Generating, sampling and counting subclasses of regular
tree languages -

Timos Antonopoulos
Hasselt University and
Transnational University of Limburg

timos.antonopoulos@uhasselt.be

Wim Martens
Technische Universitdt Dortmund

wim.martens@udo.edu

Abstract

To experimentally validate learning and approximation algo-
rithms for XML Schema Definitions (XSDs), we need algo-
rithms to generate uniformly at random a corpus of XSDs
as well as a similarity measure to compare how close the
generated XSD resembles the target schema. In this paper,
we provide the formal foundation for such a testbed. We
adopt similarity measures based on counting the number of
common and different trees in the two languages, and we
develop the necessary machinery for computing them. We
use the formalism of extended DTDs (EDTDs) to repre-
sent the unranked regular tree languages. In particular, we
obtain an efficient algorithm to count the number of trees
up to a certain size in an unambiguous EDTD. The latter
class of unambiguous EDTDs encompasses the more familiar
classes of single-type, restrained competition and bottom-up
deterministic EDTDs. The single-type EDTDs correspond
precisely to the core of XML Schema, while the others are
strictly more expressive. We also show how constraints on
the shape of allowed trees can be incorporated. As we make
use of a translation into a well-known formalism for combi-
natorial specifications, we get for free a sampling procedure
to draw members of any unambiguous EDTD. When drop-
ping the restriction to unambiguous EDTDs, i.e. taking the
full class of EDTDs into account, we show that the counting
problem becomes #P-complete and provide an approxima-
tion algorithm. Finally, we discuss uniform generation of

*We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-1CT-233599.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICDT 2011, March 21-23, 2011, Uppsala, Sweden.

Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

30

Floris Geerts
University of Edinburgh

fgeerts@inf.ed.ac.uk

Frank Neven
Hasselt University and
Transnational University of Limburg

frank.neven@uhasselt.be

single-type EDTDs, i.e., the formal abstraction of XSDs. To
this end, we provide an algorithm to generate k-occurrence
automata (k-OAs) uniformly at random and show how this
leads to uniform generation of single-type EDTDs.

Categories and Subject Descriptors

F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; G.2.1 [Discrete Mathematics|: Com-
binatorics; H.2.1 [Database Management|: Logical De-
sign

General Terms
Algorithms, Design, Theory

1. Introduction

XML Schema is the accepted industry standard for the
specification of schemas for collections of XML documents.
At the same time, it is widely recognized that XML Schema
is not a simple language. As it is very unlikely that the
World Wide Web Consortium (W3C) will adopt a new schema
standard any time soon, several initiatives have been taken
to simplify XML Schema. For instance, algorithms have
been developed to automatically infer XML Schema Defi-
nitions (XSDs) from XML data [8, 9, 10]. We later refer
to this setting as the learning scenario. Another type of
simplification is to let users design a schema in a different,
but more user-friendly formalism and then offer the means
to automatically convert this schema into an XSD. In gen-
eral, the latter schema can not be equivalent but, hopefully,
constitutes a best approximation in some well-defined way.
The latter approach was taken in [18]. We later refer to
this setting as the approximation scenario. In addition, al-
gorithms to approximate non-deterministc content models
by deterministic ones, hereby relieving the user from the
Unique Particle Attribution constraint, are studied in [7].

Because it is not always possible to formally prove optimal-
ity of the above mentioned types of algorithms, their effec-
tiveness is usually validated by an experimental study using
real-world data, for instance using XSDs and correspond-
ing XML corpora found on the web. Unfortunately, as real

world data is often only sparsely available, ad-hoc methods
are used to generate schemas and corresponding XML cor-
pora. At the same time, a similarity measure is needed that
quantifies how closely two unranked regular tree languages
resemble each other, and which can be efficiently computed.

The aim of this paper is to provide the machinery to effi-
ciently compute the similarity between two tree languages
and to provide algorithms to generate a corpus of XSDs uni-
formly at random. As usual, we use the abstraction of XSDs
as single-type unranked regular tree languages [28, 30]. In
particular, we consider the following three problems:

(i) Counting: Given a tree language £ and n € N, com-
pute the number of trees in L of size n;

(ii) Sampling: Given a tree language L, generate uni-
formly at random a tree t € L;

(ii1) Generation: Given a class of tree languages C, gen-
erate uniformly at random a member £ € C.

We next provide further motivation and describe our con-
tributions for each of these three problems.

Counting and Sampling. We start by discussing an ap-
proach towards a similarity measure for tree languages. To
this end, let S and 7 be two tree languages. In the schema
learning case described above, T can be the target language
and S can be the schema inferred by the learning algorithm
under consideration. Or, in the second scenario of schema
approximation, 7 can be the schema designed by the user
and S is an approximation of 7 in a certain (simple) sub-
class of tree languages. This raises the natural question of
how closely S resembles 7. In this paper, we approach this
problem by quantifying the number of common and different
trees in S and 7. For instance, one possibility is to define
the similarity of S and T as

_ SielsnT)™
Yo |SUT

where the set of trees of size k in a language L is denoted by
L£7* and the cardinality of £=* is denoted by |£=*|. This
similarity measure coincides with a measure commonly used
when comparing regular string languages [7, 8, 9]. Further-
more, this measure has a natural probabilistic interpreta-
tion: the similarity between S and 7 is defined as (an ap-
proximation) of the expected probability that a tree, chosen
uniformly at random from SUT, belongs to SN7T. The ap-
proximation is realized by restricting attention to trees up
to a certain size n. The algorithmic challenge is to efficiently
compute |£=F| for a tree language L.

sim<,(S,7T) :

For string languages, when L is represented by a determinis-
tic finite automaton, the counting problem reduces to count-
ing the number of accepting paths in a graph; an easy ex-
ercise in dynamic programming. However, when L is repre-
sented by an NFA the problem becomes #P-complete [23].
We establish a similar dichotomy for tree languages.

Three classes of unranked regular tree languages are of im-
mediate interest to us: single-type, restrained competition,
and bottom-up deterministic EDTDs. Whereas single-type
EDTDs correspond to the core of XML Schema [28, 30],
restrained competition EDTDs correspond to EDTDs that
can be correctly typed in a one-pass pre-order manner [28].
Both of these classes are deterministic in a top-down sense

31

and are strict subclasses of the unranked regular tree lan-
guages. Moreover, the single-type EDTDs are known to be
a strict subclass of the restrained-competition EDTDs [28].
The class of bottom-up deterministic EDTDs are determin-
istic in a bottom-up sense and correspond to the full class of
unranked regular tree languages. We observe that while ev-
ery restrained-competition EDTD is equivalent to a bottom-
up deterministic EDTD, there is in general no efficient trans-
lation. Indeed, in some cases an exponential size increase
can not be avoided.

In fact, we consider the class of unambiguous EDTDs in
which any tree can have at most one valid typing. We
observe that every single-type, restrained-competition and
bottom-up deterministic EDTD is in effect an unambiguous
EDTD. As a consequence, it suffices to develop counting and
sampling algorithms for unambiguous EDTDs only. Rather
than providing an ad-hoc dynamic programming solution to
count the number of trees of a certain size in an unambiguous
EDTD, we exhibit a mapping from the class of unambigu-
ous EDTDs into a (recursive) combinatorial specification.
The latter is a formalism defined by Flajolet, Zimmermann
and Van Cutsem [17] and provides an elegant way to derive
counting and sampling algorithms. We show that in the case
of unambiguous EDTDs, these algorithms are also efficient.
In addition, we show how to incorporate shape constraints
into combinatorial specifications. These are numerical con-
straints on the depth and width of trees in relation to the
total size of the tree. For instance, to avoid string-like trees,
we can restrict the depth of a tree to be at most logarithmic
in the total number of nodes. In this way, the computation
of the similarity of two tree languages can be restricted to
trees of a certain shape (which is not necessarily regular).

Finally, when going beyond unambiguous EDTDs, the count-

ing problem becomes intractable. That is, for general EDTDs,
we show that computing the number of trees of a certain

size is #P-complete. However, we do provide a pseudo-

polynomial approximation algorithm based on a similar re-

sult for context-free grammars [20].

Generation. To assess the average behaviour of an algo-
rithm, one can test it on a substantial input set drawn uni-
formly at random. This approach makes sense when no or
few real-world data is available and opens up the possibility
to quantify the quality of the obtained results in terms of
confidence intervals.

In this paper, we consider the problem of generating XSDs
uniformly at random. That is, for each n, every non-iso-
morphic XSD of size n must be generated with the same
probability. This definition is the same as for the random
generation of deterministic finite automata [2, 5]. Further-
more, since XSDs can be modelled as top-down DFAs that
map states to content models [28, 26], we can extend meth-
ods for DFA generation to XSDs.

Unfortunately, current DFA generation methods do not con-
strain the occurrence of alphabet symbols, a constraint im-
portant for XSDs. Indeed, it has been noted in [8] that
content models in XSDs contain large alphabets but ev-
ery alphabet symbol occurs only a small number of times.
We have referred to such expressions with alphabet sym-
bol occurrence up to k as k-OREs (k-occurrence regular
expressions) and to their automata counterparts as k-OAs
(k-occurence automata). In this paper, we provide an algo-

rithm to generate uniformly at random deterministic k-OAs
and show how this leads to uniform XSD generation.

Outline. In Section 2, we introduce the necessary defini-
tions concerning automata, regular expressions and abstrac-
tions of XML schema languages. We study the counting and
sampling problem for tree languages in Section 3 and 4, re-
spectively. The uniform generation problem for XSDs is
discussed in Section 5. Finally, Section 6 contains related
work and the paper is concluded in Section 7.

2. Preliminaries

We define regular expressions, automata and XML Schema
languages. First, we fix some basic notation.

2.1 String languages

Strings. For any two integers n,m € N where n < m,
we denote by [n, m] the set of all the integers j such that
n < j <m. A symbol is an element of the alphabet ¥ and
a string w is a finite sequence of symbols o1 - - - o, for some
n € N. We assume that the alphabet X is finite. We define
the length of a string w = o1 -0y, denoted by |w|, as n
and we also refer to |w| as the size of w. The empty string
is denoted by e. If wi and wz are two strings, we denote
their concatenation by wi - wa or simply by wiwsz. The set
of all strings is denoted by X* and a string language is a
subset of ¥*. If L; and Lo are two string languages, their
concatenation is defined as the set {w1w2 | w1 € Li,wy €
Ly}, and is denoted by L1 - Lo or simply by LiLs. For a
string language L and for any k € N, we denote by L=*
the set of strings in L that have length or size k, namely
L=F =Lnxr

Automata. A non-deterministic finite automaton (NFA) A
is a tuple (X, Q, I, F, §), such that @ is a finite set of states,
I C @ is the set of initial states, F' is the set of final states,
and § is the transition function of the automaton, defined
as §: Q x ¥ — 29, mapping each pair of a state and symbol
to a set of states. A run p of A on some string w = a1 ---an
is a sequence of states qo,...,qn, such that go € I and for
each i € [1,n], ¢ € 6(¢i—1,a;). Furthermore, when ¢, is a
member of F', we say that a run is accepting. The string
language accepted by A is denoted by £(A) and is defined
as the set of strings w for which there exists an accepting
run of A on w. A non-deterministic finite automaton A is
said to be deterministic (or A is a DFA) if the transition
function maps each state/symbol-pair to a singleton set.

Regular expressions. The set of regular expressions (REs)
over Y is defined recursively as follows. The empty string
e and every symbol in X is a regular expression and if rq
and 7o are regular expressions, then so are ry - r2, 1 + 72,
rT and r*. The string language defined by a regular ex-
pression r, is denoted by £(r) and is defined as follows. If
r = ¢ then L£(r) = {e} and if r = o for some o € X,
then L(r) = {o}. If r =71 - 72 then L(r) = L(r1)L(r2), if
r =171+ 72 then L(r) = L(r1) U L(rz2), and finally if r = r
then £(r) = {w | w = wi---w, for somen > 1 and Vi €
[1,n],w; € L(r1)}. For any regular expression r, the regular
expression r* is equivalent to the regular expression r 4+ ¢
and 77 is used to abbreviate r + €.

For any regular expression r, we denote by 7 the regular ex-
pression obtained from r by replacing, for each ¢ and each
a € 3, the i-th occurrence of a by a;. For example, if

32

r = ab*(b+ av), then ¥ = a1bj(b2 + af). The XSD and
DTD specifications (to be defined later) restrict regular ex-
pressions to be deterministic. A regular expression r is de-
terministic or 1-unambiguous if there are no strings w - a; - v
and w - a;j - v’ in L(F) such that ¢ # j [14]. We recall that
a deterministic regular expression can be translated into an
equivalent DFA in quadratic time [12].

2.2 XML schema languages

Trees. A set of strings S is prefiz closed if for every string
s € S and any prefix s, of s, sp is alsoin S. A tree t over an
alphabet X is a tuple (Nodes, lab,) where Nodes, the set
of nodes of ¢, is a finite prefix closed set of strings over the
natural numbers, such that if v-i € Nodes then v-i" € Nodes
for all ' < ¢, and lab : Nodes — X is a labelling function
assigning symbols of 3 to each node in Nodes. The size of a
tree equals its number of nodes. A node v € Nodes is a leaf
node if there is no v’ € Nodes such that v is a prefix of v'.
The root of ¢ is the empty string in Nodes. The children of
anode v in ¢ are all nodes v' € Nodes such that v' = v -3 for
i € N. The subtree of a tree ¢ at a node v of ¢ is the set of
nodes with prefix v. For the tree consisting of a single leaf
node v labelled with the symbol o, we write o(¢), and for
any node v labelled with o and having subtrees t1,t2,...,t,
rooted at its children, we write o (¢1, t2, ..., tn), denoting the
subtree of ¢ rooted at v. The set of all trees over X is denoted
by Treesy and a tree language 7T over X is a subset of Treess.
The set of trees over X that have exactly k nodes is denoted
by Treesss”, for k € N. For a tree language 7, 7~" denotes
the set of trees with m nodes, namely 7=* = 7 N Trees5*.

DTDs and extended DTDs. A DTD over some finite
alphabet ¥ is a tuple D = (3, R, d, Sq) where R is a set of
deterministic regular expressions over X, d is a function that
maps symbols in ¥ to expressions in R, and Sq C X is the
set of start symbols. We refer to the regular expressions in
R as the content models of the DTD. A finite tree t is valid
with respect to a DTD D or satisfies D, if its root is labelled
by an element of S; and, for every node labelled with some
a € X, the sequence a; - - - a, of labels of its children, is in
the language defined by d(a).

A DTD-DFA (3, A,d, Sq) over some finite alphabet ¥ is a
DTD whose content models are represented by the DFAs in
the finite set A, instead of regular expressions.

An extended DTD (EDTD) over a finite alphabet X is a
tuple (3,A, R,d, Sq,), where A is a finite set of types,
(A, R,d,Sy) is a DTD and p is a mapping from A to X. A
tree t is valid with respect to an EDTD D or satisfies D if
t = pu(t') for some tree t’ that satisfies the DTD (A, R, d, S4),
where p is extended to trees. We call ¢’ a witness to t.

An EDTD-DFA (3, A, A,d, Sq, 1) over a finite alphabet
is an EDTD where (A, A,d, Sq) is a DTD-DFA.

The tree language consisting of trees that are valid with re-
spect to a DTD or EDTD D is denoted by £(D). An EDTD
D is reduced if, for every type 7, there exists a witness tree
t € L(D) such that the label 7 occurs somewhere in ¢. Any
EDTD can be transformed to an equivalent reduced EDTD
in polynomial time [1, 27]. In the following, we assume that
all EDTDs are reduced.

Let D be an EDTD (X,A,d, Sq,). Then, for any 7 € A,
we denote by D, the EDTD (X, A,d, {7},). In particular
the set of start symbols Sq of D is changed to {7}. We use

the same notation for EDTD-DFAs.
Subclasses of EDTDs. We recall the following subclasses

of EDTDs: single-type EDTDs, restrained competition EDTDs,

and bottom-up deterministic EDTDs. Intuitively, these classes
have the following significance. Single-type EDTDs are the
formal abstraction of XSDs [28] and are therefore central
in this paper. The class of restrained competition EDTDs
corresponds to the EDTDs that can be correctly typed in a
one-pass preorder manner [28]. This means that, when visit-
ing the children of a node from left to right it is clear which
type is associated with each node without looking ahead
at the nodes to the right. Restrained competition EDTDs
form a strict superclass of the single-type EDTDs. Finally,
bottom-up deterministic EDTDs are a class of EDTDs that
are equally expressive as general EDTDs, i.e., they recognize
all regular tree languages. They correspond to bottom-up
deterministic tree automata [13].

More formally, let D = (3, A, R, d, Sq,) be an EDTD.

e D is single-type if Sq does not contain two conflict-
ing types and no regular expression in R contains two
conflicting types. Here, two types 7 # 7' conflict if

w(t) = p(r").

e D is restrained competition if Sq does not contain two
conflicting types and all regular expressions in R re-
strain competition. Here, a regular expression r over
A restrains competition if there are no strings wrv and
wr'v' in L(r) with 7 # 7" and u(r) = p(r’).

e D is bottom-up deterministic, if for any two distinct
types 71,72 € A, it holds that £(d(m1)) N L(d(m2)) = 0.

These notions are defined analogously for EDTD-DFAs. The
class of all single-type (resp. restrained competition,bottom-
up deterministic) EDTDs is denoted by By EDTD® (resp.
EDTD™, EDTDud).

We note that translating between EDTD's and EDTD""s
gives rise to unavoidable exponential blow-ups. The follow-
ing proposition holds for all formalisms used for representing
content models of EDTDs in this paper.

PROPOSITION 2.1. There is a class (Dp)nen of EDTD?'s
such that each D, has size O(n) and the smallest EDTD""?
for £(D,,) has size 2™ . Likewise, there is a class (Dn)nen
of EDTD""s such that each D,, has size O(n) and the small-
est EDTD®** and EDTD™ for £(D,,) has size 2. O

To conclude this section, we next provide two examples of
EDTDs that will also be used in Section 3.

EXAMPLE 2.2. Consider the EDTD®" D = (X, A, d, Sa, 11)
with ¥ = {a}, A = {70, 7}, d(1e) = (7070)", d(76) =
Te(TeTe)™, Sa = {7} and p(r) = p(re) = a. Then Dy
defines trees of even height where each node at even height
has an even number of children and each node at odd height
has an odd number of children. Here, the root has height
0. Let D> be the EDTD (%, A, d’, Sq,), where d’ is such
that d' (7o) = Te(TeTe)™ and d'(7e) = (ToToToTo)*. Then, Do
defines trees where a node at odd height has an odd number
of children, but nodes at even height have 0 (mod 4) number
of children. m|

33

2.3 Unambiguous EDTDs
We next define the class of unambiguous EDTDs and show
that this class captures the single-type, restrained competi-

tion, and bottom-up deterministic EDTDs previously de-
fined.

DEFINITION 2.3. An EDTD or EDTD-DFA is unambigu-
ous, denoted by EDTD"", if every tree t € L(D) has a
unique witness tree t' with u(t') = ¢.]

In the remainder of the paper, we regularly use the fol-
lowing observation. The correctness of this observation im-
mediately follows by contraposition.

OBSERVATION 2.4. If an EDTD or EDTD-DFA is unam-
biguous then, for all types 7 € A and any two distinct trees
t1,t2 over A, if t; and tp are witnesses to trees in £(D;),

then p(t1) # p(m2). O

PROPOSITION 2.5. Let D = (2, A,d, Sq4, 1) be an EDTD.
If D is single-type, restrained competition, or bottom-up
deterministic then D is unambiguous. a

The following result readily follows from the standard prod-
uct construction of automata (see, e.g., [18]). We add the
observation that, if the input EDTDs are EDTD""s, then
the product EDTDs for the union and intersection are also
EDTD""s.

PROPOSITION 2.6. Let Dy and D2 be two EDTD-DFA""s.
Then we can construct, in quadratic time, an EDTD-DFA"™
for £L(D1)UL(D2) and an EDTD-DFA"™" for £(D1)NL(D3).

O

Finally, we recall that deciding whether a given EDTD is in
of one of the particular classes we use here is in polynomial
time.

PROPOSITION 2.7 ([28, 32]). Deciding whether a given
EDTD is a EDTD®, EDTD™, EDTD®"¢, or EDTD" is in
PTIME. |

3. Counting Tree Languages

In this section, we consider the counting problem for tree
languages L£(D), where D is an EDTD. More specifically,
we show that the counting problem can be efficiently solved
when D is unambiguous, even when shape constraints are
provided. These results imply that the similarity between
unambiguous EDTDs can be efficiently computed. In con-
trast, the counting problem is shown to be #P-complete for
general EDTDs. It does, however, allow for a randomised
approximation scheme.

More formally, the general counting problem for languages
can be stated as follows:

DEeFINITION 3.1. For a class of languages C, given a lan-
guage C' € C and m € N, we define #C as the problem of
finding the number of members in C' of size m. O

For instance, #DFA reduces to counting the number of

paths in a graph, while #NFA is known to be #P-complete [23].

Here, we consider #EDTD and #EDTD-DFA"" and estab-
lish our results by exploiting the close relationship between
(unambiguous) EDTDs and derivation trees of (unambigu-
ous) context-free grammars. We first make this relationship
precise.

3.1 From EDTDs to CFGs

Recall that a context-free grammar (CFG) G is a tu-
ple (N,X, R, S) such that N is a finite set of non-terminal
symbols, ¥ is a set of terminal symbols, R is a subset of
N x (NUX)" and S € N is the start symbol. We denote
the tuples (V,w) € R by V — w.

A string w € (N UZX)" is derived from some non-terminal
symbol V € N, denoted by V = w, if V. — w. The transi-
tive and reflexive closure of = is denoted by =*. The lan-
guage accepted by G is the set of strings w € X* such that
S =" w, and is denoted by L(G). If T € N, then L(Gr)
is the set of strings w such that T' =" w. A context-free
grammar G is unambiguous if, for every string w € L(G), w
has exactly one derivation tree for G.

It is well-known that regular expressions and (deterministic)
finite automata can be translated to equivalent context-free
grammars. Here, we use a variation of this result:

LEMMA 3.2. Let r be a regular expression and let A be a
DFA over alphabet A. Then we can construct in linear time
a CFG G with start symbol S such that 71 ---7, € L(r)
(resp. € L(A)) if and only if S =" 71---7, in G. Further-
more, if 7 (resp. A) is deterministic, then G is unambiguous.O

In the remainder of this section, if r is a regular expression,
we denote by CFG(r, V') the set of CFG rules obtained by
taking rules of G from Lemma 3.2, replacing the start sym-
bol S by V, and replacing each terminal symbol 7 € A in
the derivation rules by a non-terminal 7. That way, we
have that 71 ---7, € L(r) ifand only if V =" T, ---T;, in
CFG(r,V). We define CFG(A, V) for a DFA A similarly.

Let D = (X,A,X,d, Saq, t) be an EDTD, where X is a set
of DFAs or REs. Let Rn,s denote the class of context-free
grammar rules over the set of terminal symbols ¥ and the
set of non-terminal symbols N. Let ¢¥p : A — p(Ry /), for
¥ =X U{[,]}, be a function mapping types to sets of CFG
rules, defined as:

¥p(r) = {Ty — o[R,]} UCFG(d(r), R,)

where o = p(7). In the following, we assume that the non-
terminals in the rules CFG(d(7), R;) that are not of the
form T, for some 7 € A, are not used elsewhere. However,
this can always be achieved by renaming non-terminals ac-
cordingly. Let Up be the set {¢p(7) | 7 € A} U{S = T |
7 € Sq}. Notice that, for each type 7 there exists exactly
one rule in ¥p whose left-hand side is T’

The next lemma shows how EDTDs and CFGs are related:

LeMMA 3.3. For every EDTD D = (X, A, X, d, Sq,) the
CFG Gp = (N, X U{[,]},¥p,S) is such that for all n € N,
|£(D)="| = |£(Gp)™*"|. Furthermore, if D is an EDTD-
DFA"", then G is unambiguous. a

PrROOF SKETCH. We show that |£(D)="| = |£(Gp)™>"|
by establishing an isomorphism str between the languages
L(D) and L£(Gp). More precisely, str : Treess — (X U
{[,]})" is inductively defined as follows:

str(o(e))

o-[]
str(o(t1,...,tm)) =o-

[str(ty) - str(tm)].

It then suffices to show that for each n, str : Treess™ —
(ZU{[]})3™ is injective. O

34

3.2 #EDTD
It readily follows from the hardness of #NFA [23] that
#EDTD is hard as well.

ProrosiTiON 3.4. #EDTD is #P-complete. a

The relationship between EDTDs and CFGs as specified in
Lemma 3.3, however, can be used to provide a randomised
approximation scheme for #EDTD.

We recall the notion of randomised approximation schemes
for languages from Gore et al. [20]. A randomised approzi-
mation scheme for languages is a randomised procedure that
takes as input a description for a language L C ¥* and a
tolerance ¢ > 0, and produces as output a number L such
that (1+¢)7|L| < L < (1+ ¢)|L| with probability at least
4. For instance, an approximation scheme exists for #CFG:

THEOREM 3.5 ([20]). There is a randomized approxi-
mation scheme for #CFG, i.e., finding the number of ele-
ments of size m of a language defined by a given CFG G,
with running time =2 (m|G|)©0°s™) O

The approximation scheme for #EDTDs then immedi-
ately follows from Lemma 3.3 and Theorem 3.5.

COROLLARY 3.6. For an EDTD D, there is a random-
ized approximation scheme for finding the number of ele-
ments of size n of the language £(D), which runs in time
£7%(3n|D|)OUem), O

3.3 # EDTD-DFA""

We again rely on the relationship between EDTD-DFA""s
and unambiguous CFGs as specified in Lemma 3.3. That is,
we provide an efficient algorithm for #£(Gp) (and hence
for #L£(D)) by formulating the CFG Gp as a so-called com-
binatorial specification [17], which we recall below. The ad-
vantage of such a specification is two-fold: (1) one can easily
bound the complexity of computing the number of objects
of a certain size; and (2) one obtains a general sampling
procedure for objects in the specification (cf. Section 4)

Combinatorial specifications. A combinatorial class is a
finite or denumerable set on which a size function is defined,
satisfying the following two conditions:

(i) the size of an element is a non-negative integer,

(ii) the number of elements of any given size is finite.

If A is a class, the size of an element a € A is denoted by
|a]. The set of objects in A of size n is denoted by A,. The
counting sequence of a combinatorial class is the sequence of
integers (An)n>0 where A, = |A,| is the number of objects
in class A that have size n. Two combinatorial classes A and
B are said to be combinatorially isomorphic, written A = B
if and only if their counting sequences are identical. This
condition is equivalent to the existence of a bijection from
A to B that preserves size.

A calculus for combinatorial classes introduced in [17], is
presented below. Here, £ and Z are atoms that denote the
classes containing exactly one object of size 0 and size 1
respectively.! In the following, we allow different instantia-
tions Z,, Zp, ...of the same atom Z. Let B and C be com-
binatorial classes. Then the combinatorial class A = B+ C

£ is denoted as 1 in [17].

is the disjoint union of the classes B and C. In particular,
Z+ Z contains two objects of size 1. Furthermore, A = BxC
denotes the combinatorial class {a = (8,v) | B € B,y € C}
and for each a = (83,7) € A, the size of « is the sum of the
sizes of 8 and ~. For each a = (B1,...,0n) € A, the size of
« is the sum of the sizes of g; for i € [1,n]. For all n the
following hold when A is a combinatorial class:

if A=B+C then |[An| = |Ba|+|Chrl,
if A=BxC then |[An| =3 1_o |Bn-k| - |Ckl

In the following, we assume an infinite set of variables C,
Co, C4, Each variable will define a combinatorial class

£(C).

DEFINITION 3.7 ([17]). A specification for (C1,...,Ch)
is a collection of n equations, with the i-th equation being
of the form

C»; = \Ili(Cl, ey Cn)

where U; is a term built from £, Z and the Cj, using the
constructors + and x. For each j € [1,n], let C = () and
for each i € N, let C;"' = W;(C4,...,Cy,). Then L£(C)) is
defined to be |J,~, £(C}). For k € N, we denote by £(C;)=*

the objects in L(Cj) of size k. O

We say that a specification is in normal form if each equation
is either a single atom, or a single operation C; := C; + C},
or C»L = Cj X Ck

THEOREM 3.8 ([17]). Given a specification for (C4, ...,
Cr) in normal form and an integer k, the counting sequence

up to size k can be computed in O(n~k2) arithmetic operations.O

From CFGs to combinatorial specifications. We know

5187950237123931732051175236954451756169819365598840423158521214
8190894888949535843265681593434395020810002443582868233520387650
9254373728438806292876525845302947032070990934669778240958562432
2318852268438965431780372366645013594586870608079034900002010371
20152303965795554922650323287553303269884549851688819208474

The computation remains under the 60 seconds on a 1.8GHz
iMac with 1GB of RAM.

3.4 Shape Constraints

Given an EDTD"" D = (3,A, A,d, Sq, 1), it is often de-
sirable to count the number of trees in £(D) that satisfy
certain shape constraints. Here, by shape constraints we
mean certain restrictions on the allowed combinations of the
size, depth and/or width of trees in the language. More for-
mally, a shape constraint on the depth () (resp. branching
width (w)) of trees consists of a function ¢s(k)(resp. ¢w(k))
that assigns to each tree of size k its maximal allowed depth
(resp. branching width). For instance, to avoid string-like
trees one can take ¢s(k) = logk; to only consider binary
trees one simply lets ¢ (k) = 2. As previously described,
the counting sequences of trees in £(D) can be computed
using the combinatorial specification corresponding to the
CFG Gp. In the presence of shape constraints, we need to
augment this specification with parameters corresponding
to the depth and width of objects.

We next describe in detail the specification for Gp: Let
D= (%,A,A,d, Sq,u) be an EDTD-DFA"". Let A = {A. |
7 € A} such that, for each 7 € A, A = (A, Q~, 5+, ¢r,0,
F;) is the DFA such that d(7) = A, and let Q- = {¢r0,.-.,
Gr,m, }- We assume w.l.o.g. that the Q. are pairwise disjoint
and also disjoint with A. Also, let init : {A- | 7 € A} —
{gr,0 | 7 € A} be the function mapping each automaton to
its initial state. Finally, we let Q = |, .5 @+

Given the maximal tree depth d and width w, the spec-

from Lemma 3.3 that for a given EDTD-DFA™ D = (X, A, X, d, Sifieption is defined over the set of variables Var(d,w) =

the corresponding CFG Gp = (N, X U{[,]},¥p,S) is un-
ambiguous. Furthermore, it is well-known ([17]) that an un-
ambiguous CFG in Chomsky normal form can be translated
into a linear-size combinatorial specification (Cy,...,Cy) in
normal form by simply replacing concatenation (-) by x, dis-
junction (U) of rules with the same left hand side by +, and
finally each o € ¥ by Z,. Hence, together with Theorem 3.8
we immediately get:

THEOREM 3.9. For an EDTD-DFA"™ D = (¥,A,X,d,
Sa, i), the number of trees in L£(D) of size up to k can
be computed using O(|A||Qmax|*k?) arithmetic operations,
where Qmax denotes the largest state space of an automaton
in X. O

Proor. It suffices to show that the Chomsky normal form
‘> of the CFG Gp = (N, U {[,]},¥p,S) has at most
O(]A||@max|?) non-terminals. [

We stress that the size of the numbers |£(D)~*| can grow
very fast. To implement the algorithm of Theorem 3.9, a
Mathematical Software package is needed. Actually, Maple
provides an implementation in the combstruct module of the
combinatorial specifications. We implemented our specifica-
tion for the EDTD-DFA" D; given in Example 2.2. As an
illustration, we computed the number of trees of size 1001
valid with respect to D; and obtained a number with 314
decimals:

35

{R‘E&SwaRqS&SwaZu(T) ‘ TE Aaq S Qa(s S [lvd}vw € [O,W]}
and is given by the following set of equations:

For T € A, (6,w) e N>, § > 1:

% R_(st—lagw)

(<6,<w) | _
T> = Zuny X Z init(d(T))

XZ].

Forqe€ Q, (6, w) € N?,6 > 1:

Rgsa,gm — Z (TT(ss,sw) % Ré/ﬁ&,ﬁwfl)) L
TEA,G €Q Av
qleﬁT/(q,T) iff g€ F_/

We denote by £(D)=F=%4=%) the set of trees of size k, maxi-
mal depth d and maximal width w. A straightforward gener-
alization of Lemma 3.3 then shows that |£(D)=FS4=w)| =

[(L (Zresd T;Sd’gw))):?ﬂ. Hence, Theorem 3.9 implies:

COROLLARY 3.10. For an EDTD-DFA"™ D = (3, A, X, d, Sa, i),

size k, depth d and width w, the cardinality of £(D)(=*:<d:<w)
can be computed using O(|A||Qmax|? - d - w - k?) arithmetic
operations, where QQmax denotes the largest state space of
an automaton in X. m|

ProoF. This follows immediately from Theorem 3.9. In-
deed, it is easily verified that the normalization of the spec-
ification 35 g TLS4=) contains O(|A||Qmax|?d - w) non-
terminals. [J

We remark that when shape constraints ¢s(k) and ¢ (k)
are provided, |£(D)EF#5(8).¢w(B)| s easily obtained from
Corollary 3.10. Moreover, when only ¢s(k) or ¢, (k) is pro-
vided one simply removes the w or § parameter, respectively,
from the above specification and the complexity is adjusted
correspondingly. Finally, we observe that when no shape
constraint is specified, the specification reduces to the one
for Gp.

3.5 Similarity Measure

We return to computing the similarity between two tree
languages as defined in the introduction using the machinery
obtained above. Specifically, for tree languages S and T,
define,

[(SNT)~"|

I

[(SUT)=H|

sim<, (5,T) :=

Sy

x>
Il
=}

where % is taken to be 1.
Then we can prove the following result:

PRrROPOSITION 3.11. Assume S and T are specified as un-
ambiguous EDTD-DFAs. Then for any n, sim<,(S,T) can
be computed using O(|A\|Qmax,s|2|Qmax,T|2n2) arithmetic
operations, where Qmax,s and Qmax,7 denote the largest
state space of an automaton in S and T, respectively. a

PROOF. Since sim<, (S, T) requires both |[(SNT)~*| and
|(SUT)™*|, for k € [0..n], it suffices to bound the operations
needed to compute these quantities. By Proposition 2.6,
EDTD""s can be computed for SNT and SUT. Hence, all
|(SNT)=*| for k € [0..n] can be computed from the specifica-
tion of SN T using O(|A|\Qmax,s|2|Qmax,T|2n2) operations,
where Qmax,s and Qmax,7 denote the largest state space of
an automaton in S and T, respectively. Indeed, this fol-
lows from Theorem 3.9 and the fact that the automata in
S N T consist of product automata of S and T. Due to
trees common to S and 7', we cannot use S UT. Instead,
we simply use |S=F| + |T=F| — |(S N T)™*| for the counting
sequence of the union of S and T. From Theorem 3.9 it
follows again that these quantities can be computed up to
k = n using O(|As||Qmax.s 2In?), O(Ar || Qo7 0?) and
O(|A||Qmax,s|2|Qmax,T|2n) operations, respectively. As a
consequence, sim<,, (S, T) requires O(|A||Qmax, 5| |Qmax,|*1?)
operations. []

To illustrate feasibility, we used our implementation in Maple
to compute sim<io0(D1, D2) = 2.405906249 - 10~ 7 taking D
and D3 as defined in Example 2.2. The score was computed
in as little as a few seconds.

The above definition of the function sim is just one pos-

sibility. A related but more general approach would be to

consider a probability distribution p on the natural numbers,
and define sim,(S,T) as
|(SNT)™"]

P gy =
2 I(SUT)="

n>0

1
Z p(|t|)ma (1)

tesSNT

where |t| denotes the size of ¢. This means that sim,(S,T)
is the expected probability that a tree ¢ drawn from SUT
with probability p(]t|) belongs to SN T. So, this measure
assigns the same probability to trees of equal size.

36

4. Sampling tree languages

We next turn to the problem of sampling trees of a certain
size in a tree language £ uniformly at random. The sam-
pling procedure closely follows the general uniform sampling
methodology for combinatorial classes, as outlined in [17, 19,
25]. The general result for sampling objects of size k in a
combinatorial class is as follows:

THEOREM 4.1 ([17]). Any combinatorial specification
for (C1,...,Cy) in normal form has a random generation
routine that uses precomputed tables of size O(nk) and
achieves O(nklog k) worst case time complexity. The com-
putation of the tables requires O(nk2) operations. O

In other words, for any tree language £ that is equivalent
to a combinatorial specification, one automatically obtains
a sampling procedure. This is in particular true for EDTD-
DFA""s with and without shape constraints, as we have seen
in the previous section.

5. Uniform XSD generation

In this section, we provide an algorithm to generate uni-
formly at random XSDs of a given size. A first step towards
XSD generation is sampling of content models.

5.1 Generating Content Models

Almeida et al. provide a uniform sampler for deterministic
connected complete DFAs through a string representation of
the automata [2]. We next generalize their approach to de-
terministic k-OAs, by additionally allowing to parameterize
on occurrences of alphabet symbols. While the underly-
ing ideas remain the same, the new parameters introduce
a higher level of complexity. Furthermore, we employ the
formalism of combinatorial specifications to automatically
obtain a generation procedure (cf Section 4).

k-Occurrence Automata As mentioned in the introduc-
tion, regular expressions in real-world XSDs can have large
alphabets, but each of these alphabet symbols typically oc-
curs only a small number of times.? A k-occurrence regu-
lar expression or k-ORE is a regular expression where ev-
ery alphabet symbol occurs at most k times. For instance,
a-(a+0b)* is a 2-ORE. However, we will not consider these
regular expressions as such.

The reason is that there is little known on uniform regu-
lar expression generation. One approach could be to use
for instance the context-free grammar of [24] defining all
almost reduced regular expressions. However, this would
not exclude different regular expressions defining the same
language. Rejection sampling can not be used as there is
no notion of minimal regular expression. Therefore, instead
of using k-OREs, we turn to the corresponding (but slightly
larger) class of k-occurrence automata as defined next. Note
that these automata are node labelled.

DEFINITION 5.1. A k-occurrence automaton A (k-OA) over
Yisatuple (V, E, I, F,lab, e) where V is a finite set of states,
E C (V x V) is the edge relation, I C V is the initial set of
states, F' is the set of final states, lab : V' — X is the labeling
function, and e is a Boolean which is true when A accepts
the empty string. We have the additional requirement that
every X-symbol labels at most k states. a

2 Actually, most alphabet symbols occur only once.

—~
[
—

start

start

Figure 1: k-OA A

We say that two k-OAs A1 = (Vi, Eq, 1, F1,labi,e1) and
As = (Va, Ea, Iz, F>, laba, e2) are isomorphic, if there exists
a bijective function 8 : Vi — V4 such that for all v1,v2 € Vi,
(v1,v2) € E1 if and only if (8(v1),B(v2)) € Ea, v1 € I1 if
and only if B(v1) € Iz, v1 € Fy if and only if B(v2) € F3,
|ab1(1}1) = |ab2(ﬁ(1}1)) and €1 = €2.

A k-OA A is deterministic if for every state s € V and o €
there is at most one state s’ € V such that (s,s’) € E and
lab(s’) = o, and there are no two distinct states s,s’ € T
with the same label. A k-OA A is complete if for every state
s € V and every o € 3, there exists a state s’ € V such that
lab(s") = o and (s,s’) € E, and for every label o there is a
state s € I with lab(s) = o. Finally, a k-OA A is connected,
if every state s is reachable from an initial state in I. We call
a deterministic, complete and connected k-OA, admissible.

String encoding of k-OAs. We next provide a string
representation of k-OAs that is inspired by [2]. If A is a
deterministic k-OA over ¥ with M states, then for every
s € V we denote by N(s) the neighbours of s, which are
the states s’ € V such that (s,s’) € E. A string encoding,
similar to the one introduced in [2], is presented in what
follows. This encoding is canonical in the sense that isomor-
phic automata have the same encoding. For an alphabet X
of size £, let 0 : ¥ — [0, — 1] be a total order over the sym-
bols of ¥. Given that ordering o, define a canonical total
order ¢ : V — [1, M] as follows. First, for each state s € I
let ¢(s) = o(lab(s)) 4+ 1. Then, traverse the automaton in a
breadth-first way, where at each state s, assign to each of
the neighbours of s, that are not yet in the domain of ¢, and
in the order induced by o, the smallest number n € [1, M]
that has not been assigned to a state.

Consider the k-OA A shown in Fig. 1, over the alphabet
3 = {a,b}, where o(a) = 0 and o(b) = 1, and let € € L(A).
Notice that A is both connected and complete. The canon-
ical total order ¢ : V — [1, M] is defined as follows. The
initial state g1 with label a is assigned the number 1, and
the initial state g2 is assigned the number 2. Now, travers-
ing the automaton in a breadth-first order, the number 3 is
assigned to the state g4, which is a neighbour of ¢1 and has
label a. Similarly, the state g3, which is a neighbour of ¢;
with label b is assigned the number 4. Finally, proceeding
to the neighbours of g2, the state ¢s is assigned the number
5 and all states are now ordered. The ordering of the states
is annotated between parentheses in Fig. 1.

Given an admissible k-OA A over ¥ with M states, the
string encoding of A is a string enc(4) = S1 - S2 - s of length
(M +1)-£+ M + 1, where S is the substring encoding the
transitions of the automaton and is of length (M +1)-£, S is

37

the substring encoding the set of final states and is of length
M, and finally s is 1 if A accepts the empty string and 0
otherwise. The substring S1 = so -+ - s(ar41).¢—1 is such that
for each j € [0,£—1] s; = c(i) where ¢ € I and o(lab(z)) = j,
and for each j' € [1, M] and j € [0,£ — 1], s;s.0+; is equal to
c(v) where v is the state of A such that lab(v) = 0='(j) and
(c7'(4"),v) € E. Informally, the latter denotes that s;/.., ;
is the number corresponding to the state reached from state
with number j' reading the alphabet symbol o~'(j). For
the substring S2 = sar41).0 - S(m+1)-e+m—1 encoding the
set of final states, for each j € [0, M — 1], s(ar41).e+5 is 1 if
the state ¢ (4) is final and is 0 otherwise.

For example, the string encoding for the k-OA A shown in
Fig. 1, is the string

12 34 15 35 12 35 00001 1
N S S

0 1 2 3 4 5 final €

The first two digits of the string encode that state 1 (g1)
is the initial state with label a and that state 2 (g2) is the
initial state with label b. The next two digits encode the
outgoing transitions of state 1. The outgoing a-transition
goes to state 3 (qs) and the outgoing b-transition goes to
state 4 (g3). The outgoing transitions for states 2-5 are
encoded similarly.

The lemma below assures the correctness of the encoding:

LEMMA 5.2.
sible k-OAs.

1. The function c is a bijection for admis-

2. For two admissible k-OAs A; and As with n states
over an alphabet X of size £, with a total order o : ¥ —
[0, £—1] defined on this alphabet, if enc(A;) = enc(Az)
then A; is isomorphic to As. O

Characterisation of string encodings. We next provide
a characterisation of strings that correspond to encodings of
admissible k-OAs. We will leverage upon this characterisa-
tion and give a combinatorial specification for these string
encodings later on.

For every string s = so... S(nt+1).0-1, 7 € N, we let (fi)ic[1,n]
be a sequence of numbers such that for each i € [1,n], f;
denotes the first position in the string s where the number
1 appears. Then consider the strings so, ..., S(n41).e—1 that
satisfy the following 4 rules:

Vi € [1777‘ - 1]7f1 < fi-‘rl:
Vie[Lnl, fi <i-f,
Vi€ [0, —1],|{sp | p=1(mod £)}| <k,
Vi, i’ € [0,£ — 1], where i # 4/,
{sp | p=1i(mod)} N{s, | p=14 (mod £)} = 0.

(A1
(A2
(A3
(A4

NG N NI

Intuitively, the above rules express the following: Rule (A1)
expresses that for each state i, the first time ¢ appears in the
string is before the first time state i+ 1 appears in the string.
Rule (A2) expresses that for each state ¢, the first occurrence
of i is in the part of the string encoding the transitions of
the first 4 — 1 states, which means that state ¢ is reachable
from a state i < 7. Rule (A3) expresses that for any symbol
o, there are at most k different states that can be reached
by reading o. Finally, rule (A4) expresses that each state
has a unique label.

The precise relationship between the set of strings satisfying
(A1) — (A4) and k-OAs is given by the following lemma:

LEMMA 5.3. For each n € N, enc is a bijection from the
set of non-isomorphic admissible k-OAs with n states, over
an alphabet X of size £ to the strings of size (n+1)-£+n+1
whose prefix s = s0,...5(n41).c—1 satisfies the rules (A1) —
(A4) above, and whose suffix s" = S(41).¢** S(nt1)-04n USES
only 0 and 1. m|

In other words, Lemma 5.3 characterizes the strings corre-
sponding to encodings of k-OAs. We next use this charac-
terization to build a combinatorial specification for the set
of strings encoding k-OAs.

Combinatorial specification of k-OAs. Let X be an al-
phabet of size ¢ and let A be an admissible k-OA over ¥
with n states. Recall that enc(4) = S1 -5 - s is a string of
length (n + 1) +n + 1, where S is the substring of length
(n+ 1)¢ encoding the transitions of A, S is the substring of
length n encoding the set of final states, and finally s is 1 if
A accepts the empty string and 0 otherwise. Furthermore,
the prefix of S; of size £ is equal to 1-2---¢ and the suffix
Sa - s solely contains 0 or 1. Such fixed strings can easily be
combinatorially specified. Indeed, for ¢ € [1,n], let Z; de-
note the atom corresponding to state i. Then, Z; X --- X 2
corresponds to the prefix 1-2- - - £, whereas for B := Zo+ 21,
we have that B™ x B corresponds to the set of all possible
suffices of size n + 1 in encodings of k-OAs.

Given these, it remains to specify the remaining symbols in
S1. We need the following notation: For m € [¢ + 1,n], let
W™ = [Wo, ..., Wi_1] be a partition of [1,m] in which each
part is of cardinality at most k. We denote by WﬁHJ the
partition of [1,m + 1] obtained from W' by adding {m + 1}
to W;. Finally, if W is a subset of [1, n] then W denotes the
specification),y Zi.

From Lemma 5.3 it follows that the class of strings corre-
sponding to k-OAs of size n can be combinatorially specified
as:

OA, =21 X -+ X ZpX

24 (—1) p—o—1

e

(S W es1,5 (mod e)])
p

Z (H Z; (mod £)) X Zeg1 X
— i—0

x BM x B,

where j' and j are such that p = j'¢ + j, provided that the

class Slgiiﬂ [WEHJ- (mod ¢)] consists of all strings of length n-£
satisfying rules (A1) — (A4), with a fixed prefix so ... s/ .01,
where ¢+ 1 occurs in the string at position j' - £ + j for the
first time, and for each ¢ € [0,£ — 1], and ¢q € [0, - £+ 7], it

holds that {sq | ¢ = (mod £)} = W;.

We next claim that the specification given in Figure 2 defines
precisely this class of strings. Intuitively, for £ < m < n, the
equations in the specification reflect that the strings satisfy-
ing the rules (A1) — (A4) and in which letter m appears for
the first time at position j' - £+ j is equal to the (disjoint)
union of possible strings where m + 1 appears for the first
time in one of the positions between j'-£+j+1 and m-£—1.
In the specification this union is partitioned as follows: The
class Q1 covers the case where between the positions 5’ - £+ j
and (j'+1)-£+ j no new state m+ 1 is introduced, whereas

38

the class Q2 covers the cases where at some position J be-
tween the positions j'-£+j and (j'+1)-£-+7, the state m+1 is
introduced. Finally, two cases need special attention: First,
in case that j* = m — 1, the rule (A2) implies that symbol
m must appear directly afterwards. In the specification this
is reflected by the class defined by Q3. Second, when m =n
and j' = n — 1, the end of string is nearby and the recursive
specification must end. The last equation in the specifica-
tion deals with this case. Indeed, it simply pads the string
with symbols until the desired length of nf is reached.

THEOREM 5.4. For £,k,n,j’,5,n0,...,ne—1 € Nand m >
¢, the class Sg,’j)[WO, ..., Wi_1] defined by the specifica-
tion in Figure 2 corresponds to the class of strings of length
(n 4+ 1) - £ satisfying rules (A1) — (A4), with a fixed pre-
fix so...s;j:.04;, where m occurs in the string at position
j' - €+ j for the first time, and for each i € [0,¢ — 1], and
q € (0,7 - £+ j], it holds that {sq | ¢ =14 (mod £)} = W,. O

As a consequence, the specification O.A,, consists of all strings
that correspond to the encoding of a k-OA of size n.

LEMMA 5.5. Let n,k,¢ € N. The number of operations
required to compute |OAy,| is bounded by O(n? - £% - k). O

ProoF. This is a direct consequence of Theorem 3.8 and
the fact that normal form of the specification OA,, has at
most O(n? - £2 - k*) non-terminals. [J

Uniform generation procedure for k-OAs. Given the
specification for k-OAs one can rely on Theorem 4.1 to ob-
tain a uniform random generation procedure. This proce-
dure, referred to as k-OA-uniform-generation(n, £), takes as
input the size £ of the alphabet and the desired number of
states n, and returns uniformly at random (with probability
1/|0A,|) a string enc(A) encoding a k-OA A over ¥ and n
states.

From Theorem 4.1 and Lemma 5.5 it follows immediately
that k-OA-uniform-generation(n, £) requires O(n?-£2-k*n log(n))
worst case time complexity.

Finally, we observe that an alternative generation procedure
for k-OAs, similar to the one presented in [2], can be devised.
The difference is that while generating the string encoding of
the admissible k-OAs, one needs to additionally keep track of
which alphabet symbols have been assigned to which states,
so that no symbol is assigned to more than k states.

5.2 XSD generation

In what follows, we present an algorithm that generates
uniformly at random an XSD, whose content models are
described by k-OAs, for some & € N. We make use of the
notion of DFA-based XSDs (which is equivalent to XSDs
and introduced in [26]) with k-OA content models.

DEFINITION 5.6. A DFA-based k-OA XSD is a tuple D =
(X, A,), where A is a DFA with set of states A over the
alphabet 3, and A is a function mapping each non-initial
state ¢ of A to some k-OA over Y. A tree t is valid with
respect to D if for every node v of ¢, the sequence a1 - - an
of labels of its children is in £(A(q)), where ¢ is the state
reached by A when started in its initial state, and by reading
the string of labels on the path from the root to v. a

Form >4, 5 <m—1and j <#£:
SO = Q1+ Qs

Q1 = (Hfijﬂ Wi (mod €)) % Sﬁg +1’j)[Wm]

Form >4, =m—1and j < {:

SHPW™ = Qs

Form=mn,j ' =n—1andj<{

Q2 = Zfi;H(H:«;li Wit (mod) X Zm+1 X Sfiﬁ“’[WmH,w (mod 0)]

20—1 i—1 i’ G41) T
Qs =31 (T Wit (mod £)) X Zmg1 X ST(,]LJr]l)[Wm+1,j+i (mod)]

ST W) i= Wi x - x Wemy x (TTZe W)

ST

Figure 2: Combinatorial specification of k-OAs.

It therefore suffices to generate DFA-based k-OA XSDs.

ExXAMPLE 5.7. We provide an example of a DFA-based k-
OA XSD. Consider the following DFA without final states:

Furthermore, we define A(q1) = kOA(c), A(g2) = kOA(cc),
and A\(¢) = kOA(g), where kOA(r) denotes the minimal k-
OA for the regular expression r. This DFA-based k-OA XSD
accepts two trees, namely a(c) and b(c, ¢). O

We next discuss the algorithm we need for generating the
DFA of a DFA-based k-OA XSD. Example 5.7 illustrates
that we need to generate possibly incomplete connected DFAs.
Indeed, we cannot simply resort to methods generating min-
imal DFAs, since the DFA in Example 5.7, having no final
states, is obviously not minimal. Furthermore, even when
we would define the states that can be reached when read-
ing an entire path from root to leaf in a tree of the language
to be final, the resulting DFA is not minimal. Indeed, this
approach would define state ¢ to be a final state, but then
minimization of the DFA in Example 5.7 would merge states
¢1 and g2, thereby changing the language of the DFA-based
XSD. In fact, it can be shown that the DFA-based XSD from
Example 5.7 is minimal [29].

This justifies our choice for a method that generates possi-
bly incomplete connected DFAs. More precisely, for m € N
and any ordered alphabet 3 where |X| = ¢, we consider the
algorithm generate-DFA(m, ¢) from Bassino et al. that gen-
erates a possibly incomplete connected DFA with m states
(and no final states) over the alphabet X [4]. Note that the
generated DFAs are not necessarily minimal.

We next show to generate the k-OAs. Whereas we already
know to generate k-OAs of a given size, we now need to
uniformly range over the sizes of the k-OAs. Let A be a k-
OA over an alphabet ¥ such that |X| = £. Then notice that

39

the number of states for A can only be larger than or equal
to ¢ and smaller than or equal to k - £. For any two values
n1, n2 such that nq,ne € [¢, k- £], the number of k-OAs with
n1 states and the number of k-OAs with no states is not
necessarily the same, and therefore, to choose uniformly at
random the number of states of a k-OA, these numbers have
to be taken into account. The algorithm generate-k-OA-
num-states relies on the specification O.A; for k-OAs in order
to compute the number of k-OAs with i states over X. We
next use these numbers to produce a uniform distribution
over the number of states for the automaton.

Algorithm 1 generate-k-OA-num-states

Input: ¢
max = ¥ |OA;l;
return j € [1, k- £] with probability

[OA;]
max

Algorithm 2 generate-k-OA-XSD
Input: m, /¢
Output: DFA-based XSD (A4, \)
A = generate-DFA(m, £);
for every state j € [2,m] of A do
Li =|{o|0a(j,0) is defined in A}
n; = generate-k-OA-num-states(¢;);
end for
for every state j € [2,m] of A do
repeat
A(j) = k-OA-uniform-generation(n;, £;);
until is-minimal-complete-k-OA(A(j))
end for

Consider then Algorithm 2. The algorithm generate-k-OA-
XSD, given m and ¢, first generates a (possibly incomplete)
DFA A with m states over the alphabet [0, ¢ — 1] uniformly
at random. We assume that A’s states are numbered from
1 to m and its initial state is 1. Then, for each j € [2,m],
i.e., for each state apart from the initial one, we compute
the alphabet size ¢; of the k-OA that will be associated to
state j. This alphabet size must correspond precisely to the
number of outgoing transitions of state j (see Example 5.7)

in order for the DFA-based k-OA XSD to be well-defined.
Then we choose the number of states n; of a k-OA for state
j uniformly at random using generate-k-OA-num-states. Fi-
nally, we generate a k-OA for state j of A with n; number of
states and alphabet size ¢; using k-OA-uniform-generation.

Our aim for Algorithm 2 is to produce, uniformly at random,
non-isomorphic admissible DFA-based k-OA XSDs, that is,
DFA-based XSDs in which the inner DFA is connected and
the k-OAs are admissible and minimal.

We note that testing minimality of a deterministic k-OA
can be done by a simple adaptation of the standard DFA
minimization algorithms. In particular, only states bearing
the same alphabet symbol are allowed to be merged.

PROPOSITION 5.8. Testing minimality of a deterministic
k-OA can be done in PTIME. a

Therefore, the test is-minimal-complete-k-OA(Sstart,end) runs
in polynomial time.

The above discussion leads to the following result.

THEOREM 5.9. Algorithm generate-k-OA-XSD generates,
given m and ¢, uniformly at random an admissible DFA-
based k-OA XSD with m types and alphabet size £. m]

Finally, we note that the DFA-based k-OA XSDs generated
by generate-k-OA-XSD are not necessarily minimal and there
can be two such automata A; and As generated by the algo-
rithm that generate the same language. We can, therefore,
go through a rejection stage that checks if the resulting au-
tomaton is minimal, and keeps generating such automata
until a minimal one is found. This test whether the gener-
ated DFA-based k-OA XSD is minimal can be performed in
polynomial time using Proposition 5.8 and the minimization
algorithm for XSDs from [29].

As a final remark, we note that generating EDTD""s in a
similar manner is computationally harder. Indeed, as an im-
mediate consequence from [11], already testing minimality
of a EDTD"" is coNP-complete.

6. Related Work

Sampling. Our approach towards counting of tree languages
is based on the recursive method, which was initiated by
Nijenhuis and Wilf [31], and then formalized by Flajolet,
Zimmermann and Van Cutsem [17] in the more general set-
ting of combinatorial specifications. In the current paper we
only use a restricted class of specifications (called context-
free) in that only atoms, union and product are allowed.
General recursive specifications allow many more operators
(cf. [17]).

The computational complexity of variants of computing the
number of strings of given length in context-free languages is
investigated by Bertoni et al. [6]. We choose to employ the
method of going through the combinatorial specification as
it gives rise to an immediate implementation in Maple and
is versatile enough to incorporate shape constraints (which
are not context-free definable).

Sampling of trees that adhere to a probabilistic tree model is
investigated in [15, 16]. In particular in [16] a sampling pro-
cedure for trees that additionally satisfy a bottom-up tree
automaton is provided. These methods differ from ours in

40

that trees are sampled in accordance with their probabilities
specified by the probabilistic model rather than uniformly.

XSD generation. There has been substantial work on the

uniform generation of regular languages represented by DFAs.
To the best of our knowledge, no algorithm exists that uni-

formly generates minimal DFAs. The works [2, 5] and [4]

do consider the non-isomorphic uniform generation of admis-

sible and connected DFAs, respectively, but need rejection

sampling to sample minimal DFAs. This approach, however,

has no proven guarantees on running times.

Our string encoding for k-OAs is inspired by [2]. For the
generation procedure, however, we rely on a sampling proce-
dure for combinatorial specifications [17]. Although Héam,
Nicaud and Sylvain [21] show that non-isomorphic deter-
ministic tree-walking automata can be generated uniformly
at random through an encoding into string transducers, it
is not clear how to use their results to generate XSDs.

To the best of our knowledge, the present paper presents the
first step uniform XSD generation. The papers [9, 8] only
dealt with DTDs which reduce to regular expressions. In
[10], the experimental validation used one real-world XSD
and 8 hand-crafted XSDs. The XSD generation algorithm
presented in this paper could be used to generate a bench-
mark of XSDs. We did not address generation of XML cor-
pora adhering a given schema as is for instance implemented
in ToXGene [3].

7. Conclusion

In this paper, we presented a first step towards the foun-
dation for an experimental testbed for XSD generating algo-
rithms. We addressed uniform XSD generation as well as the
machinery to compute similarity measures based on count-
ing of trees of a certain size in tree languages. Finally, we
provided a sampling procedure for (unambiguous) tree lan-
guages using the formalism of combinatorial specifications.

An initial implementation in Maple shows that the approach
through combinatorial specifications is promising. Although
the approach to assess similarity through counting of the
number of different and common trees is intuitive, in depth
experimental validation of efficiency and effectiveness re-
mains needed to obtain a concrete robust similarity mea-
sure.

Directions for future work include the following:

The complexity of the generation algorithm for k-OAs re-
veals an exponential behavior in the size of the alphabet.
The main reason is that implicitly for each alphabet symbol
it needs to be remembered how many times it has already
occurred. Fortunately, in real-world content models the far
majority of the symbols occur only once. It would be inter-
esting to see how this constraint can be incorporated into
the algorithm.

Furthermore, it would be most interesting to extend the
XSD generation algorithm to generate k-OREs rather than
k-OAs. This would require a useful canonical representation
for regular expressions.

Finally, we want to explore the possibility of using specifi-
cations (possibly extended with probabilities) to get a non-
uniform sampling procedures of trees in a tree language.
This would be particularly useful in the probabilistic XML
setting, among others.

8.
1]

2]

3]

7]

8]

[9]

[10]

[11]

References

J. Albert, D. Giammerresi, and D. Wood. Normal form
algorithms for extended context free grammars. Theo-
retical Computer Science, 267(1-2):35-47, 2001.

M. Almeida, N. Moreira, and R. Reis. Enumeration and
generation with a string automata representation. The-
oretical Computer Science, 387(2):93-102, 2007.

D. Barbosa, A. O. Mendelzon, J. Keenleyside, and
K. A. Lyons. ToXgene: a template-based data gener-
ator for XML. In International Symposium on Man-
agement of Data (SIGMOD), page 616, 2002.

F. Bassino, J. David, and C. Nicaud. Enumeration and
random generation of possibly incomplete deterministic
automata. Pure Mathematics and Applications, 19(2—
3):1-16, 2008.

F. Bassino and C. Nicaud. Enumeration and random
generation of accessible automata. Theoretical Com-
puter Science, 381(1-3):86-104, 2007.

A. Bertoni, M. Goldwurm, and N. Sabadini. The com-
plexity of computing the number of strings of given
length in context-free languages. Theoretical Computer
Science, 86(2):325-342, 1991.

G. J. Bex, W. Gelade, W. Martens, and F. Neven. Sim-
plifying XML Schema: effortless handling of nondeter-
ministic regular expressions. In International Sympo-
stum on Management of Data (SIGMOD), pages 731—
744, 2009.

G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the in-
ference of schemas from XML data. In International
World Wide Web Conference (WWW), pages 825-834,
2008.

G. J. Bex, F. Neven, T. Schwentick, and S. Vansum-
meren. Inference of concise regular expressions and
DTDs. ACM Transactions on Database Systems, 2010.
G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML Schema Definitions from XML data. In Interna-
tional Conference on Very Large Data Bases (VLDB),
pages 998-1009, 2007.

H. Bjorklund and W. Martens. The tractability fron-
tier for NFA minimization. In International Colloquium
on Automata, Languages and Programming (ICALP),
pages 27-38, 2008.

A. Briiggemann-Klein. Regular expressions into finite
automata. In Latin American Symposium on Theoreti-
cal Informatics (LATIN), pages 87-98, 1992.

A. Briiggemann-Klein, M. Murata, and D. Wood. Reg-
ular tree and regular hedge languages over unranked
alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of
Science and Technology, 2001.

A. Briiggemann-Klein and D. Wood. One-unambiguous
regular languages. Information and Computation,
142(2):182—-206, 1998.

S. Cohen, B. Kimelfeld, and Y. Sagiv. Incorporating
constraints in probabilistic XML. ACM Transactions
on Database Systems, 34(3):1-45, 2009.

S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree au-
tomata on probabilistic XML. In International Sympo-
stum on Principles of Database Systems (PODS), pages
227-236, 2009.

41

(17]

(18]

(19]

[20]

22]

23]

[25]

[26]

27]

29]

(30]

P. Flajolet, P. Zimmermann, and B. Van Cutsem. A
calculus for the random generation of labelled com-
binatorial structures. Theoretical Computer Science,
132(2):1-35, 1994.

W. Gelade, T. Idziaszek, W. Martens, and F. Neven.
Simplifying XML Schema: Single-type approximations
of regular tree languages. In International Symposium
on Principles of Database Systems (PODS), 2010.

M. Goldwurm. Random generation of words in an alge-
braic language in linear binary space. Information Pro-
cessing Letters, 54:229-233, 1995.

V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. R.
Mahaney. A quasi-polynomial-time algorithm for sam-
pling words from a context-free language. Information
and Computation, 134(1):59-74, 1997.

P.-C. Héam, C. Nicaud, and S. Schmitz. Random gener-
ation of deterministic tree (walking) automata. In In-
ternational Conference on Implementation and Appli-
cation of Automata (CIAA), pages 115-124, 2009.
J.E. Hopcroft, R. Motwani, and J.D. Ullman. Intro-
duction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 3 edition, 2007.

S. Kannan, Z. Sweedyk, and S. R. Mahaney. Count-
ing and random generation of strings in regular lan-
guages. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 551-557, 1995.

J. Lee and J. Shallit. Enumerating regular expressions
and their languages. In International Conference on
Implementation and Application of Automata (CIAA),
pages 2-22, 2004.

H. G. Mairson. Generating words in a context-free lan-
guage uniformly at random. Information Processing
Letters, 49(2):95-99, 1994.

W. Martens, F. Neven, and T. Schwentick. Simple
off the shelf abstractions of XML Schema. Sigmod
RECORD, 36(3):15-22, 2007.

W. Martens, F. Neven, and T. Schwentick. Com-
plexity of decision problems for XML schemas and
chain regular expressions. SIAM Journal on Comput-
ing, 39(4):1486-1530, 2009.

W. Martens, F. Neven, T. Schwentick, and G.J.
Bex. Expressiveness and complexity of XML Schema.
ACM Transactions on Database Systems, 31(3):770-
813, 2006.

W. Martens and J. Niehren. On the minimization of
XML Schemas and tree automata for unranked trees.
Journal of Computer and System Sciences, 73(4):550—
583, 2007.

M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Tax-
onomy of XML schema languages using formal lan-
guage theory. ACM Transactions on Internet Technol-
ogy, 5(4):660-704, 2005.

A. Nijenhuis and H. Wilf. Combinatorial algorithms.
Academic Press Inc., 1979.

H. Seidl. Deciding equivalence of finite tree automata.
SIAM Journal on Computing, 19(3):424-437, 1990.

