
178

Specification and Inference of Trace Refinement Relations

TIMOS ANTONOPOULOS, Yale University, USA

ERIC KOSKINEN, Stevens Institute of Technology, USA

TON CHANH LE, Stevens Institute of Technology, USA

The modern software engineering process is evolutionary, with commits/patches begetting new versions

of code, progressing steadily toward improved systems. In recent years, program analysis and verification

tools have exploited version-based reasoning, where new code can be seen in terms of how it has changed

from the previous version. When considering program versions, refinement seems a natural fit and, in recent

decades, researchers have weakened classical notions of concrete refinement and program equivalence to

capture similarities as well as differences between programs. For example, Benton, Yang and others have

worked on state-based refinement relations.

In this paper, we explore a form of weak refinement based on trace relations rather than state relations.

The idea begins by partitioning traces of a program C1 into trace classes, each identified via a restriction r1.

For each class, we specify similar behavior in the other program C2 via a separate restriction r2 on C2. Still,

these two trace classes may not yet be equivalent so we further permit a weakening via a binary relation A

on traces, that allows one to, for instance disregard unimportant events, relate analogous atomic events, etc.

We address several challenges that arise. First, we explore one way to specify trace refinement relations by

instantiating the framework to Kleene Algebra with Tests (KAT) due to Kozen. We use KAT intersection for

restriction, KAT hypotheses for A, KAT inclusion for refinement, and have proved compositionality. Next,

we present an algorithm for automatically synthesizing refinement relations, based on a mixture of semantic

program abstraction, KAT inclusion, a custom edit-distance algorithm on counterexamples, and case-analysis

on nondeterministic branching. We have proved our algorithm to be sound. Finally, we implemented our

algorithm as a tool called Knotical, on top of Interproc and Symkat. We demonstrate promising first steps

in synthesizing trace refinement relations across a hand-crafted collection of 37 benchmarks that include

changing fragments of array programs, models of systems code, and examples inspired by the thttpd and

Merecat web servers.

CCS Concepts: • Theory of computation→Modal and temporal logics; Verification by model check-

ing; Program verification; Abstract machines.

Additional Key Words and Phrases: Program refinement, trace refinement, Kleene Algebra with Tests

ACM Reference Format:

Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le. 2019. Specification and Inference of Trace Refinement

Relations. Proc. ACM Program. Lang. 3, OOPSLA, Article 178 (October 2019), 30 pages. https://doi.org/10.1145/

3360604

1 INTRODUCTION

Modern software changes at a rapid pace. Software engineering practices, such as Agile, advocate
an evolutionary software development process, where ongoing source code edits lead, slowly but
surely, toward an improved system. Meanwhile, as these software systems grow, fragments of code

Authors’ addresses: Timos Antonopoulos, Yale University, New Haven, CT, USA; Eric Koskinen, Stevens Institute of

Technology, Hoboken, NJ, USA; Ton Chanh Le, Stevens Institute of Technology, Hoboken, NJ, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART178

https://doi.org/10.1145/3360604

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3360604
https://doi.org/10.1145/3360604
https://doi.org/10.1145/3360604

178:2 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

are reused in increasingly many different contexts. To complicate matters, these contexts themselves
may be changing, and code written under some assumptions today may be used under different ones
tomorrow. With so many moving parts, researchers and practitioners have found compositional
reasoning across versions (e.g. [Logozzo et al. 2014; O’Hearn 2018]) to be indispensable.
Changes can be exploited for good purposes: they offer a sort of informal specification, where

programmers often view their new code in terms of how it has deviated from the existing code
(i.e. a commit or patch), including the removal of bugs, addition of new features, performance
improvements, etc. With compositional theories and tools, one can reuse previous analysis results
for unchanged code, and combine them with new analyses of only the changing code fragment.

It is therefore a natural question to ask: how does a given program C1 compare to C2, a modified
version of C1? If one is merely interested in knowing whether they are strictly equivalent (or
whether, for example,C1 is contained withinC2), such a notion is commonly referred to as program
refinement and pertains to compiler correctness, translation validation [Pnueli et al. 1998], and the
refinement calculus of Morgan [1994]. Intuitively, C2 concretely refines C1 provided that, when
executed from the same initial state, they both reach the same final state. Researchers have developed
algorithms and tools (e.g. [Lahiri et al. 2012, 2013; Wood et al. 2017]) to check whether, say, two
versions of a function return the same results. Similarly, bisimulation provides equivalence between
how programs behave over time, perhaps accounting for different implementations.
Concrete refinement and bisimulation are often not focused on how the programs differ, but

simply whether or not they are equivalent. Some have since worked toward weakening program
equivalence. For instance, the works of Benton [2004] and Yang [2007] allowed one to define
equivalence relations over the state space, to express that two programs reach the same output
equivalence relation when executed from states in a particular input equivalence relation. Such
equivalences allow one to describe what differences over the states one does or does not care
about, for example, focusing on important variables or ignoring scratch data. This strategy is
compositional because one can correlate the output relation of one code fragment with the input
relation of the next. Extensions were later explored by others [Gyori et al. 2017; Unno et al. 2017].

1.1 Toward Trace Refinement Relations

While the above works have focused on state relations, we instead build toward a refinement

C1
<latexit sha1_base64="l8+uJ5YT5zgsXc1qVabvnDb3+68=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTSWGLiIQlcyN4yBxv29i67eyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzS1kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAx3DcnPuPT6g0T+SDmaQYxHQoecQZNVbyq82+V+2XK27NXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxPdBFMu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14n7XrNu6q59/VK4zaPowhncA6X4ME1NOAOWuADAw7P8ApvjnRenHfnY9lacPKZU/gD5/MHc1GNxw==</latexit>

C2
<latexit sha1_base64="6OuQ2YE777CJ8qNBlopCeJd8NOU=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTSWGLiIQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS1nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAx3DSnPuPT6g0j+WDmSYYRHQk+ZAzaqzkV5v9erVfrrg1dwGyTrycVCBHq1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxO2vWad1Vz7+uVxm0eRxHO4BwuwYNraMAdtMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPdNaNyA==</latexit>

C1 ∩ r1
<latexit sha1_base64="qAUy2qn6nT3LtjYOFiK22rp5iUI=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTSWGIiYAKXy96yBxt2987dPRJy4XfYWGiMrT/Gzn/jAlco+JJJXt6bycy8MOFMG9f9dgobm1vbO8Xd0t7+weFR+fiko+NUEdomMY/VY4g15UzStmGG08dEUSxCTrvhuDn3uxOqNIvlg5km1Bd4KFnECDZW8qvNwOsTnCAVeNWgXHFr7gJonXg5qUCOVlD+6g9ikgoqDeFY657nJsbPsDKMcDor9VNNE0zGeEh7lkosqPazxdEzdGGVAYpiZUsatFB/T2RYaD0Voe0U2Iz0qjcX//N6qYlu/IzJJDVUkuWiKOXIxGieABowRYnhU0swUczeisgIK0yMzalkQ/BWX14nnXrNu6q59/VK4zaPowhncA6X4ME1NOAOWtAGAk/wDK/w5kycF+fd+Vi2Fpx85hT+wPn8AcWEkMk=</latexit>

C2 ∩ r2
<latexit sha1_base64="9a88tJ4ezvL9ErVQ/Y/J14975Z4=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRjDxRNp60CORi0dM5COBptkuW9iw3ZbdLQlp+B1ePGiMV3+MN/+NC/Sg4EsmeXlvJjPzgoQzpW372ypsbe/s7hX3SweHR8cn5dOztopTSWiLxDyW3QArypmgLc00p91EUhwFnHaCcWPhd6ZUKhaLJz1LqBfhoWAhI1gbyas2fLdPcIKk71b9csWu2UugTeLkpAI5mn75qz+ISRpRoQnHSvUcO9FehqVmhNN5qZ8qmmAyxkPaM1TgiCovWx49R1dGGaAwlqaERkv190SGI6VmUWA6I6xHat1biP95vVSHd17GRJJqKshqUZhypGO0SAANmKRE85khmEhmbkVkhCUm2uRUMiE46y9vkrZbc25q9qNbqd/ncRThAi7hGhy4hTo8QBNaQGACz/AKb9bUerHerY9Va8HKZ87hD6zPH8iWkMs=</latexit>

C2 ∩ r0
2<latexit sha1_base64="A92LkyYmc2BXdKY9oio6092jnzs=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRjB6Im096JHIxSMm8pFAbbbLFjZst83uVkMa/ocXDxrj1f/izX/jAj0o+JJJXt6bycy8IOFMadv+tgpr6xubW8Xt0s7u3v5B+fCoreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51g3Jj5nUcqFYvFvZ4k1IvwULCQEayN9FBt+G6f4ATJc9+t+uWKXbPnQKvEyUkFcjT98ld/EJM0okITjpXqOXaivQxLzQin01I/VTTBZIyHtGeowBFVXja/eorOjDJAYSxNCY3m6u+JDEdKTaLAdEZYj9SyNxP/83qpDq+9jIkk1VSQxaIw5UjHaBYBGjBJieYTQzCRzNyKyAhLTLQJqmRCcJZfXiVtt+Zc1uw7t1K/yeMowgmcwgU4cAV1uIUmtICAhGd4hTfryXqx3q2PRWvBymeO4Q+szx8sTJD8</latexit>

C1 ∩ r0
1<latexit sha1_base64="TcOGo34sCKdFTrk96vfSys6i8Ww=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRjB6Ii0e9Ejk4hET+UigNttlCxu222Z3qyEN/8OLB43x6n/x5r9xKT0o+JJJXt6bycw8P+ZMadv+tgpr6xubW8Xt0s7u3v5B+fCoo6JEEtomEY9kz8eKciZoWzPNaS+WFIc+p11/0pz73UcqFYvEvZ7G1A3xSLCAEayN9FBtes6A4BjJc8+peuWKXbMzoFXi5KQCOVpe+WswjEgSUqEJx0r1HTvWboqlZoTTWWmQKBpjMsEj2jdU4JAqN82unqEzowxREElTQqNM/T2R4lCpaeibzhDrsVr25uJ/Xj/RwbWbMhEnmgqyWBQkHOkIzSNAQyYp0XxqCCaSmVsRGWOJiTZBlUwIzvLLq6RTrzmXNfuuXmnc5HEU4QRO4QIcuIIG3EIL2kBAwjO8wpv1ZL1Y79bHorVg5TPH8AfW5w8pOZD6</latexit>

⊆A
<latexit sha1_base64="wNmA8cTP8tsQkbeZjN550bcd/ys=">AAACAnicbVBNS8NAEN34WetX1JN4CbaCp5LUgx6rXjxWsB/QhLDZTtulm03c3QglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wMy+IGZXKtr+NpeWV1bX10kZ5c2t7Z9fc22/LKBEEWiRikegGWAKjHFqKKgbdWAAOAwadYHyd+50HEJJG/E5NYvBCPOR0QAlWWvLNw6ork0CCgns/dUOsRgSz9DLLqr5ZsWv2FNYicQpSQQWavvnl9iOShMAVYVjKnmPHykuxUJQwyMpuIiHGZIyH0NOU4xCkl05fyKwTrfStQSR0cWVN1d8TKQ6lnISB7syPlPNeLv7n9RI1uPBSyuNEASezRYOEWSqy8jysPhVAFJtogomg+laLjLDAROnUyjoEZ/7lRdKu15yzmn1brzSuijhK6Agdo1PkoHPUQDeoiVqIoEf0jF7Rm/FkvBjvxsesdckoZg7QHxifP4Ajl3s=</latexit>

⊆A0
<latexit sha1_base64="9ZSP2L1daxGnyED5i4MB7U3U7r8=">AAACA3icbVC7TsNAEDyHVwgvAx00FgmCKrJDAWWAhjJI5CHFlnW+rJNTzg/uzkiRZYmGX6GhACFafoKOv+GcuICEkVYazexqd8eLGRXSNL+10tLyyupaeb2ysbm1vaPv7nVElHACbRKxiPc8LIDRENqSSga9mAMOPAZdb3yd+90H4IJG4Z2cxOAEeBhSnxIsleTqBzVbJJ4ACfduagdYjghm6eVJltVcvWrWzSmMRWIVpIoKtFz9yx5EJAkglIRhIfqWGUsnxVxSwiCr2ImAGJMxHkJf0RAHIJx0+kNmHCtlYPgRVxVKY6r+nkhxIMQk8FRnfqWY93LxP6+fSP/CSWkYJxJCMlvkJ8yQkZEHYgwoByLZRBFMOFW3GmSEOSZSxVZRIVjzLy+STqNundXN20a1eVXEUUaH6AidIgudoya6QS3URgQ9omf0it60J+1Fe9c+Zq0lrZjZR3+gff4A6Z+XrA==</latexit>

Fig. 1. Illustration of trace refinement relations.

theory of trace relations. Our motivating goal is
to be able to express similarities/differences be-
tween two different programs in terms of their
behaviors over time. Examples include whether
two programs send/receive messages in the same
order, follow the same allocation/release orders,
have features added/removed, or have similar cer-
tain I/O patterns. Naturally, we take a reactive view
of programs, treating their execution in terms of
events, which can be suitably defined in terms of
statements, function calls, I/O, etc.

The key idea is illustrated in Figure 1, where we
are trying to show how a program C1 relates to
another program C2, even though the programs
may have different behaviors and even different
atomic events. After abstracting the programs, we
decompose C1 into trace classes, each identified by
a trace restriction r . In this example, there are two

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:3

trace classes withinC1, depicted with dashed-versus-dotted borders, and described using restrictions
r1 and r

′
1, respectively. These restrictions are applied with intersection: C1 ∩ r1 and C1 ∩ r ′1. Next,

for each such restriction on C1 we identify a different restriction on C2, in this case denoted r2 and
r ′2, respectively. These restrictions help us focus on similarities, but there still may be differences
between, for exampleC1 ∩ r1 andC2 ∩ r2: some atomic events may have different names or occur in
one but not the other. To that end we identify a binary relation A relating traces of one program to
traces of the other, in order to establish a relaxed inclusion ⊆A for the given trace classes, guided
by that relation A. We collect all of these (r1, r2,A) triples to form what we call a trace refinement

relation denoted T. That is, we say that T is a refinement relation for C1 and C2, provided that

∀(r1, r2,A) ∈ T. C1 ∩ r1 ⊆A C2 ∩ r2 and C1 ⊆
⋃

(r1,r2,A)∈T

r1.

The additional condition C1 ⊆
⋃

(r1,r2,A)∈T r1 requires that T identifies classes for all traces of C1.
Notice there is no particular requirement on the relationship between r1 and r2 within a tuple,
affording flexibility in how to relate the corresponding classes. Completeness in this setting is
essentially free: one can simply use binary relationsA that ignore all the events inC1. We therefore
turn to more important questions such as what language can be used to specify trace classes,
whether trace refinement relations can be found automatically, whether they capture our intuition
about relationships between programs, and whether automation provides new insights about
program relationships.

1.2 Challenges & Contributions

Specifying Trace Classes. To demonstrate trace refinement relations, we have instantiated the
concept to a particular language for expressing traces: Kleene Algebra with Tests (KAT) [Kozen
1997]. We found KAT to be convenient because it is expressive, supports algebraic reasoning and has
a built-in notion of composition. One could certainly also pursue temporal logics instead; we leave
this to future work. KAT is an amalgamation of Kleene Algebra which (like regular expressions)
has constructors for union +, concatenation ·, and star-iteration *, and Boolean Algebra which has
boolean predicates and operations. (A background on KAT is given in Section 2.)
In Section 4 we instantiate trace refinement relations to KAT. We treat programs C1 and C2 in

terms of their traces by abstracting themÐvia intermediate abstract programsÐto KAT expressions,
respectively denoted k1 and k2. In the setting of KAT, the (r1, r2,A) tuples of T represent a KAT
expression r1 to restrict k1 (via KAT intersection), a KAT expression r2 to restrict k2, and A is a
set of KAT hypotheses, used to relate symbols/expressions in k1 with symbols/expressions in k2.
Each tuple is a specific KAT inclusion and, as above, the overall trace refinement relation provides
a weak, KAT-based notion of inclusion between the trace classes of C1 and those of C2.
In Section 4 we also present a formal development, defining trace refinement relations and

putting them in the context of some other forms of refinement. We also show that, under this KAT
instantiation, our trace-refinement relations are composable (Theorem 4.6). Composition permits
an analysis of one pair of program fragments to be reused in many contexts and when the program
is further changed [O’Hearn 2018], as discussed below.

Synthesizing Trace Refinement Relations. In Section 5 we describe methods for synthesizing a
trace-refinement relation T, given input programsC1 andC2. We first describe an overall algorithm
that iteratively synthesizes T using a mixture of: (i) semantic abstraction α of a program C1 (and
C2) to KAT expression k1 (and k2), (ii) pruning infeasible paths, (iii) symbolic KAT inclusion (via
SymKAT [Pous 2015a]), (iv) a custom edit-distance algorithm on inclusion counterexamples to find
relationships between cross-program trace classes, and (v) case-analysis on branching in C1 and C2

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:4 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

in circumstances where the branching in one program prevents immediate inclusion in the other.
We have formalized our algorithm and proved that it is sound (Theorem 5.1).

The primary goal of our synthesized refinement relations is for them to be consumed by the
algorithm/tool. To this end, we generate T to capture the multitude of conditions and ways in
which one code fragment C1 can relate to another fragment C2, in order to produce results that are
reusable. Once T is generated for one fragment pair, it can be reused in many contexts or even when
the context code changes. This strategy is common in many program analysis tools (e.g. Facebook
Infer). As a secondary goal, synthesized trace refinement relations can be used by experts. Like a
syntactic diffing tool, the relations can guide them to understand how code has changed. Our tool,
discussed next, is also geared toward generating output to meet this goal.

Implementation and Experimental Validation. In Section 7, we first discuss an implementation of
our algorithm in a new tool called Knotical, that operates on an input pair of imperative WHILE
programs and synthesizes trace refinement relations. Knotical is built from the ground up in
OCaml using Interproc [Lalire et al. 2009] for abstract interpretation and Symkat to generate KAT
counter examples [Pous 2015a, 2016]. We also describe a customized edit-distance implementation
for scoring and finding alignments between programs.

We next describe an evaluation of our tool on a collection of 37 hand-crafted benchmark examples1

that we have assembled. Almost all examples necessitate trace refinement relations that cannot be
expressed using concrete refinement or other prior techniques. The examples range from those
designed to exercise the various aspects of our approach (restriction, hypotheses, edit distance, etc.),
to broader examples that model fragments of systems code behaviors, such as user I/O, array access
patterns, and reactive web servers (e.g. thttpd [Poskanzer 2018] and Merecat [Nilsson 2019]). At
the end of Section 7, we show that Knotical can synthesize trace refinement relations on these
benchmarks; that these relations often capture our intuition about relationships between program
pairs; and that these relations sometimes provide new insights as to unexpected relationships
between program pairs. To enable human readable output, our tool ranks the solutions based on the
number of hypotheses (fewer is better) and the replacement of same-type actions (e.g. a function
call should not be replaced by an assignment). We found that this helped highlight which of the
solutions indicate a closer correlation between the two programs.

1.3 Related Work and Limitations

Program equivalence and refinement are well-studied problems, and there are a wide range of for-
malisms and algorithmic techniques. Examples include concrete state refinement, state refinement
relations, bisimulation and weak bisimulation. In Section 8, we set our work in the context of some
of these prior works. We also discuss topics pertaining to reasoning about multiple traces within a
single program such as hyper temporal logics [Clarkson et al. 2014] and self-composition [Barthe
et al. 2004; Terauchi and Aiken 2005].
We developed a formal framework for trace refinement relations and, while KAT has worked

well, it has also meant that we were restricted to terminating programs. We leave instantiation
to other logics that support possibly non-terminating programs (e.g. temporal logic) to future
work. Furthermore, although trace-refinement is particularly important in concurrency research,
in this work we do not consider multiple threads. Instead, we use trace-refinement to more finely
determine the similarities and differences between two programs. Our implementation was also
limited in the number of symbols due to Symkat [Pous 2016]’s use of char to represent symbols.
As noted in Section 5, soundness of our algorithm and tool depends on soundness of some of the
subprocedures. Finally, the set of benchmarks we use were produced manually. We are not aware

1These examples can be found in the paper’s artifact [Antonopoulos et al. 2019a,b].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:5

Program C1 Program C2

1 while(x > 0) {

2 m = recv();

3 if (l) log(m);

4 if(m > 0) {

5 n = constructReply();

6 send(n);

7 if (l) log(n);

8 }

9 x--;

10 }

1 while(x > 0) {

2 m = recv();

3 if (m > 0) {

4 auth = check(m);

5 if(auth > 0) {

6 n = constructReply();

7 send(n);

8 }

9 } else { log(m); }

10 x--;

11 }

Fig. 2. (Left) A simple reactive program C1 that receives messages and sends replies. (Right) A modified

version of C2 with changes including the addition of authentication.

of a benchmark suite that fits our needs, and we had to manually validate our tool’s solutions. We
conclude in Section 9.1 by outlining future work toward adding support for heap-manipulating
programs and, in Section 9.2, extensions for nested procedures and concurrency.

2 OVERVIEW

Consider the two programs in Figure 2, which we will use as a motivating example to highlight our
approach. These two programs each model standard web-server behaviors, receiving requests and
serving responses. The programC2 is slightly different fromC1, possibly obtained as a modification
to C1, with added authentication and a new logging scheme.
We are interested in knowing how the new program C2 compares to the previous program

C1. (We take a reactive view of programs and, for simplicity, just work with stack variables and
eventsÐdenoted recv, log, etc.Ðcorresponding to I/O side effects, function calls, etc.) Both of these
programs involve typical web server behavior: alternately receive a request and send a response.
The programs involve some differences, arising from changes/edits that were made to C1. Yet
there are still similarities: both programs involve a loop that iterates over x, recving messages and
possibly sending responses. On the other hand, C2 only performs a log when it recvs an m such
that m ≤ 0, and it additionally performs an authorization check on m. In addition,C1 only performs
logs when the flag l is enabled.
We would like to express similarities in how the programs behave over time, such as alterna-

tion between send and recv. We would like a formal framework to also tolerate the differences
between how the programs behave over time, such as the recv/send behavior in C1 versus the
recv/check/send behavior in C2. Intuitively, the formal framework we develop will need some
way of expressing different behaviors of one program (e.g. auth is always greater than 0 inC2) that
correlate to behaviors in the other (e.g. log-free traces of C1). Moreover, we need an abstract way
to relate an event in one program (e.g. the send event in C1) to an analogous event in the other
program (e.g. send in C2).

In this paper we describe a way to specify these kinds of łweakž trace relationships. Beyond this
example, there are many intuitive program pair properties along these lines including (i) the new
program alternately receives and sends messages like the original, (ii) the new program additionally

performs an authorization check after each receive, (iii) the new program’s memory pool usage pattern

matches the old program’s memory allocation pattern, and so on. These properties are trace based
(as opposed to pre/post) and also relational, yet weaker than trace equivalence. We aren’t aware of
existing works aimed at these properties, for example by using ghost variables to encode traces
into the relations of Benton [2004] / Yang [2007] or by weakening bisimulation in this direction.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:6 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

In the setting of understanding these kinds of similarities/differences between programs, it is
difficult to define a particular łpropertyž of interest. Instead, we are after relationships between
(the traces of) a pair of programs. In this paper we will express these relationships formally in an
appropriate language. We will now discuss our choice of language for describing these relationships.

2.1 Background: From Programs to KAT Expressions

Expressing properties of the way a program behaves over time motivates the need for a suitable
trace specification language. For the purposes of this paper, we focus on traces described using
Kleene Algebra with Tests (KAT) [Kozen 1997]. KAT is a convenient choice because it is expressive,
supports algebraic reasoning, and has a built-in composition operator. We leave exploration of
trace refinement relations in other languages (e.g. temporal logic) to future work.

KAT Reminder. We briefly recall KAT here and provide a formal definition in Section 3. KAT is
an amalgamation of Kleene Algebra which (like regular expressions) has constructors for union
+, concatenation ·, and star-iteration ∗, and Boolean Algebra which has boolean predicates and
operations. KAT expressions consist of a combination of event symbols (herein denoted in uppercase:
A, B, C) and boolean łtestž symbols (herein denoted in lowercase: a, b, c). One can write KAT
expressions that mix event symbols with boolean test symbols, e.g. (a·A)∗ ·C·b. KAT expressions
allow for an easy-to-use representation of while-style imperative programs [Kozen 1997, 2006] (see
also Section 4.1). The union and Kleene star operations of Kleene Algebra correspond to conditionals
and while loops in the program, and the underlying Boolean Algebra helps with encoding under

which boolean conditions a path can materialize. For example, the KAT expression (b·C + b·D)∗

models a program that is a multi-path loop, branching on b. Symbol b is an element of the Boolean
subalgebra, while symbols C and D correspond to the respective actions in the program.

Returning to the example in Figure 2, we introduce a KAT geared specifically for this program pair.
For notational convenience, we write boolean test symbols such as łax>0ž for integer expressions
such as x>0, using subscripts to indicate which program expressions correspond to the symbols.
Similarly, we write event symbols for program statements such as łErecvž for action recv. The
behaviors of programs C1 and C2 can be represented, respectively, as:

k1
△
= (ax>0 ·(Erecv ·(bl=true ·Olog + bl=true ·1)·(cm>0 ·CRep ·Ssend

(bl=true ·Llog + bl=true ·1) + cm>0 ·1)·Xx--))
∗ ·ax>0

k2
△
= (ax>0 ·(Erecv ·(cm>0 ·Kcheck ·(dauth>0 ·CRep ·Ssend

+ dauth>0 ·1) + cm>0 ·Olog)·Xx--)
∗ ·ax>0

where ł1ž is the identity symbol in KAT, akin to skip in programs. (ł0ž in KAT is akin to
assume(false).) Note that composition · binds tighter than union +, and we use overline (e.g.
cm>0) to indicate negation. The above KAT symbols represent program statements, but we use KAT
symbols more generally as semantic entities. KAT also can express many well-known tricks for
increasing path sensitivity such as loop unrolling, trace partitioning [Mauborgne and Rival 2005],
control-flow refinement [Gulwani et al. 2009]. For simplicity, we omit such examples.

2.2 Trace Refinement Relations

Not all behaviors of C1 relate to behaviors of C2 (such as some logging in C1) and vice-versa
(authorization failures in C2), so exact trace equivalence does not hold for the two programs in
Figure 2. Nevertheless, we are still interested in which trace classes of C1 are also related to trace
classes of C2 and how one might correlate events in C1 with those in C2. We wish to describe, for
example, how both programs have a substantially similar recv/send relationship. Imagine that we
could somehow focus on the behaviors of C2 in which auth was always greater than 0, somehow

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:7

focus on the behaviors of C1 that had no log events (when l was always false), and also on the
executions of both programs where they recv valid messages and thus m > 0. In that case, the
programs would have restricted behaviors, represented as the following restricted KAT expressions:

(ax>0 ·(Erecv ·(cm>0 ·CRep ·Ssend)·Xx--))
∗ ·ax>0 ≤ k1 (1)

(ax>0 ·(Erecv ·(cm>0 ·Kcheck ·CRep ·Ssend)·Xx--))
∗ ·ax>0 ≤ k2 (2)

The above equations are just classes of trace behaviors of C1 and C2, respectively, with ≤ denoting
KAT inclusion. If we could now further somehow ignore the Kcheck event in C2, the above KAT
expressions would be equivalent. (In this case they are syntactically equivalent, but they could also
be semantically equivalent.) Finding this correlation takes care of some behaviors of C1, but we
aim to exhaustively consider all of its behaviors.
The idea of relating specific behaviors between programs is the first step toward our notion of

trace refinement relations, formalized in Section 4. We consider one class of traces of C1 at a time
like we did above in Equations 1 and 2. More precisely, we use a KAT expression r1 to represent a
trace restriction and KAT intersection k1∩r1 to represent a (restricted) trace class. For this restricted
behavior of k1, it is typically helpful to restrict k2 (which corresponds to C2) with a perhaps rather
unrelated r2. Then we can ask whether equivalence holds between k1 ∩ r1 and k2 ∩ r2. Returning to
the running example, we can consider the class of traces ofC1 that do not involve logging by letting

r1 = (ax>0 · bl=true ·Any)∗ · ax>0, (3)

requiring that bl=true holds between any actions while ax>0 also holds. Here Any is shorthand for
the disjunction of all event symbols in the KAT at hand. We can use this restriction to focus on
k1 ∩ r1. Similarly we can restrictC2 to the class of traces in which auth is always above 0 by letting

r2 = (ax>0 · cm>0 · dauth>0 ·Any)∗ ·ax>0 (4)

This restriction allows only behaviors of the program where both m > 0 and auth > 0 hold between
any actions while ax>0 also holds. With these restrictions in place, we get Equations 1 and 2 above.

In some cases, we can witness classes of traces in C1 that are a part of trace classes in C2 simply
using such a pair of restrictions. However, restrictions are not the only way that we relate k1 to k2.
Looking at Equations 1 and 2, there is still the discrepancy that the Kcheck event occurs inC2 but not
C1. Since we are already focused on a case where auth is always greater than 0, the Kcheck event is
not so important. We can ignore such unimportant events by introducing additional hypotheses A
into the KAT. In this case, we can introduce the hypothesis A = {Kcheck = 1}, and we finally have
the KAT relationship (k1 ∩ r1) ={Kcheck=1} (k2 ∩ r2). KAT enables us to exploit algebraic reasoning
and so we can introduce hypotheses for other purposes too. It is often convenient to let syntactically
identical statements between C1 and C2 use the same KAT symbol. In other cases, we may prefer
not to, but we can introduce KAT hypotheses to instead selectively relate statements.

Putting It All Together. Ultimately, we will collect a set T = {(r1, r2,A), (r ′1, r
′
2,A

′), . . .}, each
tuple considering a different way in which a trace class ofC1 relates to a trace class ofC2. We finally
require the union over the first projection of T to ensure that all of C1 is represented via trace
classes. In Section 4 we formalize this as a trace refinement relation. Notice that łweakž completeness
is straight-forward: we could always add a triple (1, 1,A⊤) where A⊤ maps every single symbol
to 1 (skip). The challenges instead include whether trace-refinement relations can be generated
automatically, whether they confirm our intuition about the relationship between program pairs,
and whether they can provide new insights about program pair relationships.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:8 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

2.3 Composition, Contexts, Spanning Versions

So far we have discussed reasoning about a change from C1 to C2, while the context remains
fixed. But what about the context? A single fragment C1 can be used in many different contexts
within a large program. Thus, when C1 is changed to C2, there is benefit to performing a single
analysis that considers all possible contexts, rather than considering how C1 and C2 relate in each
context [O’Hearn 2018]. This approach also allows us to cope with the fact that the context itself
may change.
Returning to Figure 2, fragments C1 and C2 may be used in different contexts. Perhaps in one

context it is important that all failed connections are logged and we want to ensure a change from
C1 to C2 preserves this property. In that case we need a refinement relation that does not ignore
log events, and assume that the context of C1 ensures l = true. Formally, we would have the tuple

((bl=true · cm>0 · Any)
∗
, (cm>0 · Any)

∗
,Aloд) ∈ T

This restricts to trace classes of C1 where logging is enabled and all connections fail and restricts
traces of C2 to those where all connections fail. Moreover, we require a set of hypotheses Aloд

which does not imply that Olog = 1. In a different context, other relations would be relevant. As
noted earlier, this example comes from a change that added SSL support to thttpd [Poskanzer
2018]. Therefore, we may wish to have a refinement relation, specifying that as long as all messages

are authenticated in C2, then it behaves the same as C1.

(Any∗, (dauth>0 · Any)
∗
, {Olog = 1, Llog = 1,Kcheck = 1}) ∈ T

Here, C1 is unrestricted, C2 is focused only on executions that are authenticated, and we use a set
of hypotheses that ignores all log events and ignores the check event in k2.
Our formalism can capture other more complicated contexts, such as an outer loop. We have

proved that our trace-refinement relations are compositional (Theorem 4.6), across all of KAT,
allowing us to reason about the overall trace-refinement, by considering pairs of program segments
at a time.

2.4 Automation

In Section 5 we describe an algorithm for synthesizing trace refinement relations. At the high
level, each iteration of the algorithm is a recursive call (Synth), where we are exploring a region
of the solution space where C1 has possibly been r1-restricted, C2 has possibly been r2-restricted,
and a collection of KAT hypotheses A are in use. Each iteration of our algorithm calculates KAT
abstractions k1 and k2 from programs C1 ∩ r1 and C2 ∩ r2, resp., and then considers whether
k1 is included in or is equivalent to k2, under the current set A of hypotheses. To check this
refinement, we use Symkat [Pous 2016]. If this refinement holds, then the algorithm returns
this triple (k1,k2,A) as a solution that may be assembled with others into a complete solution
by previous calls to Synth. Alternatively, if the inclusion/equivalence does not hold, we decide,
based partly on the counterexamples, whether to (i) introduce restrictions (r1,i , r2,i) and/or (ii)
introduce hypotheses Ai . In Sections 5 and 6 we discuss how the sub-procedure employs a custom
edit distance algorithm for this purpose. Finally, the restrictions are instrumented back into the
programs, to produce new programs that are considered recursively.
Naturally, our algorithm needs to build on a method for translating back and forth between a

program C and its corresponding KAT expression k . The former lets us learn fine-grained details
about the behavior of the program, while the latter lets us perform coarse-grained cross-program
comparisons. To get k fromC , we exploit program semantics to obtain precise KAT expressions, for
example by excluding infeasible paths. Our abstraction is not a one-way process: our algorithmic

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:9

search involves discovering restrictions r and then instrumenting them back into the source
program, using a form of product program.
We have proved that our algorithm is sound (Theorem 5.1) meaning that a trace refinement

relation T returned by our algorithm is indeed one that satisfies k1 ⪯
T k2, for k1 and k2 being the

KAT expressions corresponding respectively to the input programs C1 and C2. Weak completeness
is less interesting; we are instead interested in automatically generating trace-refinement relations
and whether these relations capture our intuition and/or provide new insights into the relationships
between program pairs.

2.5 The Knotical Tool

We have developed a prototype tool Knotical that implements our algorithm. During the algorithm,
when considering whether the current k1 refines k2, Symkat may find that it does not and return a
counterexample of a stringw1 that is in k1 but not k2 (andw2, vice-versa). Our algorithm departs
from a traditional counterexample-guided approach and instead is able to consider not only the
entirety of counterexample stringsw1 andw2, but also the KAT expressions k1 and k2, in order to
find a better correlation between the two. It is easy for a human reader to see that the relationship
between k1 and k2 fits better, when the * expression in k1 is correlated with the * expression in k2.
To this end, we developed a custom edit-distance algorithm [Bille 2005] (see Section 6).

We are not aware of any existing benchmarks that would be appropriate for evaluating Knotical
since prior works are focused mainly on state-based relationships. We created a series of 37
small benchmarks (Section 7), including examples that model user I/O, array access patterns, and
fragments of reactive web servers (e.g. thttpd [Poskanzer 2018] and Merecat [Nilsson 2019]). On
most benchmarks, our tool was able to generate a trace-refinement relation in seconds or fractions
of a second. These relations often capture human intuition about relationships between programs
and sometimes provide new insights as to how the programs relate.

3 PRELIMINARIES

Strings, Sets, Composition, Programs. A string s over an alphabet Σ is a sequence s1 · s2 · · · sn
of symbols si ∈ Σ, for i ∈ [1,n]. Given sets S1, . . . , Sn , a set S ⊆ S1 × S2 × . . . Sn , and an element
s = (s1, . . . , sn) ∈ S we denote with proji (s) the projection of s to its i-th element si in Si . We abuse
notation, denoting as proji (S) the set {si ∈ Si | si ∈ proji (s), s ∈ S}.
We assume a set Prog of (essentially imperative) programs operating on a set S of states. We

assume a distinguished łerror statež fault ∈ S. A configuration is a pair ⟨C,σ ⟩, whereC is a program
and σ a state; we write Config for the set of all configurations. We assume a binary relation
{ ⊆ Config×S capturing the łbig stepž, nondeterministic operational semantics of our programs;
⟨C,σ ⟩ { ρ means that executing program C in initial state σ can result in the final state ρ.

Kleene Algebra with Tests. We use KAT [Kozen 1997] to represent classes of traces within
a program. A Kleene Algebra with Tests K is a two-sorted structure (Σ,B,+, ·, ∗, ,̄ 0, 1), where
(Σ,+, ·, ∗, 0, 1) is a Kleene algebra, (B,+, ·, ,̄ 0, 1) is a Boolean algebra, and (B,+, ·, 0, 1) is a sub-
algebra of (Σ,+, ·, 0, 1). We distinguish between two sets of symbols: set P for primitive actions,
and set B for primitive tests. The grammar of boolean test expressions is: BExp ::= b ∈ B | b1 · b2 |

b1 + b2 | b̄ | 0 | 1 and we define the grammar KExp of KAT expressions as:

KExp ::= p ∈ P | b ∈ BExp | k1 · k2 | k1 + k2 | k
∗ | 0 | 1

The free Kleene algebra with tests over P ∪ B, is obtained by quotienting BExp with the axioms of
Boolean algebras, and KExp with the axioms of Kleene Algebra. For e, f ∈ K , we write e ≤ f if
e + f = f , and all Kleene Algebras with Tests K we consider here are ∗-continuous, where any

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:10 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

elements a,b, c in K , satisfy the axiom a · b∗ · c =
∑

n∈N a · bn · c [Kozen 1990]. If the relationship
e ≤ f holds under a set of hypotheses A, we write e ≤A f . By convention we use lower case
letters for test symbols and upper case letters for actions. We may also abuse notation, writing
program conditions and statements rather than boolean symbols and action symbols (in which case
we implicitly create symbols for each). For Figure 2 booleans include B = {ax>0, bl=true}, actions

include P = {Olog, Erecv}, and k = ...(bl=true ·Olog + bl=true ·1)... ∈ K .

Definition 3.1 (Intersection). Given a KAT K and two of its elements k1 and k2 we define k1 ∩ k2
to be equal to l1 + . . . + ln + . . ., where {li }i ∈N is the set of all elements li in K such that li ≤ k1
and li ≤ k2.

2

For KAT expressions k1,k2 and l , and a set of hypotheses A, we write l ∈ k1 \A k2 if l ≤A k1
and l ≰A k2. Similarly, we write l ∈ k1∆Ak2 if l ∈ k1 \A k2 or l ∈ k2 \A k1 (akin to symmetric
difference on sets). Finally, for two KATs K1 and K2, we denote with K1 ∪ K2 the smallest KAT
that contains both K1 and K2. Finally, when we refer to strings we mean KAT strings, which are
KAT expressions where only the concatenation operation is used.

Program Refinement. Program refinement is a classical concept and can be formulated in different
ways, depending on the context. Often, the usual notion of refinement is too concrete because
it does not consider the context in which C1 and C2 are used. Benton [2004] and Yang [2007]
introduced a weaker notion of refinement, parameterized by an input relation between the states
of the two programs as well as an output relation. We call this an interface, which is an equivalence
relation on the set of states S and defined as follows:

Definition 3.2. For interfaces I ,O and programs C,C ′, we say C ′ refines C w.r.t. (I ,O), written
C ′ ⪯I

O C , if the following two conditions are met, for all states σ ,σ ′ such that I (σ ,σ ′):

(1) if ⟨C ′
,σ ′⟩ { fault, then ⟨C,σ ⟩ { fault;

(2) if ⟨C ′
,σ ′⟩ { ρ ′, then either there exists ρ such that ⟨C,σ ⟩ { ρ and O(ρ, ρ ′), or else

⟨C,σ ⟩ { fault.

We say thatC ′ (concretely) refinesC , writtenC ′ ⪯ C , whenC ′ ⪯id
id
C where id is the identity relation.3

4 KAT REPRESENTATIONS AND REFINEMENTS

In this section we discuss a two-step semantic abstraction (Section 4.1), trace refinement and
trace-refinement relations (Section 4.2), and composition results (Section 4.3).

4.1 Abstracting Programs into KAT Expressions

We describe how to abstract a while-style program C to a KAT expression k over a KAT K . We
parameterize such a translation by an abstraction α used for both abstracting concrete states of
the program to abstract states, as well as the latter to elements of the boolean subalgebra of K .
More concretely, given a programC over a set of states S, we define α to be a tuple (K,AS ,αS ,αB),
where K is a KAT, AS is a set of abstract states, αS is a mapping from S to AS corresponding to
the program abstraction given by the abstract interpretation, and αB is a mapping from AS to B,

2For the interested reader, this definition agrees with other definitions regarding intersection, namely ones defined on the

set of guarded strings associated with a KAT expression, i.e. [[k1 ∩ k2]] = [[k1]] ∩ [[k2]]. See Theorem A.1 in the Appendix.

Notice that for any two KAT expressions k1 + . . . + kn and l1 + . . . + lm over a KAT K , for n,m ∈ N, there is a finite

number of elements h1 + . . . + hr , for r ∈ N such that (k1 + . . . + kn) ∩ (l1 + . . . + lm) = h1 + . . . + hr . Since we never

start with a KAT expression as an infinite disjunction in what follows, any time we talk about the intersection of two KAT

expressions as a disjunction of KAT elements, we will refer to such a finite disjunction.
3Benton used the notation ⊢ C ∼ C′ : I ⇒ O whereas we use notation by James Brotherston (personal communication).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:11

the boolean subalgebra of K . Additionally, we require that for any b ∈ B, there is a set of states
{a1, . . . ,an} ∈ AS such that b = αB (a1) + . . . + αB (an). When K and AS are clear from the context,
we write α = αB ◦ αS .

With such an abstraction α = (K,AS ,αS ,αB) as a parameter, we say a translation from C to a
KAT expression k ∈ K is valid (resp. strongly valid), if for any states σ , ρ ∈ S, ⟨C,σ ⟩ { ρ only if
(resp. if and only if) αB (αS (σ)) · k · αB (αS (ρ)) , 0. We assume a procedure Translate(C,α) that
returns k ∈ K and the translation fromC to k is valid (see Section 5 for an implementation). Finally,
we will iteratively construct abstractions and thus need the following notion of refinement over
abstractions:

Definition 4.1 (Refining abstractions). For two given abstractions α = (K,AS ,αS ,αB) and α
′
=

(K ′
,A′

S ,α
′
S ,α

′
B) over the same set of concrete states S, we say that α ′ refines α , and write it as

α ′ ⊑ α , if K is a subalgebra of K ′ and for any state σ ∈ S, α ′
B (α

′
S (σ)) ≤ αB (αS (σ)).

Let α1 = (K1,A
1
S ,α

1
S ,α

1
B) and α2 = (K2,A

2
S ,α

2
S ,α

2
B) be two abstractions, both refining an abstraction

α with Boolean algebra B. By α1
S × α2

S we denote the function from S to A1
S ×A2

S , that maps a state

σ ∈ S to (α1
S (σ),α

2
S (σ)). Further, we define α

1
B · α2

B to be the function from A1
S ×A2

S to B that maps

a tuple (a1,a2) ∈ A1
S ×A2

S to α1
B (a1) · α

2
B (a2) in B. The combined abstraction of α1 and α2, written

α1 ⊔ α2, is defined to be the abstraction (K1 ∪ K2,A
1
S ×A2

S ,α
1
S × α2

S ,α
1
B · α2

B).

4.2 KAT Refinements

With abstractions from programs to KAT expressions in hand, we now first define concrete KAT
refinement, and then our notion of trace-refinement relations (Definition 4.4).

Definition 4.2 (Concrete KAT refinement). Let k1 and k2 be two KAT expressions over K . We say
that k1 concretely refines k2, and denote it by k1 ⪯ k2, if for any b,d ∈ B:

(1) b · k1 = 0 implies b · k2 = 0,
(2) b · k1 · d , 0 implies b · k2 · d , 0, or b · k2 = 0.

The following relates concrete trace refinement, via abstraction, back to concrete program
refinement (See Appendix A).

Theorem 4.3. LetC1 andC2 be two programs, and let k1 and k2 be the two KAT expressions obtained

from a strongly valid translation of the two programs respectively, under some abstraction α . Then it

holds that C1 ⪯ C2 if and only if k1 ⪯ k2.

Notice that for the inclusion implication to work in both directions we need the translations to be
strongly valid. We currently do not enforce this in our implementation, both because the underlying
tools we employ (Interproc [Lalire et al. 2009]) would not be able to satisfy this in general, but
also because it is a theoretically hard requirement, unless restricted to limited classes of programs.
We simply require a valid translation in our implementation, where we reason about the program
pairs using the KAT domain (i.e. a relation over abstractions).
We now weaken concrete KAT refinement, presenting trace-refinement relations. Intuitively,

the idea is to reason piece-wise, considering classes of traces within k1 and, for each, correlating
them with a corresponding trace class in k2, with the help of KAT hypotheses. Note that, for some
element k of a KAT K , we say a set S = {s1, . . . , sn} of K elements partitions k , if k = s1 + . . . + sn .

Definition 4.4 (Trace Refinement Relations). Let K be a KAT, let A be a class of hypotheses over
K , and let T be a relation over K × K × P(A). Given two KAT elements k1 and k2 of K , we say
that k1 refines k2, with respect to T, denoted by k1 ⪯

T k2, if proj1(T) partitions k1 and,

for any (l1, l2,A) ∈ T, l1 ∩ k1 ≤A l2 ∩ k2.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:12 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

We also consider trace equivalence relations, slightly adapting Definition 4.4 to use equivalence
(=), rather than inclusion (≤), as well as requiring that both proj1(T) partitions k1 and proj2(T)

partitions k2.
As discussed in Section 2, intuitively each (l1, l2,A) triple in a trace-refinement relation T

identifies restrictions on k1 and k2, as well as KAT hypotheses A that allow us to align the k1 ∩ l1
trace classes with ones in k2 ∩ l2. In the example from Section 2, we gave examples of an l1 that

excluded logging by forcing bl=true to hold at each iteration of the loop.

Remark 4.5. As trace-refinement is a weakening of concrete refinement, it is natural that two

KAT expressions k1 and k2 may be such that k1 refines k2, but does not concretely refine it. For most

expressions k1 and k2, we can find a set of hypotheses A (e.g. that equates all actions and specific

boolean variables to 1), such that the singleton set containing only the tuple (1, 1,A) is a trivial solution

to trace-refinement between k1 and k2.

Finally, we overload the KAT refinement definition to be used on programs themselves, when the
abstraction α is clear from the context. Thus, for two programs C1 and C2, and a trace-refinement
relation T, we may write C1 ⪯

T C2 to mean that Translate(C1,α) ⪯
T Translate(C2,α).

Classes of Hypotheses. For this work, we will explore the effect of just a few types of classes of
hypotheses. In general, checking equality of KAT expressions under arbitrary additional hypotheses,
can be undecidable ([Kozen 1996]). Because of that, and guided by the limitations imposed by certain
libraries we use in our implementation (Symkat), we focus on the following types of hypotheses
when A,B ∈ P and a, b ∈ B: (i) to ignore certain actions: A = 1, (ii) to fix the valuation of certain
booleans: b = 1 or b = 0, (iii) to express commutativity of actions against tests: A · b = b · A

(currently not used in our implementation) and (iv) to relate single elements: A = B or a = b.

4.3 Composition

Given trace-refinement relations T1 and T2, we define their composition T1 ⊙ T2 to be the trace-
refinement relation T = {(l1 ·m1, l2 ·m2,A1 ∪A2) | (l1, l2,A1) ∈ T1, (m1,m2,A2) ∈ T2}. Similarly,
we define disjunction T1 ⊕ T2 to be the trace-refinement relation T = {(l1 +m1, l2 +m2,A1 ∪A2) |

(l1, l2,A1) ∈ T1, (m1,m2,A2) ∈ T2}. Finally, for T, we define T
⋆ to be {(o∗,p∗,A) | (o,p,A) ∈ T}.

Theorem 4.6 below allows us to reason about individual fragments of KAT expressions, and
combine the analyses into a result that holds overall. We can do so by building trace-refinement
relations in a bottom-up fashion, capturing larger and larger fragments of those KAT expressions,
guided by their structure. (See Appendix A)

Theorem 4.6. Suppose k1,k2, l1 and l2 are KAT expressions. Let Tk and Tl be trace-refinement

relations, such that k1 ⪯Tk k2 and l1 ⪯Tl l2. Then k1 · l1 ⪯Tk ⊙Tl k2 · l2, k1 + l1 ⪯Tk ⊕Tl k2 + l2,

k1 + l1 ⪯
Tk∪Tl k2 + l2, and k

∗
1 ⪯T

⋆

k k∗2 .

As a simple corollary we can always extend a trace-refinement relation corresponding to a pair
of KAT expressions, to one corresponding to a pair of KAT expressions obtained from the former
by enclosing them into any common context, more formally stated as follows.

Corollary 4.7. Given any KAT expressionsm, l ,k1 andk2, and trace-refinement relationT such that

k1 ⪯
T k2, it holds thatm · k1 · l ⪯

T′ m · k2 · l , whereT
′ is the set {(m·r1 ·l ,m·r2 ·l ,A) | (r1, r2,A) ∈ T}.

Finally, we present a transitivity result by extending two trace-refinement relations at hand to
single one. Let T1 and T2 be two trace-refinement relations, such that for any tuple (o1,p1,A1) in
T1, there is a tuple (o2,p2,A2) in T2, such that p1 ≤ o2. For such trace-refinement relations, we
define their transitive trace-refinement relation to be the one containing the tuples (o1,p2,A1 ∪A2).
We denote such a trace-refinement relation by T1 ⊗ T2.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:13

Input: Two programs C1,C2 and an abstraction α .

Output: A set O = {(l11 , l
1
2 ,A

1
,α1), . . .} such that

Translate(C1,α
′) ⪯RefRelation(O)

Translate(C2,α
′)

where α ′ is the common abstraction of O .

Algorithm: Synth(C1,C2,A,α) // Initially let A = ∅

k1 := Translate(C1,α)

k2 := Translate(C2,α)

cexs = KATdiff(k1,k2,A)

if no cexs return {(k1,k2,A,α)}

else let R = SolveDiff(k1,k2,A,cexs) in

flatmap (λ (r1 r2 A ′).

let (D1,D2,α
′) = Restrict(C1, r1,C2, r2,A ∪A ′

,α) in

Synth(D1, D2, A ∪A ′
,α ′)) R

Fig. 3. The skeleton of Synth, which synthesizes trace-refinement relations for input programs C1,C2.

Theorem 4.8. For any elements k, l andm in a KAT K , and any trace-refinement relations T1, T2,

if k ⪯T1 l and l ⪯T2 m, and T1 ⊗ T2 is defined, then k ⪯T1⊗T2 m.

5 AUTOMATION

The structure of our algorithm is given in Figure 3 and depicted in Figure 4. The input to our algo-
rithm are programsC1,C2 provided, for example, in a C-like source format and parsed into ASTs. Our
algorithm returns trace-refinement relations forC1,C2, and is parametric as to whether the relations
are for equivalence versus inclusion. Technically, it returns a finite set O = {(l11 , l

1
2 ,A

1
,α1), . . .}

from which the trace refinement relation RefRelation(O) can be constructed by unifying to a
common abstraction α = α1 ⊔ . . . ⊔ αn .
Our main function Synth uses several sub-components discussed below. At the high level, it

begins by using Translate, analyzing C1 and using an iteratively constructed abstraction α to
obtain the KAT expression k1 (similar for C2,k2), per Section 4.1. The algorithm then checks for
KAT equivalence or inclusion between k1 and k2 with KATdiff. If no counterexamples are found,
KATdiff returns k1 and k2, together with the current set of hypotheses A as a solution. On the
other hand, if KATdiff does find counterexamples, they are fed into SolveDiff, which examines
them along with the KAT expressions to determine what restrictions and/or hypotheses could be
employed to subdivide the search space into trace classes for which we hope further refinements can
be discovered. SolveDiff returns this decision, given as a list of (r1, r2,A) triples. Then Restrict

is used to construct increasingly restricted versions of the input programs C1 and C2 and new
abstractions α ′. These are then are considered recursively by Synth.

5.1 Sub-Procedures

We now define and discuss the sub-procedures used by Synth. We also discuss the implementation
(and limitations) of these subcomponents. As noted, the overall algorithm is parameterized by
whether we are looking for solutions to equivalence (=A), or simply to inclusion (≤A). The
functionality of the sub-procedures is largely the same for the two cases.
• Translate(C,α): This sub-procedure employs the two-step abstraction described in Section 4.1
by taking as input a programC and abstraction α = (K,AS ,αS ,αB), and returning a KAT expression
k in K such that ⟨C,σ ⟩{ρ implies that αB (αS (σ)) · k · αB (αS (ρ)),0. In the implementation, the
sub-procedure first parses the input program into an AST. From this point, one could use the
approach by Kozen [1997] to model a program into a KAT expression. However we need more
fine-grained detail and want accurate path expressions that exclude infeasible paths. So instead, we
utilize an abstract interpreter, such as Interproc, on the possibly restricted program. Interproc

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:14 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

Search(C1, C2,A, α)
<latexit sha1_base64="AbkbfV05BH3q/eSxUbc8kZVyfBo=">AAACFnicbVA9SwNBEN2L3/EramlzGIUIMdyl0VJNY6loVMiFY24zSZbsfbA7J4Yjv8LGv2JjoYit2Plv3MQUmvhg4PHeDDPzgkQKTY7zZeVmZufmFxaX8ssrq2vrhY3Nax2nimOdxzJWtwFolCLCOgmSeJsohDCQeBP0akP/5g6VFnF0Rf0EmyF0ItEWHMhIfuFg1yO8J82zSwTFu4NSzXfLNb9a9kKgLgeZnQzKHsikC/u7fqHoVJwR7GnijkmRjXHuFz69VszTECPiErRuuE5CzQwUCS5xkPdSjQnwHnSwYWgEIepmNnprYO8ZpWW3Y2UqInuk/p7IINS6Hwamc3irnvSG4n9eI6X2UTMTUZISRvxnUTuVNsX2MCO7JRRykn1DgCthbrV5FxRwMknmTQju5MvT5LpacZ2Ke1EtHp+O41hk22yHlZjLDtkxO2PnrM44e2BP7IW9Wo/Ws/Vmvf+05qzxzBb7A+vjG3eAnkU=</latexit><latexit sha1_base64="AbkbfV05BH3q/eSxUbc8kZVyfBo=">AAACFnicbVA9SwNBEN2L3/EramlzGIUIMdyl0VJNY6loVMiFY24zSZbsfbA7J4Yjv8LGv2JjoYit2Plv3MQUmvhg4PHeDDPzgkQKTY7zZeVmZufmFxaX8ssrq2vrhY3Nax2nimOdxzJWtwFolCLCOgmSeJsohDCQeBP0akP/5g6VFnF0Rf0EmyF0ItEWHMhIfuFg1yO8J82zSwTFu4NSzXfLNb9a9kKgLgeZnQzKHsikC/u7fqHoVJwR7GnijkmRjXHuFz69VszTECPiErRuuE5CzQwUCS5xkPdSjQnwHnSwYWgEIepmNnprYO8ZpWW3Y2UqInuk/p7IINS6Hwamc3irnvSG4n9eI6X2UTMTUZISRvxnUTuVNsX2MCO7JRRykn1DgCthbrV5FxRwMknmTQju5MvT5LpacZ2Ke1EtHp+O41hk22yHlZjLDtkxO2PnrM44e2BP7IW9Wo/Ws/Vmvf+05qzxzBb7A+vjG3eAnkU=</latexit><latexit sha1_base64="AbkbfV05BH3q/eSxUbc8kZVyfBo=">AAACFnicbVA9SwNBEN2L3/EramlzGIUIMdyl0VJNY6loVMiFY24zSZbsfbA7J4Yjv8LGv2JjoYit2Plv3MQUmvhg4PHeDDPzgkQKTY7zZeVmZufmFxaX8ssrq2vrhY3Nax2nimOdxzJWtwFolCLCOgmSeJsohDCQeBP0akP/5g6VFnF0Rf0EmyF0ItEWHMhIfuFg1yO8J82zSwTFu4NSzXfLNb9a9kKgLgeZnQzKHsikC/u7fqHoVJwR7GnijkmRjXHuFz69VszTECPiErRuuE5CzQwUCS5xkPdSjQnwHnSwYWgEIepmNnprYO8ZpWW3Y2UqInuk/p7IINS6Hwamc3irnvSG4n9eI6X2UTMTUZISRvxnUTuVNsX2MCO7JRRykn1DgCthbrV5FxRwMknmTQju5MvT5LpacZ2Ke1EtHp+O41hk22yHlZjLDtkxO2PnrM44e2BP7IW9Wo/Ws/Vmvf+05qzxzBb7A+vjG3eAnkU=</latexit><latexit sha1_base64="AbkbfV05BH3q/eSxUbc8kZVyfBo=">AAACFnicbVA9SwNBEN2L3/EramlzGIUIMdyl0VJNY6loVMiFY24zSZbsfbA7J4Yjv8LGv2JjoYit2Plv3MQUmvhg4PHeDDPzgkQKTY7zZeVmZufmFxaX8ssrq2vrhY3Nax2nimOdxzJWtwFolCLCOgmSeJsohDCQeBP0akP/5g6VFnF0Rf0EmyF0ItEWHMhIfuFg1yO8J82zSwTFu4NSzXfLNb9a9kKgLgeZnQzKHsikC/u7fqHoVJwR7GnijkmRjXHuFz69VszTECPiErRuuE5CzQwUCS5xkPdSjQnwHnSwYWgEIepmNnprYO8ZpWW3Y2UqInuk/p7IINS6Hwamc3irnvSG4n9eI6X2UTMTUZISRvxnUTuVNsX2MCO7JRRykn1DgCthbrV5FxRwMknmTQju5MvT5LpacZ2Ke1EtHp+O41hk22yHlZjLDtkxO2PnrM44e2BP7IW9Wo/Ws/Vmvf+05qzxzBb7A+vjG3eAnkU=</latexit>

C1
<latexit sha1_base64="q9TSbQOxnCzoo9kGxpodj5+G2Vc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hx41UG54tbcJcgm8XJSgRytQfmrP0xYFqM0TFCte56bmmBGleFM4LzUzzSmlE3oCHuWShqjDmbLY+fkyipDEiXKljRkqf6emNFY62kc2s6YmrFe9xbif14vM9FtMOMyzQxKtloUZYKYhCw+J0OukBkxtYQyxe2thI2poszYfEo2BG/95U3Srtc8t+Y91CuNuzyOIlzAJVyDBzfQgHtogQ8MODzDK7w50nlx3p2PVWvByWfO4Q+czx9yp43F</latexit><latexit sha1_base64="q9TSbQOxnCzoo9kGxpodj5+G2Vc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hx41UG54tbcJcgm8XJSgRytQfmrP0xYFqM0TFCte56bmmBGleFM4LzUzzSmlE3oCHuWShqjDmbLY+fkyipDEiXKljRkqf6emNFY62kc2s6YmrFe9xbif14vM9FtMOMyzQxKtloUZYKYhCw+J0OukBkxtYQyxe2thI2poszYfEo2BG/95U3Srtc8t+Y91CuNuzyOIlzAJVyDBzfQgHtogQ8MODzDK7w50nlx3p2PVWvByWfO4Q+czx9yp43F</latexit><latexit sha1_base64="q9TSbQOxnCzoo9kGxpodj5+G2Vc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hx41UG54tbcJcgm8XJSgRytQfmrP0xYFqM0TFCte56bmmBGleFM4LzUzzSmlE3oCHuWShqjDmbLY+fkyipDEiXKljRkqf6emNFY62kc2s6YmrFe9xbif14vM9FtMOMyzQxKtloUZYKYhCw+J0OukBkxtYQyxe2thI2poszYfEo2BG/95U3Srtc8t+Y91CuNuzyOIlzAJVyDBzfQgHtogQ8MODzDK7w50nlx3p2PVWvByWfO4Q+czx9yp43F</latexit><latexit sha1_base64="q9TSbQOxnCzoo9kGxpodj5+G2Vc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hx41UG54tbcJcgm8XJSgRytQfmrP0xYFqM0TFCte56bmmBGleFM4LzUzzSmlE3oCHuWShqjDmbLY+fkyipDEiXKljRkqf6emNFY62kc2s6YmrFe9xbif14vM9FtMOMyzQxKtloUZYKYhCw+J0OukBkxtYQyxe2thI2poszYfEo2BG/95U3Srtc8t+Y91CuNuzyOIlzAJVyDBzfQgHtogQ8MODzDK7w50nlx3p2PVWvByWfO4Q+czx9yp43F</latexit>

α
<latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit>

C2
<latexit sha1_base64="0uzefC9E+MdsMHfxoy06huLMd9s=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hzUq4Nyxa25S5BN4uWkAjlag/JXf5iwLEZpmKBa9zw3NcGMKsOZwHmpn2lMKZvQEfYslTRGHcyWx87JlVWGJEqULWnIUv09MaOx1tM4tJ0xNWO97i3E/7xeZqLbYMZlmhmUbLUoygQxCVl8ToZcITNiagllittbCRtTRZmx+ZRsCN76y5ukXa95bs17qFcad3kcRbiAS7gGD26gAffQAh8YcHiGV3hzpPPivDsfq9aCk8+cwx84nz90LI3G</latexit><latexit sha1_base64="0uzefC9E+MdsMHfxoy06huLMd9s=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hzUq4Nyxa25S5BN4uWkAjlag/JXf5iwLEZpmKBa9zw3NcGMKsOZwHmpn2lMKZvQEfYslTRGHcyWx87JlVWGJEqULWnIUv09MaOx1tM4tJ0xNWO97i3E/7xeZqLbYMZlmhmUbLUoygQxCVl8ToZcITNiagllittbCRtTRZmx+ZRsCN76y5ukXa95bs17qFcad3kcRbiAS7gGD26gAffQAh8YcHiGV3hzpPPivDsfq9aCk8+cwx84nz90LI3G</latexit><latexit sha1_base64="0uzefC9E+MdsMHfxoy06huLMd9s=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hzUq4Nyxa25S5BN4uWkAjlag/JXf5iwLEZpmKBa9zw3NcGMKsOZwHmpn2lMKZvQEfYslTRGHcyWx87JlVWGJEqULWnIUv09MaOx1tM4tJ0xNWO97i3E/7xeZqLbYMZlmhmUbLUoygQxCVl8ToZcITNiagllittbCRtTRZmx+ZRsCN76y5ukXa95bs17qFcad3kcRbiAS7gGD26gAffQAh8YcHiGV3hzpPPivDsfq9aCk8+cwx84nz90LI3G</latexit><latexit sha1_base64="0uzefC9E+MdsMHfxoy06huLMd9s=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk0lph4QAIXsrfMwYa9vcvungkh/AYbC42x9QfZ+W9c4AoFXzLJy3szmZkXpoJr47rfTmFre2d3r7hfOjg8Oj4pn561dZIphj5LRKK6IdUouETfcCOwmyqkcSiwE06aC7/zhErzRD6aaYpBTEeSR5xRYyW/2hzUq4Nyxa25S5BN4uWkAjlag/JXf5iwLEZpmKBa9zw3NcGMKsOZwHmpn2lMKZvQEfYslTRGHcyWx87JlVWGJEqULWnIUv09MaOx1tM4tJ0xNWO97i3E/7xeZqLbYMZlmhmUbLUoygQxCVl8ToZcITNiagllittbCRtTRZmx+ZRsCN76y5ukXa95bs17qFcad3kcRbiAS7gGD26gAffQAh8YcHiGV3hzpPPivDsfq9aCk8+cwx84nz90LI3G</latexit>

A = {. . .}
<latexit sha1_base64="eqKZXczPAtvliikFjIEhJVpv+DI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAruCpJN7oRqm5cVrAPaEKZTCbt0MlMmJkIJdSNv+LGhSJu/Qt3/o2TNgttPXDhcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQP0ZDTiOKkTbSwD6qeTHSI4xYdjW99DKPhUIrb1ob2FWn7swAl4lbkCoo0BrYX14ocBoTrjFDSvVdJ9F+hqSmmJFpxUsVSRAeoyHpG8pRTJSfzT6YwlOjhDAS0hTXcKb+nshQrNQkDkxnfq5a9HLxP6+f6ujCzyhPUk04ni+KUga1gHkcMKSSYM0mhiAsqbkV4hGSCGsTWsWE4C6+vEw6jbrr1N27RrV5XcRRBsfgBJwBF5yDJrgFLdAGGDyCZ/AK3qwn68V6tz7mrSWrmDkEf2B9/gBBT5a/</latexit><latexit sha1_base64="eqKZXczPAtvliikFjIEhJVpv+DI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAruCpJN7oRqm5cVrAPaEKZTCbt0MlMmJkIJdSNv+LGhSJu/Qt3/o2TNgttPXDhcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQP0ZDTiOKkTbSwD6qeTHSI4xYdjW99DKPhUIrb1ob2FWn7swAl4lbkCoo0BrYX14ocBoTrjFDSvVdJ9F+hqSmmJFpxUsVSRAeoyHpG8pRTJSfzT6YwlOjhDAS0hTXcKb+nshQrNQkDkxnfq5a9HLxP6+f6ujCzyhPUk04ni+KUga1gHkcMKSSYM0mhiAsqbkV4hGSCGsTWsWE4C6+vEw6jbrr1N27RrV5XcRRBsfgBJwBF5yDJrgFLdAGGDyCZ/AK3qwn68V6tz7mrSWrmDkEf2B9/gBBT5a/</latexit><latexit sha1_base64="eqKZXczPAtvliikFjIEhJVpv+DI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAruCpJN7oRqm5cVrAPaEKZTCbt0MlMmJkIJdSNv+LGhSJu/Qt3/o2TNgttPXDhcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQP0ZDTiOKkTbSwD6qeTHSI4xYdjW99DKPhUIrb1ob2FWn7swAl4lbkCoo0BrYX14ocBoTrjFDSvVdJ9F+hqSmmJFpxUsVSRAeoyHpG8pRTJSfzT6YwlOjhDAS0hTXcKb+nshQrNQkDkxnfq5a9HLxP6+f6ujCzyhPUk04ni+KUga1gHkcMKSSYM0mhiAsqbkV4hGSCGsTWsWE4C6+vEw6jbrr1N27RrV5XcRRBsfgBJwBF5yDJrgFLdAGGDyCZ/AK3qwn68V6tz7mrSWrmDkEf2B9/gBBT5a/</latexit><latexit sha1_base64="eqKZXczPAtvliikFjIEhJVpv+DI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAruCpJN7oRqm5cVrAPaEKZTCbt0MlMmJkIJdSNv+LGhSJu/Qt3/o2TNgttPXDhcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQP0ZDTiOKkTbSwD6qeTHSI4xYdjW99DKPhUIrb1ob2FWn7swAl4lbkCoo0BrYX14ocBoTrjFDSvVdJ9F+hqSmmJFpxUsVSRAeoyHpG8pRTJSfzT6YwlOjhDAS0hTXcKb+nshQrNQkDkxnfq5a9HLxP6+f6ujCzyhPUk04ni+KUga1gHkcMKSSYM0mhiAsqbkV4hGSCGsTWsWE4C6+vEw6jbrr1N27RrV5XcRRBsfgBJwBF5yDJrgFLdAGGDyCZ/AK3qwn68V6tz7mrSWrmDkEf2B9/gBBT5a/</latexit>

K
A
T
d
if
f
(k

1
,k

2
,A

)
<latexit sha1_base64="Qja9ebSUZUv5gR5zoTjK09J8qio=">AAACEXicbVDLSsNAFJ3UV62vqEs3wVaoUErSjS5b3QhuKvQFbQmTyaQdMnkwcyOWkF9w46+4caGIW3fu/BuTNgttPXDhcM693HuPFXImQde/lcLa+sbmVnG7tLO7t3+gHh71ZBAJQrsk4IEYWFhSznzaBQacDkJBsWdx2rfc68zv31MhWeB3YBbSsYcnPnMYwZBKplqtjIA+gCTxbatjM8dJqq5p1FyzURt5GKYE87iVnFdKplrW6/oc2ioxclJGOdqm+jWyAxJ51AfCsZRDQw9hHGMBjHCalEaRpCEmLp7QYUp97FE5jucfJdpZqtiaE4i0fNDm6u+JGHtSzjwr7cyulMteJv7nDSNwLscx88MIqE8Wi5yIaxBoWTyazQQlwGcpwUSw9FaNTLHABNIQsxCM5ZdXSa9RN/S6cdcoN6/yOIroBJ2iKjLQBWqiG9RGXUTQI3pGr+hNeVJelHflY9FaUPKZY/QHyucPTxacAg==</latexit><latexit sha1_base64="Qja9ebSUZUv5gR5zoTjK09J8qio=">AAACEXicbVDLSsNAFJ3UV62vqEs3wVaoUErSjS5b3QhuKvQFbQmTyaQdMnkwcyOWkF9w46+4caGIW3fu/BuTNgttPXDhcM693HuPFXImQde/lcLa+sbmVnG7tLO7t3+gHh71ZBAJQrsk4IEYWFhSznzaBQacDkJBsWdx2rfc68zv31MhWeB3YBbSsYcnPnMYwZBKplqtjIA+gCTxbatjM8dJqq5p1FyzURt5GKYE87iVnFdKplrW6/oc2ioxclJGOdqm+jWyAxJ51AfCsZRDQw9hHGMBjHCalEaRpCEmLp7QYUp97FE5jucfJdpZqtiaE4i0fNDm6u+JGHtSzjwr7cyulMteJv7nDSNwLscx88MIqE8Wi5yIaxBoWTyazQQlwGcpwUSw9FaNTLHABNIQsxCM5ZdXSa9RN/S6cdcoN6/yOIroBJ2iKjLQBWqiG9RGXUTQI3pGr+hNeVJelHflY9FaUPKZY/QHyucPTxacAg==</latexit><latexit sha1_base64="Qja9ebSUZUv5gR5zoTjK09J8qio=">AAACEXicbVDLSsNAFJ3UV62vqEs3wVaoUErSjS5b3QhuKvQFbQmTyaQdMnkwcyOWkF9w46+4caGIW3fu/BuTNgttPXDhcM693HuPFXImQde/lcLa+sbmVnG7tLO7t3+gHh71ZBAJQrsk4IEYWFhSznzaBQacDkJBsWdx2rfc68zv31MhWeB3YBbSsYcnPnMYwZBKplqtjIA+gCTxbatjM8dJqq5p1FyzURt5GKYE87iVnFdKplrW6/oc2ioxclJGOdqm+jWyAxJ51AfCsZRDQw9hHGMBjHCalEaRpCEmLp7QYUp97FE5jucfJdpZqtiaE4i0fNDm6u+JGHtSzjwr7cyulMteJv7nDSNwLscx88MIqE8Wi5yIaxBoWTyazQQlwGcpwUSw9FaNTLHABNIQsxCM5ZdXSa9RN/S6cdcoN6/yOIroBJ2iKjLQBWqiG9RGXUTQI3pGr+hNeVJelHflY9FaUPKZY/QHyucPTxacAg==</latexit><latexit sha1_base64="Qja9ebSUZUv5gR5zoTjK09J8qio=">AAACEXicbVDLSsNAFJ3UV62vqEs3wVaoUErSjS5b3QhuKvQFbQmTyaQdMnkwcyOWkF9w46+4caGIW3fu/BuTNgttPXDhcM693HuPFXImQde/lcLa+sbmVnG7tLO7t3+gHh71ZBAJQrsk4IEYWFhSznzaBQacDkJBsWdx2rfc68zv31MhWeB3YBbSsYcnPnMYwZBKplqtjIA+gCTxbatjM8dJqq5p1FyzURt5GKYE87iVnFdKplrW6/oc2ioxclJGOdqm+jWyAxJ51AfCsZRDQw9hHGMBjHCalEaRpCEmLp7QYUp97FE5jucfJdpZqtiaE4i0fNDm6u+JGHtSzjwr7cyulMteJv7nDSNwLscx88MIqE8Wi5yIaxBoWTyazQQlwGcpwUSw9FaNTLHABNIQsxCM5ZdXSa9RN/S6cdcoN6/yOIroBJ2iKjLQBWqiG9RGXUTQI3pGr+hNeVJelHflY9FaUPKZY/QHyucPTxacAg==</latexit>

{(k1, k2,A, α)}
<latexit sha1_base64="F/LPm2Kxga4KSh/WysRSakSKPME=">AAACDHicbVDLSsNAFJ3UV62vqks3wVaoUErSjS6rblxWsA9oQriZTtohkwczE6GEfIAbf8WNC0Xc+gHu/BsnbRbaemDgcM65zL3HjRkV0jC+tdLa+sbmVnm7srO7t39QPTzqiyjhmPRwxCI+dEEQRkPSk1QyMow5gcBlZOD6N7k/eCBc0Ci8l7OY2AFMQupRDFJJTrVWt9KG75hN32k3rQDkFANLr7KmBSyewrmV1SsqZbSMOfRVYhakhgp0neqXNY5wEpBQYgZCjEwjlnYKXFLMSFaxEkFiwD5MyEjREAIi7HR+TKafKWWsexFXL5T6XP09kUIgxCxwVTJfVyx7ufifN0qkd2mnNIwTSUK8+MhLmC4jPW9GH1NOsGQzRQBzqnbV8RQ4YKn6y0swl09eJf12yzRa5l271rku6iijE3SKGshEF6iDblEX9RBGj+gZvaI37Ul70d61j0W0pBUzx+gPtM8f936Zpg==</latexit><latexit sha1_base64="F/LPm2Kxga4KSh/WysRSakSKPME=">AAACDHicbVDLSsNAFJ3UV62vqks3wVaoUErSjS6rblxWsA9oQriZTtohkwczE6GEfIAbf8WNC0Xc+gHu/BsnbRbaemDgcM65zL3HjRkV0jC+tdLa+sbmVnm7srO7t39QPTzqiyjhmPRwxCI+dEEQRkPSk1QyMow5gcBlZOD6N7k/eCBc0Ci8l7OY2AFMQupRDFJJTrVWt9KG75hN32k3rQDkFANLr7KmBSyewrmV1SsqZbSMOfRVYhakhgp0neqXNY5wEpBQYgZCjEwjlnYKXFLMSFaxEkFiwD5MyEjREAIi7HR+TKafKWWsexFXL5T6XP09kUIgxCxwVTJfVyx7ufifN0qkd2mnNIwTSUK8+MhLmC4jPW9GH1NOsGQzRQBzqnbV8RQ4YKn6y0swl09eJf12yzRa5l271rku6iijE3SKGshEF6iDblEX9RBGj+gZvaI37Ul70d61j0W0pBUzx+gPtM8f936Zpg==</latexit><latexit sha1_base64="F/LPm2Kxga4KSh/WysRSakSKPME=">AAACDHicbVDLSsNAFJ3UV62vqks3wVaoUErSjS6rblxWsA9oQriZTtohkwczE6GEfIAbf8WNC0Xc+gHu/BsnbRbaemDgcM65zL3HjRkV0jC+tdLa+sbmVnm7srO7t39QPTzqiyjhmPRwxCI+dEEQRkPSk1QyMow5gcBlZOD6N7k/eCBc0Ci8l7OY2AFMQupRDFJJTrVWt9KG75hN32k3rQDkFANLr7KmBSyewrmV1SsqZbSMOfRVYhakhgp0neqXNY5wEpBQYgZCjEwjlnYKXFLMSFaxEkFiwD5MyEjREAIi7HR+TKafKWWsexFXL5T6XP09kUIgxCxwVTJfVyx7ufifN0qkd2mnNIwTSUK8+MhLmC4jPW9GH1NOsGQzRQBzqnbV8RQ4YKn6y0swl09eJf12yzRa5l271rku6iijE3SKGshEF6iDblEX9RBGj+gZvaI37Ul70d61j0W0pBUzx+gPtM8f936Zpg==</latexit><latexit sha1_base64="F/LPm2Kxga4KSh/WysRSakSKPME=">AAACDHicbVDLSsNAFJ3UV62vqks3wVaoUErSjS6rblxWsA9oQriZTtohkwczE6GEfIAbf8WNC0Xc+gHu/BsnbRbaemDgcM65zL3HjRkV0jC+tdLa+sbmVnm7srO7t39QPTzqiyjhmPRwxCI+dEEQRkPSk1QyMow5gcBlZOD6N7k/eCBc0Ci8l7OY2AFMQupRDFJJTrVWt9KG75hN32k3rQDkFANLr7KmBSyewrmV1SsqZbSMOfRVYhakhgp0neqXNY5wEpBQYgZCjEwjlnYKXFLMSFaxEkFiwD5MyEjREAIi7HR+TKafKWWsexFXL5T6XP09kUIgxCxwVTJfVyx7ufifN0qkd2mnNIwTSUK8+MhLmC4jPW9GH1NOsGQzRQBzqnbV8RQ4YKn6y0swl09eJf12yzRa5l271rku6iijE3SKGshEF6iDblEX9RBGj+gZvaI37Ul70d61j0W0pBUzx+gPtM8f936Zpg==</latexit>

S
o
l
v
e
D
if
f
(k

1
,k

2
,A

,c
e
x
s
)

<latexit sha1_base64="7i7RJy/V/BXYMIm5wfkxG8ge9qc=">AAACIHicbVDJTgJBFOzBDXFDPXqZiCaYEDLDBY+4HDxiFDEBMulp3kCHniXdbwhkMp/ixV/x4kFj9KZfY7McVKykk0pVvfR75UaCK7SsTyOztLyyupZdz21sbm3v5Hf37lQYSwYNFopQ3rtUgeABNJCjgPtIAvVdAU13cDHxm0OQiofBLY4j6Pi0F3CPM4pacvLVozbCCBVLbkIxhEvueWlx4NilgVMptX2KfUZFcpaWZjEvYTBS6cmRky9YZWsKc5HYc1Igc9Sd/Ee7G7LYhwCZoEq1bCvCTkIlciYgzbVjBRFlA9qDlqYB9UF1kumBqXmsla7phVK/AM2p+nMiob5SY9/VycnK6q83Ef/zWjF6p52EB1GMELDZR14sTAzNSVtml0tgKMaaUCa53tVkfSopQ91pTpdg/z15kdxVyrZVtq8rhdr5vI4sOSCHpEhsUiU1ckXqpEEYeSBP5IW8Go/Gs/FmvM+iGWM+s09+wfj6BuX2o2g=</latexit><latexit sha1_base64="7i7RJy/V/BXYMIm5wfkxG8ge9qc=">AAACIHicbVDJTgJBFOzBDXFDPXqZiCaYEDLDBY+4HDxiFDEBMulp3kCHniXdbwhkMp/ixV/x4kFj9KZfY7McVKykk0pVvfR75UaCK7SsTyOztLyyupZdz21sbm3v5Hf37lQYSwYNFopQ3rtUgeABNJCjgPtIAvVdAU13cDHxm0OQiofBLY4j6Pi0F3CPM4pacvLVozbCCBVLbkIxhEvueWlx4NilgVMptX2KfUZFcpaWZjEvYTBS6cmRky9YZWsKc5HYc1Igc9Sd/Ee7G7LYhwCZoEq1bCvCTkIlciYgzbVjBRFlA9qDlqYB9UF1kumBqXmsla7phVK/AM2p+nMiob5SY9/VycnK6q83Ef/zWjF6p52EB1GMELDZR14sTAzNSVtml0tgKMaaUCa53tVkfSopQ91pTpdg/z15kdxVyrZVtq8rhdr5vI4sOSCHpEhsUiU1ckXqpEEYeSBP5IW8Go/Gs/FmvM+iGWM+s09+wfj6BuX2o2g=</latexit><latexit sha1_base64="7i7RJy/V/BXYMIm5wfkxG8ge9qc=">AAACIHicbVDJTgJBFOzBDXFDPXqZiCaYEDLDBY+4HDxiFDEBMulp3kCHniXdbwhkMp/ixV/x4kFj9KZfY7McVKykk0pVvfR75UaCK7SsTyOztLyyupZdz21sbm3v5Hf37lQYSwYNFopQ3rtUgeABNJCjgPtIAvVdAU13cDHxm0OQiofBLY4j6Pi0F3CPM4pacvLVozbCCBVLbkIxhEvueWlx4NilgVMptX2KfUZFcpaWZjEvYTBS6cmRky9YZWsKc5HYc1Igc9Sd/Ee7G7LYhwCZoEq1bCvCTkIlciYgzbVjBRFlA9qDlqYB9UF1kumBqXmsla7phVK/AM2p+nMiob5SY9/VycnK6q83Ef/zWjF6p52EB1GMELDZR14sTAzNSVtml0tgKMaaUCa53tVkfSopQ91pTpdg/z15kdxVyrZVtq8rhdr5vI4sOSCHpEhsUiU1ckXqpEEYeSBP5IW8Go/Gs/FmvM+iGWM+s09+wfj6BuX2o2g=</latexit><latexit sha1_base64="7i7RJy/V/BXYMIm5wfkxG8ge9qc=">AAACIHicbVDJTgJBFOzBDXFDPXqZiCaYEDLDBY+4HDxiFDEBMulp3kCHniXdbwhkMp/ixV/x4kFj9KZfY7McVKykk0pVvfR75UaCK7SsTyOztLyyupZdz21sbm3v5Hf37lQYSwYNFopQ3rtUgeABNJCjgPtIAvVdAU13cDHxm0OQiofBLY4j6Pi0F3CPM4pacvLVozbCCBVLbkIxhEvueWlx4NilgVMptX2KfUZFcpaWZjEvYTBS6cmRky9YZWsKc5HYc1Igc9Sd/Ee7G7LYhwCZoEq1bCvCTkIlciYgzbVjBRFlA9qDlqYB9UF1kumBqXmsla7phVK/AM2p+nMiob5SY9/VycnK6q83Ef/zWjF6p52EB1GMELDZR14sTAzNSVtml0tgKMaaUCa53tVkfSopQ91pTpdg/z15kdxVyrZVtq8rhdr5vI4sOSCHpEhsUiU1ckXqpEEYeSBP5IW8Go/Gs/FmvM+iGWM+s09+wfj6BuX2o2g=</latexit>

t
<latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit>

t
<latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit>

t
<latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit><latexit sha1_base64="8IVnGqhqwwyHI4xHcR6W1WoOXcs=">AAAB73icbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcCF7C17sGFv79idMyEX/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLEikMuu63s7G5tb2zW9gr7h8cHh2XTk5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px3dxvP3FtRKwecZpwP6JDJULBKFqpU+mZCUuTSr9UdqvuAmSdeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxV7qeEJZWM65F1LFY248bPFvTNyaZUBCWNtSyFZqL8nMhoZM40C2xlRHJlVby7+53VTDG/8TKgkRa7YclGYSoIxmT9PBkJzhnJqCWVa2FsJG1FNGdqIijYEb/XlddKqVT236j3UyvXbPI4CnMMFXIEH11CHe2hAExhIeIZXeHMmzovz7nwsWzecfOYM/sD5/AF/VI+Y</latexit>

...<latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit>
...<latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit><latexit sha1_base64="UrxmOt+Lq+Cau1WMUgLWgiCLpoM=">AAAB73icbVC7TsNAEFzzDOEVoKSxSJCoIjsNlBE0lEEiDymxovP5nJxyvjN360iRlZ+goQAhWn6Hjr/h8iggYaSVRjO72t0JU8ENet63s7G5tb2zW9gr7h8cHh2XTk5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0EqdSm8cKTSVfqnsVb053HXiL0kZlmj0S1+9SNEsYRKpIMZ0fS/FICcaORVsWuxlhqWEjsiAdS2VJGEmyOf3Tt1Lq0RurLQtie5c/T2Rk8SYSRLazoTg0Kx6M/E/r5thfBPkXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlQ6IJRRtR0Ybgr768Tlq1qu9V/YdauX67jKMA53ABV+DDNdThHhrQBAoCnuEV3pwn58V5dz4WrRvOcuYM/sD5/AGFZI+c</latexit>

k1
<latexit sha1_base64="/HAcLhSv8LS1Xf4DXT0rvXhJlAc=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65OBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+vv43t</latexit><latexit sha1_base64="/HAcLhSv8LS1Xf4DXT0rvXhJlAc=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65OBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+vv43t</latexit><latexit sha1_base64="/HAcLhSv8LS1Xf4DXT0rvXhJlAc=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65OBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+vv43t</latexit><latexit sha1_base64="/HAcLhSv8LS1Xf4DXT0rvXhJlAc=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65OBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+vv43t</latexit>

k2
<latexit sha1_base64="qyqTj9/svdbFOYythuqxQtR5ERs=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65NBsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+xRI3u</latexit><latexit sha1_base64="qyqTj9/svdbFOYythuqxQtR5ERs=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65NBsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+xRI3u</latexit><latexit sha1_base64="qyqTj9/svdbFOYythuqxQtR5ERs=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65NBsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+xRI3u</latexit><latexit sha1_base64="qyqTj9/svdbFOYythuqxQtR5ERs=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby65NBsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+xRI3u</latexit>

O1 = {. . .}
<latexit sha1_base64="9e1JbuRXdO4S1ICy8EcVQy3qyRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hB6N37u81iC9me10K66dXcBZ514BamiAq3Q/vJjSbKECiAca9333BSCHCtghNNZxc80TTEZ4yHtGypwQnWQLy6fORdGiZ2BVKYEOAv190SOE62nSWQ6EwwjverNxf+8fgaD6yBnIs2ACrJcNMi4A9KZx+DETFECfGoIJoqZWx0ywgoTMGFVTAje6svrpNOoe27de2xUm7dFHGV0hs7RJfLQFWqie9RCbUTQBD2jV/Rm5daL9W59LFtLVjFziv7A+vwBcISS3w==</latexit><latexit sha1_base64="9e1JbuRXdO4S1ICy8EcVQy3qyRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hB6N37u81iC9me10K66dXcBZ514BamiAq3Q/vJjSbKECiAca9333BSCHCtghNNZxc80TTEZ4yHtGypwQnWQLy6fORdGiZ2BVKYEOAv190SOE62nSWQ6EwwjverNxf+8fgaD6yBnIs2ACrJcNMi4A9KZx+DETFECfGoIJoqZWx0ywgoTMGFVTAje6svrpNOoe27de2xUm7dFHGV0hs7RJfLQFWqie9RCbUTQBD2jV/Rm5daL9W59LFtLVjFziv7A+vwBcISS3w==</latexit><latexit sha1_base64="9e1JbuRXdO4S1ICy8EcVQy3qyRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hB6N37u81iC9me10K66dXcBZ514BamiAq3Q/vJjSbKECiAca9333BSCHCtghNNZxc80TTEZ4yHtGypwQnWQLy6fORdGiZ2BVKYEOAv190SOE62nSWQ6EwwjverNxf+8fgaD6yBnIs2ACrJcNMi4A9KZx+DETFECfGoIJoqZWx0ywgoTMGFVTAje6svrpNOoe27de2xUm7dFHGV0hs7RJfLQFWqie9RCbUTQBD2jV/Rm5daL9W59LFtLVjFziv7A+vwBcISS3w==</latexit><latexit sha1_base64="9e1JbuRXdO4S1ICy8EcVQy3qyRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hB6N37u81iC9me10K66dXcBZ514BamiAq3Q/vJjSbKECiAca9333BSCHCtghNNZxc80TTEZ4yHtGypwQnWQLy6fORdGiZ2BVKYEOAv190SOE62nSWQ6EwwjverNxf+8fgaD6yBnIs2ACrJcNMi4A9KZx+DETFECfGoIJoqZWx0ywgoTMGFVTAje6svrpNOoe27de2xUm7dFHGV0hs7RJfLQFWqie9RCbUTQBD2jV/Rm5daL9W59LFtLVjFziv7A+vwBcISS3w==</latexit>

O2 = {. . .}
<latexit sha1_base64="f3a2wAsO06C5Og0VosXM5VfL6TQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5L0oheh6MWbFewHNCFsNtt26WYTdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDAVXIPjfFuljc2t7Z3ybmVv/+DwyD4+6egkU5S1aSIS1QuJZoJL1gYOgvVSxUgcCtYNx3dzvzthSvNEPsE0ZX5MhpIPOCVgpMC2aw9B48bLPREloL1ZLbCrTt1ZAK8TtyBVVKAV2F9elNAsZhKoIFr3XScFPycKOBVsVvEyzVJCx2TI+oZKEjPt54vLZ/jCKBEeJMqUBLxQf0/kJNZ6GoemMyYw0qveXPzP62cwuPZzLtMMmKTLRYNMYEjwPAYcccUoiKkhhCpubsV0RBShYMKqmBDc1ZfXSadRd526+9ioNm+LOMroDJ2jS+SiK9RE96iF2oiiCXpGr+jNyq0X6936WLaWrGLmFP2B9fkDchSS4A==</latexit><latexit sha1_base64="f3a2wAsO06C5Og0VosXM5VfL6TQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5L0oheh6MWbFewHNCFsNtt26WYTdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDAVXIPjfFuljc2t7Z3ybmVv/+DwyD4+6egkU5S1aSIS1QuJZoJL1gYOgvVSxUgcCtYNx3dzvzthSvNEPsE0ZX5MhpIPOCVgpMC2aw9B48bLPREloL1ZLbCrTt1ZAK8TtyBVVKAV2F9elNAsZhKoIFr3XScFPycKOBVsVvEyzVJCx2TI+oZKEjPt54vLZ/jCKBEeJMqUBLxQf0/kJNZ6GoemMyYw0qveXPzP62cwuPZzLtMMmKTLRYNMYEjwPAYcccUoiKkhhCpubsV0RBShYMKqmBDc1ZfXSadRd526+9ioNm+LOMroDJ2jS+SiK9RE96iF2oiiCXpGr+jNyq0X6936WLaWrGLmFP2B9fkDchSS4A==</latexit><latexit sha1_base64="f3a2wAsO06C5Og0VosXM5VfL6TQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5L0oheh6MWbFewHNCFsNtt26WYTdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDAVXIPjfFuljc2t7Z3ybmVv/+DwyD4+6egkU5S1aSIS1QuJZoJL1gYOgvVSxUgcCtYNx3dzvzthSvNEPsE0ZX5MhpIPOCVgpMC2aw9B48bLPREloL1ZLbCrTt1ZAK8TtyBVVKAV2F9elNAsZhKoIFr3XScFPycKOBVsVvEyzVJCx2TI+oZKEjPt54vLZ/jCKBEeJMqUBLxQf0/kJNZ6GoemMyYw0qveXPzP62cwuPZzLtMMmKTLRYNMYEjwPAYcccUoiKkhhCpubsV0RBShYMKqmBDc1ZfXSadRd526+9ioNm+LOMroDJ2jS+SiK9RE96iF2oiiCXpGr+jNyq0X6936WLaWrGLmFP2B9fkDchSS4A==</latexit><latexit sha1_base64="f3a2wAsO06C5Og0VosXM5VfL6TQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5L0oheh6MWbFewHNCFsNtt26WYTdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDAVXIPjfFuljc2t7Z3ybmVv/+DwyD4+6egkU5S1aSIS1QuJZoJL1gYOgvVSxUgcCtYNx3dzvzthSvNEPsE0ZX5MhpIPOCVgpMC2aw9B48bLPREloL1ZLbCrTt1ZAK8TtyBVVKAV2F9elNAsZhKoIFr3XScFPycKOBVsVvEyzVJCx2TI+oZKEjPt54vLZ/jCKBEeJMqUBLxQf0/kJNZ6GoemMyYw0qveXPzP62cwuPZzLtMMmKTLRYNMYEjwPAYcccUoiKkhhCpubsV0RBShYMKqmBDc1ZfXSadRd526+9ioNm+LOMroDJ2jS+SiK9RE96iF2oiiCXpGr+jNyq0X6936WLaWrGLmFP2B9fkDchSS4A==</latexit>

On = {. . .}
<latexit sha1_base64="eBiFBDFN8DnJKluUpvSpo7GwqWg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hCKGz/3eSxB+7NaaFfduruAs068glRRgVZof/mxJFlCBRCOte57bgpBjhUwwums4meappiM8ZD2DRU4oTrIF5fPnAujxM5AKlMCnIX6eyLHidbTJDKdCYaRXvXm4n9eP4PBdZAzkWZABVkuGmTcAenMY3BipigBPjUEE8XMrQ4ZYYUJmLAqJgRv9eV10mnUPbfuPTaqzdsijjI6Q+foEnnoCjXRPWqhNiJogp7RK3qzcuvFerc+lq0lq5g5RX9gff4Az9STHA==</latexit><latexit sha1_base64="eBiFBDFN8DnJKluUpvSpo7GwqWg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hCKGz/3eSxB+7NaaFfduruAs068glRRgVZof/mxJFlCBRCOte57bgpBjhUwwums4meappiM8ZD2DRU4oTrIF5fPnAujxM5AKlMCnIX6eyLHidbTJDKdCYaRXvXm4n9eP4PBdZAzkWZABVkuGmTcAenMY3BipigBPjUEE8XMrQ4ZYYUJmLAqJgRv9eV10mnUPbfuPTaqzdsijjI6Q+foEnnoCjXRPWqhNiJogp7RK3qzcuvFerc+lq0lq5g5RX9gff4Az9STHA==</latexit><latexit sha1_base64="eBiFBDFN8DnJKluUpvSpo7GwqWg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hCKGz/3eSxB+7NaaFfduruAs068glRRgVZof/mxJFlCBRCOte57bgpBjhUwwums4meappiM8ZD2DRU4oTrIF5fPnAujxM5AKlMCnIX6eyLHidbTJDKdCYaRXvXm4n9eP4PBdZAzkWZABVkuGmTcAenMY3BipigBPjUEE8XMrQ4ZYYUJmLAqJgRv9eV10mnUPbfuPTaqzdsijjI6Q+foEnnoCjXRPWqhNiJogp7RK3qzcuvFerc+lq0lq5g5RX9gff4Az9STHA==</latexit><latexit sha1_base64="eBiFBDFN8DnJKluUpvSpo7GwqWg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BFvBU0l60YtQ9OLNCvYDmhA2m227dLMbdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTIPrfluljc2t7Z3ybmVv/+DwyD4+6WiZKULbRHKpehHWlDNB28CA016qKE4iTrvR+G7udydUaSbFE0xTGiR4KNiAEQxGCm279hCKGz/3eSxB+7NaaFfduruAs068glRRgVZof/mxJFlCBRCOte57bgpBjhUwwums4meappiM8ZD2DRU4oTrIF5fPnAujxM5AKlMCnIX6eyLHidbTJDKdCYaRXvXm4n9eP4PBdZAzkWZABVkuGmTcAenMY3BipigBPjUEE8XMrQ4ZYYUJmLAqJgRv9eV10mnUPbfuPTaqzdsijjI6Q+foEnnoCjXRPWqhNiJogp7RK3qzcuvFerc+lq0lq5g5RX9gff4Az9STHA==</latexit>

O
<latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit>

Restrict(C1, r1,1, C2, r2,1,A ∪A1, α)
<latexit sha1_base64="XgnFHwvhCJMV/EpXDAlltynzYxA=">AAACOXicbZBNT9tAEIbXQFsIpYRy5GIRkECKIts9tOJElUuPKSIBKY6s8WRCVqw/tDuuGln+W730X3BD4tIDVdVr/0DXIYfwMdJKz74zo5l541xJw55366ysrr16/WZ9o7H5duvddnPn/cBkhUbqY6YyfRmDISVT6rNkRZe5JkhiRRfxdbfOX3wjbWSWnvMsp1ECV6mcSAS2UtTsHYRM39lgeUaGtUSujrqR39ZR6bf9qt2NgpqDmsMEeIqgys9ViEW+9LUNIah8CscHUbPldbx5uM/BX0BLLKIXNW/CcYZFQimjAmOGvpfzqATNEhVVjbAwlANewxUNLaaQkBmV88sr99AqY3eSaftSdufqckcJiTGzJLaV9bbmaa4WX8oNC558GpUyzQumFB8GTQrlcubWNrpjqQlZzSwAaml3dXEKGpCt2Q1rgv/05OcwCDr+h07wNWidnizsWBd7Yl8cCV98FKfii+iJvkDxQ9yJe/Hb+en8cv44fx9KV5xFz654FM6//8dtrEM=</latexit>

Restrict(C1, r1,2, C2, r2,2,A ∪A2, α)
<latexit sha1_base64="ZKwN2exINHLhR4ayN2ZITqtO6lE=">AAACOXicbZBNT9tAEIbXQFtIPwhw5GIRKlEpimz30IoTKJceAyKAFEfWeDIhK9Yf2h1XjSz/LS78C25IXHoAIa79A12HHPgaaaVn35nRzLxxrqRhz7t2FhaX3r3/sLzS+Pjp85fV5tr6sckKjdTHTGX6NAZDSqbUZ8mKTnNNkMSKTuLzbp0/+U3ayCw94mlOwwTOUjmWCGylqNnbDpn+sMHykAxriVztdCO/raPSbwdVuxsFNQc1hwnwBEGV+1WIRf7ka4tCUPkEvm1HzZbX8WbhvgZ/Di0xj17UvApHGRYJpYwKjBn4Xs7DEjRLVFQ1wsJQDngOZzSwmEJCZljOLq/cr1YZueNM25eyO1OfdpSQGDNNYltZb2te5mrxrdyg4PHPYSnTvGBK8XHQuFAuZ25tozuSmpDV1AKglnZXFyegAdma3bAm+C9Pfg3HQcf/3gkOgtbe7tyOZbEptsSO8MUPsSd+iZ7oCxQX4kbcijvn0vnr3DsPj6ULzrxnQzwL599/zFysRg==</latexit>

Restrict(C1, r1,n, C2, r2,n,A ∪An, α)
<latexit sha1_base64="4crxRJksA9j1sV3zUJDD9p33RVU=">AAACOXicbZBNa9tAEIZXadom7kfc9JiLiFNIwRhJPbT0lOBLj06Ik4BlxGg8jpesVmJ3VGqE/lYu+Re9FXrpoSHk2j/QleNDvgYWnn1nhpl500JJy0Hwy1t5tvr8xcu19dar12/ebrTfbR7bvDRIQ8xVbk5TsKSkpiFLVnRaGIIsVXSSnveb/Ml3Mlbm+ojnBY0zONNyKhHYSUl7sBMz/WCL1SFZNhK53u0nYdckVdjVdbefRA1HDccZ8AxBVft1jGVx55vobgyqmMHHnaTdCXrBIvzHEC6hI5YxSNo/40mOZUaaUYG1ozAoeFyBYYmK6lZcWioAz+GMRg41ZGTH1eLy2v/glIk/zY17mv2FerejgszaeZa6ymZb+zDXiE/lRiVPv4wrqYuSSePtoGmpfM79xkZ/Ig0hq7kDQCPdrj7OwACyM7vlTAgfnvwYjqNe+KkXHUSdva9LO9bEltgWuyIUn8We+CYGYihQXIjf4q+48i69P961d3NbuuIte96Le+H9+w/0b6z6</latexit>

(r1,1, r2,1,A1)
<latexit sha1_base64="9J32v7hVSQfJmtd+DZ7i+qH/EOI=">AAACCnicbVC7TsMwFHXKq5RXgJEl0CIVqariMICYilgYi0QfUhtFjuu0Vh0nsh2kKurMwq+wMIAQK1/Axt/gtBmg5UjWPTrnXvne48eMSmXb30ZhZXVtfaO4Wdra3tndM/cP2jJKBCYtHLFIdH0kCaOctBRVjHRjQVDoM9LxxzeZ33kgQtKI36tJTNwQDTkNKEZKS555XKkKL4U1OK3p6mS1HyI1woil11MPnlU8s2zX7RmsZQJzUgY5mp751R9EOAkJV5ghKXvQjpWbIqEoZmRa6ieSxAiP0ZD0NOUoJNJNZ6dMrVOtDKwgEvpxZc3U3xMpCqWchL7uzNaUi14m/uf1EhVcuinlcaIIx/OPgoRZKrKyXKwBFQQrNtEEYUH1rhYeIYGw0umVdAhw8eRl0nbq8Lzu3DnlxlUeRxEcgRNQBRBcgAa4BU3QAhg8gmfwCt6MJ+PFeDc+5q0FI585BH9gfP4ACTSYjg==</latexit>

(r1,2, r2,2,A2)
<latexit sha1_base64="uNBoWiFK7Jaq0ikBfJ9H+OoBakU=">AAACCnicbVC7TsMwFHXKq5RXgJHF0CIVqaqSMICYilgYi0QfUhtFjuu0Vh0nsh2kKurMwq+wMIAQK1/Axt/gtBmg5UjWPTrnXvne48eMSmVZ30ZhZXVtfaO4Wdra3tndM/cP2jJKBCYtHLFIdH0kCaOctBRVjHRjQVDoM9LxxzeZ33kgQtKI36tJTNwQDTkNKEZKS555XKkKL7VrzrSmq5PVfojUCCOWXk8956zimWWrbs0Al4mdkzLI0fTMr/4gwklIuMIMSdmzrVi5KRKKYkampX4iSYzwGA1JT1OOQiLddHbKFJ5qZQCDSOjHFZypvydSFEo5CX3dma0pF71M/M/rJSq4dFPK40QRjucfBQmDKoJZLnBABcGKTTRBWFC9K8QjJBBWOr2SDsFePHmZtJ26fV537pxy4yqPowiOwAmoAhtcgAa4BU3QAhg8gmfwCt6MJ+PFeDc+5q0FI585BH9gfP4ADeyYkQ==</latexit>

(r1,n, r2,n,An)
<latexit sha1_base64="oBhQ74z2rWlElRaF4W1u2MURq2U=">AAACCnicbVC7TsMwFHXKq5RXgJHF0CIVqaqSMICYilgYi0QfUhtFjuu0Vh0nsh2kKurMwq+wMIAQK1/Axt/gtBmg5UjWPTrnXvne48eMSmVZ30ZhZXVtfaO4Wdra3tndM/cP2jJKBCYtHLFIdH0kCaOctBRVjHRjQVDoM9LxxzeZ33kgQtKI36tJTNwQDTkNKEZKS555XKkKL7VrfFrT1clqP0RqhBFLr6ceP6t4ZtmqWzPAZWLnpAxyND3zqz+IcBISrjBDUvZsK1ZuioSimJFpqZ9IEiM8RkPS05SjkEg3nZ0yhadaGcAgEvpxBWfq74kUhVJOQl93ZmvKRS8T//N6iQou3ZTyOFGE4/lHQcKgimCWCxxQQbBiE00QFlTvCvEICYSVTq+kQ7AXT14mbadun9edO6fcuMrjKIIjcAKqwAYXoAFuQRO0AAaP4Bm8gjfjyXgx3o2PeWvByGcOwR8Ynz8pG5lF</latexit>

cexs = ∅
<latexit sha1_base64="FQnyrNKcRaHEBT+0ZiXM7pjS0Jo=">AAACAnicbVDLSgNBEJyNrxhfq57Ey2IieAq78aAIQsCLxwjmAUkIs5PeZMjsg5leybIEL/6KFw+KePUrvPk3TpI9aGJBQ1HVTXeXGwmu0La/jdzK6tr6Rn6zsLW9s7tn7h80VBhLBnUWilC2XKpA8ADqyFFAK5JAfVdA0x3dTP3mA0jFw+Aekwi6Ph0E3OOMopZ65lGpgzBG5aUMxmpy3QE/wkQBlnpm0S7bM1jLxMlIkWSo9cyvTj9ksQ8BMkGVajt2hN2USuRMwKTQiRVElI3oANqaBtQH1U1nL0ysU630LS+UugK0ZurviZT6SiW+qzt9ikO16E3F/7x2jN5lN+VBFCMEbL7Ii4WFoTXNw+pzCQxFogllkutbLTakkjLUqRV0CM7iy8ukUSk75+XKXaVYvcriyJNjckLOiEMuSJXckhqpE0YeyTN5JW/Gk/FivBsf89ackc0ckj8wPn8AwW6XoA==</latexit>

cexs 6= ;
<latexit sha1_base64="wivLA77gbepJuLCI13XwQ9yLLtk=">AAACBXicbVA9SwNBEN2LXzF+RS21OEwEq3AXC8UqYGMZwXxALoS9zVyyZG/v3J2ThCONjX/FxkIRW/+Dnf/GzUehiQ8GHu/NMDPPjwXX6DjfVmZldW19I7uZ29re2d3L7x/UdZQoBjUWiUg1fapBcAk15CigGSugoS+g4Q+uJ37jAZTmkbzDUQztkPYkDzijaKRO/rjoIQxRBymDoR57Eu49CGMcacBiJ19wSs4U9jJx56RA5qh28l9eN2JJCBKZoFq3XCfGdkoVciZgnPMSDTFlA9qDlqGShqDb6fSLsX1qlK4dRMqURHuq/p5Iaaj1KPRNZ0ixrxe9ifif10owuGynXMYJgmSzRUEibIzsSSR2lytgKEaGUKa4udVmfaooQxNczoTgLr68TOrlknteKt+WC5WreRxZckROyBlxyQWpkBtSJTXCyCN5Jq/kzXqyXqx362PWmrHmM4fkD6zPH2zUmSE=</latexit>

Translate(C2, α)
<latexit sha1_base64="pnQFVkD4ORnqnF9zIrfTJyi6Wv0=">AAACCXicbVA9SwNBEN3z2/gVtbRZTAQFCXexUKwEG0sF8wFJCHObiVnc2zt258RwpLXxr9hYKGLrP7Dz37iJKTTxwcDjvRlm5oWJkpZ8/8ubmZ2bX1hcWs6trK6tb+Q3t6o2To3AiohVbOohWFRSY4UkKawnBiEKFdbC2/OhX7tDY2Wsr6mfYCuCGy27UgA5qZ3nxSbhPVmRXRvQVgHhYP+8XT5sgkp6cFBs5wt+yR+BT5NgTApsjMt2/rPZiUUaoSahwNpG4CfUysCQFAoHuWZqMQFxCzfYcFRDhLaVjT4Z8D2ndHg3Nq408ZH6eyKDyNp+FLrOCKhnJ72h+J/XSKl70sqkTlJCLX4WdVPFKebDWHhHGhSk+o6AMNLdykUPDAhy4eVcCMHky9OkWi4FR6XyVblwdjqOY4ntsF22zwJ2zM7YBbtkFSbYA3tiL+zVe/SevTfv/ad1xhvPbLM/8D6+AXVdmX0=</latexit>

Translate(C1, α)
<latexit sha1_base64="/8O62V3j4Ga6oQ7hSXlVZ/QXLe0=">AAACCXicbVA9SwNBEN3z2/gVtbRZTAQFCXexUKwEG0sF8wFJCHObiVnc2zt258RwpLXxr9hYKGLrP7Dz37iJKTTxwcDjvRlm5oWJkpZ8/8ubmZ2bX1hcWs6trK6tb+Q3t6o2To3AiohVbOohWFRSY4UkKawnBiEKFdbC2/OhX7tDY2Wsr6mfYCuCGy27UgA5qZ3nxSbhPVmRXRvQVgHhYP+8HRw2QSU9OCi28wW/5I/Ap0kwJgU2xmU7/9nsxCKNUJNQYG0j8BNqZWBICoWDXDO1mIC4hRtsOKohQtvKRp8M+J5TOrwbG1ea+Ej9PZFBZG0/Cl1nBNSzk95Q/M9rpNQ9aWVSJymhFj+LuqniFPNhLLwjDQpSfUdAGOlu5aIHBgS58HIuhGDy5WlSLZeCo1L5qlw4Ox3HscR22C7bZwE7Zmfsgl2yChPsgT2xF/bqPXrP3pv3/tM6441nttkfeB/fc9CZfA==</latexit>

(D1,1, D2,1, α
0
1
)

<latexit sha1_base64="E6JxYoBVtiMyh9Yjbi7imHQ8COs=">AAACBnicbVDLSsNAFJ3UV62vqEsRBluxQilJXCiuCrpwWcE+oA1hMp20QyeTMDMRSujKjb/ixoUibv0Gd/6NkzYLrR4Y7uGce7lzjx8zKpVlfRmFpeWV1bXiemljc2t7x9zda8soEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH19lfueeCEkjfqcmMXFDNOQ0oBgpLXnmYaV67aV2zZ7WdHWy2kcsHqETzz6teGbZqlszwL/EzkkZ5Gh65md/EOEkJFxhhqTs2Vas3BQJRTEj01I/kSRGeIyGpKcpRyGRbjo7YwqPtTKAQST04wrO1J8TKQqlnIS+7gyRGslFLxP/83qJCi7clPI4UYTj+aIgYVBFMMsEDqggWLGJJggLqv8K8QgJhJVOrqRDsBdP/kvaTt0+qzu3TrlxmcdRBAfgCFSBDc5BA9yAJmgBDB7AE3gBr8aj8Wy8Ge/z1oKRz+yDXzA+vgHVXJYk</latexit>

(D1,2, D2,2, α
0
2
)

<latexit sha1_base64="2v/QFh97+0SOyIqSGxdlGNoynOQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBluxQilJXCiuCrpwWcE+oA1hMp20QyeTMDMRSujKjb/ixoUibv0Gd/6NkzYLrR4Y7uGce7lzjx8zKpVlfRmFpeWV1bXiemljc2t7x9zda8soEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH19lfueeCEkjfqcmMXFDNOQ0oBgpLXnmYaV67aV2zZnWdHWy2kcsHqETzzmteGbZqlszwL/EzkkZ5Gh65md/EOEkJFxhhqTs2Vas3BQJRTEj01I/kSRGeIyGpKcpRyGRbjo7YwqPtTKAQST04wrO1J8TKQqlnIS+7gyRGslFLxP/83qJCi7clPI4UYTj+aIgYVBFMMsEDqggWLGJJggLqv8K8QgJhJVOrqRDsBdP/kvaTt0+qzu3TrlxmcdRBAfgCFSBDc5BA9yAJmgBDB7AE3gBr8aj8Wy8Ge/z1oKRz+yDXzA+vgHaDJYn</latexit>

(D1,n, D2,n, α
0
n
)

<latexit sha1_base64="iOFoyE1c90ZH5EQXDLsv/Rl8d6Y=">AAACBnicbVDLSsNAFJ3UV62vqEsRBluxQilJXCiuCrpwWcE+oA1hMp20QyeTMDMRSujKjb/ixoUibv0Gd/6NkzYLrR4Y7uGce7lzjx8zKpVlfRmFpeWV1bXiemljc2t7x9zda8soEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH19lfueeCEkjfqcmMXFDNOQ0oBgpLXnmYaV67aV2jU9rujpZ7SMWj9CJx08rnlm26tYM8C+xc1IGOZqe+dkfRDgJCVeYISl7thUrN0VCUczItNRPJIkRHqMh6WnKUUikm87OmMJjrQxgEAn9uIIz9edEikIpJ6GvO0OkRnLRy8T/vF6iggs3pTxOFOF4vihIGFQRzDKBAyoIVmyiCcKC6r9CPEICYaWTK+kQ7MWT/5K2U7fP6s6tU25c5nEUwQE4AlVgg3PQADegCVoAgwfwBF7Aq/FoPBtvxvu8tWDkM/vgF4yPb/Nblts=</latexit>

Search(D1,1, D2,1,A ∪A1, α
0
1
)

<latexit sha1_base64="Tu0jb+/uPOnf4ZO3kYBbGtG75Rg=">AAACMnicbVA9TxtBEN2DQIj5cqBMc4qJApJl3TpFUlCAoAgdUWJA8lmnufEYr9j70O5chHW630STXxKJAopEEW1+RPaMCwI8aTVv38xoZl6ca2U5CG68ufkXC4svl141lldW19abrzdObFYYpB5mOjNnMVjSKqUeK9Z0lhuCJNZ0Gl8c1PnT72SsytJvPMlpkMB5qkYKgZ0UNY+2QqZLtlh+JTA4rrYPo1K2ZdV2sVvHMAEeI+hyvwqxyB98I9kOQedjeB/Jna2o2Qo6wRT+UyJnpCVmOI6aP8NhhkVCKaMGa/syyHlQgmGFmqpGWFjKAS/gnPqOppCQHZTTkyv/nVOG/igz7qXsT9WHHSUk1k6S2FXWC9vHuVp8LtcvePRpUKo0L5hSvB80KrTPmV/75w+VIWQ9cQTQKLerj2MwgOxcbjgT5OOTn5KTbkd+6HS/dFt7uzM7lsQb8VZsCyk+ij3xWRyLnkBxJa7FL/Hb++Hden+8u/vSOW/Wsyn+g/f3HxJtqWE=</latexit>

Search(D1,2, D2,2,A ∪A1, α
0
2
)

<latexit sha1_base64="B3/SFAnBpmtmSB85RUBPx3fxyKM=">AAACMnicbVBNT9tAEF3z0UIKJaVHLhahKkhRZLuH9sAhqD2UW6o2gBRH1ngyISvWH9odV0SWfxOX/pJKHOihCHHlR7AOOVDok1bz9s2MZubFuZKGPe/KWVhcWn7xcmW18Wpt/fVG883mkckKjdTHTGX6JAZDSqbUZ8mKTnJNkMSKjuOzz3X++CdpI7P0B09zGiZwmsqxRGArRc3DnZDpnA2W3wk0TqrdL1Hpt4OqbWNQxzABniCo8qAKscgffSO/HYLKJ/A+CvZ2ombL63gzuM+JPyctMUcvav4ORxkWCaWMCowZ+F7OwxI0S1RUNcLCUA54Bqc0sDSFhMywnJ1cue+sMnLHmbYvZXemPu4oITFmmsS2sl7YPM3V4v9yg4LHn4alTPOCKcWHQeNCuZy5tX/uSGpCVlNLALW0u7o4AQ3I1uWGNcF/evJzchR0/A+d4FvQ6u7P7VgRW2Jb7ApffBRd8VX0RF+guBCX4q+4dn45f5wb5/ahdMGZ97wV/8C5uwcXV6lk</latexit>

Search(D1,n, D2,n,A ∪A1, α
0
n
)

<latexit sha1_base64="B+Tyzh/XL3xJwjo1sR/FEJ93ZDw=">AAACMnicbVBNT9tAEF1DWyD9IIUjF6sBQaUossOhPXAAwaHcqNoAUhxZ48mErFivrd1xRWT5N3HpL6nEAQ5FiGt/RNchBwp90mrevpnRzLwkV9JyEFx7c/MvXr5aWFxqvH7z9t1y8/3Ksc0Kg9TDTGXmNAFLSmrqsWRFp7khSBNFJ8n5fp0/+UHGykx/50lOgxTOtBxJBHZS3Dxcj5gu2GL5jcDguNo6iMuwrau2i906RinwGEGVe1WERf7oG4ftCFQ+hs1Yf1yPm62gE0zhPyfhjLTEDEdx81c0zLBISTMqsLYfBjkPSjAsUVHViApLOeA5nFHfUQ0p2UE5PbnyN5wy9EeZcU+zP1Ufd5SQWjtJE1dZL2yf5mrxf7l+waPPg1LqvGDS+DBoVCifM7/2zx9KQ8hq4gigkW5XH8dgANm53HAmhE9Pfk6Ou51wu9P92m3t7szsWBRr4oPYEqH4JHbFF3EkegLFpbgSv8Wt99O78e68+4fSOW/Wsyr+gffnLz4+qhg=</latexit>

Fig. 4. An explicit depiction of the main algorithm.

populates the locations of the program with invariants according to an abstraction α4 and annotates
locations that are infeasible with ⊥. Rather than a strictly syntactic translation, we instead exploit
semantic information (i.e. paths of the program are determined to be infeasible) to convert the
abstract program into a KAT expression k in K that covers its behavior. For example, consider
the simple instrumented program assume(d==0); c=d; if (c==0) execB() else execD(); The
standard syntactic translation [Kozen 1997] alone, would produce the expression dd==0 · Ec=d ·

(cc==0 · BexecB + cc==0 · DexecD). In our case, Interproc determines c==0 is always true under the
instrumented assume(d==0) and the program is instead converted to the simpler expression BexecB.

• KATdiff(k1,k2,A): Given two KAT expressions k1,k2 and hypotheses A, KATdiff returns
cexs, which is a set of KAT expressions k with k ∈ k1 \A k2 and possibly k ∈ k2 \A k1 (depending
on whether we seek equivalence or inclusion). We assume this sub-procedure to be sound and
complete. If cexs is empty, then the two input KAT expressions k1 and k2 are such that k1 ≤A k2
(or k1 =A k2). Our implementation uses Symkat [Pous 2016], which only obtains a singleton set
cexs, and is thus either (i) a single string c in k1 \A k2 when we seek inclusion, (ii) a single string c
in k2 \A k1 (resp. in k1 \A k2) when we seek equivalence but k1 ≤A k2 (resp. k2 ≤A k1) holds, or
(iii) a pair of strings (c1, c2), with c1 in k1 \A k2 and c2 in k2 \A k1, when we seek equivalence and

neither k1 ≤A k2 or k2 ≤A k1 holds. If k1 = a ·M · (b · F + b ·G) and k2 = a ·M · b ·G, then the
string a ·M · b · F is included in k1 but not in k2, and thus in k1 \A k2.

• SolveDiff(k1,k2,A, cexs): This procedure takes KAT expressions k1 and k2, a set of hypotheses,
and the set of counterexamples cexs above. It returns a set R of tuples (r1, r2,Ar), each called a
restriction. The set of restrictions R has the property that proj1(R) partitions k1, ensuring that
we have completely covered all traces. Furthermore, in the interest of progress, we also assume
that each counterexample in cexs is not a counterexample for k1 ∩ r1 \Ar

k2 ∩ r2, or even for
k2 ∩ r2 \Ar

k1 ∩ r1 depending on whether equivalence is considered instead of inclusion. In our
implementation, we apply a customized edit-distance algorithm discussed in Section 6, which
returns a set of transformations that can be applied to two KAT strings c1 and c2 to make them
equivalent. These transformations are in the form of removing alphabet symbols from the strings at
particular locations, or replacing some symbol with another. From these transformations, SolveDiff
constructs a list of restrictions to be applied on the input programs of the form (r1, r2,Ar), where
r1 and r2 are KAT expressions, and Ar is a set of hypotheses.

When the edit-distance algorithm asks for the removal of an alphabet symbol from, say, string
c1, we consider two cases, depending on whether the symbol corresponds to a boolean condition or
not. If so, the KAT expression r1 corresponding to this transformation is essentially obtained by
adding a hypothesis inserting the valuation of the boolean variable, in the given KAT expression

4In our experiments, we used the convex polyhedra domain.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:15

k1. Since we want these restrictions to cover all behaviors of the input programs, we also consider
the negation of that valuation. As such, at least two restrictions are considered, namely (r1, r2,Ar)

and (r ′1, r
′
2,A

′
r), such that r1 and r

′
1 cover k1. On the other hand, when the removal of an eventM is

required, a hypothesis of the formM = 1 is added to the set of hypotheses.

• Restrict(C1, r1,C2, r2,A,α) obtains new programs from previous ones, using restrictions from
SolveDiff. Given programs C1,C2, KAT restrictions r1, r2, a set of hypotheses A and current
abstraction α , this sub-procedure returns a tuple (D1,D2,α

′), where D1,D2 are the new pro-
grams and α ′ is a new abstraction that refines α , such that, for i ∈ {1, 2}, Translate(Di ,α

′) ≤A

Translate(Ci ,α)∩ri , but Translate(Di ,α
′) =A Translate(Ci ,α

′)∩ri . In other words, the KAT
expression obtained from the new program Di under the new refined abstraction α ′, is included in
the KAT expression from the original program Ci under the old abstraction α using the restriction
ri , but at the same time, if we used the new abstraction α ′ to translate the program Ci under the
restriction ri , into a KAT expression we would obtain the same as by just translating Di under the
new abstraction. Our implementation restricts programs by instrumenting assume statements on

appropriate lines of code. For example, for a program (bl=true ·Olog + bl=true ·1)
∗ we can implement

restriction r = (bl=true · (bl=true ·Olog + bl=true ·1))
∗
= (bl=true ·Olog)

∗ with an assume(l==true)

instrumented immediately inside the body of the corresponding while loop.

5.2 Formal Guarantees

The key challenge is soundness, even under the sub-procedure assumptions noted above, and the
proof is in Appendix A.

Theorem 5.1 (Soundness). For all C1,C2, and abstractions α , let O = Synth(C1,C2, ∅,α), let α
′

be the common abstraction of O and let k1 = Translate(C1,α
′) and k2 = Translate(C2,α

′). Then

k1 ⪯
RefRelation(O) k2.

Weak completeness is easier because, as per Remark 4.5, trivial solutions can be constructed.
So we are more interested in generating increasingly precise solutions. For progress, as long as
the sub-procedure SolveDiff returns restrictions that handle the counterexamples returned by
KATdiff, then these counterexamples will not be seen again in the recursive steps that follow.

6 EDIT-DISTANCE ON EXPRESSIONS AND STRINGS

Our main algorithm depends on SolveDiff to examine a pair of KAT expressions k1,k2, a set
of hypotheses A, as well as counterexamples to their equivalence, and determine appropriate
restrictions r1, r2 and additional hypotheses A ′ that could be used to further search for trace
classes of k1 that are contained in k2, up to hypotheses A ∪ A ′. To achieve this, SolveDiff
tries to identify the differences between the KAT expressions k1 and k2, or between their string-
based counterexamples, and attempts to find restrictions of least impact, to apply to the two input
programs. As such, we implemented a sub-procedureDistance, that takes as inputs two KAT strings
c1 and c2, or two KAT expressions k1 and k2, and returns a list of scored transformations to be applied
on the two strings (or KAT expressions) in order to make them equivalent. In our implementation
we use the custom edit-distance algorithm only on counterexample strings, and in Section 6.2, we
discuss how the global edit-distance for general KAT expressions can help in conjunction with the
composition results of Section 4.3. The edit-distance on such KAT expressions has to handle the
structure of the expressions, and is naturally more involved than the linear one on strings. (The
former is more similar to trees [Bille 2005].) The idea behind the sub-procedure Distance is similar
to edit-distance algorithms in the literature for comparing two strings/trees/graphs [Bille 2005].
These edit-distance algorithms, return a sequence of usually simple single-symbol transformations

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:16 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

that are classified as symbol removals, insertions, and replacements, that equate the two input
strings when they are applied on them.
We had to customize edit distance for our purposes of cross-program correlation. We thought

that inserting a symbol in one of the two strings or KAT expressions, is less natural than removing
another one from the other string or expression, and encode such insertions in one string as
removals from the other. Therefore we employ just removal and replacement transformations on
the two inputs:

• Remove(c, s): Returns a new string obtained from s with the symbol c removed,
• Replace(c1, c2, s): Returns a new string obtained from s with the symbol c1 replaced with the
symbol c2.

Note that each copy of each symbol in the string is uniquely labeled, and the transformations
above speak about these labeled symbols, making the order in which the transformations are applied
irrelevant. Moreover, in our experience, certain transformations have more impact, or are in some
way heavier than others. As such, we attempt to score them, and use the score of each individual
transformation to ultimately score the whole sequence of transformations. For example, replacing
an event symbol M in some string with another symbol N, is certainly a transformation that is
semantically more involved than simply setting a boolean symbol c to true. The full algorithm for
edit-distance can be found below in Section 6.1.

Example 6.1. Consider the two input strings s1 = a ·A ·B and s2 = d ·e ·B. Running the procedure
Distance on s1 and s2, will return the pair (T , S), where T is the sequence of transformations
[Replace(a, d, s1),Remove(e, s2),Remove(A, s1)] and the score S = replace_scr + 2 ∗ remove_scr,
where replace_scr is the cost of replacing one symbol with another of same type, and remove_scr is
the cost of removing a symbol from one of the input strings. With this sequence of transformations,
both strings become equal to d · B.

The sequence of transformations returned by Distance is converted into the one SolveDiff
returns, as follows, for A,B action symbols and a, b boolean symbols.

• Remove(A, s): add a new hypothesis A = 1

• Remove(a, s): perform case analysis and include two tuples of restrictions, resp. corresponding
to setting a to true and setting a to false

• Replace(A,B, s): add a new hypothesis A = B

• Replace(a, b, s): add a new hypothesis a = b

6.1 Edit-Distance Algorithm

The algorithm, shown in Figure 5, traverses recursively the two inputs one symbol at a time,
with the option of staying stationary on one of them at each iteration, and assigns a score on
the association between the symbols at hand. For this, 4 different types of scores (in the form of
rationals), are calcualted for any two strings, and are added to the total score at each iteration,
depending on the action that is chosen. All possible cases are considered by the algorithm, and the
association that leads to the smallest global score is finally chosen. The 4 different types of scores
are as follows.

• remove_scr: used when a symbol is removed from one of the two strings.
• replace_scr: used when a symbol is replaced with another symbol in one of the two strings.
• match_scr: used when a symbol in one string is matched with a symbol of the same type
(boolean or event) in the other string.

• penalty_scr: used when a matching such as the one above is chosen, but where the matching
is between symbols of different type.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:17

Input: Two strings s1, s2.

Output: A set T of transformations and a total score for that set.

Algorithm: Distance(s1, s2)

if (s1 = [] and s2 = []) return ([],match_scr)

else if (s1 = []) return (RemoveAll(s2), len(s2) ∗ remove_scr)

else if (s2 = []) return (RemoveAll(s1), len(s1) ∗ remove_scr)

else

s1 = h1 ::: t1 and s2 = h2 ::: t2
(T1, S1) =Distance(t1, s2), д1 = Remove(h1, s1), o1 = remove_scr

(T2, S2) =Distance(s1, t2), д2 = Remove(h2, s2), o2 = remove_scr

(T3, S3) =Distance(t1, t2)

if (same_symbol(h1,h2))

д3 = Match(h1, h2, s1, s2), o3 = match_scr

else

д3 = Replace(h1, h2, s1)

o3 = (same_type(h1,h2)) ? replace_scr : penalty_scr
for minimum Si :

return (дi ::: Ti , Si + oi)

Fig. 5. The distance algorithm for two counterexample strings.

The values for remove_scr and replace_scr are usually 1, whereas the penalty_scr is higher
than them, and correlated with the length of the input strings. On the other hand, the value
of match_scr is negative, and used to counter-balance the effect of penalty_scr. In the algo-
rithm shown above, RemoveAll(s2), for a string s2 = a1 · · ·an , is shorthand for the sequence:
[Remove(a1, s2), . . . ,Remove(an, s2)].

6.2 Global KAT Expression Edit-Distance

We have implemented a custom edit-distance algorithm that accepts general KAT expressions as
inputs, instead of merely KAT strings. The edit-distance on such KAT expressions has to handle
the structure of the expressions, and is naturally more involved than the linear one on strings. (The
former is more similar to trees [Bille 2005].) For example, the algorithm will attempt and match
a subexpression under a star operation in one expression with a similar subexpression under a
star operation in the other. In our experiments, using this distance algorithm on the whole KAT
expressions, instead of the counterexamples to their equivalence or inclusion, would most of the
time remove and replace many symbols. Our implementation mostly does not use this facility.
However, searching for edit distance globally on the KAT expressions can be exploited in the
beginning of the algorithm, in order to find natural alignments between two large programs, split
them into subcomponents, apply the Synth algorithm on each pair of such subcomponents, and
finally use Theorem 4.6 to combine the individual results into a solution that works over the whole
programs. Our use of global KAT edit distance does not require further theoretical development
and we plan to use our implementation of these ideas in future work.

7 EXPERIMENTS

In this section we experimentally validate our approach, seeking to answer a few questions:

(1) Can trace refinement relations be automatically synthesized for pairs of (simple) programs?
(2) Can synthesized trace refinement relations capture intuitive relationships between the pro-

gram pairs, that a human might expect to hold?
(3) Can synthesized trace refinement relations provide new insights into relationships between

the program pairs?

Before answering these questions, we first summarize our implementation and benchmarks.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:18 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

Implementation. We have realized our algorithm in a prototype tool called Knotical. Knotical
is open source, its development repository is located at https://github.com/knotical/knotical, and
the artifact of this evaluation is available online [Antonopoulos et al. 2019b]. Knotical can be
executed as

$ knotical.native -cmpLt C1 C2 0complete.c

to synthesize the trace refinement relations (with the argument -cmpLt) of the two methods C1
and C2 in the benchmark example 0complete.c. To derive the trace equivalence relations of these
methods, we can instead use the argument -cmp. In addition, the tool also provides the argument
-no-rem for the users to specify the list of events/methods that cannot be removed or replaced and
-depth to control the depth of the proof search.

Our tool is written in OCaml, using Interproc as an abstract interpreter [Lalire et al. 2009],
and Symkat as a symbolic solver for KAT equalities [Pous 2015a, 2016]. We have described imple-
mentation choices made for the tool’s subcomponents in Section 5.1. Knotical generates multiple

(Complete), cond a: n > 0
{

Case a :
k1 = EevA()
k2 = (an > 0 ·VevB() + ¬an > 0 ·AevC())

AComplete
{

Hypos : {E = V }
k1 = EevA()
k2 = 1 ·VevB()

{

Case ¬a :
k1 = EevA()
k2 = (an > 0 ·VevB() + ¬an > 0 ·AevC())

AComplete
{

Hypos : {E = A}
k1 = EevA()
k2 = 1 ·AevC()

solutions, internally represented in the form of trees.
For the above example command-line invocation, Knot-
icalwould generate the output shown to the right. Dur-
ing the KATdiff and SolveDiff steps of the algorithm,
multiple choices can be made and each solution tree
corresponds to a particular set of choices. Branching in
a solution tree corresponds to the different restrictions
applied and their complement, as a result of perform-
ing case analysis on a particular condition. This can be
seen in the output to the right, as the branching on the
condition n > 0, represented via the KAT boolean test
symbol a. Within each branch, Knotical identifies the
restricted trace classes (denoted k1,k2). When hypothe-
ses are introduced, they are denoted as Hypos . In this case, Knotical has generated a complete

solution, covering all trace classes of C1. Often the solution trees (or subtrees) are partial, in the
sense that the different restrictions applied to the programs, when taken together do not cover all
behaviors of the input programs. Partial solutions can readily be converted to complete ones (as
discussed in Remark 4.5).

Benchmarks. To our knowledge, no existing benchmarks were suitable for Knotical since
prior works were geared towards state-based pre/post equivalence and not trace-based refinement
relations. We aim to evaluate Knotical on realistic usage by considering standard systems code
paradigms and some open source systems code such as thttpd and Merecat. Unfortunately, these
systems code examples include calls to many standard C library methods and the current front-end
of Knotical does not support arbitrary C language programs. As a result, we could not analyze
them directly. To cope with these limitations, we manually created small benchmark C programs by
extracting the key ideas and control-flow from the systems code. We treated the library methods like
uninterpreted procedures and abstracted them to be KAT event symbols. Therefore our benchmarks
still reflect the trace class behavior but they are yet simplified versions of the systems code.
We have evaluated our approach by applying our tool to a collection of 37 new benchmarks.

Each benchmark includes two program fragments denoted C1 and C2. They can be found in the
paper’s artifact [Antonopoulos et al. 2019a,b]. Broadly speaking, our benchmarks categorized as:

• (0*.c) Program pairs that exercise various technical aspects of our algorithm, such as cases
where refinement is trivial, where concrete refinement holds, where refinement can be achieved

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

https://github.com/knotical/knotical

Specification and Inference of Trace Refinement Relations 178:19

Table 1. Results of applying Knotical to 37 benchmarks. Those marked • are expected to have no solutions.

Time Tuples Hypos

Benchmark loc f s Dir (s) Sols min max min max

1 0arith.c 28 4 =
T 0.03 1 1 1 2 2

2 0complete.c 22 5 =
T 0.02 1 2 2 2 2

3 0complete1.c 28 6 =
T 0.09 2 1 2 3 4

4 0false.c 15 3 =
T 0.01 1 1 1 1 1

5 0if.c 25 5 =
T 0.02 1 1 1 2 2

6 0ifarecv.c 27 5 =
T 0.02 1 1 1 2 2

7 0impos.c• 19 4 ≤T 0.01 0 0 0 0 0
8 0medstrai.c 46 22 =

T 6.18 3 1 1 2 2
9 0needax.c 24 4 ≤T 0.01 1 1 1 1 1
10 0nohyp.c 21 4 =

T 0.04 2 1 1 2 2
11 0noloop.c 31 3 =

T 0.25 2 1 1 0 1
12 0nondet.c 48 7 =

T 0.41 2 2 2 4 4
13 0pos.c 22 4 ≤T 0.12 1 1 1 0 0
14 0rename.c 13 4 =

T 0.05 1 1 1 1 1
15 0rename1.c 14 4 =

T 0.01 1 1 1 1 1
16 0sanity.c 8 3 =

T 0.00 1 1 1 0 0
17 0sanity1.c 8 3 =

T 0.01 2 1 1 1 1
18 0smstrai.c 45 22 =

T 0.66 5 1 1 1 1
19 1acqrel.c 38 2 =

T 0.02 1 1 1 0 0
20 1asendrecv.c 47 8 =

T 2.45 39 2 3 5 10
21 1assume.c 35 4 ≤T 0.98 44 1 2 3 10
22 1concloop.c 38 5 =

T 0.72 14 1 1 1 5
23 1concloop2.c 34 4 ≤T 4.60 240 1 2 6 19
24 1concloop3.c 29 3 =

T 0.69 127 1 4 3 12
25 1linarith.c 57 4 =

T 1.20 12 1 1 4 4
26 1loopevent.c 36 3 =

T 4.73 67 1 3 1 5
27 1loopprint.c 35 3 =

T 0.36 12 1 2 3 5
28 1sendrecv.c 49 7 ≤T 3.84 75 2 7 6 19
29 1toggle.c 42 2 =

T 0.03 1 1 1 1 1
30 2altern.c 25 4 =

T 0.03 2 1 1 2 2
31 2cdown.c 23 4 =

T 0.02 1 1 1 1 1
32 2foil.c 20 4 =

T 0.01 1 1 1 1 1
33 3buffer.c 63 7 =

T 21.07 192 1 2 6 11
34 3syscalls.c 59 7 =

T 17.77 156 1 2 7 16
35 4ident.c 69 6 =

T 0.50 6 1 1 3 3
36 5thttpdEr.c 44 10 ≤T 0.21 5 2 3 2 3
37 5thttpdWr.c 43 10 ≤T 1.87 62 1 2 4 8

entirely from splitting into cases, or where refinement can only be achieved through aggressive
introduction of hypotheses.

• (1*.c) Program pairs that involve user I/O, system calls, acquire/release, and reactive web servers.
• (2*.c) Program pairs with tricky patterns, requiring careful alignment between two fragments.
• ([345]*.c) These program pairs are more challenging: 3buffer.c and 3syscalls.c model
array access patterns with complicated array iterations, and 4ident.c involves a larger pair
with identical code.

The benchmark program pairs in 5*.cmodel reactive web servers, which are the simplified versions
of the thttpd [Poskanzer 2018] and Merecat [Nilsson 2019] HTTP servers, as described above.
These two servers are related because Merecat is an extension of thttpd that adds SSL support
and HTTP/1.1 Keep-Alive. The two programs can be decomposed into two phases: (i) writing a
request, in which Merecat, unlike thttpd, performs compression and uses SSL to write responses

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:20 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

and (ii) the subsequent error handling, in which Merecat has a keep-alive option so that connections
aren’t closed when an error occurs. The two benchmarks 5thttpdWr.c and 5thttpdEr.c in Table 1
respectively correspond to these two phases and this decomposition demonstrates the compositional
nature of our trace-refinement relations. Each benchmark contains a pair of code fragments
taken from the thttpd and Merecat implementation. The code are distillations of the two servers,
summarizing how they diverge in handling a request.

Evaluation. We ranKnotical on aMacBook Pro with a 3.1 GHz Intel Core i7 CPU and 16GB RAM,
using the OCaml 4.06.1 compiler. Some of the generated trace-refinement relations can be found
online [Antonopoulos et al. 2019a]. Table 1 summarizes these results, including the performance of
Knotical. For each benchmark, we have included the lines of code (loc) and number of procedures
(f s). We also indicate (Dir) whether the benchmark is for refinement ≤T or for equality =T. For
some of the examples, we check only ≤T because we wanted to ensure the tool was capable of this
anti-symmetric reasoning. Some of the ≤T examples were crafted specifically for this purpose.
Next, we report the total time it took in seconds (Time), as well as the number of solutions

discovered (Sols). We also report some basic statistics about the solutions generated for each bench-
mark. We report the number of Tuples in the solution that has the fewest/most (min/max) tuples.
Similarly, we report the number of hypotheses (Hypos) in the solution that has the fewest/most
(min/max) hypotheses. In general, there is no strict ordering of the weak-equivalence relations (i.e.
which solution is better than another). We therefore rank the solutions based on heuristic orderings.
For example, solutions of programs that are more similar usually involve fewer hypotheses and
fewer edits. As a result, the statistics in Table 1 help show the quality of the solutions. We also
evaluated the quality of the generated trace-refinement relations by carefully inspecting many of
them manually and we have found that these edit-based heuristics work well.

Discussion. In most cases, Knotical was able to generate expected solutions quickly, often in
fractions of a second. For simpler benchmarks (0*.c), there were often concise solutions with
either two tuples (due to a single case-split) or one tuple (due to hypotheses). 0nondet.c is more
complicated and both of its solutions had 4 tuples. More complicated benchmarks tended to have
solutions with 3 to 7 tuples. The largest number of tuples in a solution was 7 (1sendrecv.c) and the
largest number of hypotheses in a solution was 19 (1concloop2.c and 1sendrecv.c). Benchmark
1acqrel.c had a solution with 0 hypotheses because it contains non-terminating loops, which are
translated to KAT expressions 0. Benchmark 0impos.c is expected to have no solutions because its
fragments contain two different non-removable events, that cannot be made equivalent with axioms.
(Knotical permits users to specify events that cannot be ignored.) Benchmarks 1concloop2.c,
3buffer.c, and 3syscalls.c had hundreds of solutions because they have many complicated
conditional branch and loop conditions. Case analysis on the permutations of these conditions
leads to many solutions. There is not much correlation between analysis running time (or number
of solutions) and lines of code. There is a stronger correlation with code complexity: many events
or conditions lead to longer analysis time. For example, the analysis of 3buffer.c took longer and
yielded more solutions.

In many cases, we found that Knotical generated refinement relations that offered new insights
into the relationship between program pairs. One such example is from the 05thttpdWr.c bench-
mark. In this example, C1 and C2 correspond to the protocols of writing requests in the thttpd
and Merecat HTTP servers, respectively. First, note that in C2 there is a non-removable event
write_headers() which always happens. Knotical then found a refinement relation between the
trace classes of C2 and those of C1 (rather than vice-versa) by enforcing the nondeterministic con-
dition t>0, so that write_headers() also always happens in C1. Notably, there are no refinement
relations for the case where t≤0: for any trace class in C2, it is impossible to find a corresponding

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:21

trace class in C1 because write_headers() will never be executed in C1 in this case. In addition,
in the 05thttpdEr.c benchmark, whose C1 and C2 correspond to the error handling protocols in
thttpd and Merecat, Knotical found refinement relations in whichC2’s keepalive option is false
and the procedure clear_connection in C1 is removed since these features are not in the other.

We now summarize our findings, with respect to the goals stated at the beginning of this section:

(1) Synthesis.We found that Knotical could generate solutions for all benchmarks, except for
0impos.c for which no solution is possible.

(2) Intuition. In our manual inspection of the results, we found trace refinement relations that
captured our own intuition.

(3) New insights.We found that Knotical generated trace refinement relations that illustrate
unexpected relationships between the program pairs, such as those discussed above in the
05thttpdWr.c and 05thttpdEr.c benchmarks.

8 RELATED WORK

Reasoning about program refinement and program equivalence is well-studied. In this section we
highlight some of the most relevant approaches to the problem.

Bisimulation. A bisimilarity relation is over states and expresses that whenever one can perform
an action from some state on one system, one can also perform the same action from any bisimilar
state on the other system, and reach bisimilar states. Our formulation of program equivalences here
(expressing program behaviors over time as KAT expressions) differs from bisimulation, which relies
on step-by-step state relations. It would be challenging to enable existing notions of bisimulation
to capture that A · (B + C) has the same behavior as A · B + A · C. It would also likely be tedious to
use bisimulations to express that some events commute (A · B = B ·A) or event inverses (A · B = 1).

State-Based Semantic Differencing. In recent years a variety of works have focused on reasoning
about differences between two versions of a program. Lahiri et al. [2012, 2013] describe SymDIFF,
defining łdifferential assertion checking,ž which says that from an initial state that was non-failing
on C , it becomes failing on C ′. Their approach to assertion checking bears some similarity to
self-composition [Barthe et al. 2004; Terauchi and Aiken 2005]. Partush and Yahav [2013, 2014]
describe a correlating semantics based on abstract interpretation and construction of a product.
Godlin and Strichman [2009] offered support for mutual recursion. Jackson and Ladd [1994] describe
an approach based on input/output variable dependencies between, but do not offer formal proofs.

Others have explored how to empower relational verification by using information from relational
specifications [Pick et al. 2018], and avoid repeating work on both programs. Smith et al. [2017]
present a tool that learns relational specifications from input-output data. The goal of semantic
differencing has also been focused on programs that interact with databases [Wang et al. 2018].
Lahiri et al. [2015] explored relational verification for approximate computing. Our notion of
avoiding introducing łbadž behavior has a similar spirit to the work of Sousa et al. [2018] who focus
on more complicated 3-way merges, that arise from source code merges. Others have focused on
program differencing in the context of concurrent programs by considering, for example, differences
in data-flow edges [Sung et al. 2018]. Wood et al. [2017] tackle program equivalence in the presence
of memory allocation and garbage collection. Unno et al. [2017] describe a method of verifying
relational specifications based on Horn Clause solving.

Weak Relations and Other Works. Benton [2004] introduced state-based refinement relations and
provided type-theoretic and Floyd/Hoare treatments. He showed that this can be used to reason
about the correctness of compiler transformations. Yang [2007] described relational reasoning
for separation logic, allowing one to reason about pairs of heap-manipulating programs. As part

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:22 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

of the SymDiff project, Kawaguchi et al. [2010] also focused on weakening the state relations
with pre/post conditions. Gyori et al. [2017] also took steps beyond concrete refinement, using
equivalence relations, similar to Benton [2004] and Yang [2007], for change impact dataflow analysis.

Bouajjani et al. [2017] eschew state refinement relations in favor of a more abstract relationship
between programs. They focus on concurrency questions that arise from reordering program
statements and/or re-orderings due to interleaving. The authors do not work with traces in the
sense defined here; rather, their traces are data-flow abstractions, represented as graphs. Person et al.
[2008] described a relational symbolic execution in which they perform a state-based partitioning,
based on program inputs. By contrast, our partitions arise from descriptions of the traces themselves.
Trostanetski et al. [2017] focused on semantic differencing between programs, with an emphasis
on scalability and modularity. They describe state-based procedure summaries that account for
program differences.
There are some analogies between k-safety of a single program, and reasoning about two

programs. Researchers have explored relational invariants (over multiple executions of a single
program) via program transformations that łgluež copies of the program to itself, including self-
composition [Barthe et al. 2004; Terauchi and Aiken 2005], product programs [Barthe et al. 2011],
Cartesian Hoare logic [Sousa and Dillig 2016] and decomposition for k-safety [Antonopoulos et al.
2017]. Logozzo et al. [2014] described verification modulo versions and explored how necessary/suf-
ficient environment conditions for a programC’s safety can be used to determine whether program
C ′ introduced a regression or is łcorrect relative to Cž. The work does not involve refinement
relations. Barringer et al. [1984] introduced the łchopž operator and explored composition for
(non-relational) temporal logic. Pous [2015b] introduced a symbolic approach for determining
language equivalence between KAT expressions (see Section 5). Kumazawa and Tamai [2011] used
edit distance to characterize the difference between counterexamples within a single program
(infinite vs lasso traces).

9 CONCLUSION AND FUTURE WORK

We introduced trace refinement relations, going beyond the state refinement relations of prior
works [Benton 2004; Gyori et al. 2017; Unno et al. 2017; Yang 2007]. Our relations express trace-
oriented restrictions on a program behavior and case-wise correlate the behaviors of another.
We have further provided a novel synthesis algorithm, based on abstract interpretation, KAT
solving, restriction, and edit-distance. We have built a tool called Knotical, that synthesizes
trace-refinement relations. Our experimental evaluation shows that this approach is promising.

9.1 Heaps and Arrays

The work presented in this paper is currently focused on numeric programs, without array or
heap accesses. Consider, for example, a simple change made to a heap-manipulating program C1,
obtaining a new program C2 in which the linked list is augmented so that each node contains
keys and values, rather than merely values. Adopting a separation logic [O’Hearn et al. 2001] heap
treatment, the linked structures could be:

C1 linked list : l1 7→ [v0,n0] ∗ n0 7→ [v1,n1] ∗ n1 7→ [v2,n2] ∗ · · ·

C2 linked list : l2 7→ [k0,v0,m0] ∗m0 7→ [k1,v1,m1] ∗m1 7→ [k2,v2,m2] ∗ · · ·

In the above notation, ł∗ž indicates spatial conjunction (i.e. that the left operand holds on one part
of the heap and the right operand holds on another disjoint part of the heap), and t 7→ [...] indicates
a heap cell pointed to by t . C1’s nodes only have values and next pointers, while keys are added to
C2’s nodes. Such a change from C1 to C2 may preserve some behaviors (e.g. enumerating all the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:23

values) and, in other cases, new executions are possible (e.g. searching for a key-value pair for key
k). Even when the same values are enumerated, the order of them may have changed.

An important question is whether the theory and implementation presented here can be used
to support reasoning about such differences between heap-manipulating programs. This is a
challenging problem because even the theoretical question of extending Kleene algebras to abstract
over heaps and arrays is itself an interesting and important open problem and, even more so, in a
relational setting.
Heaps and arrays are thus beyond the scope of this paper but we now remark on some consid-

erations and possible avenues forward. A natural first step would be to consider the Relational

Separation Logic by Yang [2007] which permits assertions of the form
(P1
P2

)

whose interpretation

is that P1 must hold of a heap h1 while P2 must hold of heap h2. Yang’s state relations, however,
cannot express the kinds of trace behaviors we discuss in this paper. One may, on the other hand,
look to extending trace-oriented logics (KAT or temporal logics) to incorporate relations over the
heap. A possible step in this direction would be to extend the evolution logic by Yahav et al. [2006],
which permits mixtures of temporal modalities and (non-relational) heap assertions. Finally, toward
inference of (heap) trace refinement relations, it may be possible to extend the algorithms presented
in this paper. However, the underlying Kleene algebra must be extended, something our framework
can indeed handle in general. We refer the interested reader to the recent work by Beckett et al.
[2017] for ways of extending KATs with additional theories.

9.2 Other Future Work

As discussed in Section 6.2, we plan to further explore using edit-distance at both global and local
levels. Currently our framework does not yet incorporate nested procedures (beyond inlining), which
we leave to future work. To that end, one would likely need to extend beyond KAT to Kleene
Algebra with Domain [Desharnais et al. 2006]. The latter is known to enable verification of push
down systems [Mathieu and Desharnais 2005].

Concurrency is also not currently supported but also appears to be feasible. First, the search space
would of course be huge but one step would be to align every pair of possible program executions
and eliminate inconsistent restriction relations. Second, there might be a natural fit with techniques
such as counter abstraction, partial order reduction, etc. to the events/traces.

Finally, in the ongoing development of Knotical toward a more mature tool, we plan to apply
it to the change history of real-world programs and evaluate it on bug fixes. To this end, we plan to
model the standard C library, system calls, etc. Ultimately, we aim for Knotical to be a part of a
continuous integration framework.

Another avenue is to explore how temporal logic properties can be adapted to trace-refinement
relations. One choice would be a temporal logic such as LTL or CTL, perhaps using the LTL łchopž
operator by Barringer et al. [1984] to support composition.

A OMITTED LEMMAS AND PROOFS

Given a KAT K and an element k ∈ K , we denote the set of guarded strings of k by [[k]]. For details
on the definition of guarded strings, we refer the reader to the work of Kozen [2001].

Theorem A.1. Let k and r be two KAT expressions. Then [[k ∩ r]] = [[k]] ∩ [[r]].

Proof. By definition,k∩r is equal to the union of all li inK , such that li ≤ k and li ≤ r . Therefore,
[[k ∩ r]] =

⋃

i [[li]]. Suppose s ∈ [[k ∩ r]]. Then s ∈ [[li]] for some i , and since li ≤ k and li ≤ r by
definition, it follows that s ∈ [[k]] and s ∈ [[r]]. Conversely, suppose s ∈ [[k]] ∩ [[r]]. Then s ≤ k and
s ≤ r , and therefore s = li for some i . By definition, s ∈ [[li]] and thus s ∈

⋃

i [[li]] = [[k ∩ r]]. □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:24 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

Theorem 4.3 (restated). LetC1 andC2 be two programs, and let k1 and k2 be the two KAT expressions

obtained from a strongly valid translation of the two programs respectively, under some abstraction α .

Then it holds that C1 ⪯ C2 if and only if k1 ⪯ k2.

Proof. For what follows, we write α for αB ◦ αS . For the only if direction, suppose that C1 ⪯ C2

and pick any b,d ∈ B. Suppose first that b · k1 = 0. Then let σ1, . . . ,σn be the set of states such
that α(σ1) + . . . + α(σn) = b for i ≤ n. Then, for all i ≤ n, ⟨C1,σi ⟩ { fault which implies that
⟨C2,σi ⟩ { fault by assumption that C1 ⪯ C2. This means that for all i ≤ n, α(σi) · k2 = 0, and thus
b · k2 = α(σ1) + . . . + α(σn) · k2 = 0.

The second condition states thatb ·k1·d , 0 impliesb ·k2·d , 0, orb ·k2 = 0. Assume thatb ·k1·d , 0.
Let σ1, . . . ,σn be the set of states s.t. b = α(σ1)+ . . .+α(σn), and let ρ1, . . . , ρm be the set of states s.t.
d = α(ρ1)+ . . .+α(ρm). Therefore, (α(σ1)+ . . .+α(σn))·k1 ·(α(ρ1)+α(ρm)) , 0. Let (σi , ρ j) be all the
pairs, s.t.α(σi)·k1 ·α(ρ j) , 0. It follows by definition that ⟨C1,σi ⟩{ρ j . Therefore, either ⟨C2,σi ⟩{ρ j
or ⟨C2,σi ⟩{fault by assumption thatC1 ⪯ C2. It follows that b · k2 = (α(σ1) + . . . + α(σn)) · k2 = 0

or b · k2 · d = (α(σ1) + . . . + α(σn)) · k2 · (α(ρ1) + . . . + α(ρm)) , 0, as required.
For the if direction, suppose that k1 ⪯ k2, and let σ , ρ be any two states in S. If ⟨C1,σ ⟩ { fault,

then α(σ) · k1 = 0. By the assumption that k1 ⪯ k2, we have that α(σ) · k2 = 0. Therefore,
⟨C2,σ ⟩ { fault. On the other hand, if ⟨C1,σ ⟩ { ρ, then α(σ) ·k1 ·α(ρ) , 0. By the assumption that
k1 ⪯ k2, it follows that α(σ)·k2 ·α(ρ) , 0 or α(σ)·k2=0. Therefore, ⟨C2,σ ⟩{ρ or ⟨C2,σ ⟩{fault. □

Lemma A.2. For any k, l in a KAT K , if k ≤ l then k ∩ l = k .

Proof. By definition, k∩l is equal tom1+ . . .+mn , where {m1, . . . ,mn} is the set of all elements
m in K such thatm ≤ k andm ≤ l . By assumption, k is equal tomi for some i ≤ n. Therefore,
k =m1 + . . . +mn as required. □

Lemma A.3. Suppose that k1,k2 ∈ K and A a set of hypotheses such that k1 ≤A k2. Then for any

A ′ with A ⊆ A ′, k1 ≤A′ k2.

Lemma A.4. Let k1,k2, l1 and l2 be elements of a KATK . If k1 ≤ l1 and k2 ≤ l2, then k1 · k2 ≤ l1 · l2
and k1 + k2 ≤ l1 + l2.

Proof. Firstly notice that k1+l1 = l1 and k2+l2 = l2. For the first inequality, we want to show that
k1 ·k2+l1 ·l2 = l1 ·l2. Using the aforementioned equalities, k1 ·k2+l1 ·l2 = k1 ·k2+ (k1+l1) · (k2+l2) =
k1 · k2 + k1 · k2 + k1 · l2 + l1 · k2 + l1 · l2 = k1 · k2 + k1 · l2 + l1 · k2 + l1 · l2 = (k1 + l1) · (k2 + l2) = l1 · l2
as required. For the second inequality, we have that k1 + k2 + l1 + l2 = (k1 + l1) + (k2 + l2) = l1 + l2
as needed. □

Lemma A.5. Suppose that k1,k2 ∈ K . It holds that k1 ≤ k2 if and only if for allm ∈ K ,m ≤ k1
impliesm ≤ k2.

Proof. For the if direction, suppose that for all m ∈ K , m ≤ k1 implies m ≤ k2. Then in
particular, form = k1, k1 ≤ k1 implies that k1 ≤ k2.

For the only if direction, suppose that k1 ≤ k2, and suppose for contradiction that there ism ∈ K

such thatm ≤ k1 butm ≰ k2. Thenm +k1 = k1, butm +k2 , k2. From the assumption that k1 ≤ k2,
it follows that k1 + k2 = k2. Thus k1 +m + k2 = k2, which implies thatm + k2 = k2. It follows that
m ≤ k2, which is a contradiction. □

Lemma A.6. Let k, l ,o,p be elements of some KATK , and let o ≤ k and p ≤ l . Then (k · l)∩ (o ·p) ≤

(k ∩ o) · (l ∩ p) and (k + l) ∩ (o + p) ≤ (k ∩ o) + (l ∩ p).

Proof. We consider the first inequality first, namely, (k · l)∩ (o ·p) ≤ (k ∩o) · (l ∩p). By definition
of intersection, we have that (k · l) ∩ (o ·p) ≤ o ·p and (k + l) ∩ (o+p) ≤ o+p. Since o ≤ k and p ≤ l ,
by Lemma A.2, we have that k ∩ o = o and l ∩p = p. Therefore (k · l) ∩ (o · p) ≤ (k ∩ o) · (l ∩p) and
(k + l) ∩ (o + p) ≤ (k ∩ o) + (l ∩ p) as required. □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:25

Lemma A.7. Let k, l ,o,p be elements of some KAT K . Then (k ∩ o) · (l ∩ p) ≤ (k · l) ∩ (o · p) and

(k ∩ o) + (l ∩ p) ≤ (k + l) ∩ (o + p).

Proof. Consider the expressions (k ∩ o) and (l ∩ p). By definiton, k ∩ o = x1 + . . . + xM , where
{x1, . . . ,xM } is the set of all elements x in K such that x ≤ k and x ≤ o. Similarly, (l ∩ p) =

y1 + . . . + yN where {y1, . . . ,yN } is the set of all y in K such that y ≤ l and y ≤ p. Therefore, by
Lemma A.4, for any x in the first set and any y in the second set, x + y ≤ k + l , x + y ≤ o + p,
x · y ≤ k · l and x · y ≤ o · p.

For the first inequality, namely, (k ∩ o) · (l ∩ p) ≤ (k · l) ∩ (o · p), notice that (k ∩ o) · (l ∩ p) is
equal to (x1 + . . . + xM) · (y1 + . . . + yM) = (x1 · y1) + (x1 · y2) + . . . + (xi · yj) + . . . + (xM · yM).
Therefore, (k ∩ o) · (l ∩ p) ≤ k · l and (k ∩ o) · (l ∩ p) ≤ o · p, and thus (k ∩ o) · (l ∩ p) ≤

(k · l) ∩ (o ·p), as required. Similarly, for the second inequality, notice that (k ∩o)+ (l ∩p) is equal to
(x1 + . . .+xM)+ (y1 + . . .+yM) = (x1 +y1)+ (x1 +y2)+ . . .+ (xi +yj)+ . . .+ (xM +yM). Therefore,
(k ∩o)+ (l ∩p) ≤ k + l and (k ∩o)+ (l ∩p) ≤ o +p, and thus (k ∩o)+ (l ∩p) ≤ (k + l) ∩ (o +p). □

Lemma A.8. Let k and o be elements of some KAT K , and let o ≤ k . Then k∗ ∩ o∗ ≤ (k ∩ o)∗.

Proof. It suffices to show that for all n,m ∈ N, kn ∩ om ≤ (k ∩ p)∗. Letm be any element of
K , such thatm ≤ kn andm ≤ om . Then, since o ≤ k , by Lemma A.2 it holds that o = k ∩ o, and
therefore,m ≤ om implies thatm ≤ (k ∩o)m , and thusm ≤ (k ∩o)∗. Sincem was chosen arbitrarily
among the elements x in K for which x ≤ kn ∩ om , by Lemma A.5, the result follows. □

Lemma A.9. Let k and o be elements of some KAT K . Then (k ∩ o)∗ ≤ k∗ ∩ o∗.

Proof. LetM =m1, . . . ,mn be the set of all elementsm, such thatm ≤ k andm ≤ o. Therefore,
(k∩o)∗ = (m1+. . .+mn)

∗, formi ∈ M . It suffices to show that for allu ∈ N, (m1+. . .+mn)
u ≤ k∗∩o∗.

In particular, it is enough to show that u ∈ N, (m1 + . . . +mn)
u ≤ ku ∩ ou . The latter is equal to

z1 + . . . + zs , for zi ≤ ku and zi ≤ ou . Notice that for any element x ≤ (m1 + . . . +mn)
u , there

is a function f : [u] → [n], such that x ≤ mf (1) ·mf (1) · · ·mf (u). Since for all j ≤ u, mf (j) ≤ k

andmf (j) ≤ o, it follows thatmf (1) ·mf (1) · · ·mf (u) ≤ ku andmf (1) ·mf (1) · · ·mf (u) ≤ ou . Hence,
mf (1) ·mf (1) · · ·mf (u) ≤ ku ∩ou . Since x was chosen arbitrarily, the result follows by Lemma A.5. □

Theorem A.10. Suppose k1,k2, l1 and l2 are KAT expressions. Let Tk and Tl be trace-refinement

relations, such that k1 ⪯
Tk k2 and l1 ⪯

Tl l2. Then k1 · l1 ⪯
Tk ⊙Tl k2 · l2.

Proof. We want to show that for any tuple (x ,y,D) ∈ Tk ⊙ Tl , (k1 · k2) ∩ x ≤D (l1 · l2) ∩ y.
Choose such an arbitrary tuple (x ,y,D) ∈ Tk ⊙ Tl , and let (o,q,A) ∈ Tk and (p, r ,B) ∈ Tl be the
tuples that produced (x ,y,D). In other words, x = o · p, y = q · r and D = A ∪ B.
Since proj1(Tk) partitions k1 and proj1(Tl) partitions l1, we have that for any o ∈ proj1(Tk) and

p ∈ proj1(Tl), o ≤ k andp ≤ l , and thus by Lemma A.6, we have that (k1 ·l1)∩(o ·p) ≤ (k1∩o)·(l1∩p).
By assumption, k1 ∩ o ≤A k2 ∩ q and l1 ∩ p ≤B l2 ∩ r . Since D = A ∪ B, by Lemma A.3, we
have that k1 ∩ o ≤D k2 ∩ q and l1 ∩ p ≤D l2 ∩ r . Therefore, by Lemma A.4, we have that
(k1∩o) · (l1∩p) ≤D (k2∩q) · (l2∩r). By Lemma A.7, we have that (k2∩q) · (l2∩r) ≤D (k2 ·l2)∩(q ·r),
and hence (k1 · l1) ∩ (o · p) ≤D (k2 · l2) ∩ (q · r) as required. □

Theorem A.11. Suppose k1,k2, l1 and l2 are KAT expressions. Let Tk and Tl be trace-refinement

relations, such that k1 ⪯
Tk k2 and l1 ⪯

Tl l2. Then k1 + l1 ⪯
Tk ⊕Tl k2 + l2.

Proof. We want to show that for any tuple (x ,y,D) ∈ Tk ⊕ Tl , (k1 + k2) ∩ x ≤D (l1 + l2) ∩ y.
Choose such an arbitrary tuple (x ,y,D) ∈ Tk ⊕ Tl , and let (o,q,A) ∈ Tk and (p, r ,B) ∈ Tl be the
tuples that produced (x ,y,D). In other words, x = o + p, y = q + r and D = A ∪ B.

Since proj1(Tk) partitions k1 and proj1(Tl) partitions l1, we have that for any o ∈ proj1(Tk) and
p ∈ proj1(Tl),o ≤ k andp ≤ l , and thus by LemmaA.6, we have that (k1+l1)∩(o+p) ≤ (k1∩o)+(l1∩p).
By assumption, k1 ∩ o ≤A k2 ∩ q and l1 ∩ p ≤B l2 ∩ r . Since D = A ∪ B, by Lemma A.3, we

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:26 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

have that k1 ∩ o ≤D k2 ∩ q and l1 ∩ p ≤D l2 ∩ r . Therefore, by Lemma A.4, we have that
(k1∩o)+(l1∩p) ≤D (k2∩q)+(l2∩r). By LemmaA.7, we have that (k2∩q)+(l2∩r) ≤D (k2+l2)∩(q+r),
and hence (k1 + l1) ∩ (o + p) ≤D (k2 + l2) ∩ (q + r) as required. □

Theorem A.12. Suppose k1,k2, l1 and l2 are KAT expressions. Let Tk and Tl be trace-refinement

relations, such that k1 ⪯
Tk k2 and l1 ⪯

Tl l2. Then k1 + l1 ⪯
Tk∪Tl k2 + l2.

Proof. Let (x ,y,D) be any tuple in Tk ∪ Tl . Then (x ,y,D) ∈ Tk or (x ,y,D) ∈ Tl . Since
k1 ⪯Tk k2 and l1 ⪯Tl l2, it follows by definition that k1 ∩ x ≤D k2 ∩ y and l1 ∩ x ≤D l2 ∩ y.
Notice that if either (x ,y,D) < Tk or (x ,y,D) < Tl , then, respectively, either k1 ∩ x = 0 or
l1 ∩ x = 0, and thus the above inequalities hold. Hence, by Lemmas A.6 and A.7, we have that
(k1 + l1) ∩ x ≤D (k2 + l2 ∩ y as required. □

Theorem A.13. Given any KAT expressions k and l , and trace-refinement relation T such that

k ⪯T l , it holds that k∗ ⪯T
⋆

l∗.

Proof. We want to show that for any tuple (x ,y,D) ∈ T⋆, k∗ ∩ x ≤D l∗ ∩ y. Choose such an
arbitrary tuple (x ,y,D) ∈ T⋆, and let (o,q,A) ∈ T be the tuple that produced (x ,y,D). In other
words, x = o∗, y = q∗ and D = A.

Since proj1(T) partitions k1, we have that for any o ∈ proj1(T), o ≤ k . By Lemma A.8 and the
latter inequality, it follows that k∗ ∩ o∗ ≤A (k ∩ o)∗. Then, by the assumption that k ⪯T l , we have
that k ∩ o ≤A l ∩ q, and thus (k ∩ o)∗ ≤A (l ∩ q)∗. Furthermore, by Lemma A.9, we have that
(l ∩ q)∗ ≤A l∗ ∩ q∗. Together, these inequalities give us that k∗ ∩ o∗ ≤A l∗ ∩ q∗, as required. □

Theorem 4.6 (restated). Suppose k1,k2, l1 and l2 are KAT expressions. Let Tk and Tl be trace-

refinement relations, such that k1 ⪯
Tk k2 and l1 ⪯

Tl l2. Then

• k1 · l1 ⪯
Tk ⊙Tl k2 · l2,

• k1 + l1 ⪯
Tk ⊕Tl k2 + l2,

• k1 + l1 ⪯
Tk∪Tl k2 + l2, and

• k∗1 ⪯T
⋆

k k∗2 .

Proof. It follows immediatelly from Theorems A.10, A.11, A.12 and A.13. □

Corollary 4.7 (restated). Given any KAT expressionsm, l ,k1 and k2, and trace-refinement relation

T such that k1 ⪯
T k2, it holds thatm · k1 · l ⪯

T′ m · k2 · l , where T
′ is the set {(m · r1 · l ,m · r2 · l ,A) |

(r1, r2,A) ∈ T}.

Proof. The result follows from Theorem 4.6, by noticing thatm ⪯Tm m and l ⪯Tl l , where Tm
and Tl are the sets {(m,m, ∅)} and {(l , l , ∅)} respectively. □

Theorem 4.8 (restated). For any elements k, l andm in a KATK , and any trace-refinement relations

T1, T2, if k ⪯T1 l and l ⪯T2 m, and T1 ⊗ T2 is defined, then k ⪯T1⊗T2 m.

Proof. We want to show that for any (o,p,A) ∈ T1 ⊗ T2, k ∩ o ≤A l ∩ p. Let (o, r1,A1) ∈ T1
and (r2,p,A2) ∈ T2, be the two tuples that produced the tuple (o,p,A) in their transitive trace-
refinement relation. In other words, r1 ≤ r2 and A = A1 ∪ A2. By assumption, we have that
k ∩ o ≤A1

l ∩ r1. Since r1 ≤ r2, l ∩ r1 ≤ l ∩ r2. Therefore, k ∩ o ≤A1
l ∩ r2. Again by assumption, we

have that l ∩ r2 ≤A2
m ∩p. By Lemma A.3, we have that k ∩ o ≤A l ∩ r2 and l ∩ r2 ≤A m ∩p. Thus

k ∩ o ≤A m ∩ p as required. □

Theorem 5.1 (restated). (Soundness). For allC1,C2, and abstractions α , letO = Synth(C1,C2, ∅,α),

let α ′ be the common abstraction of O and let k1 = Translate(C1,α
′) and k2 = Translate(C2,α

′).

Then k1 ⪯
RefRelation(O) k2.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

Specification and Inference of Trace Refinement Relations 178:27

Proof. Let K be a KAT. For a set of hypotheses A over K , two KAT expressions k1 and k2
and a trace-refinement relation T, we write k1 ⪯T

A
k2 to denote that k1 refines k2 with respect

to T by augmenting the set of hypotheses with A. We proceed by induction on the number of
recursive calls to show that for any abstraction α = (K,AS ,αS ,αB), and any two programs C1 and
C2, if T = RefRelation(Synth(C1,C2,A,α)), then Translate(C1,α) ⪯

T
A

Translate(C1,α). Since
the algorithm is initialised with A being the empty set, the trace-refinement relation T returned
will be such that k1 ⪯

T k2.
For the base case, suppose that the algorithm returns without any recursive calls. Then, for

k1 = Translate(C1,α) and k2 = Translate(C2,α), the procedure KATdiff(k1,k2,A) returns no
counterexamples. By assumption, this means that k1 ≤A k2, which implies that k1 ⪯T

A
k2, for

T = {(k1,k2,A,α)}.
For the inductive case, suppose that KATdiff(k1,k2,A) returns a set of counterexamples c =

{c1, . . . , cm}. By assumption, the subprocedure SolveDiff, given k1,k2, c and A as input, returns
a set R of restrictions, say of size n ∈ N, such that proj1(R) partitions k1. Let (r1, r2,A

′) be a
tuple in R, and let (D1,D2,α

′) be the output of Restrict(C1, r1,C2, r2,A ∪ A ′
,α). By assump-

tion, Translate(D1,α
′) =A∪A′ Translate(C1,α

′) ∩ r1, and the same holds for D2,C2 and r2.
By the inductive hypothesis, if O is the output of Synth(D1,D2,A ∪ A ′

,α ′), then it holds that

Translate(D1,α
′) ⪯

RefRelation(O)
A∪A′ Translate(D2,α

′).
For i ≤ n, let (r1,i , r2,i ,Ai) be the tuples in R returned by the procedure SolveDiff. For each

i ≤ n, let (D1,i ,D2,i ,α
′
i) be the result of Restrict(C1, r1,i ,C2, r2,i ,A ∪ Ai ,α). Finally, let Oi be

the output of Synth(D1,i ,D2,i ,A ∪ Ai) and T
′
i be equal to RefRelation(Oi). In other words, for

each i ≤ n, let T′i be the set {(k, l ,A) | (k, l ,A,α ′
i) ∈ Oi }, where α

′
i is the common abstraction

of Oi . Define β to be the abstraction
⊔

i≤n α
′
i , and let Ti be obtained from T′i by having all KAT

expressions be over the common abstraction β . Then define O to be equal to O1 ∪ . . . ∪On . Notice
that the flatmap operator in the algorithm, simply returns O from all the Oi , and notice that
T1 ∪ . . . ∪ Tn = RefRelation(O1 ∪ . . . ∪On). By the argument above, we have that for all i ≤ n,

Translate(D1,i ,α
′
i) ⪯

RefRelation(Oi)

A∪A′
i

Translate(D2,i ,α
′
i), (5)

and Translate(D1,i ,α
′
i) =A∪A′ Translate(C1,α

′) ∩ r1,i . Notice that since proj1(R) partitions k1,

Translate(C1,α
′) ∩ r1,1 + . . . + Translate(C1,α

′) ∩ r1,n
=A∪A′ Translate(C1,α

′) ∩ (r1,1 + . . . + r1,n) =A∪A′ Translate(C1,α
′),

and therefore

Translate(D1,1,α
′
1) + . . . + Translate(D1,n ,α

′
n) =A∪A′ Translate(C1,α

′). (6)

By a similar argument,

Translate(D2,1,α
′
1) + . . . + Translate(D2,n ,α

′
n) =A∪A′ Translate(C2,α

′). (7)

Therefore, by Theorem A.12 and equations (5), (6) and (7),

Translate(C1,α
′) ⪯

T1∪...∪Tn
A∪A1∪...An

Translate(C2,α
′),

where, as was argued earlier, T1 ∪ . . . ∪ Tn = RefRelation(O1 ∪ . . . ∪On) = RefRelation(O). □

ACKNOWLEDGMENTS

The authors would also like to thank James Brotherston, David Naumann, Matthew Parkinson
and the anonymous referees for their valuable comments and helpful suggestions. This work is
supported by Office of Naval Research under Grant No.: N00014-17-1-2787.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

178:28 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

REFERENCES

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi Wei. 2017. Decomposition

instead of self-composition for proving the absence of timing channels. In Proceedings of the 38th ACM SIGPLANConference

on Programming Language Design and Implementation. ACM, 362ś375.

Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le. 2019a. Experimental Results of Knotical. Retrieved August 14, 2019

from https://knotical.github.io/knotical/results/SUMMARY.html

Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le. 2019b. Knotical: An Inference System of Trace Refinement Relations.

https://doi.org/10.5281/zenodo.3368626

Howard Barringer, Ruurd Kuiper, and Amir Pnueli. 1984. Now You May Compose Temporal Logic Specifications. In

Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA.

51ś63.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In International

Symposium on Formal Methods. Springer, 200ś214.

Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. 2004. Secure information flow by self-composition. In CSFW.

Ryan Beckett, Eric Campbell, and Michael Greenberg. 2017. Kleene Algebra Modulo Theories. CoRR abs/1707.02894 (2017).

arXiv:1707.02894 http://arxiv.org/abs/1707.02894

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In Proceedings of

the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January

14-16, 2004. 14ś25.

Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical computer science 337, 1-3 (2005), 217ś239.

Ahmed Bouajjani, Constantin Enea, and Shuvendu K. Lahiri. 2017. Abstract Semantic Diffing of Evolving Concurrent

Programs. In Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017,

Proceedings. 46ś65. https://doi.org/10.1007/978-3-319-66706-5_3

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014.

Temporal Logics for Hyperproperties. In POST. 265ś284.

Jules Desharnais, Bernhard Möller, and Georg Struth. 2006. Kleene algebra with domain. ACM Trans. Comput. Log. 7, 4

(2006), 798ś833. https://doi.org/10.1145/1183278.1183285

Benny Godlin and Ofer Strichman. 2009. Regression verification. In Proceedings of the 46th Annual Design Automation

Conference. ACM, 466ś471.

Sumit Gulwani, Sagar Jain, and Eric Koskinen. 2009. Control-flow refinement and progress invariants for bound analysis.

In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,

Dublin, Ireland, June 15-21, 2009. 375ś385.

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. 2017. Refining interprocedural change-impact analysis using

equivalence relations. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,

Santa Barbara, CA, USA, July 10 - 14, 2017. 318ś328. https://doi.org/10.1145/3092703.3092719

Daniel Jackson and David A Ladd. 1994. Semantic Diff: A Tool for Summarizing the Effects of Modifications.. In ICSM,

Vol. 94. 243ś252.

Ming Kawaguchi, Shuvendu K Lahiri, and Henrique Rebelo. 2010. Conditional equivalence. Microsoft, MSR-TR-2010-119,

Tech. Rep (2010).

Dexter Kozen. 1990. On kleene algebras and closed semirings. In Mathematical Foundations of Computer Science 1990,

Branislav Rovan (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 26ś47.

Dexter Kozen. 1996. Kleene Algebra withTests and Commutativity Conditions. In Tools and Algorithms for Construction

and Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996, Proceedings

(Lecture Notes in Computer Science), Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 1055. Springer, 14ś33. https:

//doi.org/10.1007/3-540-61042-1_35

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427ś443. https://doi.org/10.

1145/256167.256195

Dexter Kozen. 2001. Automata on Guarded Strings and Applications. Technical Report. Ithaca, NY, USA.

Dexter Kozen. 2006. On the Representation of Kleene Algebras with Tests. In Mathematical Foundations of Computer

Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings

(Lecture Notes in Computer Science), Rastislav Kralovic and Pawel Urzyczyn (Eds.), Vol. 4162. Springer, 73ś83. https:

//doi.org/10.1007/11821069_6

Tsutomu Kumazawa and Tetsuo Tamai. 2011. Counterexample-based error localization of behavior models. In NASA Formal

Methods Symposium. Springer, 222ś236.

Shuvendu K. Lahiri, Arvind Haran, Shaobo He, and Zvonimir Rakamaric. 2015. Automated Differential Program Verification

for Approximate Computing. Technical Report. Microsoft Research.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

https://knotical.github.io/knotical/results/SUMMARY.html
https://doi.org/10.5281/zenodo.3368626
http://arxiv.org/abs/1707.02894
http://arxiv.org/abs/1707.02894
https://doi.org/10.1007/978-3-319-66706-5_3
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1145/3092703.3092719
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/11821069_6
https://doi.org/10.1007/11821069_6

Specification and Inference of Trace Refinement Relations 178:29

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. SYMDIFF: A Language-Agnostic

Semantic Diff Tool for Imperative Programs. In Computer Aided Verification - 24th International Conference, CAV 2012,

Berkeley, CA, USA, July 7-13, 2012 Proceedings. 712ś717. https://doi.org/10.1007/978-3-642-31424-7_54

Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential assertion checking. In

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013. 345ś355. https://doi.org/10.

1145/2491411.2491452

Gaël Lalire, Mathias Argoud, and Bertrand Jeannet. 2009. Interproc analyzer for recursive programs with numerical variables.

Retrieved August 13, 2019 from http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, and Sam Blackshear. 2014. Verification modulo versions:

towards usable verification. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, Edinburgh, United Kingdom - June 09 - 11, 2014. 294ś304. https://doi.org/10.1145/2594291.2594326

Vincent Mathieu and Jules Desharnais. 2005. Verification of Pushdown Systems Using Omega Algebra with Domain.

In Relational Methods in Computer Science, 8th International Seminar on Relational Methods in Computer Science, 3rd

International Workshop on Applications of Kleene Algebra, and Workshop of COST Action 274: TARSKI, St. Catharines, ON,

Canada, February 22-26, 2005, Selected Revised Papers. 188ś199.

Laurent Mauborgne and Xavier Rival. 2005. Trace partitioning in abstract interpretation based static analyzers. In European

Symposium on Programming. Springer, 5ś20.

Carroll Morgan. 1994. Programming from specifications. Prentice Hall,.

JoachimNilsson. 2019. Merecat EmbeddedWeb Server. Retrieved August 13, 2019 from https://troglobit.com/projects/merecat/

Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local reasoning about programs that alter data structures. In

International Workshop on Computer Science Logic. Springer, 1ś19.

Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of formal methods. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. 13ś25.

Nimrod Partush and Eran Yahav. 2013. Abstract Semantic Differencing for Numerical Programs. In Static Analysis - 20th

International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings. 238ś258.

Nimrod Partush and Eran Yahav. 2014. Abstract semantic differencing via speculative correlation. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of

SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 811ś828.

Suzette Person, Matthew B. Dwyer, Sebastian G. Elbaum, and Corina S. Pasareanu. 2008. Differential symbolic execution. In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2008, Atlanta,

Georgia, USA, November 9-14, 2008. 226ś237.

Lauren Pick, Grigory Fedyukovich, and Aarti Gupta. 2018. Exploiting Synchrony and Symmetry in Relational Verification.

In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,

FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. 164ś182.

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 151ś166.

Jef Poskanzer. 2018. thttpd HTTP server. Retrieved August 13, 2019 from http://www.acme.com/software/thttpd/

Damien Pous. 2015a. Symbolic algorithms for language equivalence and Kleene algebra with tests. ACM SIGPLAN Notices

50, 1 (2015), 357ś368.

Damien Pous. 2015b. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests. In Proceedings of the

42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,

January 15-17, 2015. 357ś368. https://doi.org/10.1145/2676726.2677007

Damien Pous. 2016. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests. Retrieved August 13,

2019 from https://perso.ens-lyon.fr/damien.pous/symbolickat/

Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. 2017. Discovering relational specifications. In Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017.

616ś626. https://doi.org/10.1145/3106237.3106279

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In ACM SIGPLAN Notices, Vol. 51.

ACM, 57ś69.

Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri. 2018. Verified three-way program merge. PACMPL 2, OOPSLA (2018),

165:1ś165:29.

Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang. 2018. Datalog-based scalable semantic diffing of

concurrent programs. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,

ASE 2018, Montpellier, France, September 3-7, 2018. 656ś666.

Tachio Terauchi and Alex Aiken. 2005. Secure information flow as a safety problem. In SAS.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1145/2491411.2491452
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
https://doi.org/10.1145/2594291.2594326
https://troglobit.com/projects/merecat/
http://www.acme.com/software/thttpd/
https://doi.org/10.1145/2676726.2677007
https://perso.ens-lyon.fr/damien.pous/symbolickat/
https://doi.org/10.1145/3106237.3106279

178:30 Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. 2017. Modular Demand-Driven Analysis of Semantic Difference

for Program Versions. In Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 -

September 1, 2017, Proceedings. 405ś427.

Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating Induction for Solving Horn Clauses. In Computer Aided

Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. 571ś591.

https://doi.org/10.1007/978-3-319-63390-9_30

Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018. Verifying equivalence of database-driven

applications. PACMPL 2, POPL (2018), 56:1ś56:29.

Tim Wood, Sophia Drossopoulou, Shuvendu K. Lahiri, and Susan Eisenbach. 2017. Modular Verification of Procedure

Equivalence in the Presence of Memory Allocation. In Programming Languages and Systems - 26th European Symposium

on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. 937ś963. https://doi.org/10.1007/978-3-662-54434-1_35

Eran Yahav, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. 2006. Verifying Temporal Heap Properties Specified via

Evolution Logic. Logic Journal of the IGPL 14, 5 (2006), 755ś783. https://doi.org/10.1093/jigpal/jzl009

Hongseok Yang. 2007. Relational separation logic. Theor. Comput. Sci. 375, 1-3 (2007), 308ś334. https://doi.org/10.1016/j.tcs.

2006.12.036

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 178. Publication date: October 2019.

https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.1007/978-3-662-54434-1_35
https://doi.org/10.1093/jigpal/jzl009
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036

	Abstract
	1 Introduction
	1.1 Toward Trace Refinement Relations
	1.2 Challenges & Contributions
	1.3 Related Work and Limitations

	2 Overview
	2.1 Background: From Programs to KAT Expressions
	2.2 Trace Refinement Relations
	2.3 Composition, Contexts, Spanning Versions
	2.4 Automation
	2.5 The Knotical Tool

	3 Preliminaries
	4 KAT Representations and Refinements
	4.1 Abstracting Programs into KAT Expressions
	4.2 KAT Refinements
	4.3 Composition

	5 Automation
	5.1 Sub-Procedures
	5.2 Formal Guarantees

	6 Edit-distance on expressions and strings
	6.1 Edit-Distance Algorithm
	6.2 Global KAT Expression Edit-Distance

	7 Experiments
	8 Related Work
	9 Conclusion and Future Work
	9.1 Heaps and Arrays
	9.2 Other Future Work

	A Omitted Lemmas and Proofs
	Acknowledgments
	References

