MT programs.

The compilation time decreases by 1X to 60X with 𝜅 and the num-

ber of iterations varying. The price of efficient compilation is a

reduction in the effective ratio. The effective ratio for the annotated

program is smaller than the unannotated one for GD programs:

adding atomic annotation rules out a part of feasible solutions

which may contain the optimum.

Sometimes, adding annotation could even improve the effective

ratio, especially when the constrained time is far less than what is

needed to search for an efficient partition. Figure 13 demonstrates

an example of this case. We measure the effective ratio while setting

the time limit of the PBO solver to 600 seconds. The effective ratio

of the MT program for 32-block input with annotation is even better

than the one without annotation when the number of cuts increases.

One reason behind this result is the MT program structure. The

solution found for the annotated program is also optimum for the

unannotated one. Furthermore, with a part of the functions being

atomic, the search space of the PBO solving essentially shrinks.

For readers who are interested in additional information, we have

included the results of MT programs for various input sizes in the

appendix.

7.4 End-to-End Running Time
Our implementation is end-to-end: it can compile an Ou program

to 𝜅 pieces of EMP circuits. Most of the compiler’s implementation

is not tied to EMP, so it is flexible to connect with other backends.

We test the running time of the distributed circuits generated

from GD and MT. The testing machine is an AWS m5.large instance

with 2vCPU and 8GBmemory. For GD, we fix the number of dataset

to be 10, the size of each dataset to be 100 and iterate 200 rounds.

𝜅 1 5 10 20 40

runtime GD 681.55 s 147.91 s 71.23 s 38.06 s 21.90 s

runtime speedup GD 1 4.6 9.57 17.9 31.12

effective ratio GD 1 4.99 9.95 19.9 39.8

runtime MT 40.23 s 11.08 s 7.63 s 6.5 s 5.25 s

runtime speedup MT 1 3.63 5.27 6.19 7.66

effective ratio MT 1 4.95 9.75 19.47 38.63

Table 1: End-to-end running time of our framework.

For MT, we fix the data length to be 256. Table 1 shows with differ-

ent number of machines, the slowest part’s running time and the

overall speedup comparing to uncut execution time. We also list the

effective ratio estimated by the solver. For GD, the effective ratio

approximates the real speedup very well; For MT, the effective ratio

becomes inaccurate as each chunk’s runtime reduces. We think the

reason is mainly because the underlying circuits need a constant

setup time (around 4 seconds). After subtracting it, the speedup

becomes close to the effective ratio.

Acknowledgement
This work is supported by NSF awards CCF-2106845, CCF-2131476,

CCF-1763399, CNS-2016240, CNS-2236819, CCF-2219995, DARPA

under Contract No. HR001120C0087, and the Office of Naval Re-

search (ONR) of the United States Department of Defense through

an National Defense Science and Engineering Graduate (NDSEG)

Fellowship. The views, opinions, and/or findings expressed are

those of the author(s) and should not be interpreted as representing

the official views or policies of the Department of Defense or the

U.S. Government.

References
[1] [n. d.]. ZKProof Community Reference. https://docs.zkproof.org/reference.pdf.

[2] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. 2018. Non-Interactive

Zero-Knowledge Proofs for Composite Statements. In CRYPTO 2018, Part III
(LNCS, Vol. 10993). Springer, Heidelberg, 643–673.

[3] Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal Malkin. 2008.

Reputation Systems for Anonymous Networks. In PETS 2008 (LNCS, Vol. 5134).
Springer, Heidelberg, 202–218.

[4] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828). Springer,
Heidelberg, Virtual Event, 92–122.

[5] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In ACM CCS 93. ACM Press, 62–73.

[6] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474.

[7] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in

Zero Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043). Springer, Heidelberg,
90–108.

[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct

Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014. USENIX Association, 781–796.

[9] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In ESORICS 2008 (LNCS, Vol. 5283).
Springer, Heidelberg, 192–206.

[10] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda: De-

centralized Cryptocurrency at Scale. Cryptology ePrint Archive, Report 2020/352.

https://eprint.iacr.org/2020/352.

[11] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. 2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the

Discrete Log Setting. In EUROCRYPT 2016, Part II (LNCS, Vol. 9666). Springer,
Heidelberg, 327–357.

13

https://docs.zkproof.org/reference.pdf
https://eprint.iacr.org/2020/352

[12] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and

Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 947–964.

[13] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent Advances in Graph Partitioning. Algorithm Engineering
(2016), 117–158.

[14] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 315–334.

[15] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián

Rodríguez. 2021. Lunar: A Toolbox for More Efficient Universal and Updatable

zkSNARKs and Commit-and-Prove Extensions. InASIACRYPT 2021, Part III (LNCS,
Vol. 13092). Springer, Heidelberg, 3–33.

[16] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS 2019.
ACM Press, 2075–2092.

[17] Sunil Chopra and Mendu R Rao. 1993. The partition problem. Mathematical
programming 59, 1 (1993), 87–115.

[18] Arthur C. Clarke. 2013. Profiles of the Future. Hachette UK. Originally 1962.

[19] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. 2022. Improving

Line-Point Zero Knowledge: TwoMultiplications for the Price of One. Cryptology

ePrint Archive, Report 2022/552. https://eprint.iacr.org/2022/552.

[20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2020. Line-Point Zero

Knowledge and Its Applications. Cryptology ePrint Archive, Report 2020/1446.

https://eprint.iacr.org/2020/1446.

[21] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J.

Weitzner. 2018. Practical Accountability of Secret Processes. In USENIX Security
2018. USENIX Association, 657–674.

[22] Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Models.

In 1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28,
1982. IEEE Computer Society, 11–20. https://doi.org/10.1109/SP.1982.10014

[23] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[24] Oded Goldreich, SilvioMicali, and AviWigderson. 1986. Proofs that Yield Nothing

But their Validity and aMethodology of Cryptographic Protocol Design (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, 174–187.

[25] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[26] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Argu-

ments. In ASIACRYPT 2010 (LNCS, Vol. 6477). Springer, Heidelberg, 321–340.
[27] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

EUROCRYPT 2016, Part II (LNCS, Vol. 9666). Springer, Heidelberg, 305–326.
[28] L Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual (2020). https:

//www.gurobi.com/

[29] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive

Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107). Springer,
Heidelberg, 569–598.

[30] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS 2013. ACM Press, 955–966.

[31] Benjamin Kreuter, abhi shelat, Benjamin Mood, and Kevin R. B. Butler. 2013.

PCF: A Portable Circuit Format for Scalable Two-Party Secure Computation. In

USENIX Security 2013. USENIX Association, 321–336.

[32] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 359–376.

[33] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO (Lecture Notes in Computer Science, Vol. 293). Springer,
369–378.

[34] Nicholas Pippenger and Michael J. Fischer. 1979. Relations Among Complexity

Measures. Journal of the ACM (JACM) 26, 2 (1979), 361–381.
[35] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow

Security. IEEE Journal on Selected Areas in Communications 21, 1 (2003), 5–19.
[36] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without

Trusted Setup. In CRYPTO 2020, Part III (LNCS, Vol. 12172). Springer, Heidelberg,
704–737.

[37] the DARPA SIEVE Program. 2022. SIEVE Intermediate Representation. https:

//github.com/sieve-zk/ir

[38] Riad S Wahby, Ye Ji, Andrew J Blumberg, Abhi Shelat, Justin Thaler, Michael

Walfish, and Thomas Wies. 2017. Full accounting for verifiable outsourcing. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2071–2086.

[39] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, 926–943.

[40] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty Computation Toolkit. https://github.com/emp-toolkit.

[41] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 1074–1091.

[42] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion

Stoica. 2018. DIZK: A Distributed Zero Knowledge Proof System. In USENIX
Security 2018. USENIX Association, 675–692.

[43] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,

Yongzheng Jia, Dan Boneh, and Dawn Song. 2022. zkBridge: Trustless Cross-chain

Bridges Made Practical. In ACM CCS 2022. ACM Press, 3003–3017.

[44] Yibin Yang, David Heath, Vladimir Kolesnikov, and David Devecsery. 2022. EZEE:

Epoch Parallel Zero Knowledge for ANSI C. Cryptology ePrint Archive, Report

2022/811. https://eprint.iacr.org/2022/811.

[45] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent

Polynomial Delegation and Its Applications to Zero Knowledge Proof. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 859–876.

A Example
Figure 14 shows a code snippet of the Merkle tree we used in the

benchmark. The prover uses a binary Merkle tree to compute the

hash of 𝑁 private data blocks. The merkle function computes the

hash of a segment of data blocks. Then the verifier calls verify
to verify the hash. When the tree is a leaf node, merkle calls

sha256_leaf to fetch a data block and hash it; When the tree

is a non-leaf node, merkle recursively computes its two subtrees’

hashes, then use sha256_node to compute the merged hash. The

input has 4 data blocks, and we cut the code into 2 fragments.

Here we annotate sha256_node and sha256_leaf as atomic,
and load_block as plocal1. So during the shallow simulation,

sha256_node and sha256_leafwill not be unfolded, and load_block
will be ignored and executed during the deep simulation.

Shallow simulation executes the program with 𝐾0 knowledge,

yielding a sequence as Figure 15. The recursive function merkle
is unfolded. Each variable is annotated with a unique number to

distinguish it from others with the same name. Line 1-5 computes

the hash of data block 0 and 1, line 6-11 computes the hash of data

block 2 and 3, line 13-14 merges them, then line 15 verifies it.

Notice in Figure 14 merkle, the recursion condition is a pub0
expression. This is necessary for the unfolding to proceed during

the shallow simulation phase. If there is any non-pub0 expression
involved in deciding the control flow, then 1) the shallow simulation

does not have enough knowledge to evaluate that expression so

it can not decide which branch to take, and 2) even if it uses the

prover’s knowledge to evaluate that expression, the information

will be leaked to the verifier via the generated programs.

Then live variable analysis generates a dependency graph as in

Figure 16. The ILP/PBO solver decides to cut it between lines 5 and

6, so the only dependency is hash5.
Now the compiler can already generate two programs as in

Figure 17. We only show the produce and sync functions here. Note

produce_5 in chunk 1 records a digest of all variables that are

produced by Figure 15’s line 5 for consistency check in the end.

Here it is hash5. Similarly, sync_6 records a digest of all variables

dependent by Figure 15’s line 6 after assigning values to them. But

we do not know hash5’s value yet, so we mark it using a question

mark. The code can already be distributed to individual verifiers,

who will count on the provers to supply encrypted hash5 during
the runtime. But the provers need to know these values before

interacting with the verifiers. So they perform deep simulation on

Figure 15’s program based on the secret input and find out hash5’s
value when reaching line 5.

14

https://eprint.iacr.org/2022/552
https://eprint.iacr.org/2020/1446
https://doi.org/10.1109/SP.1982.10014
https://www.gurobi.com/
https://www.gurobi.com/
https://github.com/sieve-zk/ir
https://github.com/sieve-zk/ir
https://github.com/emp-toolkit
https://eprint.iacr.org/2022/811

1 #define N 4
2 /* compute merkle hash of block[left , ..., right -1] */
3 pvt1 int[8] merkle(int left , int right) {
4 if (left + 1 >= right) {
5 pvt1 int[8] hash = sha256_leaf(left);
6 return hash;
7 }
8 else {
9 int mid = (left + right) / 2;
10 pvt1 int[8] hashL = merkle(left , mid);
11 pvt1 int[8] hashR = merkle(mid , right);
12 pvt1 int[8] hash = sha256_node (&hashL ,&hashR);
13 return hash;
14 }
15 }
16

17 plocal1 plc1 int [64] load_block(int block_id) { ... }
18

19 /* compute the hash of a block */
20 pvt1 int[8] sha256_block(pvt1 int [64] &data) { ... }
21

22 atomic void verify(pvt1 int[8] *hash) { ... }
23

24 /* compute the hash of a data block */
25 atomic pvt1 int[8] sha256_leaf(int block_id) {
26 /* prover loads and commits a block */
27 plc1 int [64] plc_block = load_block(block_id);
28 pvt1 int [64] block = {0};
29 for int i = 0; i < 64; i = i + 1; {
30 block[i] = commit(plc_block[i]);
31 }
32 pvt1 int[8] hash = sha256_block(block);
33 return hash;
34 }
35

36 /* compute the hash of two merged hashes */
37 atomic pvt1 int[8] sha256_node(
38 pvt1 int[8] *hashL , pvt1 int[8] *hashR) {
39 pvt1 int [64] block = {0};
40 /* merge two hashes */
41 for int i = 0; i < 8; i = i + 1; {
42 block[i] = hashL ->[i];
43 block[i+8] = hashR ->[i];
44 }
45 for int i = 16; i < 64; i = i + 1; {
46 block[i] = 0;
47 }
48 /* compute the hash of the merged results */
49 pvt1 int[8] hash = sha256_block(block);
50 return hash;
51 }
52

53 unit main() {
54 pvt1 int[8] hash = merkle(0, N);
55 verify (&hash);
56 return;
57 }

Figure 14: Merkle Tree Example
1 pvt1 int[8] hash1 = sha256_leaf (0);
2 pvt1 int[8] hashL1 = hash1;
3 pvt1 int[8] hash3 = sha256_leaf (1);
4 pvt1 int[8] hashR0 = hash3;
5 pvt1 int[8] hash5 = sha256_node (&hashL1 , &hashR0);
6 pvt1 int[8] hashL0 = hash5;
7 pvt1 int[8] hash7 = sha256_leaf (2);
8 pvt1 int[8] hashL3 = hash7;
9 pvt1 int[8] hash9 = sha256_leaf (3);
10 pvt1 int[8] hashR3 = hash9;
11 pvt1 int[8] hash11 = sha256_node (&hashL3 , &hashR3);
12 pvt1 int[8] hashR2 = hash11;
13 pvt1 int[8] hash13 = sha256_node (&hashL0 , &hashR2);
14 pvt1 int[8] hash0 = hash13;
15 verify (&hash0);

Figure 15: Merkle Tree after Shallow Simulation

151413

6

12

5

2

4

1

3

11

8

10

7

9

hash0hash13

h
a
s
h
L
0

h
a
s
h
R
2

hash5

h
a
sh
L
1

h
a
sh
R
0

hash1

hash3

hash11

h
a
sh
L
3

h
a
sh
R
3

hash7

hash9

Figure 16: Merkle Tree Dependency Graph

1 /* chunk 1 */
2 pvt1 int[8] hash1 = sha256_leaf (0);
3 pvt1 int[8] hashL1 = hash1;
4 pvt1 int[8] hash3 = sha256_leaf (1);
5 pvt1 int[8] hashR0 = hash3;
6 pvt1 int[8] hash5 = sha256_node (&hashL1 , &hashR0);
7 produce_5 ();
8 consistency_check ();
9

10 void produce_5 () {
11 add_out_digest (2, hash5);
12 }

1 /* chunk 2 */
2 pvt1 int[8] hash5;
3 sync_6 ();
4 pvt1 int[8] hashL0 = hash5;
5 pvt1 int[8] hash7 = sha256_leaf (2);
6 pvt1 int[8] hashL3 = hash7;
7 pvt1 int[8] hash9 = sha256_leaf (3);
8 pvt1 int[8] hashR3 = hash9;
9 pvt1 int[8] hash11 = sha256_node (&hashL3 , &hashR3);
10 pvt1 int[8] hashR2 = hash11;
11 pvt1 int[8] hash13 = sha256_node (&hashL0 , &hashR2);
12 pvt1 int[8] hash0 = hash13;
13 verify (&hash0);
14 consistency_check ();
15

16 void sync_6 () {
17 hash5 = ?;
18 add_in_digest (1, hash5);
19 }

Figure 17: Merkle Tree Generated Programs

Here the type system again guarantees the deep simulation can

proceed. For example, suppose there is any 𝐾2 value that is depen-

dent between two chunks, and it relies on the verifier’s randomness,

then the prover at the compile time can not guess this value, thus

it can not proceed.

In the end, chunk 1 and chunk 2 can run in parallel without any

communication. When both chunks’ execution finish, they will run

a consistency check together to make sure the hash5 used in chunk

2 is indeed produced by chunk 1’s execution.

Here we can see the live variable analysis and the cut searching

should find the minimal dependency between the two chunks that

guarantees the safe execution of both. Suppose the live variable

analysis fails to determine that hash5 is the dependency between

chunk 1 and chunk 2, then chunk 2’s line 4 will have undefined be-

havior. Suppose the cut searching algorithm considers hash1, hash3
and hash5 are all needed by chunk2, then we need to commit more

data in sync_6, which will slow down the runtime performance.

15

B Detailed Semantics
Fact 2.

((𝑐1; 𝑐2); 𝑐3,Ω) →𝐶 (𝑟,Ω′, 𝛽) ⇐⇒ (𝑐1; (𝑐2; 𝑐3),Ω) →𝐶 (𝑟,Ω′, 𝛽)

Proof.

(1) Suppose that (𝑐1,Ω) →𝐶 (ret 𝑣,Ω1, 𝛽). Then (𝑐1; 𝑐2,Ω) →𝐶

(ret 𝑣,Ω1, 𝛽), so ((𝑐1; 𝑐2); 𝑐3,Ω) →𝐶 (ret 𝑣,Ω1, 𝛽). If follows
as well that (𝑐1; (𝑐2; 𝑐3),Ω) →𝐶 (ret 𝑣,Ω1, 𝛽).

(2) Suppose both that (𝑐1,Ω) →𝐶 (cont,Ω1, 𝛽1) and (𝑐2,Ω1) →𝐶

(ret 𝑣,Ω2, 𝛽2). Then (𝑐1; 𝑐2,Ω) →𝐶 (ret 𝑣,Ω2, 𝛽1 · 𝛽2), so
((𝑐1; 𝑐2)𝑐3,Ω) →𝐶 (ret 𝑣,Ω2, 𝛽1 · 𝛽2). Also (𝑐2; 𝑐3,Ω1) →𝐶

(ret 𝑣,Ω2, 𝛽2), so (𝑐1; (𝑐2; 𝑐3),Ω) →𝐶 (ret 𝑣,Ω2, 𝛽1 · 𝛽2).
(3) Suppose (𝑐1,Ω) →𝐶 (cont,Ω1, 𝛽1), (𝑐2,Ω1) →𝐶 (cont,Ω2, 𝛽2)

and (𝑐3,Ω2) →𝐶 (𝑟,Ω3, 𝛽3). Then (𝑐1; 𝑐2,Ω) →𝐶 (cont,Ω2, 𝛽1·
𝛽2), so ((𝑐1; 𝑐2); 𝑐3,Ω) →𝐶 (𝑟,Ω3, 𝛽1 · 𝛽2 · 𝛽3). It follows as well
that (𝑐2; 𝑐3,Ω1) →𝐶 (𝑟,Ω3, 𝛽2 · 𝛽3), so (𝑐1; (𝑐2; 𝑐3),Ω) →𝐶

(𝑟,Ω3, 𝛽1 · 𝛽2 · 𝛽3).

C Detailed Shallow Simulation

C.1 Shallow Semantics
Here are some rules not listed in the main content.

(𝑐1,Ω) ;𝐶 (ret 𝑒,Ω1, ℎ)
(𝑐1; 𝑐2,Ω) ;𝐶 (ret 𝑒,Ω1, ℎ)

J𝑒KΩ
𝑅0

= pub0 false (𝑐2,Ω) ;𝐶 (𝑟,Ω′, ℎ)

(if 𝑒 then 𝑐1 else 𝑐2,Ω) ;𝐶 (𝑟,Ω′, ℎ)

J𝑒KΩ
𝑅0

= pub0 true

(𝑐; while 𝑒 do 𝑐,Ω) ;𝐶 (𝑟,Ω′, ℎ)
(while 𝑒 do 𝑐,Ω) ;𝐶 (𝑟,Ω′, ℎ)

J𝑒KΩ
𝑅0

= pub0 false

(while 𝑒 do 𝑐,Ω) ;𝐶 (cont,Ω, ·)

Here’s the dynamic semantics of the two new commands:

(push,Ω) →𝐶 (cont, ∅ · Ω, ⟨⟩)

J𝑒K𝜔 ·Ω
𝑅

= 𝑣

(pop 𝜏 𝛼 = 𝑒, 𝜔 · Ω) →𝐶 (cont,Ω[𝛼 ↦→ 𝑣], ⟨⟩)

As with the dynamic semantics, we can show that command

concatenation is associative.

Fact 3.

𝑆 ((𝑐1; 𝑐2); 𝑐3,Ω) ;𝐶 (𝑟,Ω′, ℎ) ⇐⇒ (𝑐1; (𝑐2; 𝑐3),Ω) ;𝐶 (𝑟,Ω′, ℎ).

The proof is similar to Fact 2.

We say an R-expression 𝑒 (or L-expression 𝜖) is normalized in

a symbolic stack Ω, denoted as rnorm(Ω, 𝑒) (or lnorm(Ω, 𝜖)), if all

its sub-expressions cannot be further simplified.

lnorm(Ω, 𝛼)
lnorm(Ω, 𝜖 [𝑒]) if lnorm(Ω, 𝜖) ∧ rnorm(Ω, 𝑒)
lnorm(Ω, 𝜖 .𝑙) if lnorm(Ω, 𝜖)

rnorm(Ω, ℓ 𝑛)
rnorm(Ω,& 𝜖) if lnorm(Ω, 𝜖)
rnorm(Ω, 𝜖) if lnorm(Ω, 𝜖) ∧ 𝜖 ∉ dom⌊−⌋𝐿0

or lnorm(Ω, 𝜖) ∧ load(Ω, ⌊𝜖⌋𝐿0) = SVsym
rnorm(Ω, ℓ {𝑒0, . . . }) if ∀𝑖, rnorm(Ω, 𝑒𝑖)
rnorm(Ω, {𝑙1 = 𝑒1, . . . }) if ∀𝑖, rnorm(Ω, 𝑒𝑖)
rnorm(Ω, 𝔣(𝑒1 . . . 𝑒𝑛)) if 𝔣 is a non-pub0 builtin function

and ∀𝑖, rnorm(Ω, 𝑒𝑖)
These definitions establish another helpful consequence.

Fact 4.

J𝑒KΩ𝑅0

= 𝑒 ′ =⇒ rnorm(Ω, 𝑒 ′) and J𝜖KΩ𝐿0 = 𝜖
′ =⇒ lnorm(Ω, 𝜖 ′).

Fact 5. No pointer dereference will appear in a generated program.

C.2 Proof of Theorem 1
Before the proof itself, we first present some simple lemmas about

interacting with the actual stack and the symbolic stack, and then

show two further lemmas about the correctness of simplifying

R-expressions and L-expressions.

Lemma 7. If ⌊𝜖⌋𝐿0 = 𝜇, then for any stack Ω, J𝜖KΩ
𝐿
= 𝜇.

The proof follows from structural induction on L-expressions.

Lemma 8. ℛ(load(Ω), 𝜇) = load(ℛ(Ω), 𝜇).

Lemma 9. ℛ(store(Ω, 𝜇, 𝑣)) = store(ℛ(Ω), 𝜇,ℛ(𝑣)).

Lemma 10. ℛ(Ω[𝛼 ↦→ 𝑣]) = ℛ(Ω) [𝛼 ↦→ ℛ(𝑣)].

Lemma 11. ℛ(𝜔 · Ω) = ℛ(𝜔) ·ℛ(Ω).

Lemma 12. load(Ω, 𝜇) = 𝑣 =⇒ J⌈ℛ(𝑣), 𝜇⌉𝑅KΩ
𝑅
= 𝑣 .

Lemma 13. If rnorm(ℛ(Ω), 𝑒), then ⌊𝑒⌋𝑅0
= ℛ(J𝑒KΩ

𝑅
).

Lemma 14. If lnorm(ℛ(Ω), 𝜖), then either 𝜖 ∉ dom⌊−⌋𝐿0 or ⌊𝜖⌋𝐿0 =
J𝜖KΩ

𝐿
.

Lemma 15. J𝑒KΩ
𝑅
= 𝑣 =⇒ ∃𝑒 ′, J𝑒Kℛ(Ω)

𝑅0

= 𝑒 ′ ∧ J𝑒 ′KΩ
𝑅
= 𝑣 .

Lemma 16. J𝜖KΩ
𝐿
= 𝜇 =⇒ ∃𝜖 ′, J𝜖Kℛ(Ω)

𝐿0
= 𝜖 ′ ∧ J𝜖 ′KΩ

𝐿
= 𝜇.

The two lemmas can be proven together by structural induction

on R-expressions and L-expressions. We discuss a few tricky cases

here.

R-expression 𝜖. Suppose J𝜖KΩ
𝑅
= 𝑣 , J𝜖KΩ

𝐿
= 𝜇 and 𝑣 = load(Ω, 𝜇).

Lemma 16 guarantees 𝜖 can be simplified to 𝜖 ′ where J𝜖Kℛ(Ω)
𝐿0

= 𝜖 ′

and J𝜖 ′KΩ
𝐿

= 𝜇. We want to prove there exists an expression 𝑒

such that J𝜖Kℛ(Ω)
𝑅0

= 𝑒 and J𝑒KΩ
𝑅
= 𝑣 . Note it is equivalent to prove

Jsload(ℛ(Ω), 𝜖 ′)KΩ
𝑅
= 𝑣 since J𝜖Kℛ(Ω)

𝑅0

= sload(ℛ(Ω), J𝜖Kℛ(Ω)
𝐿0

) =
sload(ℛ(Ω), 𝜖 ′). There are two cases:

(1) 𝜖 ′ ∉ dom⌊−⌋𝐿0 . Then sload(ℛ(Ω), 𝜖 ′) = 𝜖 ′. We can prove the

goal by J𝜖 ′KΩ
𝑅
= load(Ω, J𝜖 ′KΩ

𝐿
) = load(Ω, 𝜇) = 𝑣 .

16

𝑣 ::= Vunit | Vint ℓ num
| Vfloat ℓ num | Vbool ℓ bool
| Vnull | Vref 𝜇
| Varray ℓ array | Vstruct map

𝜇 ::= Vvar 𝛼 | Vindex 𝜇 ℓ num | Vfield 𝜇 label

J𝑥KΩ
𝐿
= Vvar find(Ω, 𝑥)

J𝜖 [𝑒]KΩ
𝐿
= Vindex J𝜖KΩ

𝐿
ℓ 𝑛

where J𝑒KΩ
𝑅
= Vint ℓ 𝑛

J𝜖.𝑙KΩ
𝐿
= Vfield J𝜖KΩ

𝐿
𝑙

J∗ 𝑒KΩ
𝐿
= 𝜇 where J𝑒KΩ

𝑅
= Vref 𝜇

Jℓ 𝑛KΩ
𝑅
= Vint ℓ 𝑛

J𝜖KΩ
𝑅
= load(Ω, J𝜖KΩ

𝐿
)

J& 𝜖KΩ
𝑅
= Vref J𝜖KΩ

𝐿

Jℓ {𝑒0, . . . , 𝑒𝑛−1}KΩ𝑅 = Varray ℓ
⋃{𝑖 ↦→ J𝑒𝑖KΩ𝑅 }

J𝔣(𝑒1, . . . , 𝑒𝑛)KΩ𝑅 = L𝔣M(J𝑒1KΩ𝑅 , . . . , J𝑒𝑛KΩ
𝑅
)

(𝑐,Ω) →𝐶 (𝑟,Ω′, 𝛽)

(𝜖 = 𝑒,Ω) →𝐶 (cont, store(Ω, J𝜖KΩ
𝐿
, J𝑒KΩ

𝑅
), ⟨⟩) (assert 𝑒,Ω) →𝐶 (cont,Ω, J𝑒KΩ

𝑅
) (return 𝑒,Ω) →𝐶 (ret J𝑒KΩ

𝑅
,Ω, ⟨⟩)

J𝑒KΩ
𝑅
= Vbool ℓ true (𝑐1,Ω) →𝐶 (𝑟,Ω′, 𝛽)

(if 𝑒 then 𝑐1 else 𝑐2,Ω) →𝐶 (𝑟,Ω′, 𝛽)

J𝑒KΩ
𝑅
= Vbool ℓ true

(𝑐; while 𝑒 do 𝑐,Ω) →𝐶 (𝑟,Ω′, 𝛽)
(while 𝑒 do 𝑐,Ω) →𝐶 (𝑟,Ω′, 𝛽)

J𝑒KΩ
𝑅
= Vbool ℓ false

(while 𝑒 do 𝑐,Ω) →𝐶 (cont,Ω, ⟨⟩)

new(𝑥) = 𝛼
𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], J𝑒KΩ
𝑅
= 𝑣𝑖 ∧ new(𝑥𝑖) = 𝛼𝑖

(𝑐,⋃{𝛼𝑖 ↦→ 𝑣𝑖 } · Ω) →𝐶 (ret 𝑣, 𝜔 · Ω′, 𝛽)
(𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) →𝐶 (cont,Ω′[𝛼 ↦→ 𝑣], 𝛽)

new(𝑥) = 𝛼
(𝜏 𝑥 = 𝑒,Ω) →𝐶 (cont,Ω[𝛼 ↦→ J𝑒KΩ

𝑅
], ⟨⟩)

(𝑐1,Ω) →𝐶 (ret 𝑣,Ω1, 𝛽)
(𝑐1; 𝑐2,Ω) →𝐶 (ret 𝑣,Ω1, 𝛽)

(𝑐1,Ω) →𝐶 (cont,Ω1, 𝛽1) (𝑐2,Ω1) →𝐶 (𝑟,Ω2, 𝛽2)
(𝑐1; 𝑐2,Ω) →𝐶 (𝑟,Ω2, 𝛽1 · 𝛽2)

Figure 18: Dynamtic Semantics

L-value(𝜇) L-expression(𝜖)

Symbolic R-value(𝑣) R-expression(𝑒)

⌈𝜇⌉𝐿

⌊𝜖⌋𝐿0

⌈𝑣, 𝜇⌉𝑅

⌊𝑒⌋𝑅0

Figure 19: Converting symbolic values and expressions.

(2) 𝜖 ′ ∈ dom⌊−⌋𝐿0 . Lemma 7 tells us ⌊𝜖 ′⌋𝐿0 = J𝜖 ′KΩ
𝐿

= 𝜇. So

sload(ℛ(Ω), 𝜖 ′) = ⌈load(ℛ(Ω), 𝜇), 𝜇⌉𝑅 which equals to ⌈ℛ(𝑣), 𝜇⌉𝑅
according to lemma 8. Then we finish the goal using lemma 12:

J⌈ℛ(𝑣), 𝜇⌉𝑅KΩ
𝑅
= 𝑣 .

R-expression & 𝜖. Suppose J& 𝜖KΩ
𝑅

= Vref 𝜇 and J𝜖KΩ
𝐿

= 𝜇.

Lemma 16 shows there exists 𝜖 ′ such that J𝜖Kℛ(Ω)
𝐿0

= 𝜖 ′ and J𝜖 ′KΩ
𝐿
=

𝜇. We want to prove J& 𝜖Kℛ(Ω)
𝑅0

= & 𝜖 ′ and J& 𝜖 ′KΩ
𝑅
= Vref 𝜇. The

first goal is direct from the definition. As for the second goal, by

definition J& 𝜖 ′KΩ
𝑅
= Vref J𝜖 ′KΩ

𝐿
= Vref 𝜇.

L-expression 𝜖 [𝑒]. Suppose J𝜖 [𝑒]KΩ
𝐿

= Vindex 𝜇 ℓ 𝑛, J𝜖KΩ
𝐿

=

𝜇 and J𝑒KΩ
𝑅

= Vint ℓ 𝑛. Lemma 15 and 16 guarantee 𝑒 and 𝜖

can be simplified to 𝑒 ′ and 𝜖 ′, respectively, where J𝑒Kℛ(Ω)
𝑅0

= 𝑒 ′,

J𝜖Kℛ(Ω)
𝐿0

= 𝜖 ′, J𝑒 ′KΩ
𝑅

= Vint ℓ 𝑛 and J𝜖 ′KΩ
𝐿

= 𝜇. By definition we

know J𝜖 [𝑒]Kℛ(Ω)
𝐿0

= 𝜖 ′[𝑒 ′]. Also J𝜖 ′[𝑒 ′]KΩ
𝐿
= Vindex 𝜇 ℓ 𝑛.

L-expression ∗ 𝑒. Suppose J∗ 𝑒KΩ
𝐿
= 𝜇 and J𝑒KΩ

𝑅
= Vref 𝜇. Lemma

16 shows there exists 𝑒 ′ such that J𝑒Kℛ(Ω)
𝑅0

= 𝑒 ′ and J𝑒 ′KΩ
𝑅
= Vref 𝜇.

Depending on whether 𝑒 ′ can be simplified or not, there are two

cases.

(1) 𝑒 ′ = & 𝜖 for some 𝜖 . Then J∗ 𝑒Kℛ(Ω)
𝐿0

= 𝜖 by definition. We also

know J𝜖KΩ
𝐿
= 𝜇 because J𝑒 ′KΩ

𝑅
= Vref 𝜇, so this case is proven.

(2) 𝑒 ′ can not be simplified. Then J∗ 𝑒Kℛ(Ω)
𝐿0

= ∗ 𝑒 ′ by definition.

Also J∗ 𝑒 ′KΩ
𝐿
= 𝜇 by definition.

We can finally prove theorem 1 by structural induction on com-

mands.

assert 𝑒. Suppose (assert 𝑒,Ω) →𝐶 (cont,Ω, 𝑣) and 𝑣 = J𝑒KΩ
𝑅
.

Lemma 15 guarantees there exists 𝑒 ′ such that J𝑒Kℛ(Ω)
𝑅0

= 𝑒 ′ and

J𝑒 ′KΩ
𝑅

= 𝑣 . We now have two subgoals: (assert 𝑒,ℛ(Ω)) ;𝐶

(cont,ℛ(Ω), assert 𝑒 ′) and (assert 𝑒 ′,Ω) →𝐶 (cont,Ω, 𝑣). Both
can be proven using semantics definitions.

𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛). Suppose (𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) →𝐶 (cont,Ω′[𝛼 ↦→
𝑣], 𝛽), new(𝑥) = 𝛼 , 𝑓 ↦→ (⟨𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛⟩ → 𝜏, 𝑐) ∈ Λ𝑢 , ∀𝑖 ∈
[1, 𝑛], J𝑒𝑖KΩ𝑅 = 𝑣𝑖 ∧ new(𝑥𝑖) = 𝛼𝑖 and (𝑐,⋃{𝛼𝑖 ↦→ 𝑣𝑖 } · Ω) →𝐶

(ret 𝑣, 𝜔 ·Ω′, 𝛽). For simplicity, let Ω𝑐 :=
⋃{𝛼𝑖 ↦→ 𝑣𝑖 }·Ω. By lemma

15 we know there exist 𝑒 ′
1
. . . 𝑒 ′𝑛 such that ∀𝑖 ∈ [1, 𝑛], J𝑒𝑖K

ℛ(Ω)
𝑅0

=

𝑒 ′
𝑖
∧ J𝑒 ′

𝑖
KΩ
𝑅

= 𝑣𝑖 . Use lemma 13 we know ⌊𝑒 ′
𝑖
⌋𝑅0

= ℛ(𝑣𝑖). Also
lemma 10 shows

⋃{𝛼𝑖 ↦→ ℛ(𝑣𝑖)} ·ℛ(Ω) = ℛ(⋃{𝛼𝑖 ↦→ 𝑣𝑖 } · Ω) =
ℛ(Ω𝑐). By induction hypothesis we know there exist ℎ and 𝑒

such that (𝑐,ℛ(Ω𝑐)) ;𝐶 (ret 𝑒,ℛ(𝜔 · Ω′), ℎ) and (ℎ,Ω𝑐) →𝐶

(cont, 𝜔 · Ω′, 𝛽) and Jret 𝑒K𝜔 ·Ω′
𝑅

= 𝑣 . Let ℎ′ := push;𝜏1 𝛼1 =

𝑒 ′
1
; . . . ;𝜏𝑛 𝛼𝑛 = 𝑒 ′𝑛 ;ℎ; pop 𝜏 𝛼 = 𝑒 , by semantics’ definition we can

prove (𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),ℛ(Ω)) ;𝐶 (cont,ℛ(Ω′) [𝛼 ↦→ 𝑣], ℎ′).
Now we just need to prove (ℎ′,Ω) →𝐶 (cont,Ω′[𝛼 ↦→ 𝑣], 𝛽).
Note for any 𝑗 ∈ [1, 𝑖), 𝛼 𝑗 will never appear in 𝑒𝑖 , so evaluating 𝑒𝑖
in ∅ · Ω is the same as evaluating it after defining 𝑥1, . . . , 𝑥𝑖−1. So
(𝜏1 𝑥1 = 𝑒1; . . . ;𝜏𝑛 𝑥𝑛 = 𝑒𝑛, ∅ ·Ω) →𝐶 (cont,Ω𝑐 , ⟨⟩). The induction

17

hypothesis already shows (ℎ,Ω𝑐) →𝐶 (cont, 𝜔 · Ω′, 𝛽). By defini-

tion we also know (pop 𝜏 𝛼 = 𝑒, 𝜔 · Ω′) →𝐶 (cont,Ω′[𝛼 ↦→ 𝑣], ⟨⟩).
We can prove the goal by concatenating these commands together.

𝜏 𝑥 = 𝑒. Suppose (𝜏 𝑥 = 𝑒,Ω) →𝐶 (cont,Ω[𝛼 ↦→ 𝑣], ⟨⟩), new(𝑥) =
𝛼 and 𝑣 = J𝑒KΩ

𝑅
. Lemma 15 guarantees there exists 𝑒 ′ such that

J𝑒Kℛ(Ω)
𝑅0

= 𝑒 ′ and J𝑒 ′KΩ
𝑅

= 𝑣 . By definition we know (𝜏 𝑥 =

𝑒,ℛ(Ω)) ;𝐶 (cont,ℛ(Ω) [𝛼 ↦→ ⌊𝑒 ′⌋𝑅0
], 𝜏 𝛼 = 𝑒 ′). So we only

need to prove ℛ(Ω[𝛼 ↦→ 𝑣]) = ℛ(Ω) [𝛼 ↦→ ⌊𝑒 ′⌋𝑅0
] and (𝜏 𝛼 =

𝑒 ′,Ω) →𝐶 (cont,Ω[𝛼 ↦→ 𝑣], ⟨⟩). The second one is direct from the

definition. As for the first one, by lemma 13 we know ⌊𝑒 ′⌋𝑅0
= ℛ(𝑣),

so ℛ(Ω) [𝛼 ↦→ ⌊𝑒 ′⌋𝑅0
] = ℛ(Ω) [𝛼 ↦→ ℛ(𝑣)] which is equal to

ℛ(Ω[𝛼 ↦→ 𝑣]) by lemma 10.

𝜖 = 𝑒. Suppose (𝜖 = 𝑒,Ω) →𝐶 (cont, store(Ω, 𝜇, 𝑣), ⟨⟩), J𝑒KΩ
𝑅
= 𝑣

and J𝜖KΩ
𝐿

= 𝜇. Lemma 15 and 16 show there exist 𝑒 ′ and 𝜖 ′ such

that J𝑒Kℛ(Ω)
𝑅0

= 𝑒 ′, J𝜖Kℛ(Ω)
𝐿0

= 𝜖 ′, J𝑒 ′KΩ
𝑅
= 𝑣 and J𝜖 ′KΩ

𝐿
= 𝜇. By defi-

nition we already know (𝜖 ′ = 𝑒 ′,Ω) →𝐶 (cont, store(Ω, 𝜇, 𝑣), ⟨⟩)
and (𝜖 = 𝑒,ℛ(Ω)) ;𝐶 (cont, sstore(ℛ(Ω), 𝜖 ′, 𝑒 ′), 𝜖 ′ = 𝑒 ′), so
we only need to prove sstore(ℛ(Ω), 𝜖 ′, 𝑒 ′) = ℛ(store(Ω, 𝜇, 𝑣)).
Depending on whether 𝜖 ′ can be fully evaluated or not, there are

two cases.

(1) If 𝜖 ′ ∉ dom⌊−⌋𝐿0 , then sstore(ℛ(Ω), 𝜖 ′, 𝑒 ′) = ℛ(Ω) also 𝜇 has
non-pub0 information, so the type wellformedness guarantees

the value pointed by it can not contain any pub0. So we know

ℛ(𝑣) is full of SVsym, so ℛ(store(Ω, 𝜇, 𝑣)) = ℛ(Ω).
(2) If 𝜖 ′ ∈ dom⌊−⌋𝐿0 , then lemma 14 tells us ⌊𝜖 ′⌋𝐿0 = 𝜇. Also

lemma 13 tells us ⌊𝑒 ′⌋𝑅0
= ℛ(𝑣). So sstore(ℛ(Ω), 𝜖 ′, 𝑒 ′) =

store(ℛ(Ω), 𝜇,ℛ(𝜇)) which equals to ℛ(store(Ω, 𝜇, 𝑣)) by
lemma 9.

Termination. Technically, we can not do structural induction on

while loops as they may not terminate. But since in the hypothesis

the command terminates with 𝑟 and 𝛽 , we can always find a ranking

function on stacks that reduces as the program executes.

D Detailed Live Variable Analysis
Recall that ⌊−⌋𝐿0 is a partial function as it may fail when the L-

expression refers to an array index with a non-𝐾0 access level. We

can, however, define a total function ⌊𝜖⌋∗
𝐿0

to compute the smallest

L-value with 𝐾0 access level that includes the result of 𝜖 .

⌊𝛼⌋∗
𝐿0

= Vvar 𝛼

⌊𝜖 [𝑒]⌋∗
𝐿0

=

{
𝜇 if ⌊𝜖 [𝑒]⌋𝐿0 = 𝜇
⌊𝜖⌋∗

𝐿0
otherwise

⌊𝜖.𝑙⌋∗
𝐿0

=

{
𝜇 if ⌊𝜖.𝑙⌋𝐿0 = 𝜇
⌊𝜖⌋∗

𝐿0
otherwise

Due to Fact 5 we can ignore dereferencing pointers. Let the set

prims(𝜇) contain all smallest L-values with 𝐾0 access level that

reside in 𝜇. We use prims(𝜇) to define two functions Lread(𝜖) and
Rread(𝑒) that collect all of the smallest 𝐾0 L-values from 𝜖 and 𝑒’s

subexpressions, respectively. We also define Pointed(𝑒) to collect

all of the smallest L-values with 𝐾0 access level that are pointed to

by 𝑒’s subexpressions. It is used to analyze a sandboxed function’s

arguments, as every pointer passed into a sandboxed function is

potentially read. We omit its definition as it is near identical to

Rread(𝑒) itself.
Lread(𝛼) = ∅
Lread(𝜖 [𝑒]) = Lread(𝜖) ∪ Rread(𝑒)
Lread(𝜖.𝑙) = Lread(𝜖)

Rread(ℓ 𝑛) = ∅
Rread(& 𝑒) = ∅
Rread(𝜖) = prims(⌊𝜖⌋∗

𝐿0
) ∪ Lread(𝜖)

Rread(𝔣(𝑒1, . . .)) =
⋃

Rread(𝑒𝑖)
Rread(ℓ {𝑒0, . . . }) =

⋃
Rread(𝑒𝑖)

REF(𝜏 𝛼 = 𝑒) = Rread(𝑒)
REF(𝜏 𝛼 = 𝑓 (𝑒1, . . .)) =

⋃(Rread(𝑒𝑖) ∪ Pointed(𝑒𝑖))
REF(𝜏 𝛼 = 𝑓 (𝑒1, . . .) R 𝑆𝑅 W 𝑆𝑊) =⋃

Rread(𝑒𝑖) ∪ 𝑆𝑅
REF(assert 𝑒) = Rread(𝑒)
REF(𝜖 = 𝑒) = Lread(𝜖) ∪ Rread(𝑒)

DEF(𝜏 𝛼 = 𝑒) = prims(Vvar 𝛼)
DEF(𝜏 𝛼 = 𝑓 (𝑒1, . . .)) = prims(Vvar 𝛼) ∪⋃

Pointed(𝑒𝑖))
DEF(𝜏 𝛼 = 𝑓 (𝑒1, . . .) R 𝑆𝑅 W 𝑆𝑊) = prims(Vvar 𝛼) ∪ 𝑆𝑊
DEF(assert 𝑒) = ∅
DEF(𝜖 = 𝑒) = prims(⌊𝜖⌋∗

𝐿0
)

Some simple facts about the ≈ relation.

Fact 6. Ω ≈𝑆1 Ω′ ∧ Ω ≈𝑆2 Ω′ =⇒ Ω ≈𝑆1∪𝑆2 Ω′.

Fact 7. ≈𝑆 is an equivalence relation.

Fact 8. Ω ≈𝑆1 Ω′ ∧ 𝑆2 ⊆ 𝑆1 =⇒ Ω ≈𝑆2 Ω′.

This lemma says executing a command does not change values

defined outside DEF(𝑐).

Lemma 17. ∀𝜇 ∉ DEF(𝑐), (𝑐,Ω) →𝐶 (cont,Ω′, 𝛽) =⇒ Ω ≈{𝜇 }
Ω′

D.1 Proof of Theorem 4
Here we restate the theorem:

If both (𝑐1; . . . ; 𝑐 𝑗−1,Ω) →𝐶 (cont,Ω 𝑗−1, 𝛽 𝑗−1) and (𝑐 𝑗 ,Ω 𝑗−1) →𝐶

(cont,Ω 𝑗 , 𝛽), then
∀Ω′

𝑗−1,Ω 𝑗−1 ≈DEP(−, 𝑗) Ω
′
𝑗−1 =⇒

∃Ω′
𝑗 , (𝑐 𝑗 ,Ω

′
𝑗−1) →𝐶 (cont,Ω′

𝑗 , 𝛽) ∧ Ω 𝑗 ≈DEP(𝑗,−) Ω
′
𝑗 .

This theorem indicates two facts about the live variable analysis:

(1) The variables dependent by 𝑐 𝑗 , i.e., DEP(−, 𝑗), are enough to

execute 𝑐 𝑗 , and

(2) When the variables in DEP(−, 𝑗) are the same in the starting

stacks, after executing 𝑐 𝑗 , the ending stacks are no different in

terms of DEP(𝑗,−).
These two facts allow a program chunk to safely execute with part

of the stack rather than reconstructing the entire stack.

Proof. Firstly, using lemma 3, we know Ω 𝑗−1 and Ω′
𝑗−1 are sim-

ilar up to REF(𝑐 𝑗). By the definition of REF(𝑐 𝑗), we know during

executing 𝑐 𝑗 , it only reads values from REF(𝑐 𝑗). Thus, the behavior
is also determined by them. We do not show detailed proof here.

So there must exist an ending stack Ω′
𝑗
where 𝑐 𝑗 can reach

from Ω′
𝑗−1 and Ω 𝑗 ≈DEF(𝑐 𝑗) Ω′

𝑗
. Now using lemma 17, we know

Ω 𝑗−1 ≈REF(𝑐 𝑗)−DEF(𝑐 𝑗) Ω 𝑗 and Ω′
𝑗−1 ≈REF(𝑐 𝑗)−DEF(𝑐 𝑗) Ω′

𝑗
. Since

18

Ω 𝑗−1 ≈REF(𝑐 𝑗) Ω
′
𝑗−1, we can use fact 7 and 8 to deriveΩ 𝑗 ≈REF(𝑐 𝑗)−DEF(𝑐 𝑗)

Ω′
𝑗
.

Finally, fact 6 allows us to combine the similarity between Ω 𝑗 and

Ω′
𝑗
in terms of DEF(𝑐 𝑗) and REF(𝑐 𝑗)−DEF(𝑐 𝑗) intoΩ 𝑗 ≈REF(𝑐 𝑗)∪DEF(𝑐 𝑗)

Ω′
𝑗
, then use lemma 2 we can prove Ω 𝑗 ≈DEP(𝑗,−) Ω

′
𝑗
.

Theorem 18. Using Theorem 4’s setting, if 𝑖 < 𝑗 < 𝑘 , then
Ω 𝑗−1 ≈DEP(𝑖,𝑘) Ω 𝑗 .

Proof. We will prove it using lemma 17 by showing each variable

in DEP(𝑖, 𝑘) does not occur in DEF(𝑐 𝑗), i.e., DEF(𝑐 𝑗) ∩ DEP(𝑖, 𝑘) = ∅.
By definition, if 𝜇 ∈ DEP(𝑖, 𝑘), then 𝜇 ↦→ 𝑘 ∈ LIVE(𝑖). We then use

the following lemma to prove 𝜇 ∉ DEF(𝑐 𝑗).

Lemma 19. 𝜇 ↦→ 𝑘 ∈ LIVE(𝑖) =⇒ ∀𝑗 ∈ [𝑖, 𝑘), 𝜇 ↦→ 𝑘 ∈
LIVE(𝑗).

This lemma is direct from the definition of LIVE(−): a depen-
dency 𝜇 ↦→ 𝑘 is added when analyzing 𝑐𝑘 and will stay in the live

set until 𝜇 is used in a command. Since it still exists in LIVE(𝑖), all
live sets between 𝑖 and 𝑘 must not resolve it.

Returning to the theorem, we know 𝜇 ↦→ 𝑘 ∈ LIVE(𝑗 − 1) using
this lemma. So by definition of LIVE(𝑗 − 1), 𝜇 ∉ DEF(𝑐 𝑗).

D.2 Compromise in Analysis
Note this section’s discussion assumes the reader has read Sec. 5.2.

One part of the efficient-cutting problem’s goal is to minimize the

sum of all chunk’s external dependencies. However, in many cases,

the cutting cost could be smaller. Consider

1 pvt int x = ...;
2 pvt int y = x;
3 pvt int z = x;

Suppose the cutting cost of one pvt int value is 𝑁 . If Lian decides

to partition L1 into one chunk, L2 and L3 into another chunk, then

the OPB’s encoding considers the cutting cost to be 2𝑁 . However,

since 𝑥 is not updated between L2 and L3, L3 can use 𝑥 ’s local value

without synchronization.

We could have used a more accurate encoding, but that will

significantly increase the complexity and slow down the solver. So

here we make a compromise by moving the dependency between

L1 and L3 to L2 and L3. Now the dependency becomes local, so it

no longer contributes to the total cutting cost.

We can rigorously prove in most cases, this approach does not

reduce the total cutting cost in the encoding: If the program is cut

into (⟨1⟩, ⟨2, 3⟩), (⟨1, 2⟩, ⟨3⟩) or (⟨1⟩, ⟨2⟩, ⟨3⟩), the total cost does

not change (even if there are other commands involved). There

is only one case that results in bigger cutting cost: (⟨1, 3⟩, ⟨2⟩). In
other words, we will overestimate the total cost. This may not

be a bad thing as now our encoding is prone to cut the program

without breaking its original structure. Also, if the program has

better performance by cutting 2 out, then usually the user can

rewrite the program by moving commands that have close data

dependencies together.

E Detailed Deep Simulation
Here are some unlisted semantics rules.

dload(Ω, 𝜖) =
{
⌈load(Ω, 𝜇), 𝜇⌉𝑅 when ⌊𝜖⌋𝐿1 = 𝜇
𝜖 otherwise

dstore(Ω, 𝜖, 𝑒) =
{
store(Ω, 𝜇, ⌊𝑒⌋𝑅1

) when ⌊𝜖⌋𝐿1 = 𝜇
Ω otherwise

J𝑥KΩ
𝐿1

= find(Ω, 𝑥)
J𝜖 [𝑒]KΩ

𝐿1
= J𝜖KΩ

𝐿1
[J𝑒KΩ

𝑅1

]
J𝜖.𝑙KΩ

𝐿1
= J𝜖KΩ

𝐿1
.𝑙

J∗ 𝑒KΩ
𝐿1

= 𝜖 when J𝑒KΩ
𝑅1

= & 𝜖

J𝜖KΩ
𝑅1

= dload(Ω, J𝜖KΩ
𝐿1
)

J& 𝜖KΩ
𝑅1

= & J𝜖KΩ
𝐿1

Jℓ {𝑒0, . . . , 𝑒𝑛−1}KΩ𝑅1

= ℓ {J𝑒0KΩ𝑅1

, . . . , J𝑒𝑛−1KΩ𝑅1

}

J𝔣(𝑒1, . . . , 𝑒𝑛)KΩ𝑅1

=


L𝔣M1 (J𝑒1KΩ𝑅1

, . . . , J𝑒𝑛KΩ
𝑅1

)
when 𝔣 ∈ domL−M0

𝔣(J𝑒1KΩ𝑅1

, . . . , J𝑒𝑛KΩ
𝑅1

)
otherwise

new(𝑥) = 𝛼 J𝑒KΩ
𝑅1

= 𝑒 ′

(𝜏 𝑥 = 𝑒,Ω) ↩→𝐶 (cont,Ω[𝛼 ↦→ ⌊𝑒 ′⌋𝑅0
])

J𝜖KΩ
𝐿1

= 𝜖 ′ J𝑒KΩ
𝑅1

= 𝑒 ′

(𝜖 = 𝑒,Ω) ↩→𝐶 (cont, dstore(Ω, 𝜖 ′, 𝑒 ′))

(return 𝑒,Ω) ↩→𝐶 (ret J𝑒KΩ
𝑅1

,Ω)

(assert 𝑒,Ω) ↩→𝐶 (cont,Ω)

(𝑐1,Ω) ↩→𝐶 (ret 𝑒,Ω1)
(𝑐1; 𝑐2,Ω) ↩→𝐶 (ret 𝑒,Ω1)

(𝑐1,Ω) ↩→𝐶 (cont,Ω1) (𝑐2,Ω1) ↩→𝐶 (𝑟,Ω2)
(𝑐1; 𝑐2,Ω) ↩→𝐶 (𝑟,Ω2)

J𝑒KΩ
𝑅1

= ℓ true (𝑐1,Ω) ↩→𝐶 (𝑟,Ω′)

(if 𝑒 then 𝑐1 else 𝑐2,Ω) ↩→𝐶 (𝑟,Ω′)
J𝑒KΩ

𝑅1

= ℓ false (𝑐2,Ω) ↩→𝐶 (𝑟,Ω′)

(if 𝑒 then 𝑐1 else 𝑐2,Ω) ;𝐶 (𝑟,Ω′,)

J𝑒KΩ
𝑅1

= ℓ true

(𝑐; while 𝑒 do 𝑐,Ω) ↩→𝐶 (𝑟,Ω′)
(while 𝑒 do 𝑐,Ω) ↩→𝐶 (𝑟,Ω′)

J𝑒KΩ
𝑅1

= ℓ false

(while 𝑒 do 𝑐,Ω) ↩→𝐶 (cont,Ω)

new(𝑥) = 𝛼 𝜂 ∈ {normal, atomic, plocal1, box1}
𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], J𝑒𝑖KΩ𝑅1

= 𝑒 ′
𝑖
∧ new(𝑥𝑖) = 𝛼𝑖

(𝑐,⋃{𝛼𝑖 ↦→ ⌊𝑒 ′
𝑖
⌋𝑅1

} · Ω) ↩→𝐶 (ret 𝑒, 𝜔 · Ω′)
(𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) ↩→𝐶 (cont,Ω′[𝛼 ↦→ ⌊𝑒⌋𝑅1

])

19

new(𝑥) = 𝛼 𝜂 ∈ {plocal2, box2}
𝑓 ↦→ internal (𝜂, (𝜏1 𝑥1, . . . , 𝜏𝑛 𝑥𝑛) → 𝜏, 𝑐) ∈ Λ𝑢

∀𝑖 ∈ [1, 𝑛], J𝑒𝑖KΩ𝑅1

= 𝑒 ′
𝑖

(𝜏 𝑥 = 𝑓 (𝑒1, . . . , 𝑒𝑛),Ω) ↩→𝐶 (cont,Ω)

Lemma 20. J𝑒KΩ
𝑅
= 𝑣 =⇒ ∃𝑒 ′, J𝑒K𝒬(Ω)

𝑅1

= 𝑒 ′ ∧ J𝑒 ′KΩ
𝑅
= 𝑣 .

Lemma 21. J𝜖KΩ
𝐿
= 𝜇 =⇒ ∃𝜖 ′, J𝜖K𝒬(Ω)

𝐿1
= 𝜖 ′ ∧ J𝜖 ′KΩ

𝐿
= 𝜇.

F Distribution Proofs
We denote chunk−1 (𝑡) := {𝑖 | chunk(𝑖) = 𝑡}. We let 𝜙𝑡

𝑗
be the

set of L-values that are used in [1, 𝑗] ∩ chunk−1 (𝑡) and needed in

[𝑗 + 1, 𝑛] ∩ chunk−1 (𝑡).

𝜙𝑡𝑗 :=
⋃

𝑖≤ 𝑗<𝑘
chunk(𝑖)=𝑡
chunk(𝑘)=𝑡

DEP(𝑖, 𝑘)

Theorem 6 can be derived from the following lemma.

Lemma 22. ∀𝑗 ∈ chunk−1 (𝑡),Ωpre
𝑗

≈𝑆 Ω 𝑗−1 where 𝑆 = 𝜙𝑡
𝑗−1 ∪

DEP(−, 𝑗).

We prove it together with the following lemma by induction on

the sequential program.

Lemma 23. ∀𝑗 ∈ [1, 𝑛],Ωpost
𝑗

≈𝑆 Ω 𝑗 where 𝑆 = 𝜙𝑡
𝑗
.

Subgoal 1. Suppose chunk(𝑗) = 𝑡 and

Ωpost
𝑗−1 ≈𝑆 Ω 𝑗−1 where 𝑆 = 𝜙𝑡𝑗−1,

we want to derive

Ωpre
𝑗

≈𝑆′ Ω 𝑗−1 where 𝑆 ′ = 𝜙𝑡𝑗−1 ∪ DEP(𝑗,−) .

We know Ωpost
𝑗−1 ≈𝑆 Ωpre

𝑗
as sync𝑗 only updates external dependen-

cies, so fact 7 ensures Ωpre
𝑗

≈𝑆 Ω 𝑗−1. Also, theorem 5 guarantees

the correctness of sync𝑗 , i.e.,

Ωpre
𝑗

≈𝑆′′ Ω 𝑗−1 where 𝑆 ′′ =
⋃

chunk(𝑖)≠𝑡
DEP(𝑖, 𝑗) .

Finally, we can prove

𝜙𝑡𝑗−1 ∪
⋃

chunk(𝑖)≠𝑡
DEP(𝑖, 𝑗) ⊆ 𝜙𝑡𝑗−1 ∪ DEP(−, 𝑗),

then use fact 6 and 8 to derive Ωpre
𝑗

≈𝑆′ Ω 𝑗−1.

Subgoal 2. Suppose chunk(𝑗) = 𝑡 and
Ωpre
𝑗

≈𝑆′ Ω 𝑗−1 where 𝑆 ′ = 𝜙𝑡𝑗−1 ∪ DEP(−, 𝑗),

we want to derive

Ωpost
𝑗

≈𝑆 Ω 𝑗 where 𝑆 = 𝜙𝑡𝑗 .

Wedivide𝜙𝑡
𝑗
into two parts 𝑆1 and 𝑆2 where 𝑆1 =

⋃
chunk(𝑘)=𝑡 DEP(𝑗, 𝑘)

contains all internal dependencies coming out of 𝑗 , and 𝑆2 = 𝜙
𝑡
𝑗
−𝑆1

contains all internal dependencies coming before 𝑗 . Theorem 4 en-

sures Ωpost
𝑗

≈𝑆1 Ω 𝑗 , and theorem 18 ensures Ω 𝑗−1 ≈𝑆2 Ω 𝑗 and

Ωpre
𝑗

≈𝑆2 Ωpost
𝑗

. Notice 𝑆2 ⊆ 𝜙𝑡
𝑗−1, so we can combine with the

10 15 20 25 30
Machines

200

300

400

500

600

C
om

pi
la

tio
n

Ti
m

e
(s

)

10 15 20 25 30
Machines

8

10

12

14

#
E

ff
ec

tiv
e

R
at

io

With Atomic Annotation Without Atomic Annotation

Figure 20: The effect of adding atomic annotations to the MT program for
16-block inputs.

10 15 20 25 30
Machines

600

700

800

900

C
om

pi
la

tio
n

Ti
m

e
(s

)

10 15 20 25 30
Machines

10

15

20

25

#
E

ff
ec

tiv
e

R
at

io

With Atomic Annotation Without Atomic Annotation

Figure 21: The effect of adding atomic annotations to the MT program for
64-block inputs.

4 6 8 10
Machines

50

100

150

C
om

pi
la

tio
n

Ti
m

e
(s

)

4 6 8 10
Machines

4

6

8

10

#
E

ff
ec

tiv
e

R
at

io

With Atomic Annotation Without Atomic Annotation

Figure 22: The effect of adding atomic annotations to the MT program for
8-block inputs.

hypothesis to derive Ωpost
𝑗

≈𝑆2 Ω 𝑗 . Finally, we can use fact 6 to

derive the goal.

G Supplementary Figures

20

(a) Program structure of GD with update_all() annotated with
atomic keyword (b) Program structure of GDwithout update_all() being atomic

(a) Program structure ofMTwith sha256_node() annotatedwith
atomic keyword

(b) Program structure of MT without sha256_node() being
atomic

21

	Abstract
	1 Introduction
	1.1 Summary of Contributions
	1.2 Technical Challenges and Solutions
	1.3 Roadmap

	2 Lian Design Overview
	3 Ou Language
	3.1 Language Syntax
	3.2 Typing Rules
	3.3 Dynamic Semantics

	4 Shallow Simulation
	4.1 Shallow Semantics
	4.2 Correctness of Shallow Simulation

	5 Statement Partitioning
	5.1 Live Variable Analysis
	5.2 Efficient-Cut Search
	5.3 Distributed Program

	6 Deep Simulation
	6.1 Deep Semantics
	6.2 Correctness of Deep Simulation
	6.3 Correctness of Distribution

	7 Evaluation
	7.1 Evaluation Setup and Metrics
	7.2 Evaluation of the Partition Quality
	7.3 Effectiveness of Atomic Annotation
	7.4 End-to-End Running Time

	References
	A Example
	B Detailed Semantics
	C Detailed Shallow Simulation
	C.1 Shallow Semantics
	C.2 Proof of Theorem 1

	D Detailed Live Variable Analysis
	D.1 Proof of Theorem 4
	D.2 Compromise in Analysis

	E Detailed Deep Simulation
	F Distribution Proofs
	G Supplementary Figures

