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Abstract
A Büchi automaton is strongly unambiguous if every word w ∈ Σω has at most one final path. Many
properties of strongly unambiguous Büchi automata (SUBAs) are known. They are fully expressive:
every regular ω-language can be represented by a SUBA. Equivalence and containment of SUBAs
can be decided in polynomial time. SUBAs may be exponentially smaller than deterministic Muller
automata and may be exponentially bigger than deterministic Büchi automata. In this work we
show that SUBAs can be learned in polynomial time using membership and certain non-proper
equivalence queries, which implies that they are polynomially predictable with membership queries.
In contrast, under plausible cryptographic assumptions, non-deterministic Büchi automata are not
polynomially predictable with membership queries.
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1 Introduction

Reactive systems – systems which interact with their environment via inputs and outputs
in an ongoing manner, are ubiquitous in today’s life: operating systems, hardware systems,
protocols and networking systems are just a few of the classical examples; self-driving cars
and autonomous robots are today’s leading examples. A computation of a reactive system
can be abstracted by an infinite word over an alphabet consisting of inputs and outputs.
The behavior of a reactive system can thus be seen as a language of infinite words (ω-words).
Thus, under the assumption that the systems are finite-state, automata that process infinite
words (ω-automata), and the class of languages they recognize – the regular ω-languages –
are a useful model for reactive systems. Indeed, this is the main model used in the design,
verification and synthesis of reactive systems.

In various applications, the need to infer the language of a system at hand (or in mind)
has arisen. In many settings the inference problem can assume the existence of an entity
answering membership queries (is a certain word in the language?) and equivalence queries (is
the current hypothesis of the identity of the language correct?). This setting, enables the use
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of the L∗ algorithm [2], an algorithm for inferring a regular language using membership queries
and equivalence queries. Indeed, L∗ or its improved descendants (see in [22]) have been used
for tasks including black-box checking [29], assume-guarantee reasoning [18], specification
mining [1], error localization [14], learning interfaces [28], regular model checking [24], finding
security bugs [13], code refactoring [27, 31], learning verification fixed-points [33], as well as
analyzing botnet protocols [15] and smart card readers [13].

A disadvantage of using L∗ in applications that model behavior using ω-words is that it
limits the learned languages to the class of safety languages, a strict subset of the regular
ω-languages, for which the complement can be described by a language of finite words.
However, many interesting properties of reactive systems, in particular, liveness and fairness,
require richer classes of regular ω-languages. For this reason it is desirable to obtain a
learning algorithm for the full class of regular ω-languages.

Learnability results regarding the class of regular ω-languages can be summarized shortly
as follows. The full class of regular ω-languages can be learned either using a non-polynomial
reduction to finite words, termed (L)$ [21], or using a representation by families of DFAs
(FDFA), which may be exponentially more succinct than (L)$, although the running time of
the algorithm may be polynomial in (L)$ in the worst case [5]. The maximal sub-class of
the regular ω-languages which is known to be polynomially learnable is the set of languages
accepted by deterministic weak parity automata (DwPA) [25].

In this work we show that while under plausible crypotographic assumptions, the class
of ω-regular languages is not polynomially predictable with membership queries when the
target language is represented using a non-deterministic Büchi automaton (Theorem 1), it is
polynomially predictable with membership queries when the target language is represented
using a strongly unambiguous Büchi automaton (Corollary 15).

The result on polynomial predictability with membership queries of strongly unambiguous
Büchi automata (SUBA) is a corollary of a result (Theorem 12) on learning SUBAs in
polynomial time using membership and non-proper equivalence queries (where hypotheses
are represented using mod-2-MAs for a related language of finite words).1 This contrast
in learnability results for the class of regular ω-languages arises because the running time
of the learning algorithm is bounded as a function of the size of the representation of the
target language, and NBAs (non-deterministic Büchi automata) may be exponentially more
succinct than SUBAs. Thus we also focus on succinctness comparisons between alternative
representations.

In §2, we provide the preliminaries regarding Büchi automata and strongly unambiguous
Büchi automata. In §3, we discuss the framework of learning with membership queries
(MQs) and equivalence queries (EQs), and discuss related learnability results for regular
ω-languages. In §4, we discuss the framework of polynomial predictability with MQs; relate
it to the framework of learning with MQs and EQs; and provide the negative result regarding
learnability using NBAs. The positive result about learnability using SUBAs is proved in §7,
after some more necessary definitions are provided.

Complexity of learning algorithms is measured with respect to the size of the representation
of the unknown target language. We thus provide, in §5, size comparison results between
SUBAs and other models of regular ω-languages for which learning algorithms have been
obtained. We show that SUBAs may be exponentially more succinct than FDFAs and
DwPAs, but the other direction is also true: FDFAs and DwPAs can be exponentially more
succinct than SUBAs. We further show that SUBAs can be exponentially more succinct
than the DFA representation for (L)$ or its reverse.

1 Mod-2-MAs are explained in the body of the paper, in §6.
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The learning algorithm for SUBAs uses a reduction to unambiguous finite automata on
finite words (UFAs) and uses the model of mod-2-MA; a special type of multiplicity automata.
In §6 we explain multiplicity automata and mod-2-MAs and study size comparisons relating
mod-2-MAs, DFAs and NFAs. A UFA of size n can be represented by a mod-2-MA of size at
most n, and UFAs, NFAs and mod-2-MAs may be exponentially more succinct than DFAs.
We show that NFAs may be exponentially more succinct than mod-2-MAs, and that if there
exist infinitely many Mersenne primes, then mod-2-MAs are exponentially more succinct
than NFAs.

Finally, as mentioned, we provide the positive result for learning SUBAs in §7 and
conclude with a short discussion in §8.

2 Strongly Unambiguous Büchi Automata

Carton and Michel [12] introduced the definition of a complete strongly unambiguous Büchi
automaton (CUBA) and proved that every regular ω-language can be accepted by a CUBA.
Bousquet and Löding [9] introduced the relaxed definition of a strongly unambiguous Büchi
automaton (SUBA) and proved that the containment and equivalence problems for SUBAs
are solvable in polynomial time. Their proof reduces these problems for SUBAs to the
containment and equivalence problems for unambiguous finite automata, which were shown
to be solvable in polynomial time by Stearns and Hunt [20]. The usual translation of a linear
temporal logic (LTL) formula into a Büchi automaton produces a SUBA; see the papers of
Wilke [34, 35] for more on the relationship between LTL and CUBAs.

Given a finite alphabet Σ of symbols, we consider both the set of finite words Σ∗ and
the set of infinite or ω-words Σω, which are maps from the positive integers to Σ. The term
word refers to a finite word or an ω-word. A subset of Σ∗ is a language and a subset of Σω
is an ω-language. For a word w, the notation w[j] refers to the symbol of w indexed by j,
where indices start at 1. For words w and v and a finite word u, if w = uv, then u is a prefix
of w and v is a suffix of w.

We consider two types of automata: nondeterministic finite automata (NFAs), which
accept sets of finite words, and nondeterministic Büchi automata (NBAs), which accept sets
of infinite words, that can each be represented as a tuple A = (Σ, Q,Q0,∆, F ), where Σ is
the finite alphabet of input symbols, Q is the finite set of states, Q0 ⊆ Q is the set of initial
states, ∆ ⊆ Q× Σ×Q is the transition relation, and F ⊆ Q is the set of final states.

A path of an NFA (resp. an NBA) on a word w is a finite (resp. infinite) sequence of
states q0, q1, . . . such that for all j indexing symbols of w, (qj−1, w[j], qj) ∈ ∆. A path is
initial if q0 ∈ Q0. A path of an NFA is final if it ends with a final state. A path of an NBA
is final if it passes infinitely often through a final state. A path is accepting if it is both
initial and final. For an NFA or NBA, the word w is accepted if there exists at least one
accepting path for w. We use JAK for the set of words accepted by A.

The transition relation ∆ is deterministic if for any q1 ∈ Q and σ ∈ Σ, there is at most
one q2 ∈ Q such that (q1, σ, q2) ∈ ∆. If an NFA (resp. NBA) has a deterministic transition
relation and at most one initial state, then it is a deterministic finite automaton (DFA) (resp.
a deterministic Büchi automaton (DBA).) The transition relation ∆ is reverse deterministic
if the reverse relation ∆r = {(q2, σ, q1) | (q1, σ, q2) ∈ ∆} is deterministic. A state q of an
NFA or NBA A is live if it appears on an accepting path for some word w. The automaton
is trim if it contains no non-live states. The non-live states may be removed from A without
affecting the set of words it accepts.

CSL 2020
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Figure 1 Left: A DBA D for the language (Σ∗b)ω that is not a SUBA, and a SUBA S for the
same language. Right: Two nonisomorphic minimum SUBAs S1 and S2 for (a+ b)∗(aa∗bb∗)ω.

The class of languages accepted by NFAs or DFAs is the regular languages. The class of
languages accepted by NBAs is the regular ω-languages. The class of languages accepted by
DBAs is a proper subclass of the class of regular ω-languages.

Unambiguous Automata
An NFA A is said to be unambiguous (UFA) if every word w ∈ Σ∗ has at most one
accepting path.
An NBA B is said to be unambiguous (UBA) if every word w ∈ Σω has at most one
accepting path.
An NBA B is said to be strongly unambiguous (SUBA) if every word w ∈ Σω has at most
one final path [9].
An NBA B is said to be strongly unambiguous and complete (CUBA) if every word
w ∈ Σω has exactly one final path [12].

Note that every DFA is a UFA and every UFA is an NFA, and these containments are
proper. The above standard definitions for UFAs and UBAs refer to the uniqueness of
accepting paths, while the definitions for SUBAs and CUBAs refer to the uniqueness of final
paths, whether or not they are also initial. Every CUBA is a SUBA, and every SUBA is an
UBA, and these containments are proper. Note that a DBA is not necessarily a SUBA. For
instance, the DBA D of Fig. 1 which recognizes all words with infinitely many b’s is not a
SUBA, since bω is accepted from both states 1 and 2. The SUBA S of Fig. 1 accepts this
language. Carton and Michel [12] proved that every regular ω-language can be accepted by
a CUBA (and therefore also by a SUBA).

In this paper we focus on the class of SUBAs. It is easy to see that for any w ∈ Σω if
there is a final path on w, it originates at a unique state, and therefore the transition function
of any trim SUBA is reverse deterministic. Unlike in the case of DFAs representing regular
languages of finite words, there need not be a canonical minimum SUBA for a language. In
Fig. 1 we show two non-isomorphic SUBAs S1 and S2 with the minimum possible number of
states for the set of ω-words over the alphabet {a, b} that contain an infinite number of a’s
and an infinite number of b’s.2

3 Learning Regular ω-Languages With Queries

The first framework of learning that we consider is that of an algorithm learning a target
language L using equivalence queries (EQs) and membership queries (MQs). In a membership
query, the learning algorithm specifies a word w and receives the answer 1 if w ∈ L and

2 Automata A = (Σ, Q,Q0,∆, F ) and A′ = (Σ, Q′, Q′0,∆′, F ′) are isomorphic if they are equivalent to
each other under a renaming of the states. Formally, if there exists a map h : Q → Q′ such that (a)
q ∈ Q0 iff h(q) ∈ Q′0, (b) q ∈ F iff h(q) ∈ F ′ and (c) (q1, σ, q2) ∈ δ iff (h(q1), σ, h(q2)) ∈ δ′.
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the answer 0 if w 6∈ L, indicating whether w is a member of the target language. In an
equivalence query, the learning algorithm specifies a hypothesis, that is, a set of words H, and
receives either the answer “yes”, signifying that the sets H and L are equal, or the answer
“no” together with an arbitrarily selected counterexample w such that w is an element of
exactly one of L and H, that is, a counterexample that shows the sets H and L are not
equal. If the answer to an equivalence query is “yes”, the learning algorithm has succeeded
in identifying the target language L.

The above description omits a specification of how a word w is represented when it is
the subject of a MQ by the learning algorithm or when it is returned as a counterexample
to an EQ, as well as how a set of words H is represented by the learning algorithm in an
EQ. It also omits a measure of the “size” of the target language L, which is a parameter to
functions bounding the running time of the algorithm. We now address these omissions.

As is usual, a finite word w is represented by the finite sequence of symbols it contains,
and its length is the length of that sequence. Arbitrary ω-words w are not represented; rather
we restrict the words used in MQs and returned as counterexamples by EQs to be ultimately
periodic, that is, words of the form u(v)ω for finite words u, v ∈ Σ∗, denoting u concatenated
with an infinite sequence of copies of v. This restriction is justified by the fact that two
regular ω-languages that agree on the classification of all ultimately periodic words are in
fact equal [10]. Given an ω-language L and a symbol $ not in the alphabet of L, we define

(L)$ = {u$v | u(v)ω ∈ L}.

Then two regular ω-languages L1 and L2 are equal if and only if (L1)$ = (L2)$. Consistent
with this definition, we assume that the ultimately periodic word u(v)ω is represented by
the finite string u$v. Calbrix et al. [11] introduced this definition and showed that if L is a
regular ω-language, then (L)$ is a regular language.

To represent both the target language L and a hypothesis set H, the natural choice is
an automaton of the type being considered (for example, a SUBA), with an appropriate
size measure (for example, the number of states of the automaton.) If this is the situation,
the EQs are termed proper. However, it is sometimes useful to allow a different type of
representation of hypotheses H in the EQs, in which case the EQs are non-proper. This issue
will be considered further in Section 7.

In defining the running time of a learning algorithm, each EQ or MQ is counted as an
oracle call, that is, one step. The learning algorithm must be able to cope with arbitrary
counterexamples, which may be arbitrarily long, so it is said to run in polynomial time if its
running time is bounded by a polynomial in the size of the smallest automaton accepting
the target language L and the length of the longest counterexample returned by EQs.

In this learning framework, Maler and Pnueli [25] gave a polynomial time learning
algorithm using MQs and proper EQs for a strict subclass of languages accepted by DBAs,
namely the class of ω-languages L such that both L and its complement (Σω \L) are accepted
by DBAs. This class of languages is characterized by the deterministic weak parity automata
(DwPA) and is a strict subclass of the class of all regular ω-languages.

Farzan et al. [21] applied the learning algorithm L∗ to the problem of learning a DFA
accepting the regular language (L)$, providing an algorithm using MQs and proper EQs to
learn an arbitrary regular ω-language represented by NBAs.3 One issue with this approach is

3 L∗ runs in time polynomial in n and ` where n is the size of the minimal DFA for the language, and ` the
size of the largest counterexample, asks at most n equivalence queries and at most O(`n2) membership
queries [2]. The complexity of the algorithm proposed by Farzan et al. is thus polynomial with respect
to the size of a DFA for (L)$.

CSL 2020
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that the DFA for (L)$ may be quite large: for an NBA with m states, Calbrix et al. provide
an upper bound of 2m + 22m2+m on the size of a DFA for (L)$. In Section 5 we show that
the minimum DFA for (L)$ and its reverse, (L)r$, may also be exponentially larger than a
SUBA for L.

Angluin and Fisman [4] proposed a representation of regular ω-languages using families
of DFAs, a representation that may be exponentially more concise than the minimum DFA
for (L)$, and gave a learning algorithm Lω based on that representation. However, the
intermediate hypotheses of the learning algorithm could be large, in the worst case as large
as a minimum DFA for (L)$.

4 A Negative Result for Learning NBAs

NBAs may be exponentially more succinct than SUBAs (see Section 5). However, in this
section we show that under plausible cryptographic assumptions, there is no polynomial time
algorithm to learn NBAs using equivalence and membership queries. We now define a second,
more relaxed, notion of learning, namely polynomial predictability with membership queries.

The learning framework of polynomial predictability with membership queries assumes
that there is an upper bound n on the length of relevant example words and that there is an
arbitrary unknown probability distribution D on these words. The learning algorithm has
access to words randomly drawn according to D and labeled according to the target concept
L, as well as MQs to L. The algorithm is also given an upper bound s on the target concept
and an accuracy parameter ε > 0. We refer to the operation of drawing a word according to
D and getting the result of its membership in L as drawing a classsified word. The algorithm
runs for some time, drawing classified words and making MQs until it requests one test word
to predict. This word is also drawn according to D and, without making any further draws
of classified words or MQs, the algorithm outputs 1 or 0 as a prediction of whether the word
is a member of L or not. For the algorithm to be successful, this prediction must be correct
with probability at least (1− ε). In the running time of the algorithm, drawing a classified
word, making a MQ and requesting the test word to predict count as oracle calls, that is,
each counts as one step.

A class C of languages with a particular choice of representations is polynomially predictable
with membership queries if there exists a (possibly randomized) learning algorithm A in the
framework just described, that takes as input n, s and ε, such that for any positive integer n,
any probability distribution D over words of length at most n, for any target language L ∈ C,
for any positive integer s that is an upper bound on the size of the smallest representation
of L, and for any ε > 0, the algorithm A with access to words drawn according to D and
classified according to L, and access to MQs for L, runs for time bounded by a polynomial
in n, s, and 1/ε and with probability at least (1− ε) correctly predicts the classification of
the test word to predict.

Comparing this definition of learning to that in Section 3, the definition using EQs
and MQs requires complete representations of the hypotheses in a specific form, while
polynomial predictability with MQs only requires the ability to make predictions of the
classifications of new examples, with no restriction on how the (implicit) hypothesis is
represented. The definition of polynomial predictability with MQs is more relaxed than
the definition of polynomial time learning with EQs and MQs in the sense that if a class
C can be learned in polynomial time with EQs and MQs, where the representation used in
the EQs has a polynomial time membership test, then C is also polynomially predictable
with membership queries. Angluin [2] showed that if the hypotheses used in EQs have a
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polynomial time membership test, then polynomial time learnability with EQs and MQs
implies PAC-learnability with MQs; this in turn implies polynomial predictability with MQs.

We now prove the following negative result for learning NBAs.

I Theorem 1. If we assume the computational intractability of any of the following three
problems: (1) testing quadratic residues modulo a composite, (2) inverting RSA encryption, or
(3) factoring Blum integers, then the concept class of regular ω-languages is not polynomially
predictable with membership queries, when the target language is represented by an NBA.

This follows from the analogous result for nondeterministic finite automata proved by Angluin
and Kharitonov [7, Corollary 7]. The proof below is a straightforward reduction of predicting
NFAs with membership queries to predicting NBAs with membership queries.

Proof. We first describe a general transformation of an NFA A over the input alphabet Σ to
a related NBA A′ over an augmented input alphabet. Choose a new alphabet symbol a 6∈ Σ.
Given an NFA A = (Σ, Q,Q0,∆, F ), we construct from it the NBA A′ = (Σ′, Q′, Q′0,∆′, F ′)
as follows. Let Σ′ = Σ ∪ {a}. Choose a new state, say q′ 6∈ Q, and let Q′ = Q ∪ {q′} and
Q′0 = Q0. For the transition relation, let ∆′ = ∆ ∪ {(q, a, q′) | q ∈ F} ∪ {(q′, a, q′)}. Thus,
there is a new transition on a from every final state of A to the new state q′, and a transition
on a from q′ to itself. Let F ′ = {q′}, so the new state is the only final state of A′. It is not
difficult to see that if L ⊆ Σ∗ is the language accepted by A, then the ω-language accepted
by A′ is L · aω.

If we have a learning algorithm A′ that polynomially predicts NBA acceptance using
membership queries, we can use it to construct an algorithm A that polynomially predicts
NFA acceptance using membership queries. To implement A running with a target language
L accepted by the NFA A and the probability distribution D on Σ∗, we simulate the algorithm
A′, answering its queries as follows.

Suppose A′ makes a membership query with (u, v) representing the ultimately periodic
word u(v)ω. If u(v)ω = xaω for some x ∈ Σ∗ then we make a MQ to L with the word x and
return the resulting answer. Otherwise, the answer to the MQ is 0.

Suppose A′ requests a random classified word. Then we request a word from Σ∗ chosen
according to D and classified according to L, which returns a pair (x, y) where x ∈ Σ∗ and
y ∈ {0, 1} indicates whether or not x ∈ L. The element we supply to A′ is the pair ((x, a), y),
which indicates the choice of the ω-word xaω and the classification y.

Finally, when A′ requests the test word to predict, we request the test word to predict,
and receive a string x ∈ Σ∗, chosen according to D. The test word that we supply to A′ to
predict is (x, a), representing the ω-word xaω.

The queries of A′ are answered as though it is learning the NBA A′ derived from A, with
the distribution on ω-words giving probability D(x) to xaω for x ∈ Σ∗, and probability zero
to words not of this form. Thus, if A′ predicts the correct classification of (x, a) by A′, then
A predicts the correct classification of x by A. J

Because of the relationship between polynomial time learnability with EQs and MQs and
polynomial predictability with membership queries, we have the following.

I Corollary 2. If we assume the truth of any of the three cryptographic assumptions listed in
Theorem 1 then there is no polynomial time algorithm to learn NBAs using EQs and MQs,
such that the representation used in the EQs has a polynomial time membership test.

CSL 2020
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5 Size Comparisons for SUBAs

Because the performance of a learning algorithm is bounded as a function of the size of
the representation of the target language, we investigate size comparisons between SUBAs
and other representations of regular ω-languages. For their conversion of an NBA of n
states to an equivalent SUBA, Carton and Michel [12] give an upper bound of (12n)n on
the number of states in the resulting CUBA. Bousquet and Löding [9] show that there is
a family of languages Ln such that Ln is accepted by a DBA (which is also an NBA) of
n+ 1 states but any SUBA to accept Ln must have at least 2n−1 states, showing that DBAs
and NBAs may be exponentially more succinct than SUBAs. Here we focus on comparisons
to representations used in learning algorithms, namely deterministic weak parity automata
(DwPAs), families of DFAs (FDFAs) and DFAs for (L)$.

5.1 Comparison to FDFAs and DwPAs
A family of DFAs (FDFA) F = (M, {Aq}) over an alphabet Σ consists of a leading deter-
ministic automatonM = (Σ, Q, q0, δ) and progress DFAs Aq = (Σ, Sq, s0q, δq, Fq) for each
q ∈ Q. LetM be an automaton and (u, v) a pair of finite words representing the ultimately
periodic word uvω. The normalization of (u, v) with respect toM is the pair (x, y) such that
x = uvi, y = vj and 0 ≤ i < j are the smallest for which uvi and uvi+j reach the same state
ofM. A pair of finite words (u, v) is accepted by an FDFA F = (M, {Aq}) if y is accepted
by Aqx

where qx is the state reached byM when reading x and (x, y) is the normalization
of (u, v) with respect toM. For a comprehensive discussion on FDFAs see [3].

A deterministic weak parity automaton (DwPA) is a tuple (Σ, Q, q0, δ, κ) where the first
four components are the same as for DBAs, and κ : Q→ {1, . . . , k} maps a state to a number
from a finite set of naturals, referred to as color. A DwPA accepts an ω-word w if the
maximal color visited along the run of the DwPA on w is even.

I Theorem 3. There exists a family {Ln} of ω-languages such that Ln is recognized by a
SUBA of 2n+ 2 states, while any FDFA and any DwPA recognizing Ln require at least 2n
states.

Proof. The proof uses the same family of languages used by Bousquet and Löding [9] to
prove an exponential translation may be required when going from SUBAs to deterministic
Muller automata. The family they proposed is given by Ln = Σ∗aΣn−1abω where Σ = {a, b}.
Fig 2. in [9] shows a SUBA for Ln with n+ 2 states. To see that an FDFA requires at least
n states, we note that the number of states in a leading automaton of an FDFA is at least
the number of equivalence classes in the right congruence ∼L where for all finite words x
and y we have that x ∼L y iff ∀w ∈ Σω. xw ∈ L ⇐⇒ yw ∈ L. The proof follows since the
number of equivalence classes derived from ∼Ln is at least 2n [26]. The proof for DwPA
follows from this as well since the number of equivalence classes of ∼L is also a lower bound
for the number of states of any deterministic ω-automaton for a language L [6]. J

I Theorem 4. There exists a family {Ln} of ω-languages such that Ln is recognized by an
FDFA using n+ 3 states and by a DwPA using n+ 2 states, while any SUBA recognizing Ln
requires at least 2n states.

Proof of Thm. 4 . The proof uses the same family of languages used by Bousquet and
Löding [9] to prove an exponential translation may be required when going from deterministic
Büchi automata to SUBAs. The family they proposed is given by Ln = Σn−1aΣω where
Σ = {a, b}. A FDFA for Ln has the same structure as a DFA for Σn−1aΣ∗, namely states
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Figure 2 A SUBA with 4n+ 5 states for Ln used in the proof of Thm. 5 for which any DFA to
recognize (Ln)$ or its reverse requires at least 2n states.

q0, q1, . . . , qn, qn+1 where qi transits with a or b to qi+1 for 0 ≤ i < n, qn transits to qn+1
with a and qn+1 transits to itself with a or b. The progress automata for all states qi for
i ≤ n is empty, and the progress automaton for state qn+1 is the one state accepting DFA.
To build a DwPA for Ln we can take the same structure and the coloring κ(qn+1) = 2 and
κ(qi) = 1 for any 0 ≤ i ≤ n. J

5.2 Comparison to DFAs for (L)$ or Its Reverse
One may notice that the families of languages used in the comparisions of SUBA with DMA,
DBA, FDFA and DwPA are similar to the families of languages used to show that a DFA
for the reverse of a language L can be exponentially bigger or exponentially smaller than
a DFA for L itself. This has to do with the fact that SUBAs are backward deterministic.
We thus asked ourselves whether there exists a family of languages {Ln} that a SUBA can
characterize with polynomially in n many states, while both a DFA for (Ln)$ and a DFA for
its reverse, (Ln)r$, would require exponentially many states. The answer is positive.

I Theorem 5. There exists a family {Ln} of ω-languages such that Ln is recognized by a
SUBA of 4n+ 5 states, while any DFA to recognize (Ln)$ or its reverse requires at least 2n
states.

Proof. We define a family of ω-languages over the alphabet {0, 1, 0′, 1′} by

Ln =
(

(0 + 1)∗
(
0(0 + 1)n0(0 + 1)n0′ + 1(0 + 1)n1(0 + 1)n1′

))ω
,

for all positive integers n. We define an NBA An of 4n+ 5 states to accept Ln (depicted
in Fig. 2), and show that it is a SUBA. It is not difficult to verify that An accepts Ln. To
see that An is a SUBA, note that any final run on an ω-word w must pass infinitely often
through r0,n or r1,n. After the former, the only possible symbol is 0′, and after the latter, the
only possible symbol is 1′, and these symbols can occur nowhere else. Because the transition
function of An is reverse deterministic, this completely determines the sequence of states
traversed in a final run on w.

Next we show that a DFA to accept (Ln)$ must have at least 2n states. Assume to the
contrary that there is a DFAM with fewer than 2n states that accepts this language. Then
there exist two different strings u, v ∈ {0, 1}n that reach the same state q ofM from the
initial state. Without loss of generality, there exist w, u1, v1 ∈ {0, 1}∗ such that u = w0u1
and v = w1v1. Let x be any element of {0, 1}∗ with length n− |u1|. Then ux = w0u1x and
vx = w1v1x reach the same state ofM from the initial state. However, w0u1x(0u1x0′0u1x)ω
is an element of Ln while w1v1x(0u1x0′0u1x)ω is not, so ux$0u1x0′0u1x ∈ (Ln)$, while
vx$0u1x0′0u1x 6∈ (Ln)$, a contradiction because these two strings must reach the same state
ofM from its initial state.
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Finally we show that a DFA to accept (Ln)r$, the reverse of (Ln)$ must have at least 2n
states. Assume that there is a DFAMr of fewer than 2n states that accepts the language
(Ln)r$. There exist two different strings u, v ∈ {0, 1}n that reach the same state of Mr from
its initial state, and strings w, u1, v1 ∈ {0, 1}∗ such that u = w0u1 and v = w1v1. Let
x, y ∈ {0, 1}∗ be arbitrary strings of lengths |x| = n− |u1| and |y| = n− |w|. Consider the
two strings

z0 = w0u1x00′y = ux00′y, and z1 = w1v1x00′y = vx00′y,

which reach the same state of Mr from its initial state. Considering the reverses of these
two strings, zr0 = yr0′0xrur10wr is a possible period of Ln, that is,

0xrur10wr(zr0)ω ∈ Ln, but 0xrur10wr(zr1)ω 6∈ Ln.

Thus, z0$w0u1x0 ∈ (Ln)r$ while z1$w0u1x0 6∈ (Ln)r$, a contradiction because z0 and z1 reach
the same state ofMr from its initial state. J

6 Multiplicity Automata

A multiplicity automaton represents a function f mapping finite strings Σ∗ to elements of a
field K. The definitions are formulated using vectors and matrices and their products over
K. A multiplicity automaton of dimension d is specified as a tuple A = (Σ, vI , {µσ}σ∈Σ, vF ),
where Σ is the input alphabet, vI ∈ Kd is the initial state, for each symbol σ ∈ Σ, µσ ∈ Kd×d
is the transition map on σ, and vF ∈ Kd is the output map. To specify the function f

computed by A we first define a function µ from Σ∗ to Kd×d inductively as follows. For the
empty string ε, µ(ε) is the d×d identity matrix. Given σ ∈ Σ and w ∈ Σ∗, µ(σw) = µσ ·µ(w),
where · denotes matrix product. Thus, for a word w = σ1σ2 · · ·σn, µ(w) = µσ1 · µσ2 · · ·µσn

.
Then the value output by A on input word w is given by

f(w) = v>I µ(w)vF ,

where the vectors vI and vF from Kd are interpreted as d× 1 column vectors.
Multiplicity automata have many useful properties. Assume that the arithmetic operations

in the field K take one step. Then computing f(w) requires computing the product of |w|
square matrices and two vectors of dimension d and takes time polynomial in |w| and d. Thon
and Jaeger [32] (who use the term (linear) sequential systems for multiplicity automata) give
polynomial time algorithms to find a basis for the state space of a multiplicity automaton,
to minimize a multiplicity automaton and to test two multiplicity automata for equivalence.
The algorithm to find a basis for the states also yields a shortest string w (if any) that is
not mapped to 0, and shows that such a string must have length less than the dimension of
the automaton. This is because if the output is 0 on all the basis elements, the function is
identically 0. Given multiplicity automata A1 and A2 of dimensions d1 and d2 computing
f1 and f2, there are multiplicity automata for the sum f1 + f2 (of dimension d1 + d2) and
product f1 · f2 (of dimension d1 · d2) that may be constructed in polynomial time.

We consider the special case of multiplicity automata over the Galois Field K = GF(2)
of the two elements {0, 1}, in which addition is defined modulo 2. These are termed mod-
2-multiplicity automata, abbreviated as mod-2-MAs. The outputs of a mod-2-MA A are
either 0 or 1, so we may consider them as language acceptors by defining JAK to be the set
of elements of Σ∗ mapped to 1 by A. We next show how to convert a mod-2-MA to an
equivalent DFA.
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M1 = ({a, b}, (1, 0, 0), {µa, µb}, (1, 1, 0)>)

where µa =

0 0 1
1 0 0
1 1 1

 and µb =

0 1 0
1 0 1
1 1 0

 .

D1 :

100 010 101

001 111 110

a

b

a

b

a

b

a

b

a

b

a

b

A4 :

q1 q2

q3q4

a

a

a

a
b

b

b

b

Figure 3 Left: a mod-2-MA M1 of dimension 3. Middle: the DFA D1 constructed from the
mod-2-MA M1 according to Lemma 6. Right: the UFA A4 from Denis et al. [19].

I Lemma 6. Let A = (Σ, vI , {µσ}σ∈Σ, vF ) be a mod-2-MA of dimension n. There exists a
DFA A′ with at most 2n states such that JAK = JA′K.

Proof. For A′ the set of states is all row vectors v ∈ {0, 1}n and the initial state is v>I . For
states v1 and v2 there is a transition from v1 to v2 on σ if and only if v2 = v1µσ. The set of
final states is all states v such that the inner product of v and v>F is 1. Then the definition
of the output of A guarantees that for all w ∈ Σ∗, the output of A on w is 1 if and only if
A′ accepts w. J

As an example of this construction, consider the mod-2-MAM1 of dimension 3 given in
the left of Fig. 3. The equivalent DFA D1 constructed fromM1 as described in the proof of
Lemma 6 is shown in the middle of Fig. 3, with unreachable states omitted. To see that the
blowup in this conversion is inevitable, let’s make some connection to NFAs and UFAs first.

The language accepted by M1 and D1 is the same as the language accepted by the
UFA called A4 by Denis et al. [19], shown on the right in Fig. 3, which can be verified by
determinizing A4 and comparing with D1. Note that no NFA of fewer than 4 states can
accept this language, because it must ensure that ak is accepted if and only if k is 0 or 1
modulo 4. Thus, a mod-2-MA may be more concise than the smallest equivalent NFA, an
issue we consider further below. For the reverse direction, we have the following, observed in
Example 2.3 by Beimel et al. [8].

I Lemma 7. Let A = (Σ, Q,Q0,∆, F ) be an NFA of n states. There exists a mod-2-MA A′
of dimension n such that for every w ∈ Σ∗, the output of A′ on input w is 1 if and only if
the number of accepting paths for w in A is odd.

Proof. Suppose the states of A are Q = {q1, q2, . . . , qn}. We define a mod-2-MA A′ of
dimension n as follows. For vectors in {0, 1}n, dimension i represents state qi for i = 1, 2, . . . , n.
The vector vI is the characteristic vector of Q0, the vector vF is the characteristic vector of
F , and for each σ ∈ Σ, [µσ]i,j = 1 if and only if (qi, σ, qj) ∈ ∆. An inductive proof shows that
[µ(w)]i.j = 1 if and only if the number of paths on w from qi to qj is odd. Multiplying on
the left by the transpose of vI selects the paths starting at an initial state, and multiplying
on the right by vF adds up the results for the final states, giving 1 if and only if the total
number of accepting paths on input w in A is odd. J

In the case of a UFA, for each w ∈ Σ∗ the number of accepting paths is either 0 or 1,
immediately implying the following fact, also observed by Beimel et al.

I Corollary 8. For any UFA A of n states, there exists a mod-2-MA A′ of dimension n such
that JAK = JA′K.
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U2 : q1 q2 q3 q4

a, b

a a, b a, b

M2 = ({a, b}, (1, 0, 0, 0), {µa, µb}, (0, 0, 0, 1)),

where µa =

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and µb =

1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Figure 4 The UFA U2 accepting Σ∗aΣΣ for Σ = {a, b} and the mod-2-MA for the same language

constructed according to Lemma 7.

As an example of this construction, consider the language Σ∗aΣΣ, consisting of all strings
over Σ = {a, b} with an a as the third symbol from the end. This is accepted by the UFA U2
of 4 states, shown in Fig. 4 on the left. The mod-2-MAM2 of dimension 4 constructed from
U2 according to Lemma 7 is given on the right of Fig. 4.

I Remark 9. In the case of mod-2-MAs, the results listed above for general multiplicity
automata give polynomial time algorithms to minimize the number of dimensions, and to
test equivalence, emptiness and universality, as well as polynomial time constructions for the
symmetric difference (by addition), complement (by adding the constant 1), intersection (by
multiplication), and union (by intersection and complement) of two given automata. If the
language is nonempty, a shortest accepted word may be found in polynomial time and has
length less than the number of dimensions (see [32]).

Beimel et al. [8] consider the problem of learning a multiplicity automaton computing a
function f using suitably generalized equivalence and membership queries (see Section 3 for
the basic definitions of learning with queries.) In particular, the answer to a membership
query on word w ∈ Σ∗ is the value of f(w) ∈ K, and the answer to an equivalence query
with a multiplicity automaton H is either “yes” or a counterexample, that is, a word w ∈ Σ∗
such that the output of H on w is not equal to f(w). Beimel et al. give an algorithm to learn
a multiplicity automaton in time polynomial in the rank of the Hankel matrix of f (which
is bounded above by the dimension of the multiplicity automaton) and the length of the
longest counterexample. In contrast to L∗, in which rows of the observation table that are
unequal become distinct states, in the learning algorithm for multiplicity automata, a row
becomes a new basis vector only if it is linearly independent of the existing basis vectors.

Given that DFAs, UFAs, NFAs and mod-2-MAs all accept the class of regular languages,
an important distinction between them is succinctness, the number of states in the smallest
automaton to accept a given regular language. An NFA, UFA or mod-2-MA of n states
can be converted to an equivalent DFA of at most 2n states. DFAs are UFAs, which are
NFAs, so NFAs are at least as succinct as UFAs, which are at least as succinct as DFAs. By
Corollary 8, each UFA can be converted to a mod-2-MA of the same size, so mod-2-MAs are
at least as succinct as UFAs and DFAs. The family of languages Ln given by (a+b)∗a(a+b)n
shows that NFAs, UFAs and mod-2-MAs may be exponentially more succinct than DFAs.

Schmidt [30] considers the family of complements of the languages Ln given by {ww |
w ∈ {0, 1}n}, and shows that the complement of Ln can be accepted by an NFA of O(n2)
states, but requires at least 2n states for a UFA. His argument is that the rank of the binary
matrix F (x, y) = xy 6∈ Ln where x, y ∈ {0, 1}n is at least 2n, and therefore that a UFA
must have at least 2n states. This also shows that a mod-2-MA for the complement of Ln
must have dimension at least 2n. This leaves the question of whether mod-2-MAs may be
non-polynomially more concise than UFAs or NFAs. Here we consider the comparison of the
sizes of NFAs and mod-2-MAs over a unary alphabet.
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I Lemma 10. There is a family of unary languages {Ln} such that the smallest NFA that
accepts Ln has size O(n2) while the smallest mod-2-MA that accepts Ln has dimension at
least 2Θ(n/ logn).

Proof. Given n, let p1, p2, . . . , p` denote the primes less than or equal to n and let P (n)
denote their product. Define Ln to contain all words at such that t is not a positive
integer multiple of P (n). We define an NFA An to accept Ln as follows. The states are
Q = {q0} ∪ {ri,j | 1 ≤ i ≤ n, 0 ≤ j < pi}, where q0 is the only initial state and all states are
final except for those in {ri,j | 1 ≤ i ≤ k, j = pi − 1}. There are transitions on a from q0 to
each ri,0 and from each ri,j to ri,j+1, where the addition is modulo pi. Then ε is accepted,
and at is rejected only if t is a positive integer multiple of each pi, that is, a positive integer
multiple of P (n), so An accepts Ln and has O(n2) states.

Let A′ be a mod-2-MA of dimension N accepting Ln. Then there is a mod-2-MA of
dimension N + 1 accepting the complement of Ln (Remark 9). But the shortest word in the
complement of Ln has length P (n), so P (n) < N + 1. Because the number of primes less
than or equal to n is Θ(n/ logn) and each prime is at least 2, the lower bound follows. J

For more information on sizes of finite automata accepting unary languages, see the paper of
Chrobak [16, 17], which gives more refined bounds.

In the other direction, we prove a conditional lower bound in the following lemma. A
Mersenne prime is a prime of the form 2d − 1 for some positive integer d. Unfortunately,
it is unknown whether there are infinitely many Mersenne primes. For this paper, a shift
register sequence of dimension d is an infinite periodic sequence {an} of bits defined by initial
conditions ai = bi for i = 0, 1, . . . , d− 1 and a linear recurrence

an = c1an−1 + c2an−2 + . . .+ cdan−d,

for all n ≥ d, where each ci ∈ {0, 1} and the addition is modulo 2. The maximum possible
minimum period of a shift register sequence is 2d − 1, and it is known that for every positive
integer d there are shift register sequences of maximum period. These are known as maximal
length or pseudo noise sequences. A maximal length sequence has 2d−1 ones and 2d−1 − 1
zeros in the period. Golomb’s book [23] is a definitive reference for shift register sequences.
An example of a maximal length sequence of dimension 4 is given by a0 = 0, a1 = 0, a2 = 0,
a3 = 1 and for all n ≥ 4, an = an−3 + an−4 (mod 2). This recurrence generates a sequence
with period 000100110101111.

I Lemma 11. If there are infinitely many Mersenne primes then there is a family of unary
languages Ld such that for infinitely many values of d, Ld is accepted by a mod-2-MA of
dimension d but no NFA of fewer than 2d − 1 states accepts Ld.

Proof. Suppose the unary alphabet is Σ = {]}. For a language L ⊆ Σ∗ we may define the
infinite sequence χLn where χLn = 1 if ]n ∈ L and 0 otherwise. Given a maximal length shift
register sequence {an} of dimension d, there exists a mod-2-MA A of dimension d such that
the language L accepted by A has χLn = an for all n ≥ 0. Such a mod-2-MA A can be
constructed as follows. Let an = c1an−1 + c2an−2 + . . . + cdan−d, with initial conditions
ai = bi for 0 ≤ i < d, be the linear recurrence used to define the given maximal length shift
register sequence. Then let the mod-2-MAM be the tuple

({]}, (b0, . . . , bd−1), {µ]}, (1, 0, . . . , 0)>),
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where the matrix µ] is as prescribed on the right.

µ] =


0 0 . . . 0 cd
1 0 . . . 0 cd−1
0 1 . . . 0 cd−2
...

...
. . .

...
...

0 0 . . . 1 c1


It follows that (χLm, χLm+1, . . . , χ

L
m+d−1) · µ] is equal to (χLm+1, χ

L
m+2, . . . , χ

L
m+d), for any

m ≥ 0, and therefore, for any n ≥ 0, the value of χLn is equal to (b0, b1, . . . , bd−1) · (µ])n ·
(1, 0, . . . , 0)>.

Let A′ be an NFA accepting L corresponding to a maximal length shift register sequence
of dimension d. Then A′ must contain at least one reachable cycle of states with at least
one final state. The length of that cycle must not be 1 or relatively prime to 2d − 1, or else
positions of the period that should be 0’s will eventually be assigned 1. More specifically,
since the sequence is not constant and since the period of the shift register sequence is 2d− 1,
there exist m1,m2 < 2d such that for all ` the value of a`·(2d−1)+m1 is 0 and the value of
a`·(2d−1)+m2 is 1. On the other hand if there is a cycle of length p in A′, then for some k ≥ 0,
the value of ak+j1·p is equal to ak+j2·p, for all j1, j2 ≥ 0. It can be shown that if p is coprime
to 2d − 1, then there exist z1, z2, x1, x2 ≥ 0, such that x1 · (2d − 1) +m1 is equal to k + z1 · p
and x2 · (2d − 1) +m2 is equal to k + z2 · p, a contradiction. Thus p must not be coprime
to 2d − 1. Therefore, if 2d − 1 is prime, that is, if 2d − 1 is a Mersenne prime, p must be a
multiple of 2d − 1 and as a result A must have at least 2d − 1 states. J

7 Learning SUBAs in Polynomial Time With MQs and Non-Proper
EQs

In contrast to the negative result in Section 4 for learning NBAs, we show that SUBAs can
be learned in polynomial time using MQs and non-proper EQs. Since these two classes of
automata both accept all the regular ω-languages, a key difference is in the succinctness of
the representation of a regular ω-language by an NBA versus a SUBA.

I Theorem 12. There is a polynomial time algorithm to learn all regular ω-languages, when
the target language is represented by a SUBA, using membership queries and non-proper
equivalence queries (using mod-2-MAs to represent hypotheses).

The existence of the learning algorithm is established by the following two results.

I Lemma 13 (Bousquet and Löding [9]). Let A be a SUBA of n states accepting the language
L = JAK. Then there is a UFA of O(n2) states for the language (L)$.

Bousquet and Löding prove that there are polynomial time algorithms to determine contain-
ment and equivalence of two regular ω-languages represented by SUBAs. Their proof gives a
construction that takes a SUBA A of n states accepting a language L and produces a UFA
of at most n+ 2n2 states that accepts (L)$.

I Lemma 14 (Beimel et al. [8]). There is a polynomial time algorithm to learn UFAs with
membership and non-proper equivalence queries (using mod-2-MAs to represent hypotheses).

Beimel et al. [8] give an algorithm to learn multiplicity automata over a field K using
(generalized) MQs and EQs that runs in time polynomial in the dimension of the target
automaton and the length of the longest counterexample. They remark (p. 519) that their
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results imply a polynomial time algorithm for learning UFAs. Specifically, combining their
algorithm with the fact that UFAs can be transformed to mod-2-MAs of the same size
(Corollary 8) yields the lemma.

Proof of Theorem 12. Let A be a SUBA of n states with input alphabet Σ accepting the
language L. We assume $ 6∈ Σ, and let Σ$ = Σ∪{$}. For a MQ to L, the input is a string u$v
and the answer is 1 or 0 according to whether u(v)ω ∈ L, that is, whether u$v ∈ (L)$. For a
non-proper EQ to L, the input is a mod-2-MA H over the alphabet Σ$ and the answer is “yes”
if the language accepted by H is precisely (L)$. Otherwise, the answer is a counterexample
w ∈ (Σ$)∗ such that H accepts w and w 6∈ (L)$ or H rejects w and w ∈ (L)$.

The learning algorithm of Beimel et al. may use these EQs and MQs to L to learn a
mod-2-MA for the language (L)$. Because (L)$ is accepted by a UFA of O(n2) states, and
therefore by a mod-2-MA of dimension O(n2) (Corollary 8), the learning algorithm runs in
time polynomial in n and the length of the longest counterexample. J

In contrast to the negative result in Section 4 for the representation of regular ω-languages
by NBAs, we have the following corollary.

I Corollary 15. The class of ω-regular languages is polynomially predictable with membership
queries when the target language is represented by a SUBA.

Proof. By the discussion preceding Theorem 1, it is sufficient to note that there is a
polynomial time algorithm that takes as inputs a mod-2-MA H and a finite word w and
decides whether H accepts w. J

8 Discussion

We have shown that there is a polynomial time algorithm to learn strongly unambiguous
Büchi automata (SUBAs) using membership queries and non-proper EQs, where the EQs
use mod-2-MAs to represent (L)$. This implies that SUBAs are polynomially predictable
with membership queries. By contrast, we have shown that under plausible cryptographic
assumptions, general NBAs are not polynomially predictable with MQs. In applications,
careful thought should be given to the choice of representations, considering both succinctness
and learnability.

Given that the standard translation of a linear temporal logic (LTL) formula to an NBA
yields a SUBA [34, 35], it is natural to ask what our results imply about the learnability of
LTL formulas. The first step of the standard translation of an LTL formula φ constructs a
state set consisting of all subsets of subformulas of φ, so the constructed SUBA may be of
size exponential in the size of φ. Thus an algorithm that runs in time polynomial in the size
of the SUBA does not avoid this exponential blow up. However, the difficulty of learning
LTL formulas may be unavoidable: LTL formulas are at least as expressive and succinct as
Boolean formulas, and the results of Angluin and Kharitonov [7] show that under the same
cryptographic assumptions in Theorem 1, Boolean formulas are not polynomially predictable
with membership queries.

Several avenues of research are suggested by our results. Can the equivalence queries
used by the learning algorithm of Theorem 12 be modified to use SUBAs, or at least NBAs,
as hypotheses? Farzan et al. [21] show how to convert the DFA hypotheses used by their
algorithm to NBAs for equivalence queries, a method that does not extend to mod-2-MAs.
The question of how different two minimal SUBAs for the same language can be appears
to be open; note that the SUBAs in Fig. 1 are isomorphic if we permit a permutation of
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the alphabet symbols. Given the useful properties of mod-2-MAs, perhaps the idea of using
mod-2-MAs for (L)$ as a general representation of regular ω-languages L should be explored.
On a minor point, is there a proof that mod-2-MAs may be exponentially more succinct
than NFAs without the assumption that there are infinitely many Mersenne primes? Finally,
none of our results bear on the open questions of whether deterministic Büchi automata,
deterministic parity automata or deterministic Muller automata are learnable in polynomial
time with equivalence and membership queries.
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