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Abstract. Graph logic (GL) is a spatial logic for querying graphs intro-
duced by Cardelli et al. It has been observed that in terms of expressive
power, this logic is a fragment of Monadic Second Order Logic (MSO),
with quantification over sets of edges. We show that the containment is
proper by exhibiting a property that is not GL definable but is definable
in MSO, even in the absence of quantification over labels. Moreover, this
holds when the graphs are restricted to be forests and thus strengthens in
several ways a result of Marcinkowski. As a consequence we also obtain
that Separation Logic, with a separating conjunction but without the
magic wand, is strictly weaker than MSO over memory heaps, settling
an open question of Brochenin et al.

1 Introduction

Graph Logic (GL) was introduced by Cardelli et al. [2] as a query language
on labelled directed graphs, modelled on spatial logic. It extends the first-order
logic of such graphs (with quantification over vertices, edges and labels) with
a spatial connective: thus, a formula (ϕ|ψ) is true in a graph G if, and only if,
G can be decomposed into two subgraphs G1 and G2 such that G1 |= ϕ and
G2 |= ψ. Here, when we say that G is decomposed into G1 and G2, we mean
that these two graphs may share vertices but not edges.

It is easy to see that any formula of GL can be translated into an equivalent
formula of second-order logic in which the second-order quantifiers are restricted
to sets of edges. This is a version of monadic second-order logic (MSO) known as
MS2 in the works of Courcelle (see [4]) and also as guarded second order logic or
GSO (see [8]). The expressive power and complexity of GL were systematically
investigated in [6], where it was shown that, like MSO, GL can express complete
problems at every level of the polynomial hierarchy. Moreover, when we restrict
ourselves to labelled graphs that code words in the natural way, then GL can
(just like MSO) define exactly the regular languages. A conjecture that was left
open in [6] was that the containment of GL in MS2 is strict, i.e. that there is a
property of graphs definable in MS2 that is not definable in GL.

Marcinkowski [9] settled this conjecture positively. The property he constructs
crucially relies on the presence of an unbounded set of labels in the graphs
considered, and on the ability of formulas of GL and (an enhanced) monadic
second-order logic, which he calls MSO+ to quantify over labels. This reliance
on label-quantification is something Marcinkowski calls a “win on technicalities”
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and he explicitly leaves open the more fundamental question of whether GL
without quantification over labels, which he calls GL−, is strictly weaker than
MSO. We settle this question in this paper. To be precise, we show that there
is a property of unlabelled, directed forests that is expressible in MSO but not
in GL. Since, on forests, one can replace quantification over sets of edges with
quantification overs sets of vertices, this yields the stronger result that GL does
not even contain MS1.

As a corollary, we obtain a result concerning separation logic (SL), a logic of
assertions used in Hoare-style proof systems [10]. Brochenin et al. [1] consider the
expressive power of SL(∗), which is separation logic with a separating conjunction
(∗) but without the magic wand (−∗) and conjecture that it is properly contained
in MSO. Since SL is essentially the same as GL over structures known as memory
heaps, and since the forests we use to separate GL from MSO can be coded as
such heaps, a direct consequence of our proof is a positive resolution of this
conjecture.

The MSO-definable property of forests that we demonstrate is not definable
in GL is the following: a forest contains a tree in which the number of leaves is a
multiple of 3. The use of forests rather than trees is crucial to the proof and thus
the question of whether there is a regular tree language that is not definable in
GL remains open. We show that a natural candidate, the class of binary trees
with an even number of leaves, is definable in GL. Indeed, any regular binary tree
language accepted by a bottom-up automaton that is the product of two-state
automata can be defined in GL.

In the rest of the paper, we first introduce, in Section 2, the logics we deal
with. In Section 4 we investigate the power of GL on trees by showing that
a certain class of regular tree languages is included in those definable in GL.
Section 3 presents the main result, while Section 5 explores the consequences for
separation logic.

2 Background and Preliminaries

Graph Logic was introduced in [2] as a logic for querying graphs. It is based on a
view of graphs as terms in a suitable algebra, involving a composition operator.
Thus, the graphs are built up from single edges by repeated compositions. In the
present paper, we treat the logic instead as an extension of the ordinary first-
order logic of graphs, with the composition operator appearing in the formulas.
The two views are equivalent, as discussed in [6]. We assume familiarity with
the syntax and semantics of first-order logic (FO).

2.1 Graph Logic

Fix a set X of vertex names. A graph G consists of a finite set E of edges, and an
incidence map IG : E → X ×X that associates with each edge a pair of vertices
that we call its endpoints. It is easy to see that any such graph can be seen as a
finite, directed, unlabelled graph (with no isolated nodes) in the usual sense. We
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will briefly consider the case of edge labels below. The syntax of Graph Logic
can then be specified as follows.

Definition 2.1 (GL Syntax). Let V be a countable set of vertex variables. A
GL formula is defined to be one of the following for ti ∈ X ∪ V , and x ∈ V and
for GL formulas ϕi:

ϕ := 0 | � | E(t1, t2) | t1 = t2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1|ϕ2 | ∃x ϕ1.

This appears at first sight to be an extension of first-order logic with one extra
formula formation rule: ϕ1|ϕ2. However, the interpretation of the atomic formu-
las is different from the usual rules for FO. To be precise, E(t1, t2) is true in a
graph G just in case G consists of a single edge e whose end points are named
by the terms t1 and t2. To define the semantics of the composition operator, we
need to first define graph composition.

Let G1 and G2 be two graphs with edge sets E1 and E2 and incidence maps
I1 and I2 respectively. The graph G = G1 | G2 is defined to be the graph whose
edge set and incidence map are the disjoint unions E1 	 E2 and I1 	 I2. Note
that G1 and G2 may share vertices. The semantics of the formula ϕ1|ϕ2 is now
defined by saying G |= (ϕ1|ϕ2) just in case G = G1 | G2 for some G1 and G2

such that G1 |= ϕ1 and G2 |= ϕ2. Formally, the semantics is as given below.

Definition 2.2 (GL Semantics). Let G be a graph with edge set E and inci-
dence map I. Also let α : V → X be an assignment of vertex names to variables.
We write α̂ for the extension of α to the domain X ∪ V by letting α̂(x) = x for
all x ∈ X. The semantics for the Boolean connectives are defined as usual. The
following holds for the rest of the GL constructs.

(G,α) |= 0 iff E = ∅,
(G,α) |= � for any graph G,
(G,α) |= E(t1, t2) iff E = {e} and I(e) = (α̂(t1), α̂(t2)),
(G,α) |= t1 = t2 iff α̂(t1) = α̂(t2),
(G,α) |= ϕ1|ϕ2 iff there exist G1, G2 s.t. G = G1|G2 and (Gi, α) |= ϕi,
(G,α) |= ∃x ϕ1 iff there is an a ∈ X s.t. (G, α̂[x �→ a]) |= ϕ1,

where α̂[x �→ a] denotes the map that agrees with α̂ at all values other than x
and maps x to a.

In spite of the variance in the interpretation of atomic formulas, it is not difficult
to prove that every FO formula on finite graphs can be translated into a formula
of GL. In particular, an atomic FO formula of the form E(a, b) asserting the
existence of an edge between vertices a and b is equivalent to the GL formula
(E(a, b)|�). In turn, every GL formula can be translated into one of second-order
logic (see [6] for details).

The monadic second-order logic (MSO) of graphs comes in two variants, called
MS1 and MS2 by Courcelle [4]. Both extend FO with second-order quantifiers
that can quantify over sets. In the case of MS1, this second-order quantification
is limited to sets of vertices, while MS2 allows quantification over sets of edges.
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To be precise MS1 extends FO with a countable set Z of second-order variables.
For every Z ∈ Z and term t, Z(t) is an atomic formula and for every formula ϕ,
∃Zϕ is also a formula. The latter is satisfied by a graph G just in case there is
a set A ⊆ X of vertices such that ϕ is true in G when all free occurrences of Z
are interpreted by the set A. Similarly, MS2 allows atomic formulas Z(t1, t2) and
quantifiers ∃Zϕ. The latter is true in a graph G just in case there is a set A ⊆ E
of edges such that ϕ is true in G when all free occurrences of Z are interpreted
by the set A.

It is not difficult to see that each formula of GL can be translated into an
equivalent formula of MS2. It is not the case that GL can be translated into MS1

and in Section 6 we construct an example exhibiting this. The question left open
from [6] and [9] is whether there is a sentence of MS2 that is not equivalent to
any sentence of GL. This is the question we answer in the present paper.

Apart from Section 6, we are concerned in this paper with graphs that are
trees or forests. On such graphs, MS2 is no more expressive than MS1. Indeed,
since each vertex has at most one incoming edge, there is an easily definable
one-to-one map from edges to vertices that allows us to replace quantification
over edges with quantification over vertices. Thus, for our purposes, it makes
sense to speak just of MSO, without distinguishing the two varieties. We will
simply speak about comparing GL and MSO.

In the intended applications of GL, graphs do not just consist of sets of edges,
but also come with labels. There are two ways in which labels can be introduced
into the language of GL. If the set of possible labels is a fixed finite set Σ, we
may regard each σ ∈ Σ as defining a set of edges Eσ with associated incidence
relation I : Eσ → X ×X . The logic then allows atomic formulas Eσ(t1, t2) for
each σ ∈ Σ. On the other hand, if the set of labels is unbounded, we include in
the language the set Σ and a countable set of label variables L. A graph now is
a set of edges E together with an incidence relation I : X × Σ ×X . We allow
atomic formulas Eσ(t1, t2) for each σ ∈ Σ∪L and also allow equality testing and
quantification over labels. Thus, for σ, τ ∈ Σ∪L, we have atomic formulas σ = τ
and for any formula ϕ, we can form the formula ∃lϕ for l ∈ L. Marcinkowski [9]
termed this extended logic GL+ and proved that it was strictly weaker than
MSO+, the corresponding extension of MS2. Our result strengthens his. In the
rest of this paper, we will not be concerned with GL+ or MSO+.

Regular Languages. The case of bounded alphabets Σ includes many interest-
ing applications of MSO. For instance, Σ-labelled graphs which consist of a
single path from a source s to a terminal t can be identified with words over
the alphabet Σ. It is well known, by results of Büchi, Elgot and Trakhtenbrot
(see [7]) that in this case MSO can define exactly the regular languages. It was
shown in [6] that the same is true of GL. The correspondence between MSO
and finite automata extends further to Σ-labelled trees, and it remains an open
question (see [9]) whether GL can express all regular tree languages. In Section 6,
we show that one suggested candidate for separation—the class of binary trees
with an even number of leaves—is definable in GL. Indeed, any binary tree lan-
guage accepted by a bottom-up deterministic two-state automaton is shown to be
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definable. However, if the graphs are forests rather than trees, our main result
in Section 3 proves that GL is strictly weaker than MSO.

Recall the following. A deterministic bottom-up tree automaton is a tuple
A = (Σ, δ2, δ1, q1, Q,Qf), where Σ is the alphabet, Q the set of states, q1 ∈ Q
the initial state, Qf ⊆ Q the set of accepting states and δ1 : Q × Σ → Q and
δ2 : Q×Σ×Q×Σ → Q are two transition functions. Given a Σ-labelled binary
tree, the automaton A assigns a state in Q to each node of the tree. The leaves
are assigned the initial state q1. Each node a with one child is assigned δ1(q, σ)
where σ is the label on the edge leaving a and q is the state assigned to its child.
Similarly, each node a with two children is assigned δ2(q, σ, q′, σ′) where σ and
σ′ are the labels on the two edges leaving a and q and q′ are the states assigned
to its two children. A accepts a tree T if the state assigned to the root of T is
in Qf .

2.2 GL Games

The main tool for proving non-expressibility of a property in FO or MSO is
Ehrenfeucht-Fräıssé Games (see [7]). Such games have also been adapted to
spatial logics (see [5]). Here we present an adaptation of the game for GL.

A GL Game is played by two players, Spoiler and Duplicator, and consists
of k rounds, for some k ∈ N. The game is played on two graphs F and G with
the initial position being 〈(F, c̄), (G, c̄)〉 for some tuple c̄ of vertex names. The
position at a round i ≤ k is defined to be a pair of structures with distinguished
vertices 〈(F i, ā), (Gi, b̄)〉 where ā = a1, . . . , ap and b̄ = b1, . . . , bp are tuples of
vertex names extending c̄, and F i and Gi are subgraphs of F and G respectively.

At the beginning of the ith round, Spoiler chooses one of the two structures
(F i, ā) or (Gi, b̄) and makes either a colouring move or a first order move. Sup-
pose, without loss of generality, that Spoiler chooses (F i, ā). For a first order
move, he chooses a vertex ap′ in F i and Duplicator must respond with a vertex
bp′ in Gi. The position at the next round is 〈(F i, ā, ap′), (Gi, b̄, bp′)〉.

If he chooses to play a colouring move, Spoiler finds two graphs F i
1 and F i

2

such that F i = F i
1|F i

2 . Duplicator must respond with two graphs Gi
1 and Gi

2 such
that Gi = Gi

1|Gi
2. Spoiler then decides whether the position at the next round

is 〈(F i
1 , ā), (G

i
1, b̄)〉 or 〈(F i

2 , ā), (G
i
2, b̄)〉. In general, when describing a colouring

move, we will say that Spoiler has coloured the edges in F i
1 white and those in

F i
2 black and Duplicator has responded by colouring Gi

1 white and Gi
2 black.

The game ends after k rounds, or if one of the two graphs in some position is
empty or consists of a single edge. Let h : X ⇀ X be the partial map defined
by aj �→ bj. Spoiler wins if one of the following three conditions holds, and
Duplicator wins in all the other cases.

1. Exactly one of the graphs is empty.
2. One of the graphs is a single edge, with both endpoints in the domain of h

and h is not an isomorphism between the two graphs.
3. The mapping h is not one-to-one.

We define the quantifier rank of a GL formula, by counting first-order quan-
tifiers and composition operators equally. To be precise, the quantifier rank of a
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GL formula ϕ is rank(ϕ) which is defined as usual for the Boolean connectives
and as follows for the rest:

If ϕ = 0,�, t1 = t2, E(t1, t2) then rank(ϕ) = 0.
If ϕ = ϕ1|ϕ2 then rank(ϕ) = max(rank(ϕ1), rank(ϕ2)) + 1.
If ϕ = ∃x ϕ1 then rank(ϕ) = rank(ϕ1) + 1.

The proof of the following lemma then follows the standard methods for
Ehrenfeucht-Fräıssé games.

Lemma 2.3 ([6]). If Duplicator has a winning strategy for the k-round game
on graphs F and G with initial position 〈(F, c̄), (G, c̄)〉, then for any GL formula
ϕ with rank(ϕ) ≤ k and using only names from c̄, it holds that

F |= ϕ if, and only if, G |= ϕ.

The main use of this lemma is to show that some property P is not expressible in
GL. This can be formulated as in the following corollary. Since we are interested
in properties that are invariant under the choice of vertex names, we can restrict
ourselves to games in which c̄ is empty in the initial position.

Corollary 2.4. A property P is inexpressible in GL, if and only if for each
k ∈ N, there exist structures Fk and Gk, such that Fk ∈ P and Gk /∈ P , and
Duplicator has a winning strategy for the k-round GL played game on 〈Fk, Gk〉.

We write F ≡GL
k G to denote that F and G cannot be distinguished by any

sentence ϕ of GL with rank(ϕ) ≤ k. Similarly, F ≡MSO
k G denotes that F and G

agree on all MSO sentences with quantifier rank at most k. A translation of GL
formulas to MSO is given in [6] that takes a GL formula of quantifier rank k to
an MSO formula of rank at most 2k + 1. From this, Lemma 2.5 below follows.

Lemma 2.5. For any k ∈ N, and graphs G,H, if G ≡MSO
2k+1 H then G ≡GL

k H.

Disjoint Unions. We will often make use of constructions involving disjoint
unions of graphs as well as unions disjoint apart from a fixed number of named
vertices. We make these notions precise and fix notation here. Recall that we
are primarily interested in properties of graphs that are invariant under isomor-
phisms or, equivalently, invariant under renaming of vertices. Given graphs G
and H , we write G⊕H for the disjoint union of G and H . This is a graph G′|H
for a graph G′ that is isomorphic to G but shares no vertices with H . For a
fixed tuple ā of vertex names, we write G⊕ā H for the graph G′|H where G′ is
obtained from G by renaming all vertices apart from those in ā to be distinct
from any vertex in H . In other words, G ⊕ā H is a graph obtained from the
disjoint union of G and H while identifying vertices in ā. For an indexed family
{Gi | i ∈ I} of graphs, we write

⊕
i∈I Gi to denote the disjoint union of all the

graphs in the family. For a natural number n, we also write n ·G for the graph⊕
1≤i≤n Gi where each Gi is isomorphic to G.
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3 Separating GL from MSO

In this section we present the main result, namely that there are properties of
forests that are expressible in MSO but not in GL. The property in question is
that one of the trees in the forest has a number of leaves that is a multiple of
three. To see that this property is MSO definable, note that there is a simple 3-
state deterministic bottom-up tree automaton that checks whether a given tree
T has a number of leaves that is a multiple of three. Thus, there is an MSO
sentence θ that defines this class of trees. Since we can also construct an MSO
formula path(x, y) that asserts that there is a path from x to y, we can use this
to obtain a formula that asserts the existence of a root x such that the tree of
nodes reachable from x satisfies θ.

We begin with a simple intuitive example to illustrate why the colouring move
in a GL game involves a loss of information for Spoiler, which Duplicator can
exploit in a way that she cannot in the corresponding MSO game. Consider two
graphs, G1 and G2. Let G = G1 ⊕G2 and let G′ be G1 ⊕v G2 for some vertex v.
On a game played on 〈G,G′〉, if Spoiler plays a colouring move that splits either
graph into G1 and G2, it is clear that Duplicator has a winning response unless
the vertex v was previously chosen. Thus, information on how the original graph
(G or G′) was connected has been lost.

This simple example illustrates the idea behind the construction of the two
forests on which the game will be played. The forests we consider consist of a
single comb—i.e. a binary tree consisting of a simple path with other simple paths
branching off from it—and a large number of disjoint simple paths. These simple
paths act as noise which allow Duplicator, in response to a suitable colouring
move by Spoiler, to remove some of the branches of the comb (thereby changing
the number of leaves) and hide them among the noise. We now proceed to a
more detailed description of the construction.

Definition 3.1. A fork is a node in a binary tree that has two distinct children.
A comb is a binary tree where for any two distinct forks v1 and v2, either v1

is an ancestor of v2 or v2 is an ancestor of v1.

Let C be a comb, and r its root. As long as there is at least one fork in C, there
exist two leaves t, t′ such that the path from r to either of them contains all the
forks of C. Fix t to be one of those leaves and call the path from r to t, the spine
of the comb C. Each fork a of C, has one child on the spine of C while the other
is a vertex that is the root of a subtree consisting of a simple path to a leaf b.
For each fork a, we call the path from a to b, a tooth of the comb C. Note that
the number of leaves of a comb is one more than the number of teeth.

Let n, s ∈ N. We write Cn,s for the comb with n teeth where the length of
each tooth, as well as the distance between any two successive forks is s. We
also define C−i

n,s, for 1 ≤ i ≤ n, to be the comb Cn,s with the i-th tooth missing.
That is, the distance between the (i− 1)st fork and the next one is 2s. Finally,
let Sn denote a string (i.e. a tree consisting of a single path) of length n.



70 T. Antonopoulos and A. Dawar

Suppose a, a′ are successive forks in the spine of a comb. Then the substring
of the spine with endpoints a, a′ is called a segment. A block of a comb is a
segment with endpoints a, a′, together with the tooth attached to a′.

The following lemma states some easy consequences of the fact that MSO can
only define regular languages when restricted to strings.

Lemma 3.2. For each k ∈ N, there exist s, n, l ∈ N, such that:

1. for every w > s and every m, Sw ≡MSO
k Sw+ms,

2. for every t > n, and every m, Ct−2l,ms ≡MSO
k Ct+2,ms.

Lemma 3.2 essentially gives specific periodic properties for the sizes of strings
and of combs of constant segment length, with respect to ≡MSO

k -equivalence, for
any k ∈ N. One consequence we can derive is that Cn,s ≡MSO

k C−i
n+1,s, for any n

and the s given by the lemma, since Ss ≡MSO
k S2s and the comb C−i

n+1,s can be
seen as Cn,s with its ith segment of length s replaced by a segment of length 2s.

The next lemma can be proved by a standard application of Ehrenfeucht-
Fräıssé games and appears in [3] for general structures A and B.

Lemma 3.3. For any k ∈ N, there is λ ∈ N, such that if A is the disjoint union
of λ pairwise ≡MSO

k -equivalent structures, and B is the disjoint union of λ + 1
such structures, each ≡MSO

k -equivalent to the ones in A, then A ≡MSO
k B.

Before giving the details of the construction, we consider an example. Consider
two forests F1

∼= Cn,s⊕λ ·Ss, and F2
∼= Cn+1,s⊕λ ·Ss. That is, each one consists

of the disjoint union of a comb with a large number of strings. Suppose that,
in the GL game played on this pair of structures for �(k − 1)/2� moves, Spoiler
plays a colouring move on F1, by colouring the comb Cn,s in black, and the set
of disjoint strings λ · Ss in white. Then Duplicator can respond by colouring for
some 1 ≤ i ≤ n, the subgraph C−i

n+1,s in black and the λ copies of Ss together
with the remaining tooth of the comb in white, as shown in the figure below. By
Lemmas 3.2 and 3.3, whichever the pair of graphs on which Spoiler chooses to
continue the game, they are ≡MSO

k -equivalent. Since ≡MSO
k -equivalence implies

≡GL
�(k−1)/2�, this means that Duplicator has a winning strategy for the rest of the

game. This shows that using the colouring move to distinguish the comb from
the noise, which would have been the right move for Spoiler in the MSO game
on this pair of structures, is a losing move in the GL game. Extending this idea,
we show that by taking the comb to be big enough and by adding enough noise,
we can ensure that Spoiler has no good moves.

Let F be the class of forests in which some tree has 0 (mod 3) leaves. In what
follows, we show that for any k ∈ N, there exist two forests F and G, such that
F ∈ F , G /∈ F , and Duplicator wins the k-round game on F and G. We proceed
with the details of the construction of these two forests.

Fix k ∈ N and let s and n be as given by Lemma 3.2 for k, and λ as given
by Lemma 3.3 for k. By Lemma 3.2, for every w ∈ N there is a w′ ∈ {1, . . . , 2s}
with Sw ≡MSO

k Sw′ (indeed, either w ≤ 2s and we can take w = w′ or we can find
a suitable w′ and m such that w = w′ +ms). We define N =

∏
1≤i,j≤2s(i + j).
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︷ ︸︸ ︷

λ

︷ ︸︸ ︷
s

︷
︸
︸

︷

s

︷ ︸︸ ︷

λF1

F2

Note that this has the property that (i + j) | N (i.e. i + j divides N) for all
i, j ≤ 2s.

Let fk = (25 ·λsN)k ·6n ·λ ·26N −1. We define the forests F and G as follows.

F = Cfk,N ⊕
⊕

2s+1≤i≤3s(λ · 23sk · Si),
G = Cfk+2,N ⊕

⊕
2s+1≤i≤3s(λ · 23sk · Si).

The collection of strings
⊕

2s+1≤i≤3s(λ · 23sk · Si) in both graphs, is called
noise, and each individual string from that collection is called a noise-string.

By Lemma 2.5, for each � ≥ 3, and for any two graphs H1 and H2, H1 ≡MSO
�

H2 implies that H1 ≡GL
�(�−1)/2� H2. In the following, to simplify notation we show

that for any k ≥ 1, Duplicator can win the �(k − 1)/2�-round GL game on F
and G. To show that F ≡GL

�(k−1)/2� G, we establish that Duplicator can maintain
the following condition in the �(k − 1)/2�-round game on F and G.

If the game position after i rounds is (Fi, ā) and (Gi, b̄), then one of the
two conditions below holds, for k′ = k − i:
1. (Fi, ā) ≡MSO

k′ (Gi, b̄), or
2. Fi = F ′ ⊕c1,c2 F

′ and Gi = G′ ⊕d1,d2 G
′, where:

(a) (F ′, c1, c2) ∼= (Cfk′ ,N , r, t) ⊕
⊕

2s+1≤i≤3s(λ · 23sk′ · Si),
(b) (G′, d1, d2) ∼= (Cfk′+2,N , r, t) ⊕

⊕
2s+1≤i≤3s(λ · 23sk′ · Si),

(c) no element of ā is in F ′ and no element of b̄ is in G′,
(d) (F ′, c1, c2) ≡MSO

k′ (G′, d1, d2).

Notice that for any i≤�(k−1)/2�, (Fi, ā)≡MSO
k−i (Gi, b̄) implies (Fi, ā)≡GL

�(k−1)/2�−i

(Gi, b̄). The condition above states that at each round i of the game, either both
graphs are ≡MSO

k′ -equivalent, and thus Duplicator wins the game, or the following
holds. In both graphs Fi and Gi after i rounds, there exist subgraphs F ′ and G′

respectively, each composed of a large enough comb and enough noise-strings.
Furthermore the complements of these graphs F ′ and G′ inside Fi and Gi, are
≡MSO

k′ -equivalent.
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Duplicator has a reply to any move Spoiler makes whenever condition (1)
holds, namely (Fi, ā) ≡MSO

k′ (Gi, b̄). We need to show, that if (2) holds, Duplicator
has a response that maintains the condition. We proceed by induction on the
number of rounds. In the beginning of the game, (2) holds by construction.

Suppose then that at some round i, (2) holds. Suppose furthermore that
Spoiler makes a first order move, and chooses a vertex in one of the two graphs.
If he chooses a vertex in F ′ or G′, Duplicator can reply since F ′ ≡MSO

k′ G′. The
subgraphs guaranteeing the condition (2) can then be found. Assume then that
Spoiler picks a vertex v in F ′ or G′, and by symmetry, assume that he does so
in F ′. Then two subgraphs ensuring the condition (2) holds, can also be found,
for k′ − 1. The details are omitted.

Consider the case where Spoiler makes a colouring move. As the arguments
are similar for both cases, we assume that Spoiler colours the graph Gi. Each
noise-string in Gi of length h receives one of 2h possible colourings c, i.e. a
labelling of each of the edges as either black or white. Since there are, in general,
many more noise-strings of length h than this, some colouring may be repeated
many times. We will call the most frequently occurring colouring c (or any one
of them if there is a tie), the primary colouring of the noise-strings of length h.

A colouring move of Spoiler is considered in cases, depending on how he
colours the subgraph F ′ or G′. We give an outline of the main procedure that
Duplicator applies as a reply to many of Spoiler’s moves. We denote with C
the subgraph inside F ′ that is isomorphic to the comb Cfk′ ,N , and similarly
we denote with D the respective subgraph isomorphic to Cfk′+2,N of G′. The
remaining subgraphs in F ′ and G′ comprising the set of noise-strings are denoted
by FS and GS respectively.

The graph Fi (resp. Gi) comprises the subgraphs C, FS and F ′ (resp. D, GS

and G′). Since FS
∼= GS and F ′ ≡MSO

k′ G′, Duplicator has a reply to the way
Spoiler colours GS and G′. For the response to the colouring of D, Duplica-
tor proceeds as follows. She defines vertices c3, c4 and d3, d4 in (C, c1, c2) and
(D, d1, d2) respectively, so that:

(C, c1, c2) = (C1, c1, c3) ⊕c3 (C2, c3, c4) ⊕c4 (C3, c4, c2),
(D, d1, d2) = (D1, d1, d3) ⊕d3 (D2, d3, d4) ⊕d4 (D3, d4, d2),

for some C1, C2, C3 and D1, D2, D3, such that C1 ≡MSO
k D1 and C3 ≡MSO

k D3.
Furthermore, she ensures the following for C2 and D2. Given a choice of ver-
tices d3 and d4, either the black and the white components of D1 and D3 are
disconnected from the black and the white ones in D2 respectively or not. In
the first case, Duplicator ensures the same for c3, c4 and also makes sure that
all the black and white components in D2 appear in C2 in equal numbers, and
C2 contains additional components that appear more than λ times in the graphs
C1, C3 and FS , and thus also more than λ times in D1,D3 and GS , by definition.
The resulting white and black subgraphs of F ′ and G′ are therefore respectively
≡MSO

k -equivalent (and therefore ≡MSO
k′ -equivalent).

In the second case, Duplicator ensures that the spine of C2 is ≡MSO
k -equivalent

to the whole of D2, and the teeth of C2 are split into white and black components
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that appear more than λ times in C1,C3 and FS , and the splitting is such that
the resulting components from the teeth of C2 are disconnected from the spine
of C2. Again, the resulting white (respectively black) subgraphs of F ′ and G′

are ≡MSO
k -equivalent (and therefore ≡MSO

k′ -equivalent).
As was stated above, the argument for the colouring moves of Spoiler, is

considered in cases, depending on how Spoiler chooses to colour the subgraphs
D and GS . In all cases considered except one, Duplicator can guarantee that
condition (1) holds in the next stage, that is (Fi+1, ā) ≡MSO

k′−1 (Gi+1, b̄). The one
exception is the case where Spoiler colours in black some part of a segment in
D, that is longer than s edges and furthermore: for all h ∈ [2n + 1, 3n], the
noise-strings of length h are primarily coloured black; no substring of a segment,
larger than s edges is coloured white in D by Spoiler; and Spoiler colours at
most 8 · λ · s ·N blocks in D using both colours.

We omit the details of the argument, which lead us to the following theorem.

Theorem 3.4. The class of forests that contain a tree with 0 (mod 3) number
of leaves, is not definable in GL.

4 GL on Binary Trees

It is known that GL is as expressive as MSO on words, and we have shown in the
previous section that it is strictly weaker on some classes of graphs, in particular
forests. A natural question that arises is whether GL is as expressive as MSO on
trees, especially as the latter is a widely studied logic of trees. We are not able
to settle this question, but we do show that GL can be more expressive than
expected. In particular, the property of a tree having an even number of leaves is
expressible in GL. Note that, we do not know how to extend this to forests—i.e.
to show that use of the modulus 3 in Theorem 3.4 is essential. Nor do we know
how to express in GL that a tree has a number of leaves that is a multiple of 3.
Thus, a gap remains between Theorem 3.4 and Corollary 4.2 below.

We consider binary trees, where each vertex has at most two children.

Theorem 4.1. Any binary tree language accepted by a bottom-up deterministic
automaton with 2 states, is definable in GL.

Proof. Suppose that A = (Σ, δ2, δ1, q1, Q,Qf) is a deterministic bottom-up bi-
nary tree automaton with 2 states, i.e. Q = {q1, q2}. We show how to construct
a formula that defines the class of binary trees in which A assigns q1 to the root.
We do this just for binary trees where the root is a fork. The result then easily
extends to general binary trees, since such a tree consists of the composition of
a tree with a fork root and a simple word, and the behaviour of the automaton
on words is known to be expressible in GL.

Let T be the class of binary trees T such that A assigns the state q1 to all the
leaves and the root of T , and assigns the state q2 to all the forks of T other than
the root. Suppose there is a GL formula ψ defining the class of forests where
each tree in the forest is in T . Before defining this formula ψ explicitly, we show
how it can be used to define the class of trees accepted by A.
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In particular, we show that for any tree T , T |= (ψ | ψ) if, and only if, the
state assigned to the root of T by A is q1. For the only if direction assume that
T |= (ψ | ψ). Then it can be split into two forests F1 and F2, where each one
satisfies ψ. Then, the root and the leaves of each tree in F1 and F2, is assigned
the state q1, and since all roots have two children, if a tree T1 in F1 is connected
to a tree T2 in F2 within the tree T , then the root of one is the same vertex as
the leaf of the other. Therefore, A assigns q1 to the root of T .

For the if direction, suppose that the root of a tree T is assigned the state q1
by A. For each fork x in T to which A assigns the state q1, define the subtree
rooted at x and whose leaves are the closest descendants to x that are either
leaves or forks to which A assigns the state q1. By definition, all forks other than
the root in such a tree, are assigned the state q2 by A. We define F1 and F2

to be two forests, each containing the subtrees defined above, such that no two
such subtrees that are connected in T , are both in the same forest. According
to the above, Fi |= ψ, and therefore T |= (ψ | ψ).

We now give an explicit definition of the formula ψ that is used in the ar-
gument above. Recall that T is the class of binary trees T such that A assigns
the state q1 to all the leaves and the root of T , and assigns the state q2 to all
the forks of T other than the root. The formulas root(x) and leaf(x) are used
to identify roots and leaf vertices respectively, in first order logic. Finally, the
formula fork(x) expresses in FO that the vertex x is a fork, and one-child(x)
expresses in FO that the vertex x has a single child.

Any path between two vertices x and y, where x and all vertices in that path
apart from y, are non-forks, is called a unary branch. On a unary branch, a tree
automaton works as a word automaton, and uses only the transition function
δ1. On words we know that GL and MSO are equi-expressive, so let the formula
ϕqi,qj for qi, qj ∈ {q1, q2} be the GL formula that defines the class of words on
which the automaton A, starting with state qi at the first vertex, assigns the
state qj at the last one.

The vertices x and y in some tree T , with x an ancestor of y, are the endpoints
of a unary branch if and only if (T, x, y) |= unaryBranch(x, y), where:

Path(x, y) = root(x) ∧ one-child(x) ∧ ¬root(y) ∧ leaf(y)∧
∧∀z (z �= x ∧ z �= y → ¬root(z) ∧ one-child(z)),

unaryBranch(x, y) = one-child(x) ∧ (leaf(y) ∨ fork(y)) ∧ (Path(x, y) | �)∧
∧∀z (z �= y ∧ (Path(x, z)|Path(z, y)|�) → one-child(z)).

We present the following formulas that assist with defining the GL formula ψ.

unary-q2qj(x) = ∃y (fork(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq2,qj | �)),
unary-q1qj(x) = ∃y (leaf(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq1,qj | �)),

unary-qi(x) = one-child(x) ∧ (unary-q1qi(x) ∨ unary-q2qi(x)),
state-q2(x) = (fork(x) ∧ ¬root(x)) ∨ unary-q2(x),
state-q1(x) = (leaf(x) ∨ root(x)) ∨ unary-q1(x).

The formula unary-q2qj(x) expresses that x is the top vertex of a unary branch
to some y, a descendant of x, that is a fork, and furthermore that on this unary
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branch, if the automaton A starts at state q2 at y, it will reach the state qj
at x. The case is similar for the formula unary-q1qj(x), but in this case y is
a leaf and the automaton reaches qj at x if it starts with state q1 at y. The
formula unary-qj(x) is simply the disjunction of the two formulas above. Finally,
the formula state-q1(x) holds at some vertex if it is a leaf, a root or if it is the
top vertex of a unary branch, where A reaches q1 according to the assumptions
stated above. Similarly for state-q2(x) applying to forks that are not roots.

We show that for any vertex x in any tree T in the class T , (T, x) |= state-qi(x)
if, and only if, the state qi is assigned to the vertex x by A. Now define

ϕq1(x, y, z) =
∨

δ(qi,σ,qj ,σ′)=q1
(state-qi(y) ∧Eσ(x, y) ∧ state-qj(z) ∧ Eσ′(x, z)),

fork-roots = ∀x (root(x) → fork(x)),
ψ = 0 ∨

(
fork-roots ∧ ∀x

(
(∃y, z (y �= z) ∧ ϕq1(x, y, z)) ↔ root(x)

))
.

Notice that for any forest F , F |= ψ if and only if for every tree T in F ,
T |= ψ. This is because ψ expresses that a combination of states and symbols
that lead to the state q1, occurs at a fork if and only if this fork is the root of the
tree it belongs to. Furthermore, whether a vertex satisfies any of the formulas
given above, depends only on the tree the vertex belongs to.

Thus, we are left with the following claim to prove, the proof of which is
omitted due to lack of space.

Claim. For any tree T , T |= ψ if, and only if, T ∈ T .

Corollary 4.2. The class of binary trees with an even number of leaves is GL
definable.

5 Separation Logic

Separation Logic (SL) is a logic for analyzing programs that involve pointer
variables for memory management, introduced by Reynolds and widely studied
since then (see [10]). We give a brief account here, and refer to [1] for details.

The structures on which Separation Logic works, consist of a partial function
representing the memory heap of a program. Let Loc be a countable set of
locations, namely memory addresses and let Var be a set of variables.

Definition 5.1 ([1]). A memory state is a pair (s, h) such that s : Var → Loc
and h is a partial function of type h : Loc ⇀ Loc. The function s is the store
and the function h is the heap of the memory state.

When the domains of two partial functions h1 and h2 are disjoint, this fact is
denoted by h1⊥h2, and their disjoint union is denoted by h1 ∗ h2. The syntax of
a Separation Logic formula is inductively defined as:

ψ := x = y | x ↪→ y | ψ1 ∧ ψ2 | ¬ψ1 | ∃x.ψ1(x) | ψ1 ∗ ψ2 | ψ1 −∗ψ2,

where x, y ∈ Var and ψ1, ψ2 are SL formulas. The semantics of the non-obvious
connectives is given below.
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(s, h) |= x ↪→ y ⇔ h(s(x)) = s(y),
(s, h) |= ψ1 ∗ ψ2 ⇔ there are h1, h2 such that h = h1 ∗ h2

and (s, hi) |= ψi, i ∈ {1, 2},
(s, h) |= ψ1 −∗ψ2 ⇔ for any h′ disjoint from h such that

(s, h′) |= ψ1, (s, h ∗ h′) |= ψ2.

Note that if a formula ϕ does not have any free variables then (s, h) |= ϕ if, and
only if, (s′, h) |= ϕ for all s′. In this case we simply write h |= ϕ.

In [1], the syntactic fragment SL(∗) is considered, in which the conjunction
operation, ∗, is present but its adjoint the magic wand, −∗, is absent. They show
that this logic is decidable by a translation to MSO. They conjecture that the
inclusion of SL(∗) in MSO in terms of expressive power is strict.

We can associate with a heap h the graph Gh consisting of the set of edges
(x, y) such that h(y) = x. It is straightforward to see that for every sentence ϕ
of SL(∗) there is a sentence ϕ∗ of GL such that Gh |= ϕ∗ if, and only if, h |= ϕ.
Note, in particular, that for every forest G there is an h such that G ∼= Gh.

Say that a location l is a leaf of h if h(l) is defined and there is no l′ such
that h(l′) = l. Define a component C of h to be a connected component of the
graph Gh. Then the following is a consequence of Theorem 3.4.

Theorem 5.2. There is no sentence θ of SL such that h |= θ if, and only if,
some component of h has 0 (mod 3) leaves.

As a consequence, we resolve the conjecture of Brochenin et al. [1].

Corollary 5.3. SL(∗) is strictly less expressive than MSO on memory states.

6 GL Is Not Included in MS1

As we noted in Section 2, the expressive power of GL is included in MS2, that
is monadic second-order logic of graphs with quantification over sets of edges.
Theorem 3.4 shows that this inclusion is proper. Furthermore, since the separa-
tion is shown on a class of graphs where the expressive power of MS1 and MS2

coincide, this shows that MS1 � GL. We now note that, in general, GL � MS1.
In particular, we show this over the class of labelled graphs with two edge labels.

Recall that in an ordinary undirected graph G = (V,E) a Hamiltonian cycle
is a cycle that visits every vertex in V exactly once. It is not difficult to write a
sentence μ of MS2 that defines those graphs that contain a Hamiltonian cycle.
However it is known that this property is not definable in MS1, even on ordered
graphs (see [7, Cor. 6.3.5]). It is not known whether or not Hamiltonicity of
unordered graphs is definable in GL (indeed, this was an open quesion posed
in [6]), but we are able to show that in the presence of a second edge label,
which acts as a successor relation, it is definable. To explain the construction,
note that in GL, once we select a set of edges using a composition operator, we
are able to say that they form a cycle, but we cannot say in the subformula that
the cycle visits all vertices, since some may have been lost in the decomposition.
The presence of the successor relation allows us to assert that all vertices are
still present.
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Theorem 6.1. GL is not included in MS1.

Proof. We consider a vocabulary with two edge labels S and E and two constants
s and t. We restrict ourselves to graphs in which the S edges form a simple path
from s to t. This condition is easily expressed by a GL sentence succ. Now, let
cycle be the GL sentence that defines the graphs in which the E-edges form a
simple cycle. Then the following sentence

(succ ∧ cycle ∧ ∀x[∃y(S(y, x) ∨ S(x, y)) → ∃y(E(y, x) ∨E(x, y))] | ∀x, y¬S(x, y))

defines the class of such graphs that contain a Hamiltonian cycle.
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