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ABSTRACT
Numerical invariants, e.g., relationships among numerical variables
in a program, represent a useful class of properties to analyze pro-
grams. General polynomial invariants represent more complex
numerical relations, but they are o�en required in many scienti�c
and engineering applications. We present NumInv, a tool that im-
plements a counterexample-guided invariant generation (CEGIR)
to automatically discover numerical invariants, which are polyno-
mial equality and inequality relations among numerical variables.
�is CEGIR technique infers candidate invariants from program
traces and then checks them against the program source code using
the KLEE test-input generation tool. If the invariants are incor-
rect KLEE returns counterexample traces, which help the dynamic
inference obtain be�er results. Existing CEGIR approaches o�en
require sound invariants, however NumInv sacri�ces soundness
and produces results that KLEE cannot refute within certain time
bound. �is design and the use of KLEE as a veri�er allow NumInv
to discover useful and important numerical invariants for many
challenging programs.

Preliminary results show that NumInv generates required in-
variants for understanding and verifying correctness of programs
involving complex arithmetic. We also show that NumInv discovers
polynomial invariants that capture precise complexity bounds of
programs used to benchmark existing static complexity analysis
techniques. Finally, we show that NumInv performs competitively
comparing to state of the art numerical invariant analysis tools.
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1 INTRODUCTION
�e automated discovery of program invariants—relations among
variables that are guaranteed to hold at certain locations of a
program—is an important research area in program analysis and
veri�cation. Generated invariants can be used to prove correctness
assertions, reason about resource usage, establish security proper-
ties, provide formal documentation and more [2, 15, 16, 21, 29, 31].

A particularly useful class of invariants are numerical invari-
ants, which involve relations among numerical program variables.
Within this class of invariants, nonlinear polynomial relations, e.g.,
x ≤ y2,x = qy + r , arise in many scienti�c, engineering, and safety-
and security-critical applications.1 For example, the commercial
analyzer Astrée, which has been applied to verify the absence of
errors in the Airbus A340/A380 avionic systems [5, 13], implements
the ellipsoid abstract domain [22] to represent and analyze a class
of quadratic inequality invariants. Complexity analysis, which aims
to determine a program’s performance characteristics [25, 26, 30],
perhaps to identify possible security problems [1, 33], also makes
use of polynomial invariants, e.g., O (n2 + 2m) where n,m are some
program inputs. In addition, such polynomial invariants have been
found useful in the analysis of hybrid systems [40, 41], and in
fact, are required for implementations of common mathematical
functions such as mult, div, square, sqrt, mod.

Numerical invariants can be discovered via static and dynamic
program analyses. A static analysis can reason about all program
paths soundly, but doing so is o�en expensive and is only possible
for relatively simple forms of invariants [34]. Dynamic analyses
limit their a�ention to only some of a program’s paths, and as a re-
sult can o�en be more e�cient and produce more expressive invari-
ants, but provide no guarantee that invariants are correct [21, 36].
Recently, several systems (such as PIE [37], ICE [23] and Guess-
and-Check [42]) have been developed that take a hybrid approach:
Use a dynamic analysis to infer candidate invariants but then con-
�rm these invariants are correct for all inputs using a static veri�er.
When invariants are incorrect the veri�er returns counterexample
traces which the dynamic inference engine can use to infer more

1We refer to nonlinear polynomial relations such as x = qy + r , x ≤ y2 simply as
polynomial relations.
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int cohendiv(int x, int y){

assert(x>0 && y>0);

int q=0; int r=x;

while(r ≥ y){

int a=1; int b=y;

while[L1](r ≥ 2*b){

a = 2*a; b = 2*b;

}

r=r-b; q=q+a;

}

[L2]

return q;

}

Traces:

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

...

4 1 1 1 0 4
4 1 2 2 0 4

...

Figure 1: An integer division programand example trace val-
ues at location L1 on inputs (x = 15,y = 2) and (x = 4,y = 1).
Among other invariants, two key loop invariants discovered
at L1 are b = ya and x = qy + r , with the latter also found as
the postcondition at L2.

accurate invariants. �is iterative process is called CounterExample
Guided Invariant geneRation (CEGIR).

While the CEGIR approach is promising, existing tools have
some practical limitations. One limitation is that they �nd invari-
ants strong enough to prove a particular (programmer-provided)
postcondition where the quality of the generated invariants de-
pends on the strength of the postcondition. As such, they are not
well suited for automated analyses on code that lacks such formal
speci�cations. Another limitation is that these tools employ a sound
static veri�er, which aims to de�nitively prove that an invariant
holds. While this is a good goal, it turns out to be a signi�cant
restriction on the quality of the invariants that can ultimately be
inferred—it can be quite challenging to do when invariants are
nonlinear polynomial and involve many program variables. For ex-
ample, consider the program in Figure 1, which implements Cohen’s
algorithm for integer division [10]. Two important loop invariants
(at L1) are b = ya and x = qy + r , as they both point directly to the
correctness of the algorithm.2 Neither PIE nor ICE can infer these
invariants (both tools time out).

In this paper we present a new CEGIR invariant inference algo-
rithm called NumInv that overcomes these limitations. It has two
main components. First, it uses algorithms from DIG [35, 36] to
dynamically infer expressive polynomial equality invariants and lin-
ear inequality relations from traces at speci�ed program locations.
Second, it uses KLEE [6], a symbolic executor, to check candidate
invariants and produce counterexamples when they fail to hold.
To check an invariant p holds at location L, NumInv transforms
the input program so that L is guarded by the conditional ¬p. If
KLEE is able to reach L then p must not be an invariant, and so it
outputs a counterexample consisting of the relevant input values
at that location. On the other hand, if KLEE never reaches that
location prior to timing out, then NumInv accepts the invariant as
correct. Although this technique is unsound, KLEE, by its nature as

2x = qy + r describes the intended behavior of integer division: the dividend x equals
the divisor y times the quotient q plus the remainder r .

a symbolic executor, turns out to be very e�ective in discovering
counterexamples to refute invalid candidates.

For the example in Figure 1, NumInv is able to �nd the critical
equalities mentioned above, along with many other useful inequal-
ities. �ese invariants help understand the precise semantics of
the program and verify its correctness properties. Moreover, by
instrumenting the program with a counter variable, NumInv can
even infer program running times as a function of the inputs. For
example, NumInv is able to infer the precise running time of the
program in Figure 5 (page 7) which has a tricky, triple-nested loop.

We evaluatedNumInv by using it to infer invariants on more than
90 benchmark programs taken from the NLA [35] and HOLA [17]
suites for program veri�cation and from examples in the literature
on complexity bound analysis [25–27]. Our results show that Nu-
mInv generates su�ciently strong invariants to verify correctness
and to understand the semantics of 23/27 NLA programs containing
nontrivial arithmetic and polynomial relations. We also �nd that
NumInv discovers highly precise invariants describing nontrivial
complexity bounds for 18/19 programs used to benchmark static
complexity analysis techniques (in fact, for 4 programs, NumInv
obtains more informative bounds than what were given in the lit-
erature). We note that both ICE and PIE cannot �nd any of these
invariants produced by NumInv, even when we explicitly tell these
tools that they should a�empt to verify these invariants. Finally, on
the 46 HOLA programs, we compare NumInv directly with PIE. We
�nd it performs competitively: in 36/46 cases its inferred invariants
match PIE’s, are stronger, or are more descriptive.

�us, although NumInv can potentially return unsound invari-
ants, our experience shows that it is practical and e�ective in re-
moving invalid candidates and in handling di�cult programs with
complex invariants. We believe that NumInv strikes a practical
balance between correctness and expressive power, allowing it to
discover complex, yet interesting and useful invariants out of the
reach of the current state of the art.

2 OVERVIEW
NumInv generates invariants using the technique of counterexample-
guided invariant generation (CEGIR). At a high level, CEGIR consists
of two components: a dynamic analysis that infers candidate invari-
ants from execution traces, and a static veri�er to check candidates
against the program code. If a candidate invariant is spurious, the
veri�er also provides counterexamples (cexs). Traces from these
cexs are recycled to repeat the process, hopefully producing ac-
curate results. �ese steps of inferring and checking repeat until
no new cexs or (true) invariants are found. �e CEGIR approach
is basically exploiting the observation that inferring a sound solu-
tion directly is o�en harder than checking a (cheaply generated)
candidate solution.

Other promising CEGIR algorithms, e.g., the ICE, PIE and Guess-
and-Check tools, have been developed in recent years that take the
same approach [23, 37, 42], though they refer to it di�erently. In par-
ticular they refer to CEGIR as a data driven or black-box approach,
where the dynamic analysis is called the student or learner, and
the static veri�er is called the teacher or oracle. �ese approaches
have been able to prove correctness of speci�cations by inferring
inductive loop invariants, or su�cient and necessary preconditions.
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Some of these works (ICE and PIE) are veri�cation oriented, i.e.
they infer invariants to speci�cally prove a given assertion. In
this approach, the computation of these “helper” invariants strictly
depends on the given assertions, e.g., if the intended assertion is
True then the inferred invariant can be just True. We review these
works in more detail in Section 6.

NumInv has a di�erent goal and takes a di�erent approach. Our
goal is both discovery and veri�cation, and our approach is to �nd
the strongest possible invariant at any arbitrarily given location.
When given an undocumented program, NumInv can discover
interesting properties and provide the formal speci�cations. For
example, NumInv can reveal a stronger postcondition than the user
might think to write down, and the user doesn’t have to write down
any postconditions at all. Moreover, when given a speci�c assertion,
the resulting invariant from NumInv can help prove it (e.g., if the
invariant matches or is stronger than the assertion). Empirically,
NumInv can frequently infer invariants that are at least as strong
as the postcondition, and frequently, stronger.

2.1 NumInv
NumInv infers candidate invariants using the algorithms from
DIG [35, 36], which produce equality and inequality relations from
traces. To check invariants, NumInv invokes KLEE [6], a symbolic
executor that is able to synthesize test cases for failing tests.

KLEE as a “veri�er”. NumInv generates candidate invariants at
program locations L of interest (e.g., at the start of loops or at the
end of functions). To check whether a property p holds at a location
L, NumInv asks KLEE to determine the reachability of the location
L when guarded by ¬p. For example, to check whether the relation
x = qy + r is an invariant at some location L, NumInv modi�es the
program as follows

...

if (!(x==qy+r)){

[L]

save(x,y,q,r); //cex traces

abort ();

}

...

KLEE then runs this program, systematically exploring the space
of possible inputs. If, during this process, location L is reached,
then the relation does not hold, so a cex consisting of the values
of relevant input variables is saved for subsequent inference. On
the other hand, KLEE may be able to explore all program paths and
thus verify that indeed that invariant p holds. Or, if this is infeasible,
NumInv terminates KLEE a�er some timeout.

�e use of KLEE as the veri�er is a key feature of NumInv. Be-
cause programs o�en contain a very large number of possible paths,
KLEE rarely explores all of them. However, in our experience (Sec-
tion 5), if it does not quickly �nd a counterexample for p then p very
likely holds. �is is true even when p is a nonlinear polynomial
relation. As such, KLEE serves as a practical improvement over ex-
isting theorem provers and constraint solvers, for which reasoning
over general polynomial arithmetic is a signi�cant challenge.

Inferring polynomial equalities and linear inequalities. NumInv
uses two CEGIR algorithms to �nd candidate numerical relations p

at program locations of interest. �e �rst algorithm �nds polyno-
mial equalities. To do this, for each program location L, NumInv
produces a template equation c1t1 +c2t2 · · · cntn = 0. �is equation
contains n unknown coe�cients ci and n terms ti , with one term
for each possible combination of relevant program variables, up
to some degree d . NumInv calls KLEE on the program to system-
atically obtain many possible valuations of relevant variables at
L. Each distinct observed valuation, which we call a trace, is sub-
stituted into the template to form an instantiated equation. A�er
obtaining at least n traces, NumInv solves the ci using the resulting
sets of equations. Substituting the solutions back into the template,
we can extract candidate invariants. At this point, NumInv enters
a CEGIR loop that tests the candidate invariants by using KLEE as
described above. Any spurious invariants are dropped, and the cor-
responding cex traces are used to infer new candidates, as described
above, until no additional true invariants are found.

NumInv’s second algorithm tries to infer linear inequalities in the
form of octagons, which are inequalities over two variables, contain-
ing eight edges. It re�nes the bounds on the candidate invariants
using a divide-and-conquer algorithm. Once again, NumInv esti-
mates and obtains an initial set of traces. It enumerates all possible
octagonal inequality forms involving one and two variables and
uses KLEE to check inequalities under these forms are within cer-
tain ranges [minV ,maxV ]. It then narrows this range, iteratively
seeking tighter lower and upper bounds.

Finally, from the obtained equality and inequality invariants,
NumInv removes any invariants that are logical implications from
other invariants. For instance, we suppress the invariant x2 = y2

if another invariant x = y is also found because the la�er implies
the former. We check possible implications using an SMT solver
(checking whether the negation of the implication is unsatis�able).

2.2 Example
Recall the program cohendiv in Figure 1, which takes as input two
integers x ,y and returns the integer q as the quotient of x and y.
Given this program and locations of interest L1 and L2, NumInv
automatically discovers the following (loop) invariants at L1:

x = qy + r b = ya
y ≤ b b ≤ r
r ≤ x a ≤ b 2 ≤ a + y

and the following (postcondition) invariants at L2:

x = qy + r 1 ≤ q + r
r ≤ x r ≤ y − 1 0 ≤ r

�ese equality and inequality relations are su�ciently strong
to understand the function’s semantics and verify the correctness
of cohendiv. More speci�cally, the nonlinear equation x = qy + r
describes the precise behavior of integer division: the dividend x
equals the divisor y times the quotient q plus the remainder r . �e
other inequalities also provide useful information for debugging.
For example, these invariants reveal several required properties of
the remainder r such as r is non-negative (r ≥ 0), is at most the
dividend (r ≤ x ), but is strictly less than the divisor (r ≤ y − 1). In
addition, these invariants can help prove assertions if they exist
in the program. For example, if we want to assert and prove the
postcondition stating that the returned quotient is non-negative
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(q ≥ 0), then we can easily do so because the discovered invariants
at L2 imply q ≥ 0.3

As mentioned above, ICE and PIE generate invariants to prove
speci�c assertions. �us, given a program with no speci�c assertion,
they will not provide anything useful. Even when asked to verify
a speci�c assertion, e.g., x = qy + r or other simpler invariants
above found by NumInv, these tools fail to prove them (PIE does
not converge and ICE fails to generate invariants to prove the given
assertions). We do not have the implementation of the Guess-and-
Check algorithm in [42] to run on this example, however this work
does not support inequalities and thus would not generate the
inequality invariants shown.

3 INFERRING POLYNOMIAL EQUALITIES
We now discuss NumInv’s CEGIR algorithm for generating polyno-
mial equalities among program variables. �is algorithm integrates
the equation solving technique in DIG with KLEE to �nd invariants.

3.1 Terms, Templates, and Equation Solving
NumInv infers polynomial equalities by searching for solutions
to instantiations of a template equation having the form c1t1 +
c2t2 · · ·+cntn = 0, where ci are real-valued and ti are terms. Terms
consist of polynomials over program variables. More speci�cally,
given a set V of variables and a degree d , NumInv creates a set
of n terms consisting of monomials up to degree d from V . For
instance, the n = 10 terms {1,r ,y,a,ry,ra,ya,r2,y2,a2} consist of
all monomials up to degree 2 over the variables {r ,y,a}.

NumInv seeks to solve the ci in the template equation by instan-
tiating the ti with values observed from traces. For our example,
instantiating the template with the trace r = 3,y = 2,a = 6 would
yield the equation c1 + 3c2 · · · + 36cn = 0. If there are n terms,
we need at least n distinct valuations of the variables in V . Given
the (at least) n equations that result a�er instantiation, we solve
for the ci , substituting their solutions into the template to produce
equations over the (combinations of) variables in V .

3.2 Algorithm
Figure 2 shows the CEGIR algorithm for �nding polynomial equali-
ties. Given a program P , and location L, and a degree d , NumInv
automatically computes all equalities with degree up to d over the
numerical variables at L. (In Section 5, we discuss our use of a single
parameter that automatically adjusts the degree d depending on
the program).

�e �rst steps are to identify the variables at the program lo-
cation of interest, and then to construct the terms and template
as described above. �en, in the �rst loop, we use KLEE to obtain
traces to instantiate the template and thereby produce equations
over the coe�cients associated with the generated terms. To obtain
traces, we simply ask KLEE to �nd cexs producing traces reaching
L (more speci�cally, the location guarded by ¬False at L). To avoid
ge�ing old inputs, we explicitly ask KLEE to return only new inputs
(by adding assertions that the input variables are not any of the
observed ones). A�er having enough equations, we solve equations

3NumInv also found this assertion and other postconditions at L2, but discarded them
because they are implied by other discovered invariants and are thus redundant.

input : a program P , a location L, a degree d
output : polynomial equalities over the variables at L up to degree d
vars← extractVars(P, L)
terms← createTerms(vars, d )
template← createTemplate(terms)
inps, traces, eqts, invs← ∅, ∅, ∅, ∅

while |eqts | < |terms | do
cexInps← verify (P, L, False, inps)
if cexInps ≡ ∅ then

if inps ≡ ∅ then return {False} //unreachable
else return NotEnoughTraces

inps← inps ∪ cexInps
traces← exec(P, L, cexInps)
eqts← eqts ∪ instantiate(template, traces)

sols← solve(eqts)
candidates← extractEqts(sols, terms)
while candidates , ∅ do

cexInps← verify (P, L, candidates, inps)
foreach candidate ∈ candidates do

if candidate.stat , False then invs.add(candidate)
if cexInps ≡ ∅ then break

inps← inps ∪ cexInps
traces← exec (P, L, cexInps)
eqts← eqts ∪ instantiate(template, traces)
sols← solve(eqts)
candidates← extractEqts(sols, terms)
candidates← candidates − invs

return invs

Figure 2: CEGIR algorithm for �nding equalities.

using an o�-the-shelf linear equation solver and extract results
representing candidate equality relations among terms.

Next, the algorithm enters a second loop that iteratively veri�es
candidate invariants and obtains cex traces allowing the inference
algorithm to discard spurious results and generate new invariants.
NumInv accepts a candidate invariant as long as KLEE cannot �nd a
cex for it within the timeout period. We repeat the steps of verifying
candidate invariants, obtaining cexs, and inferring new results until
we can no longer �nd cexs or new results.

Note that unlike the popular CEGAR technique in static anal-
ysis [9] that usually starts with a weak invariant and gradually
strengthens it, NumInv’s CEGIR algorithm starts with a strong
invariant (i.e., False) and iteratively weakens it. �is is because the
algorithm dynamically infers invariants using observed traces. We
start with few traces and thus likely generate too strong or spurious
invariants. We then subsequently accumulate more traces to refute
spurious results and create more general invariants that satisfy all
obtained traces.

We also note an interesting property of nonlinear polynomial
equalities is that they can represent a form of disjunctive invariants.
For example, x2 = 4 indicates that x = 2 ∨ x = −2. In Section 5.2
we exploit this useful property to �nd multiple complexity bounds
of a program.
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3.3 Example
We demonstrate this technique by �nding the equalities b = ya and
x = qy+r at location L1 in the cohendiv program in Figure 1, when
using degree d = 2.

For the six variables {a,b,q,r ,x ,y} at L1, together with d = 2, we
create 28 terms {1,a, . . . ,y2}. NumInv uses these terms to form the
template c1 + c2a + . . . c28y2 = 0 with 28 unknown coe�cients ci .
Next, in the �rst loop, NumInv uses KLEE to obtain traces such as
those given in Figure 1 to form (at least) 28 equations. From this set
of initial equations, NumInv solves and extracts seven equalities.

Now NumInv enters the second loop. In iteration #1, KLEE can-
not �nd cexs for two of these candidates x = qy + r ,b = ya (which
are actually true invariants) and save these as invariants. KLEE
�nds cexs for the other �ve,4 and NumInv forms new equations
from the cexs. Next, NumInv combines the old and new equations
to obtain another seven candidates, two of which are the already
saved ones (because we also use the old equations). In iteration #2,
KLEE obtains cexs for the other �ve candidates. With the help of
the new cex equations, NumInv now infers three candidates, two
of which are the saved ones. In iteration #3, NumInv uses KLEE to
�nd cexs disproving the remaining candidate and again uses the
new cexs to infer new candidates. �is time NumInv only �nds the
two saved invariants x = qy + r ,b = ya and thus stops.

4 INFERRING OCTAGONAL INEQUALITIES

a b c d e

Figure 3: (a) A set of points in 2D and its approximation us-
ing the (b) polyhedral, (c) octagonal, (d) zone, and (e) interval
regions. �ese shapes are represented by the conjunctions
of inequalities of the forms c1v1 + c2v2 ≥ c, ±v1 ± v2 ≥ c,
v1 −v2 ≥ c, and ±v ≥ c, respectively.

NumInv’s second algorithm aims to infer linear inequalities
among program variables, essentially by a�empting to �nd a convex
polyhedron in multi-dimensional space that contains all observed
trace points. Figure 3 illustrates several examples of polygons in
two-dimensional space. Figure 3a shows a set of points created
from input traces. Figures 3b, 3c, 3d, and 3e approximate the area
enclosing these points using the polygonal, octagonal, zone, and
interval shapes that are represented by conjunctions of inequalities
of di�erent forms as shown in Figure 3. �ese forms of relations are
sorted in decreasing order of expressive power and computational
cost. For example, interval inequalities are less expressive than
zone inequalities, and computing an interval, i.e., the upper and
lower bound of a variable, costs much less than computing the
convex hull of a zone.

NumInv infers octagonal inequalities. �ese can be computed
e�ciently (linear time complexity) and are also relatively expres-
sive (e.g. represent zone and interval inequalities as illustrated in
4�ese spurious results o�en have many terms and large coe�cients, e.g., the simplest
of these seven is ry2 − xy2 − 72ry + 72xy + 8190q + 1397r − 1397x = 0.

Function findUpperBound(term, minV, maxV, P , L)
if minV ≡ maxV then return maxV
else if maxV − minV ≡ 1 then

cexInps← verify (P, L, {term ≤ minV}, { })
if cexInps ≡ ∅ then return minV
else return maxV

else
midV← dmaxV+minV

2 e

cexInps← verify (P, L, {term ≤ midV}, { })
if cexInps ≡ ∅ then

maxV = midV
else

//disproved
traces← exec (P, L, cexInps)
minV = max (instantiate (term, traces))

return findUpperBound(term, minV, maxV, P , L)

Figure 4: CEGIR algorithm for �nding inequalities.

Figure 3). �us, the computation of octagonal inequalities also pro-
duces zone and interval inequalities for free. By balancing computa-
tional cost with expressive power, octagonal relations are especially
useful in practice for detecting bugs in �ight-control so�ware, and
performing array bound and memory leak checks [13, 32].

4.1 Terms
�e edges of an inferred octagon are represented by a conjunction
of eight inequalities of the form a1v1 + a2v2 ≥ k , where v1,v2 are
variables, a1,a2 ∈ {−1,0,1} are coe�cients, and k is a real-valued
constant. For example, from the traces in Figure 1, we could infer
octagonal inequalities such as 4 ≤ r ≤ 15 and 3 ≤ r − y ≤ 13 at
location L1.

NumInv infers octagonal inequalities by trying to prove invari-
ants t ≤ k for some constant k . Here, term t is a term involving two
variables so that t ≤ k is an octagonal constraint, e.g., t could be
x −y or x +y. More precisely, we consider all 8n2 possible terms for
n variables: we create n2 variable pairs from a set of n variables and
obtain 8 octagonal terms {±v1,±v2,±v1 ±v2} for each pair v1,v2.
For each such term we a�empt to prove its upper bound k1 and
lower bound k2, if they exist, using the algorithm described next.

4.2 Algorithm
One idea for inferring inequalities would be to iteratively re�ne
conjectured bounds using cexs. But this can take a long time. For
example, to �nd the invariant x ≤ 100, we can �rst infer x ≤ 1
from traces such as x ∈ {0,1}. We then disprove this candidate with
cexs such as x ∈ {2,3} and weaken the relation to x ≤ 3, which can
also be disproved and weakened. �is keeps going until we get the
cex x = 100, which allows us to obtain and prove x ≤ 100. Even
worse than taking a long time to reach the bound k , this brute-force
approach does not terminate when x has no constant bound. As
such, we use a divide-and-conquer-style search instead.

Finding Upper and Lower Bounds. We use the CEGIR algorithm
shown in Figure 4 to compute a precise integral upper bound k
of a term t . Similar to a binary search, this algorithm computes k
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from a given interval by repeatedly dividing an interval into halves
that could contain k . We start with the interval [minV ,maxV ]
where maxV = −minV ; our experience is that inequalities are
most useful with small constants, so by default we setmaxV = 10.
Next we check t ≤ midV where midV = dmaxV+minV

2 e. If this
inequality is true, then k is at most midV and thus we reduce
the search to the interval [minV ,midV ]. Otherwise, we obtain
counterexample traces showing that t > midV and reduce the
search to [minV ′,maxV ], where minV ′ is the largest trace value
observed for t . �us this approach gradually strengthens the guess
of k by repeatedly reducing the interval containing it.

We also use the same approach to �nd the lower bound of a term
t by computing the upper bound of −t . �is is possible because the
semantics and results of all computations are reversed when we
consider −t . For example, the max over the traces t ∈ {2,3} with
respect to −t is −2 and −t ≤ midV indicates the lower bound of t
is at leastmidV .

�e algorithm terminates and gives a precise upper bound value
when t ranges over the integers. �e algorithm stops whenminV
andmaxV are the same (because we no longer can reduce the inter-
vals) or when their di�erence is one (because we cannot compute
the exactmidV ). Currently NumInv does not support real-valued
bounds. However, we believe that this algorithm can be extended to
handle the case when t ranges over the reals. More speci�cally, we
can approximate the results by using only whole numbers or values
up to certain decimal places. �is sacri�ces precision but preserves
soundness and termination, e.g., the invariant is x ≤ 4.123 but we
obtain x ≤ 4.2, which is also an invariant, but less precise.

4.3 Example
Recall the program cohendiv from Figure 1. Suppose NumInv
wishes to �nd inequality invariants at L1 (within [−10,10]). It
�rst uses KLEE to check candidate relations r ≤ 10,y ≤ 10,r + y ≤
10,r − y ≤ 10, . . . and removes those that KLEE refutes. �e re-
maining ones have upper bounds less than or equal to 10.

For each remaining inequality candidate, NumInv iterates to
�nd tighter upper bounds. For example, suppose we wish to �nd k
such that r − y ≤ k . Since r − y ≤ 10, the algorithm sets midV =
(10 + −10) ÷ 2 which is 0 and thus tries to check r − y ≤ 0. �is
succeeds. However, this turns out to be weaker than necessary. In
the next iteration #2, NumInv tightens the bound to (0−10)÷2 = −5
and checks r − y ≤ −5. �is time KLEE returns a cex showing
that r − y = −3. In iteration #3, NumInv relaxes the bound to
(0 − 3) ÷ 2 = −1 and KLEE cannot refute r − y ≤ −1. In iteration
#4, NumInv guesses and checks (−1 − 3) ÷ 2 = −2, in which case
KLEE can �nd cexs stating that r − y = −1. At this point NumInv
accepts the tightest bound r − y ≤ −1 found in iteration #3. �e
process for �nding the lower bounds is similar as described above.

5 EXPERIMENTAL RESULTS
NumInv is implemented in Python and uses the linear equation
solver in the SAGE mathematical environment [43]. NumInv takes
as inputs a C program, a list of locations, and interested numerical
variables at these locations, and it returns relations among these
variables at the considered locations. As mentioned, NumInv uses

DIG’s algorithms to infer invariants and calls the symbolic execu-
tion tool KLEE to check results and obtain counterexamples for
re�nement. �e �nal step that removes redundant invariants uses
the Z3 solver [16] to check SMT formulas.

We generate numerical invariants of two forms: nonlinear poly-
nomial equations and octagonal inequalities. For octagonal invari-
ants, NumInv by default considers the bounds within the range
[−10,10]. For equalities, NumInv by default sets a single param-
eter α = 200 so that it can generate invariants without a priori
knowledge of speci�c degrees. NumInv automatically adjusts the
maximum degree so that the number of generated terms does not
exceed α . For example, NumInv considers equalities up to degree 5
for a program with four variables and equalities up to degree 2 for
a program with twelve variables. We acknowledge that inferring
these parameter constants robustly and automatically is important
future work. �ese constants can be chosen by the NumInv user;
we chose values based on our experience. Note that the divide
and conquer approach to inferring inequalities in Figure 4 is quite
useful if the user decides to increase the bounds; for range [−10,10]
the number of iterations is log(20) = 5 rather than 20 (if we use a
brute force algorithm) but for range [−100,100] it is log(200) = 8,
not 200 (using brute force).

Experiments. We evaluate and compare NumInv to other invari-
ant analysis systems by considering three experiments. �e �rst
experiment in Section 5.1 determines if NumInv can discover in-
variants representing precise semantics and correctness properties
of programs having complex arithmetic. �e second experiment in
Section 5.2 explores the use of NumInv’s invariants to represent
precise program complexity bounds. �e last experiment in Sec-
tion 5.3 compares NumInv’s performance with the state of the art
CEGIR tool PIE. �e experiments reported below were performed
on a Linux system with a 10-core Intel i7 CPU and 32 GB of RAM.

5.1 Analyzing Program Correctness
Programs. In this experiment, we focus on generating invariants

that capture semantics and correctness properties of programs
having nonlinear polynomial invariants. For this task, we evaluate
NumInv on the NLA [35] testsuite consisting of programs involving
complex arithmetic. �e suite, shown in Table 1, consists of 27
programs from various sources collected previously by Rodrı́guez-
Carbonell and Kapur [7, 8, 39]. �ese programs are relatively small,
on average two loops of 20 lines of code each. However, they
implement nontrivial mathematical algorithms involving general
polynomial properties and are o�en used to benchmark numerical
invariant analysis methods [7]. To the best of our knowledge, NLA
contains the largest number of numerical algorithms with nonlinear
polynomial invariants.

Each program in NLA comes with documented or annotated
correctness assertions requiring polynomial invariants, mostly loop
invariants having nonlinear polynomial equalities. For evaluation
purposes, we consider invariants at the annotated locations and
compare them to the documented invariants.

Results. Table 1 summarizes the results and reports the medians
across 11 runs. Column Locs gives the number of locations in the
programs where we consider invariants. Column Invs reports the
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Table 1: Results for 27 NLA programs. X: NumInv generates
su�ciently strong results to prove known invariants.

Prog Desc Locs V, T, D Invs Time (s) Correct

cohendiv div 2 6,3,2 11 24.57 X
divbin div 2 5,3,2 12 116.83 X
manna int div 1 5,4,2 5 30.86 X
hard int div 2 6,3,2 13 71.47 X
sqrt1 sqr root 1 4,4,2 5 19.35 X
dijkstra sqr root 2 5,7,3 14 89.32 X
freire1 sqr root 1 - - - -
freire2 cubic root 1 - - - -
cohencu cubic sum 1 5,5,3 5 22.56 X
egcd1 gcd 1 8,3,2 9 284.52 X
egcd2 gcd 2 - - - -
egcd3 gcd 3 - - - -
prodbin gcd, lcm 1 5,3,2 7 45.13 X
prod4br gcd, lcm 1 6,3,3 11 87.37 X
knuth product 1 8,6,3 9 84.69 X
fermat1 product 3 5,6,2 26 185.36 X
fermat2 divisor 1 5,6,2 8 101.83 X
lcm1 divisor 3 6,3,2 22 175.29 X
lcm2 divisor 1 6,3,2 7 163.86 X
geo1 geo series 1 4,4,2 7 24.41 X
geo2 geo series 1 4,4,2 9 24.33 X
geo3 geo series 1 5,4,3 7 32.38 X
ps2 pow sum 1 3,3,2 3 17.08 X
ps3 pow sum 1 3,4,3 4 17.86 X
ps4 pow sum 1 3,4,4 4 18.55 X
ps5 pow sum 1 3,5,5 4 19.36 X
ps6 pow sum 1 3,5,6 3 21.09 X

number of equality and inequality invariants discovered by NumInv.
Column V, T, D shows the number of distinct variables, terms, and
the highest polynomial degree in those invariants. Column Time
reports the time in seconds to generate these results, including
the time to remove redundant results. Column Correct indicates
whether these invariants matched or were strong enough to prove
(imply) the documented invariants.

NumInv found invariants that matched or were su�ciently strong
to prove the documented invariants of 23/27 programs in NLA. For
these programs, we discovered results matched the documented
invariants exactly as wri�en in most cases. NumInv also achieved
invariants that are logically equivalent to the documented ones. For
example, sqrt1 has two documented equalities 2a+1 = t , (a+1)2 =
s; our results gave 2a + 1 = t ,t2 + 2t + 1 = 4s , which is equiv-
alent to (a + 1)2 = s by substituting t with 2a + 1. In many
cases, NumInv also found undocumented invariants, e.g., most
of the discovered octagonal inequalities in the cohendiv program
in Figure 1 are undocumented. For dijkstra, NumInv found the
documented invariant describing the semantics of a loop com-
putation, but also discovered an undocumented loop invariant
h3 = 12hnq − 16npq +hq2 + 4pq2 − 12hqr + 16pqr . Manual analysis
shows that this strange relation is correct and captures detailed
dependencies among variables in the loop. �us, NumInv’s strong
invariants can help with understanding both what the program
does and also how the program works. In Section 5.2, we further
exploit such complex invariants to analyze program complexity.

void triple(int n, int m, int N){

assert (0 <= n && 0 <= m && 0 <= N);

int i = 0, j = 0, k = 0; int t = 0;

while(i < n){//loop 1

j = 0; t++;

while(j<m){//loop 2

j++; k=i; t++;

while (k<N){k++; t++;}// loop 3

i=k;

}

i++;

}

[L]

}

Figure 5: An example program that has muliple polynomial
complexity bounds.

For these programs, the run time for �nding equality invariants
is dominated by solving equations because we are solving hundreds
of equations with hundreds of unknowns each time. �e run time
signi�cantly improves if we restrict the search to invariants up to
a certain given degree. For example, NumInv took 2s to �nd the
invariants in sqrt1 using degree 2, but it took 20s to �nd the same
invariants using the parameter α = 200, which queries NumInv for
all invariants up to degree 5 in this program. For egcd1, the running
time is also cut by more than half if we only focus on quadratic
invariants. For inequality invariants, the running time is dominated
by checking because we rapidly guess the bound values and check
them with KLEE. Moreover, NumInv has to perform this “guess
and check” computation for octagonal constraints over all possible
pairs of variables.

We were not able to �nd invariants for 4/27 programs. NumInv
was able to infer results matching the documented invariants for
freire1 and freire2, but KLEE cannot run on these programs because
they contain �oating point operations. For egcd2 and egcd3, the
underlying SAGE equation solver stopped responding for more
than half of the 11 runs (though we got all correct results for the
runs during which the solver worked). �ese problems might occur
because the solver has to consider hundreds of equations with very
large coe�cients for hundreds of unknowns. We are investigating
and reporting these problems to the SAGE developers.

5.2 Analyzing Computational Complexity
We use NumInv to discover invariants capturing a program’s com-
putational complexity, e.g., O (n3) where n is some input. Figure 5
shows the program triple with three nested loops, adapted from
the program in Figure 2 of Gulwani et al. [26]. �e complexity of
this program, i.e., the total number of iterations of all three loops
at location L, appears to be O (nmN ) at �rst glance. Additional
analysis yields a more precise bound of O (n +mn +N ) because the
number of iterations of the innermost loop is bounded by N instead
of nmN and it furthermore directly a�ects the running time of the
outermost loop [26].
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Table 2: Results for computing programs’ complexities. X:
NumInv generates the expected bounds. XX: NumInv ob-
tains more informative bounds than reported results. X∗:
program was slightly modi�ed to assist the analysis.

Prog V, T, D Invs Time (s) Bound

cav09 �g1a 2,5,2 1 14.35 X
cav09 �g1d 2,5,2 1 14.24 X
cav09 �g2d 3,2,2 3 36.09 X
cav09 �g3a 2,2,2 3 14.24 X
cav09 �g5b 3,5,2 5 46.88 X∗

pldi09 ex6 3,8,3 7 54.18 X
pldi09 �g2 (triple) 3,15,4 6 93.55 XX
pldi09 �g4 1 2,3,1 3 44.26 X
pldi09 �g4 2 4,4,2 5 43.72 X
pldi09 �g4 3 3,3,2 3 37.54 X
pldi09 �g4 4 5,4,2 4 56.60 -
pldi09 �g4 5 3,4,2 3 31.60 X∗

popl09 �g2 1 5,12,3 2 211.73 XX
popl09 �g2 2 4,9,3 2 65.17 XX
popl09 �g3 4 3,4,3 4 54.70 X
popl09 �g4 1 3,3,2 2 42.76 X∗

popl09 �g4 2 5,12,3 2 158.3 XX
popl09 �g4 3 3,3,2 5 39.28 X
popl09 �g4 4 3,3,2 3 34.28 X

When given this program, NumInv discovers an interesting and
unexpected postcondition, at location L, about the counter variable
t , which is a ghost variable introduced to count loop iterations:

N 2mt + Nm2t − Nmnt −m2nt − Nmt2 +mnt2 + Nmt

−Nnt − 2mnt + Nt2 +mt2 + nt2 − t2 − nt + t2 = 0.

At �rst glance, this quartic (degree 4) equality with 15 terms
looks incomprehensible and quite di�erent than the expected bound
O (n+mn+N ) or evenO (mnN ). However, solving this equation for
t , i.e., �nding the roots, yields three solutions t = 0, t = N +m + 1,
and t = n −m(N − n). Careful analysis reveals that these results
actually describe three distinct and exact bounds of this program:

t = 0 when n = 0,
t = N +m + 1 when n ≤ N ,

t = n −m(N − n) when n > N .

�us, NumInv can �nd numerical invariants that represent pre-
cise program complexity. More importantly, the obtained relations
can describe expressive and nontrivial disjunctive invariants, which
capture di�erent possible complexity bounds of a program.

Programs. We apply NumInv to �nd complexity invariants on
programs adapted from [25–27].5 �ese programs, shown in Ta-
ble 2, are small, but they have nontrivial structures such as nested
loops and represent examples drawn from Microso�’s production
code [26]. For these programs, we introduce the counter variable t
and obtain relations among t and other variables such as inputs at
the program exit locations.

5We disable nondeterministic functions in these programs because currently NumInv
assumes deterministic programs.

Results. Table 2 shows the median results across 11 runs and has
similar format as that of Table 1. For column Bound, a checkmark
denotes that NumInv generates invariants representing a similar
bound to the one reported in the respective paper. A double check-
mark (XX) denotes that NumInv obtains more informative bounds
than reported results. A checkmark with an asterisk (X∗) denotes
that the program was modi�ed slightly to assist the analysis.

As can be seen, NumInv produced very promising results that
capture the precise complexity bounds for these programs. For
18/19 programs, NumInv discovered expected or even more in-
formative bounds than reported results in the respective papers.
For many programs, NumInv generated equality invariants repre-
senting tight bounds, which can be combined with the discovered
octagonal inequalities to get expected bounds. For example, for
popl09 fig3 4, NumInv obtained that the number of iterations t is
either n orm. In addition, NumInv �nds inequalities expressing that
t is larger than both n andm, suggesting that t is equal to max(n,m),
which is the bound also obtained in [27]. �us, inequalities, though
appearing much weaker compared to the obtained equalities, play
an important role to achieve precise program analysis.

Interestingly, in some cases, NumInv produced results that are
more informative than the ones given in the respective papers.
�is is particularly the case for the program triple analyzed earlier
because the three distinct bounds produced by NumInv are strictly
less than the bound n +mn +N given in [26]. We note that in most
other cases where NumInv obtained a be�er bound, the di�erences
were not as apparent as they were for triple.

We performed some adaptations in certain programs to assist
the bound analysis. For cav09 fig5b, we considered the invariant
obtained as one close to the expected bound. For popl09 fig4 1,
we inserted an assert statement that m ≥ 0 the beginning of the
program. Finally, for pldi09 fig4 5, for the number of iterations t
we obtained the three solutions t = n −m, t =m, or t = 0, which
imply the correct upper bound max(0,n −m,m).

Finally, NumInv obtained invariants that are not strong enough
to show the expected bound for pldi09 fig4 4. However, we would
have obtained this bound if we had introduced a variable (or a term)
representing the quotient from the division of two other variables
in the program. In our experiments, when inserting such a variable,
we obtained bounds that were tighter than the ones presented
in [26]. Such cases suggest a possible extension to NumInv for
predicting useful terms.

5.3 Comparing to PIE
NumInv automatically generates invariants for a program location
without any given assertions or postconditions. Other state-of-the-
art CEGIR tools such as PIE generate invariants in a goal-directed
manner, driven by supplied postconditions. In this experiment,
we compare NumInv with PIE’s guided inference with postcondi-
tions. �is experiment used the HOLA benchmark programs [17]
(adapted by the developers of PIE). �ese programs, shown in Ta-
ble 3, are short (10-40 LoC each) C programs already annotated
with postconditions.

We �rst ran PIE on each program and recorded PIE’s running
time in seconds. �en, we removed the postcondition and ran Nu-
mInv, asking it to generate invariants at the location in the program
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Table 3: Results for the HOLA benchmarks [17]. X: Made
invariants fromPIE.XX: Made stronger invariants than PIE.
An asterisk ∗ indicates that verifying the invariant required
additional investigation. ◦: Failed to make any invariants,
no running time reported in that case.

Benchmark PIE time (s) NumInv time (s) Correct

01 21.88 8.75 XX
02 36.12 10.35 X
03 56.28 108.20 XX
04 19.11 NA ◦

05 25.19 13.20 XX
06 61.98 14.67 X*
07 NA 16.83 X
08 19.02 31.49 XX*
09 NA 30.19 X
10 24.6 NA ◦

11 27.95 NA ◦

12 44.52 NA ◦

13 NA 19.33 X
14 25.98 11.65 XX
15 48.30 7.7 X
16 33.19 29.07 X
17 53.36 10.33 XX
18 21.70 7.7 XX
19 NA 25.79 X
20 331.93 104.40 XX
21 25.65 11.60 X*
22 25.40 10.90 X
23 23.40 9.07 XX
24 51.22 NA ◦

25 NA 16.76 X
26 87.64 13.50 X
27 55.41 376.80 X
28 22.16 NA ◦

29 58.82 NA ◦

30 33.92 NA ◦

31 88.10 20.39 X
32 226.73 NA ◦

33 NA 48.04 X*
34 121.87 12.20 XX
35 20.07 13.23 X
36 NA 14.98 X
37 NA 14.23 XX∗

38 37.37 10.83 X
39 24.68 2.39 X
40 60.71 17.07 X*
41 34.10 15.47 X X*
42 54.93 13.13 X*
43 21.16 11.3 X
44 31.92 12.3 X
45 84.00 15.3 X
46 27.56 NA ◦

where the postcondition was. If NumInv was able to generate in-
variants, we compared those invariants to the postcondition. If the
invariants that NumInv generated were at least precise enough to
establish the given postcondition, then NumInv earned a check-
mark (X). If the invariants were more precise, then NumInv earned
a double checkmark (XX). For the programs that NumInv could

not generate invariants, then the analysis is assigned the symbol ◦.
�e results are in Table 3.

For 36/46 programs, NumInv found invariants that were at least
as strong as the postconditions in the PIE programs. For the remain-
ing 10/46 programs, NumInv failed to produce necessary invariants.
For 13 of the 36 programs where NumInv produced invariants, Nu-
mInv was able to generate stronger invariants. For example, for
program 17, the target postcondition was k ≥ n given a precondi-
tion n ≥ 0, and NumInv produced, among other invariants, that
k = (n3 − n + 6)/6, which implies that for all n ≥ 0, k ≥ n.

For programs having the X∗ or XX∗, NumInv found stronger in-
variants that imply the given postcondition, but require additional
human e�ort to reason about. For program 42, the given postcon-
dition is a % 2 = 1, i.e., a is odd. NumInv found the invariants
xy = x +y − 1,u1 − a ≤ −2,a = x +y − 1, and 2u1 = x +y − 2. �is
set of constraints implies that x + y = 2(u1 + 1) and a = x + y − 1,
which indicates that a is indeed odd. But the �rst invariant in this
set produced by NumInv, also points to another relation among
those variables, namely that at least one of x and y is equal to 1,
and thus we marked this example with a double checkmark and
additionally annotated it with an asterisk.

Another interesting case is with program 8 that contains a post-
condition x < 4 ∨ y > 2, which has a disjunctive form of strict
inequalities that NumInv does not support. Instead of generating
this, NumInv returns a stronger relation x ≤ y, which implies this
postcondition and therefore proves it.

Summary. �ese experiments show that NumInv is e�ective in
producing expressive and useful invariants. �e NLA experiment
in Section 5.1 shows that NumInv discovers necessary invariants to
understand the semantics and check correctness properties of 23/27
NLA programs containing nontrivial arithmetic. �e Complexity
experiment in Section 5.2 indicates that NumInv discovers useful
invariants that capture challenging complexity bounds for 18/19
programs used to benchmark static complexity analyses. We also
note that the recent CEGIR tools ICE and PIE cannot �nd any of
these nonlinear polynomial invariants produced by NumInv in
these experiments, even when we explicitly tell these tools that
they should a�empt to verify these invariants. Finally, the HOLA
experiment in Section 5.3 shows that NumInv competes well with
PIE and in 36/46 programs discovers invariants that match or are
more informative than PIE’s.

5.4 �reats to Validity
As mentioned NumInv can return unsound results because KLEE
cannot fully verify programs with complex polynomial properties.
We can recover soundness by using a true veri�er instead, e.g., we
are considering the veri�cation tools CPAChecker [4] and Ultimate
Automizer [28], which performed well in the recent SV-COMP
2017 [3]. However, our experience shows that KLEE is e�ective in
�nding counterexamples disproving invalid results and thus results
that KLEE cannot disprove have high likelihood of being correct.
KLEE is also practical because it can consider challenging invariants
that are not understandable to many sound veri�ers.

KLEE does not fully support �oating point arithmetic and thus
NumInv is limited to �nding invariants over integral variables.
KLEE is also language dependent, thus NumInv considers only C
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programs. We are extending NumInv with additional veri�cation
backends that support richer semantics (e.g., arithmetic over the
reals) and other languages (e.g., JPF [24] for Java programs).

DIG’s algorithms focus on specialized classes of numerical invari-
ants, thus NumInv is unlikely to �nd invariants of other, unrelated
forms. However, our results show that NumInv can o�en generate
invariants that are logically equivalent or su�ciently strong to
prove other forms of complex invariants, e.g., disjunctive ones.

Although our benchmark programs have nontrivial structures
(e.g., nested loops) with complex arithmetic and have been used
to evaluate modern invariant generation systems, these programs
are small and do not represent real-world applications containing
hundreds of thousands lines of code. Nonetheless, we believe that
CEGIR is a promising approach to build invariant analysis tools
that can scale and handle larger and more complex codebases. �is
is because dynamic analysis allows for inferring expressive invari-
ants e�ciently from traces and static checkers such as KLEE have
become more powerful and practical in recent years.

6 RELATEDWORK
We review related invariant generation techniques using pure static
analysis, dynamic analysis, and CEGIR approaches.

Static invariant generation. Abstract interpretation [11, 12, 14]
computes an invariant that overapproximates reachable program
states. �is method starts from a weak invariant representing an
initial approximation and iteratively strengthens the invariant by
analyzing the structure of the program until reaching a �xed point.
Overapproximation can lead to imprecise information and produce
false positive errors. �us, major research directions in this area
focus on �nding abstract domains that are su�ciently expressive
to retain important information from the programs. For example,
the work in [13, 32] focus on the six-edged zone relations and the
eight-edge octagon relations shown in Figure 3.

Rodrı́guez-Carbonell et al. [7, 8, 39] use abstract interpretation
to generate nonlinear polynomial equalities. �ey �rst observe
that a set of polynomial invariants forms the algebraic structure
of an ideal, then compute the invariants using Gröbner basis and
operations over the ideals, based on the structure of the program
until reaching a �xed point. �e work only analyzes programs with
assignments and loop guards that are expressible as polynomial
equalities. In addition, this technique does not �nd inequalities and
does not support programs with nested loops.

Dynamic invariant generation. �e popular tool Daikon [18–21,
38] infers candidate invariants from traces and templates. Daikon
comes with a large list of invariant templates and tests them against
program traces. Templates that are violated in any of the test runs
are removed and the remainders are presented as the possible in-
variants. For numerical relations, Daikon can �nd linear relations
over at most three variables and has a small number of �xed non-
linear polynomial templates such as x = y2. In general, the tool has
limited support for inequalities and disjunctive invariants.

CEGIRApproaches. Sharma et al. [42] present a “guess-and-check”
technique for inferring equality invariants. �is technique is the
standard CEGIR approach, and the “guess” component infers equal-
ities using the similar equation solving technique in DIG. �us

for equality, this technique has the same theoretical power as Nu-
mInv. �e “check” component uses the Z3 SMT solver, and in this
context, it is interesting to note the various di�erences in running
time caused by the di�erent choices made in the la�er and our
implementation, and speci�cally the use of KLEE instead of Z3.
�is “guess-and-check” approach is limited to equality relations
and, as mentioned in Section 4.2, it is not trivial to extend to �nding
inequality invariants.

�e PIE (Precondition Inference Engine) tool [37] can gener-
ate both preconditions and loop invariants to automatically verify
given assertions. Given an assertion Q , the goal is to produce a
predicate formula su�ciently strong to ensure the assertion. To
do this, PIE iteratively learns and re�nes a set of features (pred-
icates over inputs such as x > 0) that are su�ciently strong to
separate“good” traces satisfying Q and “bad” traces violating Q .
�ese predicates form the required precondition that proves the
assertion. �e novelty of PIE is that it does not rely on a �xed class
of predicates and can construct necessary predicates during the
inference process. Nonetheless, the tool cannot provide invariants
for arbitrary locations in the program, especially if no additional
assertions are given. More speci�cally, on the cohendiv example in
Figure 1, PIE did not converge to an invariant.

�e ICE (implication counter-example) learning model [23] is
also a CEGIR approach that generates inductive invariants to prove
given assertions. �e “student” uses a decision learning algorithm
to guess candidate invariants expressed over predicates, which sepa-
rate the good and bad traces. �e “teacher” uses the Boogie veri�er
to check and provide good, bad, and a new kind of implication
counterexamples to help the learner infer more precise inductive
invariants. For e�ciency, they restrict a�ention to the octagon
domain and search only for predicates that are arbitrary boolean
combinations of octagonal inequalities. Similar to PIE, ICE infers
only necessary invariants to prove assertions. Even when provided
with assertions such as the postconditions of the program cohendiv
in Figure 1, ICE fails to prove them. We note that part of the reason
might be because ICE does not support arithmetic operations such
as division and modulo.

7 CONCLUSION
We present NumInv, a CEGIR-based tool that discovers numerical
invariants at arbitrary program locations. NumInv uses a dynamic
analysis to infer invariants and the test-input generation tool KLEE
to verify them. For invalid invariants, KLEE returns counterex-
ample traces that are then used to help the inference algorithm
discard invalid results and to �nd new invariants. �e use of KLEE
allows NumInv to work on programs with nontrivial arithmetic and
discover useful and complex invariants. Preliminary experiments
show that NumInv o�en outperforms state-of-the-art CEGIR sys-
tems in discovering invariants required to understand and analyze
semantics, correctness, and complexity properties of programs.
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